Aiswarya M


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
BlueRay@DravidianLangTech-2025: Fake News Detection in Dravidian Languages
Kogilavani Shanmugavadivel | Malliga Subramanian | Aiswarya M | Aruna T | Jeevaananth S
Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

The rise of fake news presents significant issues, particularly for underrepresented lan guages. This study tackles fake news identification in Dravidian languages with two subtasks: binary classification of YouTube comments and multi-class classification of Malayalam news into five groups. Text preprocessing, vectorization, and transformer-based embeddings are all part of the methodology, including baseline comparisons utilizing classic machine learning, deep learning, and transfer learning models. In Task 1, our solution placed 17th, displaying acceptable binary classification per formance. In Task 2, we finished eighth place by effectively identifying nuanced categories of Malayalam news, demonstrating the efficacy of transformer-based models.

2024

pdf bib
KEC AI DSNLP@LT-EDI-2024:Caste and Migration Hate Speech Detection using Machine Learning Techniques
Kogilavani Shanmugavadivel | Malliga Subramanian | Aiswarya M | Aruna T | Jeevaananth S
Proceedings of the Fourth Workshop on Language Technology for Equality, Diversity, Inclusion

Commonly used language defines “hate speech” as objectionable statements that may jeopardize societal harmony by singling out a group or a person based on fundamental traits (including gender, caste, or religion). Using machine learning techniques, our research focuses on identifying hate speech in social media comments. Using a variety of machine learning methods, we created machine learning models to detect hate speech. An approximate Macro F1 of 0.60 was attained by the created models.