Aagje Ieven


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
ECHR: Legal Corpus for Argument Mining
Prakash Poudyal | Jaromir Savelka | Aagje Ieven | Marie Francine Moens | Teresa Goncalves | Paulo Quaresma
Proceedings of the 7th Workshop on Argument Mining

In this paper, we publicly release an annotated corpus of 42 decisions of the European Court of Human Rights (ECHR). The corpus is annotated in terms of three types of clauses useful in argument mining: premise, conclusion, and non-argument parts of the text. Furthermore, relationships among the premises and conclusions are mapped. We present baselines for three tasks that lead from unstructured texts to structured arguments. The tasks are argument clause recognition, clause relation prediction, and premise/conclusion recognition. Despite a straightforward application of the bidirectional encoders from Transformers (BERT), we obtained very promising results F1 0.765 on argument recognition, 0.511 on relation prediction, and 0.859/0.628 on premise/conclusion recognition). The results suggest the usefulness of pre-trained language models based on deep neural network architectures in argument mining. Because of the simplicity of the baselines, there is ample space for improvement in future work based on the released corpus.