Abid Hossain


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
MENDER: Multi-hop Commonsense and Domain-specific CoT Reasoning for Knowledge-grounded Empathetic Counseling of Crime Victims
Abid Hossain | Priyanshu Priya | Armita Mani Tripathi | Pradeepika Verma | Asif Ekbal
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)

Commonsense inference and domain-specific expertise are crucial for understanding and responding to emotional, cognitive, and topic-specific cues in counseling conversations with crime victims. However, these key evidences are often dispersed across multiple utterances, making it difficult to capture through single-hop reasoning. To address this, we propose MENDER, a novel Multi-hop commonsensE and domaiN-specific Chain-of-Thought (CoT) reasoning framework for knowleDge-grounded empathEtic Response generation in counseling dialogues. MENDER leverages large language models (LLMs) to integrate commonsense and domain knowledge via multi-hop reasoning over the dialogue context. It employs two specialized reasoning chains, viz. Commonsense Knowledge-driven CoT and Domain Knowledge-driven CoT rationales, which extract and aggregate dispersed emotional, cognitive, and topical evidences to generate knowledge-grounded empathetic counseling responses. Experimental evaluations on counseling dialogue dataset, POEM validate MENDER’s efficacy in generating coherent, empathetic, knowledge-grounded responses.