Ahmed Serag


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Bridging Dialectal Gaps in Arabic Medical LLMs through Model Merging
Ahmed Ibrahim | Abdullah Hosseini | Hoda Helmy | Wafa Lakhdhar | Ahmed Serag
Proceedings of The Third Arabic Natural Language Processing Conference

The linguistic fragmentation of Arabic, with over 30 dialects exhibiting low mutual intelligibility, presents a critical challenge for deploying natural language processing (NLP) in healthcare. Conventional fine-tuning of large language models (LLMs) for each dialect is computationally prohibitive and operationally unsustainable. In this study, we explore model merging as a scalable alternative by integrating three pre-trained LLMs—a medical domain expert, an Egyptian Arabic model, and a Moroccan Darija model—into a unified system without additional fine-tuning. We introduce a novel evaluation framework that assesses both dialectal fidelity via dual evaluation: LLM-based automated scoring and human assessments by native speakers. Our results demonstrate that the merged model effectively handles cross-dialect medical scenarios, such as interpreting Moroccan Darija inputs for Egyptian Arabic-speaking clinicians, while maintaining high clinical relevance. The merging process reduced computational cost by over 60% compared to per-dialect fine-tuning, highlighting its viability for resource-constrained settings. This work offers a promising path for building dialect-aware medical LLMs at scale, with implications for broader deployment across linguistically diverse regions.