Akihiro Kishimoto


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Finding Sub-task Structure with Natural Language Instruction
Ryokan Ri | Yufang Hou | Radu Marinescu | Akihiro Kishimoto
Proceedings of the First Workshop on Learning with Natural Language Supervision

When mapping a natural language instruction to a sequence of actions, it is often useful toidentify sub-tasks in the instruction. Such sub-task segmentation, however, is not necessarily provided in the training data. We present the A2LCTC (Action-to-Language Connectionist Temporal Classification) algorithm to automatically discover a sub-task segmentation of an action sequence.A2LCTC does not require annotations of correct sub-task segments and learns to find them from pairs of instruction and action sequence in a weakly-supervised manner. We experiment with the ALFRED dataset and show that A2LCTC accurately finds the sub-task structures. With the discovered sub-tasks segments, we also train agents that work on the downstream task and empirically show that our algorithm improves the performance.