This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
AbeHou
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The widespread use of large language models (LLMs) is increasing the demand for methods that detect machine-generated text to prevent misuse. The goal of our study is to stress test the detectors’ robustness to malicious attacks under realistic scenarios. We comprehensively study the robustness of popular machine-generated text detectors under attacks from diverse categories: editing, paraphrasing, co-generating, and prompting. Our attacks assume limited access to the generator LLMs, and we compare the performance of detectors on different attacks under different budget levels. Our experiments reveal that almost none of the existing detectors remain robust under all the attacks, and all detectors exhibit different loopholes. Averaging all detectors, the performance drops by 35% across all attacks. Further, we investigate the reasons behind these defects and propose initial out-of-the-box patches.
Recent watermarked generation algorithms inject detectable signatures during language generation to facilitate post-hoc detection. While token-level watermarks are vulnerable to paraphrase attacks, SemStamp (Hou et al., 2023) applies watermark on the semantic representation of sentences and demonstrates promising robustness. SemStamp employs locality-sensitive hashing (LSH) to partition the semantic space with arbitrary hyperplanes, which results in a suboptimal tradeoff between robustness and speed. We propose k-SemStamp, a simple yet effective enhancement of SemStamp, utilizing k-means clustering as an alternative of LSH to partition the embedding space with awareness of inherent semantic structure. Experimental results indicate that k-SemStamp saliently improves its robustness and sampling efficiency while preserving the generation quality, advancing a more effective tool for machine-generated text detection.
Existing watermarked generation algorithms employ token-level designs and therefore, are vulnerable to paraphrase attacks. To address this issue, we introduce watermarking on the semantic representation of sentences. We propose SemStamp, a robust sentence-level semantic watermarking algorithm that uses locality-sensitive hashing (LSH) to partition the semantic space of sentences. The algorithm encodes and LSH-hashes a candidate sentence generated by a language model, and conducts rejection sampling until the sampled sentence falls in watermarked partitions in the semantic embedding space. To test the paraphrastic robustness of watermarking algorithms, we propose a “bigram paraphrase” attack that produces paraphrases with small bigram overlap with the original sentence. This attack is shown to be effective against existing token-level watermark algorithms, while posing only minor degradations to SemStamp. Experimental results show that our novel semantic watermark algorithm is not only more robust than the previous state-of-the-art method on various paraphrasers and domains, but also better at preserving the quality of generation.
Large Language Models (LLMs) show promise as a writing aid for professionals performing legal analyses. However, LLMs can often hallucinate in this setting, in ways difficult to recognize by non-professionals and existing text evaluation metrics. In this work, we pose the question: when can machine-generated legal analysis be evaluated as acceptable? We introduce the neutral notion of gaps – as opposed to hallucinations in a strict erroneous sense – to refer to the difference between human-written and machine-generated legal analysis. Gaps do not always equate to invalid generation. Working with legal experts, we consider the CLERC generation task proposed in Hou et al. (2024b), leading to a taxonomy, a fine-grained detector for predicting gap categories, and an annotated dataset for automatic evaluation. Our best detector achieves 67% F1 score and 80% precision on the test set. Employing this detector as an automated metric on legal analysis generated by SOTA LLMs, we find around 80% contain hallucinations of different kinds.