Aaron Zheng


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Lightweight Safety Guardrails Using Fine-tuned BERT Embeddings
Aaron Zheng | Mansi Rana | Andreas Stolcke
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track

With the recent proliferation of large language models (LLMs), enterprises have been able to rapidly develop proof-of-concepts and prototypes. As a result, there is a growing need to implement robust guardrails that monitor, quantize and control an LLM’s behavior, ensuring that the use is reliable, safe, accurate and also aligned with the users’ expectations. Previous approaches for filtering out inappropriate user prompts or system outputs, such as LlamaGuard and OpenAI’s MOD API, have achieved significant success by fine-tuning existing LLMs. However, using fine-tuned LLMs as guardrails introduces increased latency and higher maintenance costs, which may not be practical or scalable for cost-efficient deployments. We take a different approach, focusing on fine-tuning a lightweight architecture: Sentence-BERT. This method reduces the model size from LlamaGuard’s 7 billion parameters to approximately 67 million, while maintaining comparable performance on the AEGIS safety benchmark.