Abdullah Algan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Team ReadMe at CMCL 2021 Shared Task: Predicting Human Reading Patterns by Traditional Oculomotor Control Models and Machine Learning
Alisan Balkoca | Abdullah Algan | Cengiz Acarturk | Çağrı Çöltekin
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics

This system description paper describes our participation in CMCL 2021 shared task on predicting human reading patterns. Our focus in this study is making use of well-known,traditional oculomotor control models and machine learning systems. We present experiments with a traditional oculomotor control model (the EZ Reader) and two machine learning models (a linear regression model and a re-current network model), as well as combining the two different models. In all experiments we test effects of features well-known in the literature for predicting reading patterns, such as frequency, word length and predictability. Our experiments support the earlier findings that such features are useful when combined. Furthermore, we show that although machine learning models perform better in comparison to traditional models, combination of both gives a consistent improvement for predicting multiple eye tracking variables during reading.