Achintya Gopal


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Can We Statically Locate Knowledge in Large Language Models? Financial Domain and Toxicity Reduction Case Studies
Jordi Armengol-Estapé | Lingyu Li | Sebastian Gehrmann | Achintya Gopal | David S Rosenberg | Gideon S. Mann | Mark Dredze
Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

Current large language model (LLM) evaluations rely on benchmarks to assess model capabilities and their encoded knowledge. However, these evaluations cannot reveal where a model encodes its knowledge, and thus little is known about which weights contain specific information. We propose a method to statically (without forward or backward passes) locate topical knowledge in the weight space of an LLM, building on a prior insight that parameters can be decoded into interpretable tokens. If parameters can be mapped into the embedding space, it should be possible to directly search for knowledge via embedding similarity. We study the validity of this assumption across several LLMs for a variety of concepts in the financial domain and a toxicity detection setup. Our analysis yields an improved understanding of the promises and limitations of static knowledge location in real-world scenarios.