Akira Matsui


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Using Word Embedding to Reveal Monetary Policy Explanation Changes
Akira Matsui | Xiang Ren | Emilio Ferrara
Proceedings of the Third Workshop on Economics and Natural Language Processing

Documents have been an essential tool of communication for governments to announce their policy operations. Most policy announcements have taken the form of text to inform their new policies or changes to the public. To understand such policymakers’ communication, many researchers exploit published policy documents. However, the methods well-used in other research domains such as sentiment analysis or topic modeling are not suitable for studying policy communications. Their training corpora and methods are not for policy documents where technical terminologies are used, and sentiment expressions are refrained. We leverage word embedding techniques to extract semantic changes in the monetary policy documents. Our empirical study shows that the policymaker uses different semantics according to the type of documents when they change their policy.