Ajay Chatterjee


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Intent Mining from past conversations for Conversational Agent
Ajay Chatterjee | Shubhashis Sengupta
Proceedings of the 28th International Conference on Computational Linguistics

Conversational systems are of primary interest in the AI community. Organizations are increasingly using chatbot to provide round-the-clock support and to increase customer engagement. Many commercial bot building frameworks follow a standard approach that requires one to build and train an intent model to recognize user input. These frameworks require a collection of user utterances and corresponding intent to train an intent model. Collecting a substantial coverage of training data is a bottleneck in the bot building process. In cases where past conversation data is available, the cost of labeling hundreds of utterances with intent labels is time-consuming and laborious. In this paper, we present an intent discovery framework that can mine a vast amount of conversational logs and to generate labeled data sets for training intent models. We have introduced an extension to the DBSCAN algorithm and presented a density-based clustering algorithm ITER-DBSCAN for unbalanced data clustering. Empirical evaluation on one conversation dataset, six different intent dataset, and one short text clustering dataset show the effectiveness of our hypothesis.