Adam Stiff


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
How Self-Attention Improves Rare Class Performance in a Question-Answering Dialogue Agent
Adam Stiff | Qi Song | Eric Fosler-Lussier
Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue

Contextualized language modeling using deep Transformer networks has been applied to a variety of natural language processing tasks with remarkable success. However, we find that these models are not a panacea for a question-answering dialogue agent corpus task, which has hundreds of classes in a long-tailed frequency distribution, with only thousands of data points. Instead, we find substantial improvements in recall and accuracy on rare classes from a simple one-layer RNN with multi-headed self-attention and static word embeddings as inputs. While much research has used attention weights to illustrate what input is important for a task, the complexities of our dialogue corpus offer a unique opportunity to examine how the model represents what it attends to, and we offer a detailed analysis of how that contributes to improved performance on rare classes. A particularly interesting phenomenon we observe is that the model picks up implicit meanings by splitting different aspects of the semantics of a single word across multiple attention heads.