Aadi Sanghani


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
McMaster at LeWiDi-2025: Demographic-Aware RoBERTa
Aadi Sanghani | Sarvin Azadi | Virendra Jethra | Charles Welch
Proceedings of the The 4th Workshop on Perspectivist Approaches to NLP

We present our submission to the Learning With Disagreements (LeWiDi) 2025 shared task. Our team implemented a variety of BERT-based models that encode annotator meta-data in combination with text to predict soft-label distributions and individual annotator labels. We show across four tasks that a combination of demographic factors leads to improved performance, however through ablations across all demographic variables we find that in some cases, a single variable performs best. Our approach placed 4th in the overall competition.