Ainulla Khan


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
BRIT: Bidirectional Retrieval over Unified Image-Text Graph
Ainulla Khan | Moyuru Yamada | Srinidhi Akella
Findings of the Association for Computational Linguistics: EMNLP 2025

Retrieval-Augmented Generation (RAG) has emerged as a promising technique to enhance the quality and relevance of responses generated by large language models. While recent advancements have mainly focused on improving RAG for text-based queries, RAG on multi-modal documents containing both texts and images has not been fully explored. Especially when fine-tuning does not work. This paper proposes BRIT, a novel multi-modal RAG framework that effectively unifies various text-image connections in the document into a multi-modal graph and retrieves the texts and images as a query-specific sub-graph. By traversing both image-to-text and text-to-image paths in the graph, BRIT retrieve not only directly query-relevant images and texts but also further relevant contents to answering complex cross-modal multi-hop questions. To evaluate the effectiveness of BRIT, we introduce MM-RAG test set specifically designed for multi-modal question answering tasks that require to understand the text-image relations. Our comprehensive experiments demonstrate the superiority of BRIT, highlighting its ability to handle cross-modal questions on the multi-modal documents.