This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
AarohiSrivastava
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We present a suite of experiments that allow us to understand the underlying challenges of language model adaptation to nonstandard text. We do so by designing interventions that approximate core features of user-generated text and their interactions with existing biases of language models. Applying our interventions during language model adaptation to nonstandard text variations, we gain important insights into when such adaptation is successful, as well as the aspects of text variation and noise that are particularly difficult for language models to handle. For instance, on text with character-level variation, out-of-the-box performance improves even with a few additional training examples but approaches a plateau, suggesting that more data is not the solution. In contrast, on text with variation involving new words or meanings, far more data is needed, but it leads to a massive breakthrough in performance. Our findings reveal that existing models lack the necessary infrastructure to handle diverse forms of nonstandard text, guiding the development of more resilient language modeling techniques. We make the code for our interventions, which can be applied to any English text data, publicly available.
Language technologies should be judged on their usefulness in real-world use cases. An often overlooked aspect in natural language processing (NLP) research and evaluation is language variation in the form of non-standard dialects or language varieties (hereafter, varieties). Most NLP benchmarks are limited to standard language varieties. To fill this gap, we propose DIALECTBENCH, the first-ever large-scale benchmark for NLP on varieties, which aggregates an extensive set of task-varied varieties datasets (10 text-level tasks covering 281 varieties). This allows for a comprehensive evaluation of NLP system performance on different varieties. We provide substantial proof of performance disparities between standard and non-standard language varieties, and we also identify language clusters with larger performance divergence across tasks.We believe DIALECTBENCH provides a comprehensive view of the current state of NLP for varieties and one step towards advancing it further.
Real-world NLP applications often deal with nonstandard text (e.g., dialectal, informal, or misspelled text). However, language models like BERT deteriorate in the face of dialect variation or noise. How do we push BERT’s modeling capabilities to encompass nonstandard text? Fine-tuning helps, but it is designed for specializing a model to a task and does not seem to bring about the deeper, more pervasive changes needed to adapt a model to nonstandard language. In this paper, we introduce the novel idea of sandwiching BERT’s encoder stack between additional encoder layers trained to perform masked language modeling on noisy text. We find that our approach, paired with recent work on including character-level noise in fine-tuning data, can promote zero-shot transfer to dialectal text, as well as reduce the distance in the embedding space between words and their noisy counterparts.
In this work, we induce character-level noise in various forms when fine-tuning BERT to enable zero-shot cross-lingual transfer to unseen dialects and languages. We fine-tune BERT on three sentence-level classification tasks and evaluate our approach on an assortment of unseen dialects and languages. We find that character-level noise can be an extremely effective agent of cross-lingual transfer under certain conditions, while it is not as helpful in others. Specifically, we explore these differences in terms of the nature of the task and the relationships between source and target languages, finding that introduction of character-level noise during fine-tuning is particularly helpful when a task draws on surface level cues and the source-target cross-lingual pair has a relatively high lexical overlap with shorter (i.e., less meaningful) unseen tokens on average.