Ahamed Alameldin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Clemson NLP at SemEval-2023 Task 7: Applying GatorTron to Multi-Evidence Clinical NLI
Ahamed Alameldin | Ashton Williamson
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

This paper presents our system descriptions for SemEval 2023-Task 7: Multi-evidence Natural Language Inference for Clinical Trial Data sub-tasks one and two. Provided with a collection of Clinical Trial Reports (CTRs) and corresponding expert-annotated claim statements, sub-task one involves determining an inferential relationship between the statement and CTR premise: contradiction or entailment. Sub-task two involves retrieving evidence from the CTR which is necessary to determine the entailment in sub-task one. For sub-task two we employ a recent transformer-based language model pretrained on biomedical literature, which we domain-adapt on a set of clinical trial reports. For sub-task one, we take an ensemble approach in which we leverage the evidence retrieval model from sub-task two to extract relevant sections, which are then passed to a second model of equivalent architecture to determine entailment. Our system achieves a ranking of seventh on sub-task one with an F1-score of 0.705 and sixth on sub-task two with an F1-score of 0.806. In addition, we find that the high rate of success of language models on this dataset may be partially attributable to the existence of annotation artifacts.