This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
AdrianCharkiewicz
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This work describes Laniqo’s submission to the constrained track of the WMT25 General MT Task. We participated in 11 translation directions. Our approach combines several techniques: fine-tuning the EuroLLM-9B-Instruct model using Contrastive Preference Optimization on a synthetic dataset, applying Retrieval-Augmented Translation with human-translated data, implementing Quality-Aware Decoding, and performing postprocessing of translations with a rule-based algorithm. We analyze the contribution of each method and report improvements at every stage of our pipeline.
This paper describes the Laniqo system submitted to the WMT25 Terminology Translation Task. Our approach uses a Large Language Model fine-tuned on parallel data augmented with source-side terminology constraints. To select the final translation from a set of generated candidates, we introduce Pareto-Optimal Decoding - a multi-objective reranking strategy. This method balances translation quality with term accuracy by leveraging several quality estimation metrics alongside Term Success Rate (TSR). Our system achieves TSR greater than 0.99 across all language pairs on the Shared Task testset, demonstrating the effectiveness of the proposed approach.
This paper explores Minimum Bayes Risk (MBR) decoding for self-improvement in machine translation (MT), particularly for domain adaptation and low-resource languages. We implement the self-improvement process by fine-tuning the model on its MBR-decoded forward translations. By employing COMET as the MBR utility metric, we aim to achieve the reranking of translations that better aligns with human preferences. The paper explores the iterative application of this approach and the potential need for language-specific MBR utility metrics. The results demonstrate significant enhancements in translation quality for all examined language pairs, including successful application to domain-adapted models and generalisation to low-resource settings. This highlights the potential of COMET-guided MBR for efficient MT self-improvement in various scenarios.
This submission discusses my research interests in two areas: measuring user satisfaction in goal-oriented dialogue systems and exploring the potential of multi-modal interactions. For goal-oriented dialogue systems, I focus on evaluating and enhancing user satisfaction throughout the interaction process, aiming to propose innovative strategies and address the limitations of existing evaluation techniques. Additionally, I explore the benefits of multi-modal dialogue systems, highlighting their ability to provide more natural and immersive conversations by incorporating various communication modes such as speech, text, gestures, and visuals.