Adam Roegiest


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Questions about Contracts: Prompt Templates for Structured Answer Generation
Adam Roegiest | Radha Chitta | Jonathan Donnelly | Maya Lash | Alexandra Vtyurina | Francois Longtin
Proceedings of the Natural Legal Language Processing Workshop 2023

Finding the answers to legal questions about specific clauses in contracts is an important analysis in many legal workflows (e.g., understanding market trends, due diligence, risk mitigation) but more important is being able to do this at scale. In this paper, we present an examination of using large language models to produce (partially) structured answers to legal questions; primarily in the form of multiple choice and multiple select. We first show that traditional semantic matching is unable to perform this task at acceptable accuracy and then show how question specific prompts can achieve reasonable accuracy across a range of generative models. Finally, we show that much of this effectiveness can be maintained when generalized prompt templates are used rather than question specific ones.