Abhinav Rao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Tricking LLMs into Disobedience: Formalizing, Analyzing, and Detecting Jailbreaks
Abhinav Rao | Sachin Vashistha | Atharva Naik | Somak Aditya | Monojit Choudhury
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Recent explorations with commercial Large Language Models (LLMs) have shown that non-expert users can jailbreak LLMs by simply manipulating their prompts; resulting in degenerate output behavior, privacy and security breaches, offensive outputs, and violations of content regulator policies. Limited studies have been conducted to formalize and analyze these attacks and their mitigations. We bridge this gap by proposing a formalism and a taxonomy of known (and possible) jailbreaks. We survey existing jailbreak methods and their effectiveness on open-source and commercial LLMs (such as GPT-based models, OPT, BLOOM, and FLAN-T5-XXL). We further discuss the challenges of jailbreak detection in terms of their effectiveness against known attacks. For further analysis, we release a dataset of model outputs across 3700 jailbreak prompts over 4 tasks.