This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
AbdulmohsenAl-Thubaity
Also published as:
AbdulMohsen Al-Thubaity
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
The impressive advancement of Large Language Models (LLMs) in English has not been matched across all languages. In particular, LLM performance in Arabic lags behind, due to data scarcity, linguistic diversity of Arabic and its dialects, morphological complexity, etc. Progress is further hindered by the quality of Arabic benchmarks, which typically rely on static, publicly available data, lack comprehensive task coverage, or do not provide dedicated platforms with blind test sets. This makes it challenging to measure actual progress and to mitigate data contamination. Here, we aim to bridge these gaps. In particular, we introduce BALSAM, a comprehensive, community-driven benchmark aimed at advancing Arabic LLM development and evaluation. It includes 78 NLP tasks from 14 broad categories, with 52K examples divided into 37K test and 15K development, and a centralized, transparent platform for blind evaluation. We envision BALSAM as a unifying platform that sets standards and promotes collaborative research to advance Arabic LLM capabilities.
The rapid advancements of Large Language models (LLMs) necessitate robust benchmarks. In this paper, we present AraEval, a pioneering and comprehensive evaluation suite specifically developed to assess the advanced knowledge, reasoning, truthfulness, and instruction- following capabilities of foundation models in the Arabic context. AraEval includes a diverse set of evaluation tasks that test various dimensions of knowledge and reasoning, with a total of 24,378 samples. These tasks cover areas such as linguistic understanding, factual recall, logical inference, commonsense reasoning, mathematical problem-solving, and domain-specific expertise, ensuring that the evaluation goes beyond basic language comprehension. It covers multiple domains of knowledge, such as science, history, religion, and literature, ensuring that the LLMs are tested on a broad spectrum of topics relevant to Arabic-speaking contexts. AraEval is designed to facilitate comparisons across different foundation models, enabling LLM developers and users to benchmark perfor- mance effectively. In addition, it provides diagnostic insights to identify specific areas where models excel or struggle, guiding further development. AraEval datasets can be found at https://huggingface.co/collections/humain-ai/araeval-datasets-687760e04b12a7afb429a4a0.
Recent advancements in Large Language Models (LLMs) have demonstrated sophisticated capabilities, including the ability to process and comprehend extended contexts. These emergent capabilities necessitate rigorous evaluation methods to effectively assess their performance in long-context understanding. In this paper, we present LC-Eval, a bilingual, multi-task evaluation benchmark designed to evaluate long-context understanding in English and Arabic, targeting context lengths ranging from 4k to over 128k tokens. LC-Eval introduces four novel and challenging tasks: multi-document question answering, bilingual question answering, claim verification within a paragraph, and multiple-choice questions based on long contexts. These tasks are designed to assess LLMs’ abilities in deep reasoning, document comprehension, information tracing, and bilingual information extraction and understanding. The benchmark includes datasets in both Arabic and English for each task, allowing for a comparative analysis of their performance across different text genres. Evaluations were conducted on both open-weight and closed LLMs, with results indicating that LC-Eval presents significant challenges. Even high-performing models, such as GPT-4o, struggled with certain tasks, highlighting the complexity and rigor of the benchmark.
Large Language Models (LLMs) such as ChatGPT and Bard AI have gained much attention due to their outstanding performance on a range of NLP tasks. These models have demonstrated remarkable proficiency across various languages without the necessity for full supervision. Nevertheless, their performance in low-resource languages and dialects, like Arabic dialects in comparison to English, remains to be investigated. In this paper, we conduct a comprehensive evaluation of three LLMs for Dialectal Arabic Sentiment Analysis: namely, ChatGPT based on GPT-3.5 and GPT-4, and Bard AI. We use a Saudi dialect Twitter dataset to assess their capability in sentiment text classification and generation. For classification, we compare the performance of fully fine-tuned Arabic BERT-based models with the LLMs in few-shot settings. For data generation, we evaluate the quality of the generated new sentiment samples using human and automatic evaluation methods. The experiments reveal that GPT-4 outperforms GPT-3.5 and Bard AI in sentiment analysis classification, rivaling the top-performing fully supervised BERT-based language model. However, in terms of data generation, compared to manually annotated authentic data, these generative models often fall short in producing high-quality Dialectal Arabic text suitable for sentiment analysis.
This paper introduces a corpus for Arabic newspapers during COVID-19: AraNPCC. The AraNPCC corpus covers 2019 until 2021 via automatically-collected data from 12 Arab countries. It comprises more than 2 billion words and 7.2 million texts alongside their metadata. AraNPCC can be used for several natural language processing tasks, such as updating available Arabic language models or corpus linguistics tasks, including language change over time. We utilized the corpus in two case studies. In the first case study, we investigate the correlation between the number of officially reported infected cases and the collective word frequency of “COVID” and “Corona.” The data shows a positive correlation that varies among Arab countries. For the second case study, we extract and compare the top 50 keywords in 2020 and 2021 to study the impact of the COVID-19 pandemic on two Arab countries, namely Algeria and Saudi Arabia. For 2020, the data shows that the two countries’ newspapers strongly interacted with the pandemic, emphasizing its spread and dangerousness, and in 2021 the data suggests that the two countries coped with the pandemic.
This paper provides an overview of the shard task on detecting offensive language, hate speech, and fine-grained hate speech at the fifth workshop on Open-Source Arabic Corpora and Processing Tools (OSACT5). The shared task comprised of three subtasks; Subtask A, involving the detection of offensive language, which contains socially unacceptable or impolite content including any kind of explicit or implicit insults or attacks against individuals or groups; Subtask B, involving the detection of hate speech, which contains offensive language targeting individuals or groups based on common characteristics such as race, religion, gender, etc.; and Subtask C, involving the detection of the fine-grained type of hate speech which takes one value from the following types: (i) race/ethnicity/nationality, (ii) religion/belief, (iii) ideology, (iv) disability/disease, (v) social class, and (vi) gender. In total, 40 teams signed up to participate in Subtask A, and 17 of them submitted test runs. For Subtask B, 26 teams signed up to participate and 12 of them submitted runs. And for Subtask C, 23 teams signed up to participate and 10 of them submitted runs. 10 teams submitted papers describing their participation in one subtask or more, and 8 papers were accepted. We present and analyze all submissions in this paper.
Named Entity Recognition (NER) is a well-known problem for the natural language processing (NLP) community. It is a key component of different NLP applications, including information extraction, question answering, and information retrieval. In the literature, there are several Arabic NER datasets with different named entity tags; however, due to data and concept drift, we are always in need of new data for NER and other NLP applications. In this paper, first, we introduce Wassem, a web-based annotation platform for Arabic NLP applications. Wassem can be used to manually annotate textual data for a variety of NLP tasks: text classification, sequence classification, and word segmentation. Second, we introduce the COVID-19 Arabic Named Entities Recognition (CAraNER) dataset. CAraNER has 55,389 tokens distributed over 1,278 sentences randomly extracted from Saudi Arabian newspaper articles published during 2019, 2020, and 2021. The dataset is labeled by five annotators with five named-entity tags, namely: Person, Title, Location, Organization, and Miscellaneous. The CAraNER corpus is available for download for free. We evaluate the corpus by finetuning four BERT-based Arabic language models on the CAraNER corpus. The best model was AraBERTv0.2-large with 0.86 for the F1 macro measure.