Abdullah Faiz Ur Rahman Khilji Darsh Kaushik


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
EnKhCorp1.0: An English–Khasi Corpus
Sahinur Rahman Laskar | Abdullah Faiz Ur Rahman Khilji Darsh Kaushik | Partha Pakray | Sivaji Bandyopadhyay
Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages (LoResMT2021)

In machine translation, corpus preparation is one of the crucial tasks, particularly for lowresource pairs. In multilingual countries like India, machine translation plays a vital role in communication among people with various linguistic backgrounds. There are available online automatic translation systems by Google and Microsoft which include various languages which lack support for the Khasi language, which can hence be considered lowresource. This paper overviews the development of EnKhCorp1.0, a corpus for English–Khasi pair, and implemented baseline systems for EnglishtoKhasi and KhasitoEnglish translation based on the neural machine translation approach.