This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
AbhijitManatkar
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Assuring the data quality of tabular datasets is essential for the efficiency of the diverse tabular downstream tasks (like summarization and fact-checking). Data-wrangling tasks effectively address the challenges associated with structured data processing to improve the quality of tabular data. Traditional statistical methods handle numeric data efficiently but often fail to understand the semantic context of the textual data in tables. Deep learning approaches are resource-intensive, requiring task and dataset-specific training. Addressing these shortcomings, we present an automated system that leverages LLMs to generate executable code for data-wrangling tasks like missing value imputation, error detection, and error correction. Our system aims to identify inherent patterns in the data while leveraging external knowledge, effectively addressing both memory-independent and memory-dependent tasks.
Discovering meaningful insights from a large dataset, known as Exploratory Data Analysis (EDA), is a challenging task that requires thorough exploration and analysis of the data. Automated Data Exploration (ADE) systems use goal-oriented methods with Large Language Models and Reinforcement Learning towards full automation. However, these methods require human involvement to anticipate goals that may limit insight extraction, while fully automated systems demand significant computational resources and retraining for new datasets. We introduce QUIS, a fully automated EDA system that operates in two stages: insight generation (ISGen) driven by question generation (QUGen). The QUGen module generates questions in iterations, refining them from previous iterations to enhance coverage without human intervention or manually curated examples. The ISGen module analyzes data to produce multiple relevant insights in response to each question, requiring no prior training and enabling QUIS to adapt to new datasets.
Efficient processing of tabular data is important in various industries, especially when working with datasets containing a large number of columns. Large language models (LLMs) have demonstrated their ability on several tasks through carefully crafted prompts. However, creating effective prompts for tabular datasets is challenging due to the structured nature of the data and the need to manage numerous columns. This paper presents an innovative auto-prompt generation system suitable for multiple LLMs, with minimal training. It proposes two novel methods; 1) A Reinforcement Learning-based algorithm for identifying and sequencing task-relevant columns 2) cell-level similarity-based approach for enhancing few-shot example selection. Our approach has been extensively tested across 66 datasets, demonstrating improved performance in three downstream tasks: data imputation, error detection, and entity matching using two distinct LLMs; Google/flant-t5xxl and Mixtral 8x7B.