This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
AbdelatiHawwari
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper describes the PARSEME Shared Task 1.1 on automatic identification of verbal multiword expressions. We present the annotation methodology, focusing on changes from last year’s shared task. Novel aspects include enhanced annotation guidelines, additional annotated data for most languages, corpora for some new languages, and new evaluation settings. Corpora were created for 20 languages, which are also briefly discussed. We report organizational principles behind the shared task and the evaluation metrics employed for ranking. The 17 participating systems, their methods and obtained results are also presented and analysed.
In this paper we present a system for automatic Arabic text diacritization using three levels of analysis granularity in a layered back off manner. We build and exploit diacritized language models (LM) for each of three different levels of granularity: surface form, morphologically segmented into prefix/stem/suffix, and character level. For each of the passes, we use Viterbi search to pick the most probable diacritization per word in the input. We start with the surface form LM, followed by the morphological level, then finally we leverage the character level LM. Our system outperforms all of the published systems evaluated against the same training and test data. It achieves a 10.87% WER for complete full diacritization including lexical and syntactic diacritization, and 3.0% WER for lexical diacritization, ignoring syntactic diacritization.
Idafa in traditional Arabic grammar is an umbrella construction that covers several phenomena including what is expressed in English as noun-noun compounds and Saxon and Norman genitives. Additionally, Idafa participates in some other constructions, such as quantifiers, quasi-prepositions, and adjectives. Identifying the various types of the Idafa construction (IC) is of importance to Natural Language processing (NLP) applications. Noun-Noun compounds exhibit special behavior in most languages impacting their semantic interpretation. Hence distinguishing them could have an impact on downstream NLP applications. The most comprehensive syntactic representation of the Arabic language is the LDC Arabic Treebank (ATB). In the ATB, ICs are not explicitly labeled and furthermore, there is no distinction between ICs of noun-noun relations and other traditional ICs. Hence, we devise a detailed syntactic and semantic typification process of the IC phenomenon in Arabic. We target the ATB as a platform for this classification. We render the ATB annotated with explicit IC labels but with the further semantic characterization which is useful for syntactic, semantic and cross language processing. Our typification of IC comprises 3 main syntactic IC types: FIC, GIC, and TIC, and they are further divided into 10 syntactic subclasses. The TIC group is further classified into semantic relations. We devise a method for automatic IC labeling and compare its yield against the CATiB treebank. Our evaluation shows that we achieve the same level of accuracy, but with the additional fine-grained classification into the various syntactic and semantic types.
This paper presents the annotation guidelines developed as part of an effort to create a large scale manually diacritized corpus for various Arabic text genres. The target size of the annotated corpus is 2 million words. We summarize the guidelines and describe issues encountered during the training of the annotators. We also discuss the challenges posed by the complexity of the Arabic language and how they are addressed. Finally, we present the diacritization annotation procedure and detail the quality of the resulting annotations.
We present our effort to create a large Multi-Layered representational repository of Linguistic Code-Switched Arabic data. The process involves developing clear annotation standards and Guidelines, streamlining the annotation process, and implementing quality control measures. We used two main protocols for annotation: in-lab gold annotations and crowd sourcing annotations. We developed a web-based annotation tool to facilitate the management of the annotation process. The current version of the repository contains a total of 886,252 tokens that are tagged into one of sixteen code-switching tags. The data exhibits code switching between Modern Standard Arabic and Egyptian Dialectal Arabic representing three data genres: Tweets, commentaries, and discussion fora. The overall Inter-Annotator Agreement is 93.1%.
Arabic writing is typically underspecified for short vowels and other markups, referred to as diacritics. In addition to the lexical ambiguity exhibited in most languages, the lack of diacritics in written Arabic adds another layer of ambiguity which is an artifact of the orthography. In this paper, we present the details of three annotation experimental conditions designed to study the impact of automatic ambiguity detection, on annotation speed and quality in a large scale annotation project.
Although MWE are relatively morphologically and syntactically fixed expressions, several types of flexibility can be observed in MWE, verbal MWE in particular. Identifying the degree of morphological and syntactic flexibility of MWE is very important for many Lexicographic and NLP tasks. Adding MWE variants/tokens to a dictionary resource requires characterizing the flexibility among other morphosyntactic features. Carrying out the task manually faces several challenges since it is a very laborious task time and effort wise, as well as it will suffer from coverage limitation. The problem is exacerbated in rich morphological languages where the average word in Arabic could have 12 possible inflection forms. Accordingly, in this paper we introduce a semi-automatic Arabic multiwords expressions resource (SAMER). We propose an automated method that identifies the morphological and syntactic flexibility of Arabic Verbal Multiword Expressions (AVMWE). All observed morphological variants and syntactic pattern alternations of an AVMWE are automatically acquired using large scale corpora. We look for three morphosyntactic aspects of AVMWE types investigating derivational and inflectional variations and syntactic templates, namely: 1) inflectional variation (inflectional paradigm) and calculating degree of flexibility; 2) derivational productivity; and 3) identifying and classifying the different syntactic types. We build a comprehensive list of AVMWE. Every token in the AVMWE list is lemmatized and tagged with POS information. We then search Arabic Gigaword and All ATBs for all possible flexible matches. For each AVMWE type we generate: a) a statistically ranked list of MWE-lexeme inflections and syntactic pattern alternations; b) An abstract syntactic template; and c) The most frequent form. Our technique is validated using a Golden MWE annotated list. The results shows that the quality of the generated resource is 80.04%.
We introduce an electronic three-way lexicon, Tharwa, comprising Dialectal Arabic, Modern Standard Arabic and English correspondents. The paper focuses on Egyptian Arabic as the first pilot dialect for the resource, with plans to expand to other dialects of Arabic in later phases of the project. We describe Tharwas creation process and report on its current status. The lexical entries are augmented with various elements of linguistic information such as POS, gender, rationality, number, and root and pattern information. The lexicon is based on a compilation of information from both monolingual and bilingual existing resources such as paper dictionaries and electronic, corpus-based dictionaries. Multiple levels of quality checks are performed on the output of each step in the creation process. The importance of this lexicon lies in the fact that it is the first resource of its kind bridging multiple variants of Arabic with English. Furthermore, it is a wide coverage lexical resource containing over 73,000 Egyptian entries. Tharwa is publicly available. We believe it will have a significant impact on both Theoretical Linguistics as well as Computational Linguistics research.