Abhishek Kumar Singh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
INDIC QA BENCHMARK: A Multilingual Benchmark to Evaluate Question Answering capability of LLMs for Indic Languages
Abhishek Kumar Singh | Vishwajeet Kumar | Rudra Murthy | Jaydeep Sen | Ashish Mittal | Ganesh Ramakrishnan
Findings of the Association for Computational Linguistics: NAACL 2025

Large Language Models (LLMs) perform well on unseen tasks in English, but their abilities in non-English languages are less explored due to limited benchmarks and training data. To bridge this gap, we introduce the Indic-QA Benchmark, a large dataset for context-grounded question answering in 11 major Indian languages, covering both extractive and abstractive tasks. Evaluations of multilingual LLMs, including instruction fine-tuned versions, revealed weak performance in low-resource languages due to a strong English-language bias in their training data. We also investigated the Translate-Test paradigm,where inputs are translated to English for processing and the results are translated back into the source language for output. This approach outperformed multilingual LLMs, particularly in low-resource settings. By releasing Indic-QA, we aim to promote further research into LLMs’ question-answering capabilities in low-resource languages. This benchmark offers a critical resource to address existing limitations and foster multilingual understanding.