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Introduction

The organisers are pleased to present the proceedings of the 4th edition of the Workshop on Text Simpli-
fication, Accessibility and Readability (TSAR), hosted at The 2025 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2025), in Suzhou, China.

The Text Simplification, Accessibility, and Readability (TSAR) workshop aims at bringing together re-
searchers, developers and industries of assistive technologies, public organizations representatives, and
other parties interested in the problem of making information more accessible to all citizens. We will
discuss recent trends and developments in the area of automatic text simplification, automatic readability
assessment, language resources and evaluation for text simplification, etc. This year the workshop was
organised around two key tracks. The main track was of general interest to the audience and covered
topics surrounding empirical research on text simplification, accessibility and readability. The second
track was in relation to a shared-task. Participants were tasked with generating simplifications of texts
that conform to a specified target readability level, balancing reduced linguistic complexity with meaning
preservation and fluency. Participants were then encouraged to submitted system description papers. All
papers belonging to both tracks are listed below.

Main Track

» Template-Based Text-to-Image Alignment for Language Accessibility: A Study on Visualizing
Text Simplifications

* Document-level Simplification and Illustration Generation: Multimodal Coherence

* Medical Text Simplification: From Jargon Detection to Jargon-Aware Prompting

» Readability Reconsidered: A Cross-Dataset Analysis of Reference-Free Metrics

» Evaluating Health Question Answering Under Readability-Controlled Style Perturbations

* A Multi-Agent Framework with Diagnostic Feedback for Iterative Plain Language Summary Ge-
neration from Cochrane Medical Abstracts

» Efficient On-Device Text Simplification for Firefox with Synthetic Data Fine-Tuning

TSAR-2025 Shared-Task(*)
* Findings of the TSAR 2025 Shared Task on Readability-Controlled Text Simplification
* OneNRC@TSAR?2025 Shared Task: Small Models for Readability Controlled Text Simplification

* GRIPF at TSAR 2025 Shared Task: Towards controlled CEFR level simplification with the help
of inter-model interactions

* ITU NLP at TSAR 2025 Shared Task: A Three-Stage Prompting Approach for CEFR-Oriented
Text Simplification

* STARLING at TSAR 2025 Shared Task: Leveraging Alternative Generations for Readability Level
Adjustment in Text Simplification

* taskGen at TSAR 2025 Shared Task: Exploring prompt strategies with linguistic knowledge

» EasyJon at TSAR 2025 Shared Task: Evaluation of Automated Text Simplification with LLM-as-
a-Judge
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HULAT-UC3M at TSAR 2025 Shared Task: A Prompt-Based Approach using Lightweight Lan-
guage Models for Readability-Controlled Text Simplification

UoL-UPF at TSAR 2025 Shared Task: A Generate-and-Select Approach for Readability-Controlled
Text Simplification

Uniandes at TSAR 2025 Shared Task: Multi-Agent CEFR Text Simplification with Automated
Quality Assessment and Iterative Refinement

EhiMeNLP at TSAR 2025 Shared Task: Candidate Generation via Iterative Simplification and
Reranking by Readability and Semantic Similarity

OUNLP at TSAR 2025 Shared Task: Multi-Round Text Simplifier via Code Generation

HIT-YOU at TSAR 2025 Shared Task: Leveraging Similarity-Based Few-Shot Prompting, Round-
Trip Translation, and Self-Refinement for Readability-Controlled Text Simplification

SQUREL at TSAR 2025 Shared Task: CEFR-Controlled Text Simplification with Prompting and
Reinforcement Fine-Tuning

Archaeology at TSAR 2025 Shared Task: Teaching Small Models to do CEFR Simplifications

HOPE at TSAR 2025 Shared Task: Balancing Control and Complexity in Readability-Controlled
Text Simplification

Know-AI at TSAR 2025 Shared Task: Difficulty-aware Text Simplification System

All submissions were peer-reviewed by the members of the program committee which includes distin-
guished specialists in text simplification, accessibility, and readability.

The workshop is held in-person, with online attendance for authors who were unable to attend due to
constraints beyond the organisers control.

We would like to thank the members of the program committee for their timely help in reviewing the
submissions and all the authors for submitting their papers to the workshop. We also thank the EMNLP
2025 workshop chairs for their kind support in delivering the workshop and producing these proceedings.
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Akio Hayakawa
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Keynote Talk
Controllable Text Simplification

Tomoyuki Kajiwara
Ehime University
November 09, 2025 -

Abstract: Text simplification is a task of paraphrasing a given text in an easy-to-understand manner to
assist a variety of people in language comprehension. To fully benefit from text simplification, conside-
ration of individual differences in language ability is crucial.

Over the past decade, much effort has been devoted to studying methods for text simplification that adapt
expressions according to the target audience. This presentation focuses on approaches to personalizing
text simplification, specifically controlling readability and editing operations.

Bio: Tomoyuki Kajiwara received the B.S. and M.S. degrees in engineering from the Nagaoka University
of Technology, Japan, in 2013 and 2015, respectively, and the Ph.D. degree in engineering from the Tokyo
Metropolitan University, Japan, in 2018. From 2018 to 2020, he was a Specially-Appointed Assistant
Professor with the Osaka University. He is currently an Assistant Professor with the Ehime University.
His research interests include natural language processing, paraphrasing, and quality estimation.
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Template-Based Text-to-Image Alignment for Language Accessibility: A
Study on Visualizing Text Simplifications

Belkiss SouayedZH  Sarah Ebling?"  Yingqiang GaoY%H
UZHpepartment of Computational Linguistics, University of Zurich, Switzerland
belkiss.souayed@uzh.ch

{ebling,

yinggiang.gao}@cl.uzh.ch

Warning: This paper includes Al-generated images that may cause visual discomfort.

Abstract

Individuals with intellectual disabilities often
have difficulties in comprehending complex
texts. While many text-to-image models priori-
tize aesthetics over accessibility, it is not clear
how visual illustrations relate to text simplifi-
cations (TS) generated from them. This paper
presents a structured vision-language model
(VLM) prompting framework for generating
accessible images from simplified texts. We
designed five prompt templates, i.e., Basic Ob-
Jject Focus, Contextual Scene, Educational Lay-
out, Multi-Level Detail, and Grid Layout, each
following distinct spatial arrangements while
adhering to accessibility constraints such as ob-
ject count limits, spatial separation, and content
restrictions. Using 400 sentence-level simplifi-
cations from four established TS datasets (On-
eStopEnglish, SimPA, Wikipedia, and ASSET),
we conducted a two-phase evaluation: Phase
1 assessed prompt template effectiveness with
CLIPScores, and Phase 2 involved human an-
notation of generated images across ten visual
styles by four accessibility experts. Results
show that the Basic Object Focus prompt tem-
plate achieved the highest semantic alignment,
indicating that visual minimalism enhances lan-
guage accessibility. Expert evaluation further
identified Retro style as the most accessible
and Wikipedia as the most effective data source.
Inter-annotator agreement varied across dimen-
sions, with Text Simplicity showing strong re-
liability and Image Quality proving more sub-
jective. Overall, our framework offers practi-
cal guidelines for accessible content generation
and underscores the importance of structured
prompting in Al-generated visual accessibility
tools.

m Dataset O Code
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Figure 1: Example image generated based on the simpli-
fied text “I will never forget the wonderful memories he
has given us, like that magical night in Moscow.” (Style:
Artistic, Dataset: OneStopEnglish).

1 Introduction

Individuals with intellectual disabilities often have
difficulties understanding complex texts (Alva-
Manchego et al., 2020; Yawiloeng, 2022). While
text simplification (TS) improves readability, it is
frequently insufficient on its own. Research shows
that visual support, recommended by Easy-to-Read
guidelines, can significantly enhance comprehen-
sion (Madina et al., 2023). However, most text-
to-image models prioritize aesthetics over acces-
sibility, which can cause cluttered, abstract, or se-
mantically misaligned visuals generated from text
inputs.

Recent studies have explored image retrieval
for simplified text as a potential solution (Geis-
linger et al., 2023; Singh et al., 2023). However,
none have systematically investigated structured
prompting for accessible image generation in the
TS context. In this work, we address this gap by
introducing a template-based framework that ex-
plicitly enforces accessibility constraints, such as

Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025), pages 1-18
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controlled object count, spatial separation, and the

absence of embedded text, directly within prompts

for querying vision-language models (VLMs).

Using 400 text simplification pairs from four
datasets (ASSET, OneStopEnglish, SimPA, and
Wikipedia), we generated and evaluated 4,000 im-
ages across five prompt templates and ten visual
styles. Our study aims to answer the following
research questions (RQs):

* RQ1: How can template-based prompting im-
prove the accessibility of images generated from
simplified texts?

* RQ2: Which visual styles and data sources are
most effective for accessible image generation?

* RQ3: How do expert annotations compare to
automatic evaluation metrics in assessing acces-
sibility?

Our results show that the Basic Object Focus
template performs best, supporting visual mini-
malism. Experts rate Retro style and Wikipedia-
sourced simplifications as most accessible. We
also find weak correlation between CLIPScores
and human judgments, underscoring the need for
human-centered evaluation in accessible and inclu-
sive AL

2 Related Work

2.1 Visual-Aided Text Simplification

As a natural language processing (NLP) task to im-
prove language accessibility, TS actively modifies
complex texts to improve readability for diverse tar-
get group persons, including persons with cognitive
disabilities (Espinosa-Zaragoza et al., 2023; Gao
et al., 2025), foreign language learners (Degracuwe
and Saggion, 2022; Li et al., 2025) and others. TS
can operate at the lexical, syntactic, and discourse
levels (Alva-Manchego et al., 2020; Zhong et al.,
2020). Beyond language, accessible communica-
tion increasingly benefits from multimodal aids,
since simplified text alone may not suffice for users
who have reading difficulties. Studies show that
pairing text with visual components improves over-
all comprehension and engagement (Yawiloeng,
2022) and mirrors those principles in Easy-to-Read
guidelines (Madina et al., 2023), which recommend
simple text with visual illustrations for better lan-
guage accessibility. However, producing accessible
visuals remains a technical challenge, motivating
research interest in automatic image retrieval and
text-to-image generation in a TS context (Marturi
and Elwazzan, 2025). Our study builds on this line

of work by investigating how images generated
through VLMs from text simplifications can sup-
port language accessibility through both semantic
simplicity and visual clarity.

2.2 Retrieval-based Language Accessibility

Early multimodal approaches retrieve images from
databases to support the language accessibility.
Geislinger et al. (2023) combined NLP approaches
with eye-tracking to provide real-time visual sup-
port for difficult terms, while Singh et al. (2023)
optimized textbook enrichment by retrieving web
images using CLIP-based similarity (Radford et al.,
2021). Such systems improved perceived edu-
cational outcomes, but they remain limited by
the availability of accessible visuals in existing
databases, especially for abstract or personalized
concepts. These challenges further motivate re-
search in text-to-image alignment for language ac-
cessibility.

2.3 Datasets and Text-to-Image Benchmarks

Recent advances in VLMs such as CLIP (Radford
etal., 2021) and DALL-E (Betker et al., 2023) have
driven progress in text-to-image alignment studies.
Several datasets have been proposed to either train
image captioning models or evaluate the alignment
quality.

Benchmark datasets like MS COCO (Lin et al.,
2014) and Flickr30K (Plummer et al., 2015) fo-
cus on short image captions but are not specific
to accessibility for simplified text. MOTIF (Wang
et al., 2022) pairs simplified sentences with illus-
trative images to support second-language learners,
though it remains limited to multimodal retrieval
rather than generation. Our work addresses this
gap by generating new images directly from text
simplifications, enabling scalable visual support.

Anschiitz et al. (2024) present the first system-
atic study of text-to-image for Easy-to-Read Ger-
man content. Using 80 structured prompts trans-
lated from German, authors generated 2,240 im-
ages across seven models and evaluated them with
automated metrics FID (Heusel et al., 2017), CLIP-
Score (Radford et al., 2021), and TIFA (Hu et al.,
2023).

While previous works have investigated text-to-
image alignment in the context of image caption-
ing and alignment evaluation, to the best of our
knowledge, no prior work has proposed a struc-
tured prompting strategy that explicitly enforces
accessibility constraints such as controlled object



count, spatial separation, and the exclusion of ab-
stract or textual elements. Likewise, no previous
study has compared the accessibility effects of dif-
ferent visual styles in a systematic way. In this
work, we address these research gaps by introduc-
ing a template-based prompting framework aligned
with accessibility principles and conducting a large-
scale experiment: 4,000 images generated from
400 simplified sentences, spanning five prompt
templates and ten visual styles. In contrast to fixed-
format prompts, our pipeline transforms naturally
simplified sentences into structured prompts while
preserving semantic content. We combine auto-
matic metrics with expert annotations across multi-
ple dimensions, enabling the first human evaluation
of how prompt design and visual style influence
cognitively accessible image generation.

3 Methodology

Our study follows a two-phase pipeline. In Phase 1,
we developed and evaluated five prompt templates
used by VLMs for generating visuals, each im-
plementing unique accessibility constraints while
sharing core principles such as:

* Controlled object counts: Defining the quantity
of visual components present in the generated
images;

* Spatial separation: Checking if visual compo-
nents are physically well-arranged;

* Exclusion of text or abstract elements: Exam-
ining whether VLMs render texts in generated
images, which can cause additional confusion.
In Phase 2, we take the best-performing tem-

plate and apply it to produce a large-scale multi-

modal dataset. We generated 4,000 images from

400 simplified sentences, spanning ten visual styles,

with style-specific prompt adjustments (see Ap-

pendix C.2 for an illustration of how a single sen-
tence generates multiple style-specific prompts).

Four expert annotators then assessed the resulting

text—image pairs across six dimensions using pre-

defined criteria designed to capture both quantita-
tive and qualitative accessibility aspects.

While we acknowledge that images are linked
to textual units of varying granularity, operating
on the sentence level throughout was a means of
isolating the effect of text unit size.

3.1 Prompt Templates

Our initial trials with direct prompts (e.g., “Gen-
erate an accessible image for this simplified sen-
tence: [sent]”) produced generic, inconsistent re-

sults. Without structural guidance, the model often
failed to enforce key accessibility needs such as
clear object focus, reduced background clutter, or
stylistic appropriateness. Although the templates
were structurally pre-defined, GPT—-4 (Achiam
et al., 2023) was necessary to map sentence se-
mantics into visual prompts. It interpreted each
simplified sentence to decide which objects and
relations to depict, how to represent abstract ideas
concretely, and which visual style to apply. This
semantic-to-visual prompt generation goes beyond
simple template filling or rule-based rewriting. We
concluded that such direct prompts lacked the pre-
cision needed to control the layout structure and
enforce necessary visual requirements such as se-
lecting the most suitable stylistic representation,
maintaining a clear depiction of primary objects
without clutter, and minimizing background noise
to reduce cognitive load.

To address this, we adopted structured templates
that embed accessibility constraints directly into
the prompt. Template design was grounded in W3C
Web Accessibility Initiative (WAI) image tutorials',
which classify accessible images as informative
(conveying concepts visually), complex (layered di-
agrams), or grouped (collections representing uni-
fied information). Each template isolates a specific
layout logic, e.g., alignment, sequencing, or hierar-
chy, to assess its impact on visual comprehension,
reflecting formats common in educational and as-
sistive contexts:

* Basic Object Focus: Removes all spatial con-
text to measure the effect of object isolation. Iso-
lates between one and three objects on a plain
background to maximize clarity and minimize
cognitive load;

* Contextual Scene: Presents simple real-world
layouts (e.g., items on a shelf) to test how mini-
mal grounding supports understanding. Situates
objects in simple real-world settings (e.g., items
in a room) to provide minimal contextual ground-
ing;

* Educational Layout: Introduces sequencing and
flow, mimicking instructional visuals like time-
lines. Uses simple relations such as arrows to
support instructional use;

* Multi-Level Detail: Inspired by textbook dia-
grams, adds foreground—background layering to

'W3C Web Accessibility Initiative (WAI) image tutorials:
guidance on informative images, complex images, and groups
of images. Available at: https://www.w3.0rg/WAI/
tutorials/images/
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explore hierarchy and layered perception. Layers

a central object with two to three related subob-

jects to explore hierarchical perception;

* Grid Layout: Simulates classification interfaces
(e.g., icon grids) to examine whether symmetry
aids clarity. Organizes items in a 2x2 or 3x3
structure, simulating classification interfaces and
testing whether symmetry aids clarity.

All five templates share a unified set of accessi-
bility constraints (see Appendix B for detailed spec-
ifications). To ensure fair comparison and accessi-
bility, the generation process enforced baseline con-
straints: (1) between three to five distinct objects
per image; (2) sufficient spatial separation between
objects; (3) avoidance of text, numbers, or motion
effects; (4) exclusion of abstract, metaphorical, or
culturally biased elements; and (5) preference for
plain or neutral backgrounds. These requirements
operationalize accessibility principles and reduce
potential bias.

To identify which prompt template best sup-
ports cognitively accessible image generation, we
generated 100 images per template (500 total)
from simplified sentences. Prompts were con-
structed with GPT—-4 (Achiam et al., 2023) and
images generated using DALL-E 3 (Betker et al.,
2023). Outputs were assessed using CLIPScore
(ViT-L/14@336px; Hessel et al. (2021)) to mea-
sure text-to-image alignment. We chose these mod-
els for their high prompt fidelity, built-in safety
filters, and consistency across large batches. As the
focus was on evaluating prompt design rather than
comparing VLMs or model-specific optimization,
alternative architectures were not considered.

To guide template selection, we developed a
composite scoring system to balance accuracy and
robustness rather than optimize a single metric.
Weights were empirically chosen to prevent unsta-
ble templates from dominating, ensuring selection
of templates that perform reliably across diverse
simplification contexts rather than excelling on a
narrow subset of inputs. Given a template ¢, the
composite score is computed as:

Composite(t)
= 0.4Mt + OQCt + OQSt + O.lBt + 01(1 — Wt),

where yi; is the mean CLIPScore (40%), C; is the
consistency (20%), S; is the success rate (20%),
B, is the fraction of best-performing cases (10%),
and W, is the fraction of worst-performing cases
(10%). All components were normalized to [0, 1]
before aggregation.

Template CLIP Composite
Basic Object Focus  0.211 5.31
Contextual Scene 0.210 4.95
Educational Layout  0.202 4.63
Multi-Level Detail ~ 0.201 4.50
Grid Layout 0.199 4.39

Table 1: Phase 1 results (100 prompts x 5 templates).
Basic Object Focus ranked highest and was selected for
Phase 2.

As shown in Table 1, the Basic Object Focus tem-
plate achieved the highest text-to-image alignment,
consistency, and overall composite score. This
suggests that reducing background clutter and em-
phasizing a small number of core objects is most
effective for supporting accessibility. Based on
these findings, Basic Object Focus was selected
as the foundation for Phase 2, where we scaled
generation to 4,000 images across ten visual styles
and conduct expert evaluations to address RQ2 and
RQ3.

3.2 Dataset Compilation

We compiled a text-to-image TS corpus by sam-
pling from four established text simplification
datasets: OneStopEnglish (Vajjala and Lucié,
2018), SimPA (Scarton et al., 2018), Wikipedia
(Sun et al. (2020), without context), and ASSET
(Alva-Manchego et al., 2020). These corpora were
selected for their complementary domains and sim-
plification strategies, covering news, public ad-
ministration, encyclopedic text, and web content,
each provides parallel complex—simplified sentence
pairs. Table Al in Appendix A summarizes their
main features.

The four source datasets are all sentence-aligned,
offering multiple simplifications per complex text
or varying types of simplification methods. This led
to the necessity of adopting a consistent sampling
strategy to support uniformity and methodological
coherence across all datasets. Specifically, among
the multiple simplifications available for each com-
plex sentence, we retained only one per original to
ensure a one-to-one mapping between the simplifi-
cation and its visually generated counterpart. We
also ensured to randomly draw the exact number
of samples from each corpus in order to create a
balanced dataset which reflects the distinct simpli-
fication approaches and domains covered within
each source text.

We sampled a balanced subset of 400 pairs (100



per dataset). The sampling procedure used random
selection to avoid bias and ensure that sampled in-
stances reflected the overall linguistic variability
and quality of the source datasets. We deliberately
avoided cherry-picking instances we believed to
be ideal for generation or applying quality filter-
ing. By “ideal” or “quality”, we refer to sentences
with simple syntax and clear meaning as opposed
to abstract or ambiguous ones that are harder to
visualize. This approach ensured our evaluation
methodology reflects those real-world difficulties
of accessible image generation across diverse text
features.

The 400 sentence pairs were stored in a JSON
format, where each line represents one structured
data entry. In addition to the complex and its sim-
plified counterpart, we annotated each pair with rel-
evant metadata fields aimed to support traceability
and data hierarchy (see Appendix C.1 for a com-
plete example). This dataset served as the basis for
prompt formulation, image generation, and expert
annotation.

As all TS datasets were human-produced and
sentence-aligned, we conducted minimal data pre-
processing including removal of formatting arti-
facts (particularly in Wikipedia) and standardiz-
ing all samples into JSON format with metadata
for dataset source, domain, and token counts. We
focused on filtering overly short (<10 tokens) or
long (>55 tokens) sentence-level simplifications
to ensure balanced text complexity. After pre-
processing, the final dataset exhibited an average
complex sentence length of 26.2 tokens and simpli-
fied sentence length of 23.9, with an overall reduc-
tion of 2.3 tokens (8.8%).

Following Phase 1, we refined Basic Object Fo-
cus to preserve minimalism while improving reli-
ability: exactly four objects, at least 30% spacing
between objects, and a 10% cap on size variation
to maintain equal prominence. A pilot trial on 20
samples yielded a CLIPScore of 0.3465, a 64%
increase over the Phase 1 score (0.2108), confirm-
ing the benefit of explicit spacing and uniformity
constraints.

We then generated 4,000 prompts and produced
high-resolution images with DALL-E 3 using a
robust, checkpointed pipeline (asynchronous batch-
ing, retries, and traceable file naming). The in-
trinsic safety moderation of DALL-E 3 blocked a
small subset of requests, primarily those contain-
ing dense named entities or historical and military
references, which the system may have misinter-

preted as potentially promoting violence, political
propaganda, or disinformation.

3.3 Evaluation Methods

We conducted automatic and human evaluation us-
ing both automatically and expert-annotated acces-
sibility, clarity, and style-related effects. Specifi-
cally, we used:

* Inter-annotator agreement (IAA): Measured
using Krippendorff’s o (Krippendorff, 1970) for
human annotations;

* Style identification: Evaluated via Recall@3;

* Human-computer correlation: Measured using
Pearson correlation coefficients;

* Composite accessibility scores: Combining ex-
pert ratings into weighted indices of effective-
ness.

Statistical analysis included descriptive and com-
parative assessments across datasets, styles, and
evaluation dimensions. Four expert annotators par-
ticipated in this study, all with academic and profes-
sional expertise in accessibility and inclusive com-
munication. Their backgrounds involve specializa-
tion in barrier-free communication, Easy Language,
audio description, subtitling, and text simplifica-
tion. Several have contributed to national research
projects on accessible technologies and have prac-
tical experience designing and evaluating content
for people with cognitive disabilities. All annota-
tors signed informed consent forms and received
detailed annotation guidelines. We compensated
the expert annotators with a fair hour rate of 120
Swiss Francs.

The annotation study was originally planned
with 4,000 generated images but reduced to 2,000
due to cost and workload constraints. The final set
ensured each simplified sentence had images in all
10 styles, maintaining equal style representation.
All images were renamed adopting a standardized
numerical convention to ensure unbiased annota-
tion, as original filenames contained style infor-
mation that could influence decisions. A shared
TAA set of 200 images (20 textsx 10 styles) was
annotated by all four experts to assess agreement.
The remaining 1,800 images were split evenly so
each annotator received 200 IAA images plus 450
unique ones (650 images per annotator, 2,600 total
annotations planned). In the end 976 annotations
were completed by the four experts.

The annotation interface was implemented



through a customized Label Studio? config-
uration that presents the evaluation framework in a
clear format optimized for expert assessment. The
interface displays the simplified text at the top, fol-
lowed by the image presented with zoom controls
for detailed examination. The evaluation questions
are organized into collapsible sections correspond-
ing to distinct domains. The configuration also en-
sured that annotation data was stored in structured
formats suitable for subsequent statistical analysis.
The interface included progress tracking which al-
lowed the experts to track their progress and resume
annotation across multiple sessions as needed. The
complete set of evaluation questions is provided in
Appendix D for reference.

4 Results

A total of 976 annotations were collected from four
experts (A, K, L, M), corresponding to 37.5% of
the initially planned 2,600 (Table 2). Despite lower
coverage, the annotated sample provided sufficient
data for meaningful analysis. Distribution across
datasets was balanced (Table 3), ensuring findings
are not skewed toward one text source.

Expert # Assigned Completion Rate
Expert A 650 38.5%
Expert K 650 38.5%
Expert L 650 30.8%
Expert M 650 42.5%
Total 2,600 37.5%

Table 2: Expert assignment and completion rates.

Dataset # Annotation Percentage
Wikipedia 280 28.7%
SimPA 270 27.7%
ASSET 214 21.9%
OneStop 212 21.7%
Total 976 100.0%

Table 3: Source distribution in completed dataset.

4.1 Scoring Overview

Experts rated images across six dimensions with
a maximum total of 100 points. Table 4 summa-
rizes mean scores and contributions. Ethics dom-
inated in expert evaluations (31.4%), followed by

2Apache-2.0 license, available at https://github.

com/HumanSignal/label-studio/

Text Quality (21.6%). Visual dimensions such as
Image Simplicity and Text—Image Alignment con-
tributed less, reflecting both interpretive challenges
and model limitations.

Dimension Scale Mean Contribution
Image Simplicity 0-15 4.56 9.7%
Image Quality 0-15 6.34 13.5%
Text Simplicity 0-15 5.65 12.1%
Text Quality 0-15 10.13 21.6%
Ethics 0-20 14.74 31.4%
Text-Image Alignment 0-20 5.49 11.7%

Table 4: Six evaluation dimensions used during expert
annotation.
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Figure 2: Relative contribution of each evaluation di-
mension per expert.

We observed that experts differed in evaluation
style: Expert A was highly critical of visual dimen-
sions but more lenient on Ethics; Expert K was gen-
erous overall, with the highest mean scores; Expert
L was most conservative, assigning the lowest av-
erages; Expert M showed consistency, prioritizing
Image Quality and Text-Image Alignment. Figure 2
illustrates the composition of expert ratings.

4.2 Inter-Annotator Agreement

TAA was measured with Krippendorff’s Alpha
across dimensions (Table 5). Text Simplicity
achieved the highest agreement (up to o = 0.599),
suggesting a shared understanding of linguistic
complexity. Agreement was weaker for Image Sim-
plicity and Text-Image Alignment, and nearly absent
for Image Quality and Ethics, reflecting subjective
ratings.
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Dimension 4 Experts 3+ Experts 2+ Experts
Text Simplicity 0.599 0.458 0.570
Image Simplicity 0.486 0.374 0.282
Text-Image Alignment 0.379 0.267 0.115
Text Quality 0.086 0.228 0.223
Ethics 0.018 0.053 -0.214
Image Quality 0.013 -0.007 0.006

Table 5: Krippendorff’s Alpha across dimensions, re-
ported for all and subgroup of experts.

4.3 Style Recognition Performance

To study the influence of image styles for acces-
sibility, we asked the experts to identify three im-
age styles from the ten pre-defined style categories.
Recall@3 averaged 47.3%, with significant vari-
ance across experts (Table 6). Styles such as 3D
Rendered and Retro were easily recognized, while
Artistic and Technical proved to be the most diffi-
cult ones (Table 7).

Expert # Correct # Total Recall@3
Expert A 126 250 0.504
Expert M 139 276 0.504
Expert K 120 250 0.480
Expert L 77 200 0.385
Average 462 976 0.473

Table 6: Recall@3 for style recognition.

Style # Images Recall@3 Tier
3D Rendered 103 81.6% Easy
Retro 100 76.0% Easy
Cartoon 109 69.7% Medium
Geometric 94 55.3% Medium
Realistic 86 44.2% Hard
Storybook 96 43.8% Hard
Digital Art 97 37.1% Hard
Minimalistic 88 34.1% Hard
Artistic 100 18.0% Very Hard
Technical 103 9.7% Very Hard

Table 7: Style recognition difficulty comparison.

4.4 Human-Computer Correlation

We compared CLIPScores with expert Text—Image
Alignment ratings. We observed weak but statis-
tically significant Pearson correlation (r = 0.17,
p < 0.001), improving after per-expert standardiza-
tion (Table 8). We observed that Expert A aligned
most closely with CLIPScore (r = 0.251). In addi-
tion, we found that Text-Image Alignment varied by

style, with strongest results for 3D Rendered and
Artistic, and weakest for Technical.

Analysis Level r p-value  Sig.
Overall (Raw) 0.133  <0.001 **%*
Per-Expert Standard. 0.173  <0.001  ***
Expert A 0.251 <0.001 ***
Expert M 0.152  0.011 *
Expert L 0.146  0.040 *
Expert K 0.133  0.036 *

Table 8: Human-Computer correlation (Pearson r).

4.5 Expert-Specific Scoring Patterns

(a) Expert A (Top)
“Kazuma Watanabe (born 10
August 1986) is a Japanese
football player. He plays for
Yokohama F. Marinos and
Japan national team.”

(b) Expert K (Top)

“Bangui makes textiles, food
products, beer, shoes, and
soap.”

u%!w"‘{'l | B !‘"}w}‘}y

) i

(d) Expert M (Top)
“Franklin Delano Roosevelt or

FDR, was the 32nd President
of the United States.”

(c) Expert L (Top)

“Shunsuke Iwanuma (born 2
June 1988) is a Japanese
football player. He plays for
Consadole Sapporo.”

Figure 3: Highest-rated images by each expert, with
corresponding simplified sentences.

To further understand individual expert ratings,
we conducted per-expert analysis on how they rate
different evaluation dimensions, with a focus on
how individual experts subjectively rate different
evaluation dimensions.

We found that Image Quality and Ethics were
the two dimensions with the lowest agreement. The
main reason is that each expert used the scale dif-
ferently. For example, Expert A was very strict
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(a) Expert A (Bottom)

“In Mask fetishism is persons
wants to see another person
wearing mask or taking off a

mask.”

(b) Expert K (Bottom)

“Cytomegalovirus (from the
Greek cyto-, cell, and
megalo-, large) is a viral
genus of the Herpesviruses
group in humans...”

Figure 4: Lowest-rated images by Expert A and K.

(c) Expert L. (Bottom)

“One of the boyfriends wrote to
me and said, Listen, she’s not
mad but Cynthia found out.”

(d) Expert M (Bottom)

“Since Fortran 90, the
capitalization has been
abandoned. The published
formal standards use Fortran.”

Figure 5: Lowest-rated images by Expert L and M.

with visuals but very generous in Ethics, while Ex-
pert M was the opposite. This systematic rating
behavior explains why the same images received
very different scores.

Figure 3 to Figure 6 present concrete examples
of high and low scores given by experts. While
some of these images might be potentially biased,
these cases show that even with advanced VLM,
generating accessible visual interpretation for text
simplification remains a challenging task, as it
might further introduce confusion and misinterpre-
tation of the text.

Building on these expert-annotated examples,
we emphasize the importance of systematically ex-
amining the cultural and ethical biases present in
VLMs when generating visuals for text simplifica-
tion. Our findings suggest that even when accessi-
bility constraints are technically enforced, subtle
cultural cues, stereotypes, or contextual omissions
can still emerge, potentially undermining the inclu-
siveness of the generated content. Future research
should therefore not only focus on improving vi-

Case 1 (0125) Case 2 (0944)
“Letterbox Service ...” “He traveled over 200,000
Percentages not linked to text, miles ...”

cluttered layout, weak link Vintage style with many

between people and the props, missing legs, low
concept. Some experts gave contrast, and the number not
very low Alignment/Quality, shown. Experts disagreed on

others still rewarded Ethics. Simplicity and Quality.

Figure 6: Examples where experts strongly disagreed.

sual alignment and linguistic adequacy, but also on
auditing and mitigating such biases through par-
ticipatory evaluation and the inclusion of diverse
user perspectives. Addressing these challenges is
essential for developing truly inclusive, transparent,
and socially responsible Al systems that can serve
users with a broad range of linguistic and cognitive
needs.

5 Discussion

5.1 Style and Dataset Impact for Accessibility

To determine which styles and datasets best sup-
port accessibility, we combined expert ratings into
composite accessibility scores. For visual styles,
the score weighted Text—Image Alignment (60%),
Image Simplicity (25%), and Image Quality (15%).
For datasets, we focused on Text Quality (50%)
and Text Simplicity (50%). Scores were scaled to a
0-100 range and averaged across experts.

Visual styles. Retro achieved the highest overall
accessibility, performing strongly in both align-
ment and simplicity. Realistic style also scored
well, driven by high image quality and familiarity,
while 3D Rendered provided the most consistent
results. By contrast, abstract or heavily stylized
categories such as Geometric, Minimalistic, and
Artistic ranked lowest, often due to clutter or am-
biguous representation. These results suggest that
concrete and familiar visuals are more effective for
accessibility than abstract or decorative designs.

Data sources. Wikipedia and ASSET ranked
highest, with Wikipedia benefiting from factual
clarity and wide coverage, and ASSET offering



more consistency due to its accessibility-focused
design. OneStopEnglish and SimPA performed
less well, with lower simplicity scores and more
complex phrasing. This indicates that general-
purpose and collaboratively simplified corpora pro-
vide stronger material for accessible image genera-
tion.

The findings highlight that both style and dataset
choice substantially affect accessibility outcomes.
Retro and Realistic visuals, paired with simplified
Wikipedia content, emerged as the most effective
combination. Conversely, highly abstract styles
or bureaucratic text sources may hinder accessibil-
ity, underscoring the need to carefully select both
visual style and textual input when designing ac-
cessible multimodal content.

5.2 Evaluation Agreement

The evaluation highlights both strengths and weak-
nesses of template-based image generation for
accessibility. The 100-point scoring framework
showed that Ethics and Text Quality consistently
received the highest ratings, together accounting
for more than half of the total, likely because these
dimensions had clearer definitions. By contrast,
Image Simplicity and Text—Image Alignment con-
tributed less and showed greater variability, point-
ing to interpretive difficulties and model limitations.
Expert behavior differed noticeably: some applied
stricter standards while others were more gener-
ous, underlining the need for normalization when
aggregating scores.

Inter-annotator agreement further confirmed
these differences. Text Simplicity achieved the high-
est reliability, indicating a shared understanding of
linguistic complexity. However, dimensions such
as Image Quality and Ethics had very low or even
negative agreement values, reflecting systematic
disagreement rooted in subjective interpretations
of what counts as “quality” or “ethical”. These
results suggest that clearer task guidelines, calibra-
tion, or refined criteria will be necessary to improve
reproducibility in future studies.

Style recognition performance also highlighted
challenges. Experts correctly identified the in-
tended style in less than half of cases, which is
reasonable given overlapping visual features across
categories. Distinctive styles such as 3D Rendered
or Retro were easier to recognize, whereas Artistic
and Technical were consistently difficult, revealing
both model inconsistencies and unclear category
boundaries. Style recognition therefore appears

cognitively demanding and not fully reliable for
accessibility-focused evaluations.

6 Conclusion

This work investigated template-based prompting
for generating cognitively accessible images from
simplified text. The Basic Object Focus template
proved most effective, showing that minimalism
and object isolation enhance clarity. Wikipedia
and ASSET emerged as the most suitable datasets,
while Retro and Realistic visuals supported acces-
sibility better than abstract styles. Expert evalua-
tions highlighted systematic disagreement on sub-
jective dimensions, and CLIPScores showed only
weak alignment with human judgments. Overall,
our findings demonstrate that structured prompting
improves accessibility but current VLMs remain
limited, underscoring the need for better models,
clearer annotation protocols, and continued integra-
tion of human expertise.

Limitations

Our study faced several constraints. Only 976 of
the planned 2,000 annotations were collected, re-
ducing statistical power and inter-annotator cov-
erage. The expert panel was small (four annota-
tors), making results sensitive to individual biases,
and subjective dimensions such as Image Quality
and Ethics showed strong disagreement. Despite
prompt constraints, the model often produced clut-
tered layouts or text artifacts, and style recognition
was hindered by ambiguous category boundaries.
Finally, CLIPScore correlated only weakly with
human judgments, raising concerns about its relia-
bility for accessibility evaluation. These limitations
highlight the need for clearer guidelines, improved
models, and more diverse expert input in future
work.

Ethical Statement

All expert annotators involved in the human evalu-
ation provided informed consent and received fair
compensation for their participation. The evalu-
ation framework included ethical safeguards de-
signed to detect and flag potentially discriminatory
or culturally insensitive content. Additionally, fil-
tering mechanisms were applied during image gen-
eration to mitigate harmful or inappropriate outputs,
and selected filtering results were documented to
assess potential model biases.



The authors acknowledge that some example
images presented in this work may still reflect unin-
tended biases or misleading representations toward
certain ethnic or cultural groups. These instances
are discussed transparently to emphasize the impor-
tance of continuous bias assessment in developing
inclusive Al systems.

Lay Summary

Individuals with cognitive disabilities or reading
difficulties often face challenges when processing
complex visual and textual information. Current
text-to-image models tend to prioritize photoreal-
ism or artistic creativity rather than accessibility,
leaving a gap for users who require simplified and
structured visuals.

Our study addresses this issue by integrating text
simplification with structured prompting to gener-
ate cognitively accessible images. We designed
five visual templates that control object number,
spatial arrangement, and content complexity, while
deliberately avoiding textual or abstract elements
that may cause confusion.

This work contributes practical guidelines for
producing accessible visual content. The proposed
image styles and prompt templates can support pol-
icymakers, Al researchers, and assistive technology
designers in creating visual materials that are both
inclusive and cognitively accessible. By aligning
text-to-image generation with accessibility princi-
ples, our approach ensures more equitable support
for individuals with cognitive disabilities.
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A Overview of Dataset Sources

Dataset Domain  Size Year Level
ASSET Wikipedia 23,590 simplifications for 2,359 original sentences 2020 Sentence
OneStopEnglish News 189 articles (567 texts) at three reading levels 2018 Document & Sentence

SimPA Web 1.,100. sent.ences with 3 lexical and 1 syntactic
simplification each
Wikipedia (w/o context) Wikipedia 110K (with context) and 41K (without context) 2020 Sentence

2018 Sentence

Table Al: Overview of Text Simplification Datasets.

B Prompt Templates used for Image Generation

This appendix provides the complete set of prompt templates developed for structured text-to-image
generation. Each template implements specific accessibility constraints while maintaining semantic
alignment with simplified text inputs.

B.1 Basic Object Focus Template

Basic Object Focus - Specific Prompt Instructions
* Do not align or group objects (arrange them with neutral positioning).
* Avoid any suggestion of scene, narrative, or sequence.
 Ensure all objects are visually equal.
* No object should stand out more than the others.
* Background must be uniform and simple (e.g., white or gray).

* Emphasize maximum spacing between all objects.

\.

B.2 Contextual Scene Template

Contextual Scene - Specific Prompt Instructions
* Arrange all objects in a straight, horizontal line.
» Use a single perspective, no variation in object size or depth.
* Maintain equal size across all objects to avoid depth illusion.
¢ Include one minimal environmental element (e.g., surface, wall) when needed.

» Keep at least 20% spacing between each object to preserve separation.

\.

B.3 Educational Layout Template

Educational Layout - Specific Prompt Instructions
* Arrange objects in a strict left-to-right horizontal sequence.
* Visually connect each object to the next with a line or arrow.
* Gradually reduce object size from left to right by 10-15%.

* Include a visible numeric marker (1, 2, 3...) near each object.

12



* Limit the maximum object count to 4 to maintain consistency.

* Narrow spacing slightly with each subsequent object to guide visual flow.

B.4 Multi-Level Detail Template

Multi-Level Detail - Specific Prompt Instructions

* Place objects across exactly three spatial layers: foreground, midground, and background.

* Foreground objects must be 2x larger than midground objects.

Midground objects must be 2x larger than background objects.

Each layer must use a unique lightness or brightness level.
* Position layers vertically: foreground at the bottom, background at the top.

* Avoid horizontal alignment across layers to emphasize separation.

\

B.5 Grid Layout Template

Grid Layout - Specific Prompt Instructions

» Choose a 2x2 or 3x3 grid structure, depending on object count.
* Place one object per cell, centered precisely.

* Use equal-sized cells with clearly defined, thick borders.

Ensure all objects are the same size and prominence.
* Maintain at least 25% margin around each object within its cell.

* Do not allow diagonal, overlapping, or asymmetrical arrangements.

\

B.6 General Accessibility Constraints

All templates shared the following baseline requirements to ensure cognitive accessibility:
* Object count control: 3-5 distinct objects per image to avoid cognitive overload
» Spatial separation: Minimum spacing requirements to enhance visual clarity
* Content restrictions: Exclusion of text, numbers, abstract elements, or cultural bias
* Background simplicity: Plain or neutral backgrounds to minimize distraction

* Visual equality: Balanced prominence across objects unless explicitly specified



C Example JSON Entry
C.1 Example from the Dataset

This appendix shows the structure of our compiled text-to-image TS corpus. Each entry contains the
original and simplified sentence pairs along with metadata for traceability and analysis. This is an example
from the final dataset of the 96th entry sampled from the ASSET corpus:

Dataset Structure Example
{

"id": "asset_069",

"dataset": "ASSET",

"domain": "Wikipedia",

"original": "The Odyssey is an ancient Greek epic poem attributed to Homer.",
"simplified": "The Odyssey is an old Greek poem about Homer.",

"length_original": 12,
"length_simplified": 10

C.2 Multiple Style Prompts for Single Sentence

This appendix illustrates how our template-based framework generates style-specific prompts from a single
simplified sentence. The example demonstrates the systematic application of accessibility constraints
across ten distinct visual styles while maintaining semantic consistency.

Multiple Style Prompts for Single Sentence
{

"index": 71,
"id": "wikipedia_387",

"simplified text": "Originally, a pie made with any kind of meat and mashed
potato was called a cottage pie.",
"dataset_source": "Wikipedia",
"template_prompts": |
{
"style": "Cartoon",
"prompt": "Generate a cartoon-style image with a light gray background.

Include four distinct objects: A whole, uncooked piece of meat (such
as a steak or a chicken drumstick). A knife and a fork, indicating
the meat is ready to be cut and cooked. A bowl of raw, unpeeled
potatoes. Each object should be scaled to similar sizes with no more
than 10% variation..."

"style": "Realistic",

"prompt": "Create a realistic image with a light gray background,
showcasing four distinct objects: A piece of raw meat (like a steak
or chicken breast) symbolizing ’"any kind of meat’. A fresh, whole
potato. A bowl of mashed potatoes. A traditional cottage or small

house..."
s
{
"style": "Artistic",
"prompt": "Produce an image in an Artistic style featuring the following

elements in a clear and simple layout against a light-gray
background: A classic pie dish, A piece of meat, A potato, A small
cottage. Arrange with 30% spacing between objects..."




"style": "Minimalistic",

"prompt": "Generate a minimalistic image with four objects: an empty pie
dish, uncooked minced meat, ready-to-eat mashed potato, and a simple
cottage representation. The pie dish should be empty, the minced meat
should be uncooked and the mashed potato should look ready to eat.
Each object should be scaled to similar sizes with no more than 10%

variation..."
s
{
"style": "Digital Art",
"prompt": "Create a digital art image consisting of four distinct

objects: a pie, a piece of meat, a potato, and a simple cottage.
Arrange these objects on a light gray background with a minimum of
30% spacing between them. Maintain consistent sizing within 10%

variation..."
s
{
"style": "3D Rendered",
"prompt": "Generate an image in a 3D rendered style on a neutral

light-grey background. The image should contain four distinct
objects: a pie dish, raw meat, a potato, and a cottage. Apply 30%

minimum spacing and maintain size consistency within 10% variation..."

"style": "Geometric",

"prompt": "Generate a geometric style image composed of four distinct
objects: a circular pie, a slice of pie, a piece of meat, and a
mashed potato. Use simple geometric shapes and maintain 30% spacing
between elements..."

"style": "Retro",

"prompt": "Generate an image in a Retro style that depicts the following
scene: A whole pie with a distinguishable crust on a light gray
background. The pie should be depicted in a simple, stylized way with
clear boundaries and vintage aesthetic..."

"style": "Storybook",

"prompt": "Generate an image in a Storybook style on a solid light grey
background. The picture should include four distinct objects: a whole
uncooked pie, a separate piece of uncooked meat, a pile of mashed
potatoes, and a small cottage. Each object should be scaled to a
similar size with a 10% variation allowance..."

"style": "Technical",

"prompt": "Create an image on a light gray background. The image should
contain four distinct objects: a pie dish, a piece of meat, a potato,
and a mashed potato. Use technical illustration style with clear,
precise lines and minimal shading..."

This example demonstrates how the refined template specifications are consistently applied while allowing
for style-specific adaptations. The same simplified text generates distinct visual approaches while
maintaining consistent accessibility principles.

D Evaluation Questions

This appendix reproduces the full set of evaluation questions as presented to experts in our customized
Label Studio interface.
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Image Accessibility Evaluation Questions

This evaluation form is designed to assess the accessibility of images for people with cognitive disabilities. The questions
focus on image clarity, simplicity, quality, and alignment with simplified text. Please provide thorough and thoughtful
responses to help improve accessibility standards.

Image Characteristics

Very Low Low Medium High Very High
(0-3) (4-6) (7-9) (10-12) (13-15)
Image Simplicity: (0-15)

Evaluate how easily viewers can understand what the image represents. Consider whether the main elements are clear,
distinguishable, and convey their meaning without requiring extensive interpretation.

Image Quality: (0-15)

Assess the visual clarity, resolution, and professional appearance of the image. Consider whether the image looks polished,
well-composed, and appropriate for educational materials.

Text Characteristics

Text Simplicity: (0-15)

Rate how easy the text is to read for people with cognitive disabilities. Focus on basic readability: short sentences, simple
words, clear structure, and no complex language. A high score means the text uses plain language that most people can
understand without help.

Text Quality: (0-15)

Rate how well the text delivers its message. Focus on content: accuracy, organization, completeness, and purpose. A high
score means the text effectively teaches or explains its topic, regardless of the language level used.

Alignment and Ethics

Very Low Low Medium High Very High
(0-4) (5-8) (9-12) (13-16) (17-20)

Ethics: (0-20)

Evaluate whether the image is free from bias, stereotypes, or harmful content. Consider if the image represents people and
concepts in a fair, respectful, and inclusive way that avoids reinforcing negative stereotypes.

Text-lmage Alignment: (0-20)

Assess how well the image represents and supports the simplified text. Consider whether the image accurately illustrates the
key concepts in the text and provides visual support that enhances understanding.
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Additional Checks

Contains no text: (Yes/No)

Indicate whether the image is free of embedded text or captions. Select 'Yes' if the image contains no text elements, or 'No' if
it includes text within the image itself.

Well-separated objects: (Yes/No)

Evaluate whether elements in the image are clearly distinguishable from each other. Select 'Yes' if objects are well-defined
with clear boundaries, or 'No' if elements blend together or are difficult to distinguish.

Image Style (Select up to 3)

[] 3D Rendered
[] Artistic

[] Cartoon

[[] Digital Art
[] Geometric
[1 Minimalistic
[] Realistic

[] Retro

[[] Storybook
[ Technical

Style Descriptions:

+ 3D Rendered: Computer-generated images with three-dimensional depth, shading, and perspective.
* Artistic: Stylized images with expressive, creative, or painterly qualities.

« Cartoon: Simplified, often outlined drawings with bright colors and exaggerated features.
« Digital Art: Images created using digital tools with a modern, clean appearance.

» Geometric: Composed primarily of basic shapes like circles, squares, and triangles.

» Minimalistic: Simple designs with limited elements, colors, and details.

* Realistic: Images that closely resemble photographs or real-life objects and scenes.

* Retro: Designs that mimic or reference visual styles from past decades.

« Storybook: Whimsical, illustrative style similar to children's book illustrations.

» Technical: Diagram-like images with precise lines and instructional qualities.

Concerns (Select all that apply)

[] Discriminatory content

[[] Culturally insensitive

[] Potentially triggering

[[] Too complex for target audience
[[] Misleading representation

[[] Poor accessibility

Concerns Descriptions:

« Discriminatory content: The image contains stereotypes, biases, or content that discriminates against groups based on
race, gender, ability, etc.

« Culturally insensitive: The image inappropriately represents cultural elements or shows disrespect toward specific cultural
practices or symbols.

* Potentially triggering: The image contains elements that might cause distress, anxiety, or traumatic responses in vulnerable
viewers.

» Too complex for target audience: The image contains too many elements or complicated visual information that may
confuse people with cognitive disabilities.

» Misleading representation: The image does not accurately represent the concept described in the text or could lead to
misunderstanding.
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» Poor accessibility: The image has characteristics that make it difficult to perceive or understand, such as low contrast,
cluttered layout, etc.

Additional Notes

Please provide any additional feedback about this image's accessibility, clarity, or appropriateness for people with cognitive
disabilities.

Image Accessibility Evaluation - Page 1 of 1
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Abstract

We present a novel multimodal system for
document-level text simplification and auto-
matic illustration generation, aimed at en-
hancing information accessibility for individu-
als with cognitive impairments. While prior
research has primarily focused on sentence-
or paragraph-level simplification, and text-to-
image generation for narrative contexts, this
work addresses the unique challenges of sim-
plifying long-form documents and generating
semantically aligned visuals. The pipeline con-
sists of four stages: (1) Document-Level Text
Simplification, (2) discourse-aware segmenta-
tion using large language models, (3) visually
grounded description generation via abstrac-
tion, and (4) controlled image synthesis us-
ing state-of-the-art diffusion models, including
DALL-E 3 and FLUX.1-dev. We further in-
corporate stylistic constraints to ensure visual
coherence, and we conduct a human evaluation
measuring comprehension, semantic alignment,
and visual clarity. Experimental results demon-
strate that our system effectively combines sim-
plified text and visual content.

1 Introduction

Simplified language aims to enhance information
accessibility for individuals with cognitive impair-
ments, learning disabilities, and others who may
have difficulty comprehending standard-language
written texts (Bredel and Maal3, 2016). Existing re-
search primarily focuses on transforming complex
sentences or paragraphs into more comprehensible
variants, particularly for readers with low literacy
skills and non-native speakers (Al-Thanyyan and
Azmi, 2021). While automatic text simplification
technologies have made significant progress in re-
cent years, the role of visual aids in supporting
textual comprehension is comparatively underre-
searched. Studies have shown that incorporating
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illustrations into simplified texts can further en-
hance understanding among individuals with cog-
nitive disabilities (Lin et al., 2009; Winberg and
Saletta, 2018; Sutherland and Isherwood, 2016).
Most existing work has focused on sentence- or
paragraph-level simplification and accompanying
image generation (Zhang et al., 2024; Shou et al.,
2023; Anschiitz et al., 2024). With the growing con-
textual understanding capabilities of large language
models (LLMs), document-level simplification and
illustration generation for longer texts become pos-
sible. Our goal is to leverage these capabilities to
build a pipeline for document-level text simplifi-
cation and corresponding illustration generation,
aiming to improve information comprehension for
persons with cognitive impairments.

2 Related Work

In recent years, advances in natural language pro-
cessing have significantly accelerated the devel-
opment of automatic text simplification technolo-
gies. Concurrently, researchers have begun to ex-
plore multimodal approaches to further enhance the
comprehensibility of simplified texts, especially
through image generation. Illustrating text with
images is an effective strategy to support compre-
hension. Visual elements not only help capture the
reader’s attention but also concretize abstract con-
cepts, thereby reducing cognitive load (Glenberg
and Langston, 1992; Guo et al., 2020; Wang and
Zewen, 2023). The recent progress in text-to-image
generation (T2I) has made the automated realiza-
tion of this idea increasingly feasible. Diffusion-
based models (Ho et al., 2020) have emerged as
the dominant paradigm in T2I and have achieved
remarkable breakthroughs. State-of-the-art models
such as OpenAI’s DALL-E 3 (Betker et al., 2023),
Google’s Imagen 3 (Baldridge et al., 2024), and Sta-
bility AI’s Stable Diffusion 3 (Esser et al., 2024)
can generate high-resolution, semantically relevant,
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and visually creative images from complex textual
descriptions. Existing research has demonstrated
the use of DALL-E 3 and Stable Diffusion 3, to
generate high-quality visual content that is semanti-
cally well-aligned with Easy-to-Read (E2R) textual
materials (Anschiitz et al., 2024). These advances
are largely attributed to the models’ pretraining on
massive text-image paired datasets, which enable
them to learn nuanced mappings between textual
semantics and visual representations.

Our work builds upon these powerful diffusion
models as the foundation for visual generation.
While most existing systems are still confined to
sentence- or paragraph-level T2I generation, gen-
erating contextually appropriate illustrations from
long-form documents requires document-level un-
derstanding and scene planning capabilities. With
the rapid evolution of LL.Ms, new frameworks are
emerging that allow for these models to manage
long-document processing and orchestrate image
generation. In such settings, LLMs serve as direc-
tors or scriptwriters that structure the narrative and
guide visual synthesis (Gado et al., 2025; Leandro
et al., 2024). However, these systems are primarily
tailored for narrative storytelling. In contrast, gen-
erating illustrations for informational documents
demands greater factual accuracy and lower seman-
tic ambiguity. Our research aims to bridge this gap
by developing a multimodal system that integrates
an LLM with a diffusion-based image generation
model, enabling more accurate document-level text
simplification and illustration. The proposed sys-
tem features a structure-aware text simplification
module and a semantically aligned image generator.
Through semantic optimization and cross-modal
feedback mechanisms, our method enhances the
coherence between text and images and improves
cognitive accessibility.

3 Method

To generate visual content for complex documents,
we propose a multi-stage generative pipeline. This
pipeline first decomposes a document into seman-
tically coherent units, then translates these units
into visually grounded descriptions, and finally ren-
ders them into images. Our approach integrates the
advanced capabilities of LLMs for complex text
processing with state-of-the-art T2I models for vi-
sual synthesis. The entire framework consists of
four key stages: (1) Document-Level Text Simpli-
fication, (2) semantic document segmentation, (3)
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visually grounded description generation, and (4)
controlled image generation.

3.1 Document-Level Text Simplification

For each discourse segment, GPT-40 rewrites the
passage into Easy-to-Read German under fidelity
constraints: preserve named entities, numbers, and
domain terms; avoid deletions that remove obliga-
tions or eligibility; keep sentences short and syntax
simple; and prohibit invented facts. Outputs are re-
turned in JSON. We enforce tokenizer-aware limits
(less than 20k characters per call) and run sanity
checks for numeric consistency and entity preserva-
tion. Evaluation uses expert ratings on Simplicity
(Q4), Semantic Adequacy (QS5), and Fluency (Q6)
described in Section 5.

3.2 Semantic Document Segmentation

Real-world documents are rarely monolithic in
topic; rather, they typically exhibit inherent dis-
course structures involving shifts in themes, scenes,
or arguments (Grosz and Sidner, 1986). Long doc-
uments, often exceeding several thousand words,
pose challenges for direct image generation, result-
ing in overgeneralization or omission of critical
details in the images. To address this, our first step
involves re-segmenting the source document into
shorter sub-paragraphs, each expressing a single
idea or thematic unit. Each segment is then paired
with a corresponding illustration. Prior work in
document-level text simplification has similarly em-
phasized the importance of managing information
hierarchy and discourse structure, often through
explicit structural analysis or summarization (Crip-
well et al., 2023; Fang et al., 2025; Blinova et al.,
2023). Our method automates this decomposition
process, forming the foundation for downstream
visual generation.

We employ GPT-40 as a zero-shot, discourse-
aware segmenter. This decision is motivated by the
emergent capabilities of LLMs to perform complex
structural tasks without task specific fine-tuning.
Unlike traditional unsupervised approaches that
rely on shallow lexical cohesion signals, LLMs
can exploit deep semantic and world knowledge to
detect more nuanced topic boundaries (Mu et al.,
2024). Using carefully designed prompts, we guide
the model to function as an advanced textual an-
alyzer. Because GPT-4o0 exhibits degraded per-
formance when processing input text with long
contexts, its effectiveness decreases as the length
of the input increases (Karpinska et al., 2024;



Ma et al., 2024). To accommodate this context-
length constraint, we implement a tokenizer-aware,
sentence-preserving segmentation procedure that
limits each model input to fewer than 20,000 char-
acters. Specifically, we first compute the input
length using a byte-pair—encoding (BPE) (Sennrich
et al., 2016) tokenizer consistent with the model’s
tokenization scheme; if the character count ex-
ceeds 20,000, we partition the document into sub-
documents. For sentence boundary detection, we
adopt “Segment any Text” (Frohmann et al., 2024).
To ensure machine-readability and robust integra-
tion with downstream components, we enforce out-
put in JSON format. Under our tokenizer-aware
JSON prompting, the model produced consistent
discourse segments with low formatting error rates,
which was sufficient for downstream components.

3.3 Visually Grounded Description
Generation

Narrative language in documents often differs sig-
nificantly from the concrete, descriptive phrasing
required by T2I models to generate high-quality
images (Saharia et al., 2022). Using raw text snip-
pets as prompts frequently results in vague or ab-
stract outputs. To bridge this semantic-to-visual
gap, we introduce an intermediate transformation
step, which we conceptualize as cross-modal ab-
straction. The goal is to distill the essential, visu-
ally representable elements from each text segment.
This aligns with the broader goals of multimodal
learning, where shared representation spaces en-
able meaningful alignment between textual and
visual modalities.

We again leverage GPT-40, configuring it as a
text-to-text transformation agent for this task. Us-
ing few-shot prompting, we embed examples that
guide the model to learn the desired input-output
mapping without parameter updates, a practical
benefit in our setting (few-shot prompting with-
out task-specific finetuning) (Zhang and Xu, 2024).
The prompt explicitly decomposes the task into
two steps: (1) internal summarization to extract
key entities and actions, and (2) translation of this
summary into a visual scene description. We adopt
a two-step prompt (key-entity summary — scene
description) to make the transformation explicit;
this yielded clearer, more actionable descriptions
for image generation in our pilot settings (Wei et al.,
2022).

A crucial component of our prompting strategy
is the imposition of faithfulness constraints. We
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explicitly instruct the model to avoid hallucina-
tions—i.e., adding objects, attributes, or details not
present in the source text. By including directives
such as “Do not invent or alter details not men-
tioned in the original text,” we aim to minimize
semantic drift and ensure that the final image is a
faithful visual rendering of the textual document
content.

3.4 Controlled Image Generation

Once visually grounded descriptions are prepared,
the final step is image synthesis. The choice of T21I
model architecture and the stylization of prompts
play pivotal roles in determining the visual clar-
ity, aesthetic quality, and suitability of the gener-
ated content for the target audience. For instance,
illustrations for children’s storybooks require an
entirely different visual style than those in tech-
nical manuals. Recent advances in T2I, particu-
larly diffusion models and their Transformer-based
successors, have enabled unprecedented levels of
photorealism and fine-grained style control (Betker
et al., 2023).

In this study, we experiment with two state-of-
the-art T2I models to explore architectural diver-
sity: OpenAl’'s DALL-E 3 and Black Forest Labs’s
FLUX.1-dev. DALL-E 3 is renowned for its high
fidelity to complex prompts, attributed largely to
its use of a powerful language model to preprocess
and enrich textual input prior to image generation
(Betker et al., 2023). In contrast, FLUX.1-dev rep-
resents a new generation of diffusion/Transformer
hybrids, making it a valuable comparative baseline.

To ensure stylistic consistency and interpretabil-
ity across illustrations generated for the same docu-
ment, we apply a stylistic modifier to each prompt.
As an initial case study, we target the generation
of “clear and concise cartoon-style illustrations.’
This stylistic choice is widely recognized for its
ability to convey information clearly by abstracting
over details, making it particularly suitable for ed-
ucational and simplified communication contexts.
The final prompt structure for image generation is a
simple concatenation:“A clear and concise cartoon-
style illustration depicting: <VISUAL DESCRIP-
TION>”.

>

4 Experiments

4.1 Materials

We utilized the WebCorpus dataset (Battisti and
Ebling, 2020), which is specifically designed for



automatic readability assessment and text simpli-
fication tasks in the German language. The cor-
pus comprises approximately 6,200 documents and
nearly 211,000 sentences, collected from the web-
sites of governmental bodies, professional institu-
tions, and non-profit organizations across Germany,
Austria, and Switzerland, covering a total of 92
distinct domains. The data includes both HTML
webpages and PDF files, with content dated be-
tween late 2018 and early 2019. In addition to
providing parallel corpora and monolingual sim-
plified German texts, the dataset is characterized
by the preservation of text structure, typographic
information, and embedded image content, which
were structurally extracted using an HTML parser
and PDFlib tools.

For our experiments, we constructed a special-
ized evaluation subset from the WebCorpus to test
and assess our proposed method. We selected
twelve parallel documents available in PDF format
based on the following criteria:

Human-Generated Simplifications with Illustra-
tions These documents not only contain simpli-
fied versions created by human experts but also
include illustrations accompanying specific para-
graphs in the simplified texts. As illustrated in Fig-
ure 1, these images are designed to visually explain
or complement the core ideas of the corresponding
textual segments.

Topical and Stylistic Diversity To ensure the
generalizability of our evaluation, we deliberately
selected documents covering a range of topics such
as legal aid, public health guidelines, and social
welfare application procedures. These documents
also exhibit considerable variation in both the com-
plexity of the source texts and the visual styles of
the illustrations.

Although modest in scale, this twelve-document
subset offers high-quality human annotations and
rich internal diversity. It provides a rigorous and
controlled experimental setting for end-to-end eval-
uation, allowing us to verify the full pipeline, from
text segmentation and visual description generation
to final image synthesis, and to conduct direct com-
parisons with the original simplified documents.

4.2 Experimental Procedure

The experimental procedure of this study adheres
to the three-stage generation framework defined
in Section 3, with the aim of validating the ef-
fectiveness of our proposed method in an end-to-
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end manner. The implementation consists of the
following steps: We first extracted the plain text
(.txt) versions of twelve selected PDF documents
from the WebCorpus dataset as the original input
texts. Following the method outlined in Section
3.1, we employed GPT-40 as a document segmen-
tation module to automatically decompose each
document into a series of semantically coherent
sub-paragraphs. For each sub-paragraph, we in-
voked the GPT-40 model again based on the visual
anchoring description strategy described in Sec-
tion 3.2. Through chain-of-thought reasoning, the
model distilled the abstract narrative of each sub-
paragraph into concrete, renderable visual scene
descriptions. These descriptions were generated
under faithfulness constraints to prevent hallucina-
tions or factual distortions. The generated visual
descriptions were fed into both the DALL-E 3 and
FLUX.1-dev image generation models. To ensure
stylistic consistency and interpretability of illustra-
tions throughout the document, we prefixed each
description with a prompt specifying “a clear and
concise cartoon-style illustration,” as specified in
Section 3.3. This approach yielded stylistically
aligned images corresponding to each textual seg-
ment.

4.3 Evaluation

To conduct a comprehensive and reliable evalua-
tion of the generated outputs, we employed expert
human assessment. Four domain experts with back-
grounds in simplified language were recruited to
participate in the study. We developed a structured
online questionnaire in which experts rated and
qualitatively assessed the generated outputs. Origi-
nal human-designed illustrations from the source
documents were shown only as qualitative context
when licensing permitted and were not included in
the quantitative analysis. The evaluation focused
on four key dimensions, including support for com-
prehension, semantic alignment with the input text,
visual coherence, and style match. The primary
goal of this assessment was to quantify the effec-
tiveness of our method in terms of faithfulness,
clarity, and aesthetic quality. The evaluation in-
volved four text passages, each paired with two
images generated by DALL-E 3 and FLUX.1-dev,
resulting in eight image-text combinations. Three
experimental conditions were considered: text only,
text + image from FLUX.1-dev, and text + image
from DALL-E 3. To ensure balanced exposure
across conditions, we adopted a Latin square de-



sign.

Each evaluator completed a three-part evalua-
tion. First, a brief pre-questionnaire collected back-
ground information such as years of professional
experience and domain expertise. In the main evalu-
ation, participants reviewed all conditions and rated
four dimensions for each sample: (1) support for
comprehension, (2) semantic alignment, (3) visual
coherence, and (4) style match. the detailed defini-
tions of the four dimensions in the Appendix A.
Comprehension accuracy was additionally mea-
sured via multiple-choice questions as an objective
check separate from the four subjective ratings.

Finally, a short post-questionnaire confirmed
evaluators’ understanding of the task and the rat-
ing criteria. Responses were collected using 5-
point Likert scales for subjective measures (e.g.,
alignment and simplicity) and accuracy scores for
comprehension questions. Each evaluator was re-
quired to complete a total of 99 questions. These
included 80 questions pertaining to the evaluation
of eight images, 12 questions assessing simplified
texts, three questions concerning evaluators’ back-
ground information, and four open-ended questions
eliciting overall evaluations and feedback. The full
survey design is provided in the appendix.

5 Results

5.1 Text Simplification Evaluation

We collected Likert ratings on a five-point scale
from four expert evaluators along three criteria:
Simplicity (Q4), Semantic Adequacy (QS5), and
Fluency (Q6). Non-numeric “Other” entries were
treated as missing for averaging and are reported
separately in the distribution table. Table 1 sum-
marizes, for each evaluator, the overall distribution
of assigned scores across all texts and criteria, in-
cluding a separate count for “Other” and the total
numeric score. Table 2 reports per-criterion means
with the effective sample size for each evaluator, to-
gether with the total numeric score and the overall
mean across all available numeric ratings.
Fluency shows consistently high evaluations.
Evaluator 4 attains the highest fluency mean and
also the highest total score and overall mean. Sim-
plicity varies more strongly by evaluator. Evaluator
3 tends to assign higher simplicity with a mean
of 4.00, while Evaluator 2 assigns lower values
with a mean of 2.25, which suggests different ex-
pectations for ease of reading. Semantic adequacy
concentrates around mid to high values, with Eval-
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uator 4 again providing the most favorable ade-
quacy judgments. “Other” responses appear only
for Evaluator 3 on Q6 and are excluded from all
mean calculations by design. In aggregate, the re-
sults indicate robust perceived fluency, moderate to
high semantic adequacy, and evaluator-dependent
variation in perceived simplicity.

ID 1 2 3 4 5 Other Totalscore
1 0 3 3 5 1 0 40
2 3 1 2 6 0 0 35
3 0 2 3 4 0 3 29
4 0 3 0 4 5 0 47

Table 1: Per-rater distribution of ratings across all texts
and all three criteria. Columns “1-5" give counts of
numeric ratings. “Other” counts non-numeric entries.
“Total score” sums all numeric ratings for the rater.

ID Q4mean Q5mean Q6 mean Total score Overall mean

1 2.75 3.00 425 40 3.33
2 225 2.50 4.00 35 2.92
3 4.00 2.50 3.00 29 322
4 3.00 4.00 4.75 47 3.92

Table 2: Per-rater means by criterion (Q4-Q6), along
with each rater’s total score (sum of all numeric ratings
over Q4—Q6 and all texts) and overall mean (average of
all available numeric ratings).

5.2 Illustration Generation Evaluation

We collected 64 image-related Likert responses
per rater. Covering semantic alignment, support
for comprehension, visual coherence, and stylistic
appropriateness, under two models (FLUX.1-dev
and DALLCE 3). Table 3 summarizes the per-rater
tallies by score category, including non-numeric
Others. Ratings for both systems concentrated in
the 3—4 range, indicating that most illustrations
were perceived as broadly supportive yet rarely
exceptional; 5s were occasional, while 1s were rare.
Raters 1-2 slightly preferred FLUX.1-dev (total
differences within six points), whereas Raters 3—4
favored DALL-E 3, with Rater 4 assigning thirteen
maximum scores to DALLE 3.

Across all evaluators, ratings for both image gen-
eration systems were concentrated in the 3—4 range,
with score 4 being the most frequently assigned.
This indicates that the majority of generated images
were perceived as broadly supportive of text com-
prehension and semantically adequate, but rarely
outstanding. Scores of 5 were assigned only occa-
sionally, reflecting the fact that few images were



ID Model Total 1 2 3 4 5 Others Mean
1 flux.l-dev 92 6 6 7 12 1 0 3.29
DALL-E3 90 4 99 9 1 0 3.26
2 flux.l-dev 74 6 76 9 0 4 2.96
DALLE3 69 8 95 7 0 3 2.84
3 flux.l-dev 58 11 57 4 0 5 2.39
DALL-E3 69 7 98 5 0 3 291
4 flux.l-dev 105 0 7 7 10 6 2 3.75
DALL-E3 116 2 91 7 13 0 3.97

Table 3: Aggregated Likert ratings (1-5) and non-
numeric responses (Others) for image evaluation tasks
across four evaluators, including the mean numeric
score per model.

judged as fully satisfactory across all evaluative
dimensions. Conversely, scores of 1 were rare,
suggesting that completely inadequate outputs oc-
curred only sporadically. Differences across eval-
uators were evident. Evaluators 1 and 2 awarded
higher totals to flux.1-dev, the score difference be-
tween the two models was relatively small, with
the total discrepancy remaining within six points.
In contrast, Evaluators 3 and 4 assigned higher to-
tals to DALL-E 3, with Evaluator 4 giving thirteen
maximum ratings (5), far more than for flux.1-dev.

The questionnaire design allowed ratings to cap-
ture multiple facets of image quality. We conducted
a closer comparison of evaluators’ ratings across
these different dimensions and found consistent
patterns. On average, both systems received the
highest scores on supporting text comprehension
and semantic alignment with the text, where the
majority of judgments fell between 3 and 4. By
contrast, lower ratings (1-2) were more frequently
observed in dimensions such as visual coherence
and stylistic appropriateness, reflecting instances
where images were perceived as misaligned in style
or insufficiently coherent, even if they captured the
general semantics of the text. This distribution
indicates that the models were more successful
in generating images that conveyed the intended
meaning than in ensuring stylistic naturalness and
visual consistency. In analyzing the responses to
the question “Do you think this image was created
by Al or manually?”’, we found that most eval-
uators misclassified the images generated by the
FLUX.1-dev model as manually created rather than
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Al-generated. By contrast, the majority of evalu-
ators correctly identified the images produced by
DALL-E 3 as Al-generated. We also found a con-
sistent issue emerged across specific combinations
of the images with many texts, as shown in Figure
1. In these cases, all four experts independently
highlighted the same concern: When the generated
images contained too much text or overly intri-
cate visual patterns, they became cognitively over-
whelming.

6 Discussion and Conclusion

Our study indicates that automatic simplification
produced texts that readers judged as fluent and
largely faithful to source meaning, while perceived
ease-of-reading is more sensitive to individual eval-
uator standards. On the visual side, Both im-
age generation models were generally effective
in providing semantically supportive illustrations,
though their perceived utility varied across eval-
uators and dimensions. Ratings tended to cluster
around the mid-scale (3—4), suggesting that while
Al-generated visuals achieved a baseline adequacy,
they rarely reached the level of high-quality human-
created illustrations. This implies that the mod-
els captured textual meaning with reasonable re-
liability but seldom produced outputs regarded as
exemplary in terms of clarity, stylistic appropri-
ateness, or overall communicative effectiveness.
Divergent preferences among evaluators, some fa-
voring FLUX.1-dev and others DALL-E 3 high-
light that judgments of quality are not solely deter-
mined by semantic accuracy, but are also shaped
by individual aesthetic expectations and tolerance
for stylistic variation. Particularly noteworthy was
the tendency of participants to misclassify outputs
from FLUX.1-dev as manually created, suggesting
that its visual naturalness may enhance perceived
authenticity. While such naturalness is promising
for accessibility and engagement, it also raises po-
tential concerns about transparency and user trust in
contexts where it is important to distinguish human-
from machine-generated content.

Qualitative comments about images containing
too much text point to avoidable extraneous cog-
nitive load. Images that incorporated excessive
textual content or visually dense layouts were often
judged as distracting, thereby diminishing rather
than enhancing comprehension. This observation
underscores the importance of maintaining visual
simplicity, especially when designing for audi-
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Figure 1: Examples of undesirable illustrations, where images contain excessive textual elements that make them

confusing for the viewer.

ences with cognitive impairments. For such users,
the trade-off between semantic fidelity and visual
clarity becomes particularly critical; cluttered or
overly detailed images may undermine the intended
benefits of simplified language materials. These
findings point to the necessity of introducing ex-
plicit design constraints in text-to-image workflows.
Mechanisms such as filtering strategies, prompt en-
gineering techniques that enforce minimalism, or
post-processing methods to eliminate superfluous
elements could help align outputs more effectively
with accessibility goals.

The pattern of high fluency and adequate seman-
tics in text, combined with mid-scale visual rat-
ings, points to a practical synthesis: when textual
simplification reliably preserves meaning and flow,
illustrations function best as lightweight scaffolds
rather than dense carriers of information. Simpli-
fied text can shoulder the primary communicative
load, while images should reinforce key entities,
relations, or processes without introducing visual
clutter. This aligns with our finding that evaluators
penalize visually dense layouts: if text is already
fluent and semantically adequate, adding heavy
captioning or intricate scene details may yield di-
minishing returns or even harm comprehension.
Therefore, downstream design should prioritize (i)
simplicity-first visual layouts, (ii) restrained use
of textual overlays inside images, and (iii) explicit
alignment between each image and a small set of
core propositions in the simplified text.
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Future research should extend beyond expert-
based evaluations to incorporate direct feedback
from end users, particularly individuals with cog-
nitive impairments, in order to ensure that the gen-
erated visuals truly enhance comprehension and
accessibility.

7 Limitations

While this study provides valuable evidence for the
role of Al-generated images in supporting simpli-
fied text comprehension, several limitations remain.
(1) The language scope of this study was limited
to German, and all texts were drawn from a sin-
gle corpus of simplified expository materials. This
may constrain the generalizability of our findings
to other languages, genres, or cultural contexts. Ex-
panding to multilingual or narrative datasets could
uncover additional design considerations. (2) Vi-
sual complexity was identified as a recurring issue,
but our analysis relied on qualitative judgments
rather than formal cognitive load metrics. The ab-
sence of behavioral or physiological measures (e.g.,
comprehension scores, reading time, or gaze data)
limits our ability to precisely quantify the cognitive
effects of visual detail. (3) The image generation
models used (DALL-E 3 and FLUX.1-dev) were
not fine-tuned for the simplified language setting
or for accessibility-related constraints. As a result,
the outputs may occasionally include dense textual
overlays or unnecessary visual embellishments. Fu-
ture research should explore prompt engineering



techniques and post-processing methods to explic-
itly control for simplicity and semantic salience.

8 Lay Summary

This paper presents a practical method to make
long and complex documents easier to understand,
especially for readers with cognitive impairments.
Unlike most tools that simplify single sentences,
our approach operates at the document level and
adds supportive illustrations. First, a large lan-
guage model (GPT-40) divides a document into
short, coherent segments and rewrites them in sim-
pler language while preserving meaning. Next,
the model drafts faithful visual descriptions for
each segment, and state-of-the-art image genera-
tors (DALL-E 3 and FLUX.1-dev) produce clear,
consistent cartoon-style illustrations that align with
the simplified text.

We evaluated the pipeline on a curated subset
of real German public-information documents and
asked four experts in simplified language to review
the outputs. Their ratings clustered around the mid-
dle of the 5-point scale, indicating that the images
generally helped comprehension but were not uni-
formly excellent. Reviewers also noted that illustra-
tions overloaded with on-image text can increase
cognitive load and reduce clarity, underscoring the
value of minimal, consistent visuals.

Pairing document-level simplification with faith-
ful, stylistically coherent illustrations appears
promising for making public-facing materials, such
as health guidance or social-service instructions
more accessible. Future work will expand user stud-
ies with target populations and further constrain
visual design to keep images simple, readable, and
trustworthy.
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A Operational Definitions.

We use the following operational definitions for rated dimensions: support for comprehension = perceived

helpfulness of the image for understanding the passage’s main message; semantic alignment = fidelity of

depicted entities, attributes, and relations to the source passage; visual coherence = absence of distracting
artifacts or clutter and a legible, uncluttered composition within the image; style match = appropriateness
and consistency of the visual style with the document’s genre and Easy-to-Read conventions.

B Prompt Templates

We include here the prompts used for text simplification, text segmentation and visual description
generation. All prompts are designed to enforce output constraints (JSON formatting) and minimize
semantic drift in multimodal generation.

B.1 Prompt for Text Simplification

You are a professional editor specializing in document-level text simplification for broader
accessibility.

Your goals are: (1) preserve meaning and factual correctness, (2) increase readability and accessibility, and (3) maintain
discourse-level coherence across sections.

Follow the steps and constraints below exactly. Do not hallucinate or omit essential information.

0) Controls (adjust these before running)

Target audience: general adult readers without domain expertise.

Readability target: approximately B1-B2 (plain language); avoid jargon unless defined.

Lexical simplicity: prefer high-frequency, concrete words; define any necessary technical terms briefly.
Syntactic simplicity: prefer simple main clauses; split long/complex sentences (>25-30 words).

Style: neutral, clear, consistent; no rhetorical questions; active voice where appropriate.

1) Plan at the Document Level (no output yet)

Produce a hidden plan to guide rewriting (do not include the plan in the final answer):

Section map: list sections/paragraphs and their main points.

Entity & timeline register: people, organizations, quantities, dates, and events; ensure consistency of names/abbreviations
across the document.

Discourse links: for each section, note how it connects to the previous one (cause — effect, problem — solution,
comparison, sequence, contrast).

Risk items: legal/medical/financial claims; numbers, percentages, dates, and units that must remain exact.

2) Rewrite Rules (apply throughout)

Meaning preservation: keep all factual statements, numbers, dates, and units; do not invent content; do not change scope
or evidential hedges.

Sentence-level operations: (a) split long sentences; (b) delete redundancy and filler; (c) paraphrase rare idioms and
nominalizations; (d) reorder for subject—verb proximity.

Lexical operations: replace rare words with common alternatives; define unavoidable terms in-line the first time they
appear.

Coreference & cohesion: resolve ambiguous pronouns; repeat a short, clear noun phrase when needed; add explicit
connectives (e.g., “However,” “As a result,” “In addition”) to preserve coherence across sentences and sections.
Structure: keep informative headings; convert dense lists into bullets or tables where it improves clarity; keep citations/ref-
erences but simplify their surrounding prose.

Safety & integrity: never remove warnings, limitations, or risk qualifiers; never alter quoted material; keep figure/table
references consistent.

3) Self-Review Checklist (enforce before finalizing)

Confirm all items; if any fail, revise and re-check:

Meaning preservation: Each paragraph answers the same questions as the source; all numbers/dates/units/entities match
the original.

Readability & simplicity: Average sentence length reduced; complex clauses minimized; jargon defined or replaced.
Document coherence: Section openings include bridging phrases; topic flow is consistent; pronouns are unambiguous.
Style consistency: Tone and tense are consistent; active voice is used where natural; no rhetorical filler.

Table 4: Prompt used for text simplification
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B.2 Prompt for Text Segmentation

This prompt guides the model to identify thematic and semantic boundaries in expository texts and return
machine-readable subparagraphs. The output format is constrained to valid JSON to ensure compatibility
with downstream modules in our pipeline.

Please analyze the following text and split it into coherent subparagraphs based on thematic and
semantic boundaries. Follow these rules strictly:

1. Output MUST be valid JSON format only

2. Use numbered keys starting from "1"

3. Ensure all strings are properly quoted

4. Escape any internal double quotes

5. Do NOT include any additional text or explanations

6. Maintain original content integrity

Text to process: {text}
Output format example:

{"1": "first subparagraph text", "2": "second subparagraph text"}

Table 5: Prompt used for text segmentation

B.3 Prompt for Visual Description Generation

This prompt constrains the model to produce faithful visual descriptions of the segmented subparagraphs.
A key element is the explicit instruction to avoid hallucination, ensuring that no visual elements are
introduced beyond the source text.

Please generate visual descriptions for each subparagraph following these steps:

1. Create a brief summary highlighting main content

2. Convert summaries into visual descriptions suitable for image generation. Ensure that the visual description faithfully
represents the original text without adding or altering objects, attributes, or details not present in the source. Maintain
semantic accuracy while simplifying the expression for better clarity.

3. Return ONLY JSON with subparagraph numbers and visual description. Do not include any additional text or
explanations.

Output format example:

{"1": "Peaceful countryside with green fields and cottages", "2": "Busy city street with neon lights"}

Table 6: Prompt used for visual description generation

C Example of WebCorpus

As part of the WebCorpus dataset, we include authentic examples of German documents written in Leichte
Sprache (easy-to-read German). One representative source is the newsletter series Bericht aus Genf !.

1https ://www.bodys-wissen.de/bericht-aus-genf.html
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Example of simplified German text from WebCorpus

Bericht aus Genf Nr. 8 /2014 Newsletter von Theresia Degener Mitglied im Ausschuss fiir den UN-Vertrag iiber die Rechte
von Menschen mit Behinderungen BegriiBung Dieser Info-Brief ist iiber die 12. Sitzung von unserer Arbeits-Gruppe
in Genf. Vor dem Treffen habe ich gedacht: Das ist das letzte Mal fiir mich. Die Mitglieder in der Arbeits-Gruppe
arbeiten immer 4 Jahre mit. Und ich bin schon 4 Jahre dabei. Aber im Juni ist etwas Schones passiert: Es waren
Wabhlen fiir die Arbeits-Gruppe. Und ich wurde wieder-gewihlt. Das bedeutet: Ich darf noch einmal 4 Jahre in der
Arbeits-Gruppe mitmachen. Dariiber freue ich mich sehr. Seit November gibt es eine Sonder-Bericht-Erstatterin fiir die
Rechte von Menschen mit Behinderungen. Sie arbeitet fiir den Menschen-Rechts-Rat bei den Vereinten Nationen. Das ist
die Aufgabe von der Sonder-Bericht-Erstatterin: Sie schreibt Berichte fiir den Menschenrechts-Rat: Wie geht es Menschen
mit Behinderungen auf der ganzen Welt. 2 Die Sonder-Bericht-Erstatterin heifit: Catalina Devantas. Sie kennt sich sehr
gut aus mit Menschen-Rechten. Sie ist Rollstuhl-Fahrerin und Mutter von drei Kindern. Auf dem Bild bin ich mit Catalina
Devantas und ihren Kindern und mit Silvia Judith Quan-Chang. Sie ist auch in der Arbeits-Gruppe. Bei der 12. Sitzung
hatten wir einen Gast aus Mexiko. Er heifit Ricardo Adair Rubles. Er ist ein Mann mit Lern-Schwierigkeiten. Ricardo
Adair Rubles ist sehr mutig. Das hat er der Arbeits-Gruppe erzéhlt: Er kimpft gegen ein Gesetz in Mexiko. In dem Gesetz
steht: Menschen mit Lern-Schwierigkeiten diirfen nicht selbst entscheiden. Das ist schlecht. Jeder Mensch darf selbst
entscheiden. Manchmal braucht ein Mensch Unterstiitzung. Dann muss der Mensch die Unterstiitzung bekommen. Ich
wiinsche Thnen eine schone Weihnachts-Zeit und ein gutes Jahr 2015! Theresia Degener. Ein Tipp zum Lesen: Der Bericht
ist in Leichter Sprache. Aber manchmal stehen auch schwere Worter in dem Bericht. Diese Worter sind dann dick und

blau. Die Worter werden im Text erklart.

Table 7: An example of simplified German text, extracted from the first two pages of Bericht aus Genf 8 Leichte
Sprache.pdf

D Segmentation and Visual Descriptions for the WebCorpus Example

This appendix reports the output of our processing pipeline applied to the simplified German document in
Appendix B.

ID

Segment (Simplified German)

Visual Description

Bericht aus Genf Nr. 8 / 2014 Newsletter von Theresia Degener Mitglied im
Ausschuss fiir den UN-Vertrag iiber die Rechte von Menschen mit Behinderungen
BegriiBung Dieser Info-Brief ist iiber die 12. Sitzung von unserer Arbeits-Gruppe
in Genf. Vor dem Treffen habe ich gedacht: Das ist das letzte Mal fiir mich. Die
Mitglieder in der Arbeits-Gruppe arbeiten immer 4 Jahre mit. Und ich bin schon
4 Jahre dabei. Aber im Juni ist etwas Schones passiert: Es waren Wahlen fiir die
Arbeits-Gruppe. Und ich wurde wieder-gewiéhlt. Das bedeutet: Ich darf noch
einmal 4 Jahre in der Arbeits-Gruppe mitmachen. Dariiber freue ich mich sehr.

Theresia Degener freut sich
iiber ihre Wiederwahl in die
Arbeits-Gruppe.

Seit November gibt es eine Sonder-Bericht-Erstatterin fiir die Rechte von Men-
schen mit Behinderungen. Sie arbeitet fiir den Menschen-Rechts-Rat bei den
Vereinten Nationen. Das ist die Aufgabe von der Sonder-Bericht-Erstatterin: Sie
schreibt Berichte fiir den Menschenrechts-Rat: Wie geht es Menschen mit Be-
hinderungen auf der ganzen Welt. Die Sonder-Bericht-Erstatterin heifit: Catalina
Devantas. Sie kennt sich sehr gut aus mit Menschen-Rechten. Sie ist Rollstuhl-
Fahrerin und Mutter von drei Kindern. Auf dem Bild bin ich mit Catalina Devantas
und ihren Kindern und mit Silvia Judith Quan-Chang. Sie ist auch in der Arbeits-
Gruppe.

Catalina  Devantas, eine
Rollstuhlfahrerin und Mutter,
arbeitet als Sonder-Bericht-
Erstatterin.

Bei der 12. Sitzung hatten wir einen Gast aus Mexiko. Er heifit Ricardo Adair
Rubles. Er ist ein Mann mit Lern-Schwierigkeiten. Ricardo Adair Rubles ist sehr
mutig. Das hat er der Arbeits-Gruppe erzihlt: Er kimpft gegen ein Gesetz in
Mexiko. In dem Gesetz steht: Menschen mit Lern-Schwierigkeiten diirfen nicht
selbst entscheiden. Das ist schlecht. Jeder Mensch darf selbst entscheiden. Manch-
mal braucht ein Mensch Unterstiitzung. Dann muss der Mensch die Unterstiitzung
bekommen.

Ricardo Adair Rubles kampft
mutig gegen ein Gesetz in
Mexiko.

Ich wiinsche Ihnen eine schone Weihnachts-Zeit und ein gutes Jahr 2015! Theresia
Degener Ein Tipp zum Lesen: Der Bericht ist in Leichter Sprache. Aber manchmal
stehen auch schwere Worter in dem Bericht. Diese Worter sind dann dick und
blau. Die Worter werden im Text erklart.

Theresia Degener wiinscht
frohe Weihnachten und gibt
einen Lesetipp.

Table 8: Segmentation (IDs 1-4) and automatically generated visual descriptions for the simplified German text
from appendix B
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E Generated Images from Visual Descriptions

This appendix presents generated images corresponding to the visual descriptions in Appendix C. We
compare two text-to-image models, DALL-E 3 and FLUX.1-dev, across four descriptions (IDs 1-4).

DALL‘E 3

LIESIHEN

Weigndsten!

Figure 2: Comparison grid of generated images using DALL E 3 and FLUX.1-dev for four visual descriptions from Appendix C
(IDs 1-4). Columns map left-to-right to description IDs 1, 2, 3, and 4.

F Questionnaire for Image Evaluation

This appendix presents the full bilingual questionnaire used to evaluate Al-generated and manually
created images accompanying simplified texts. It consists of a brief pre-questionnaire about participants’
background, a main questionnaire covering text comprehension, text-image alignment, and image quality,
followed by a short post-study comparison and an open feedback item. Items explicitly marked for
conditions (b) and (c) apply only when a text is shown with an image. Items without such a marker apply
to all presentation conditions, including text-only. For check items, respondents select exactly one option
unless otherwise stated; free-text fields are provided for comments.

Legend of Conditions / Legende der Bedingungen. (a) Text only / Nur Text  (b) Text + Al-generated
image / Text + KI-generiertes Bild  (c) Text + manually created image / Text + manuell erstelltes Bild

Pre-Questionnaire / Vorbefragung

Question 1/ Frage 1. How many years of experience do you have working as a simplified language
expert? / Wie viele Jahre Erfahrung haben Sie als Expert:in fiir vereinfachte Sprache? (select one / eine
Option wihlen)

* 0-1 years / 0-1 Jahr
* 1-2 years / 1-2 Jahre
e 3-5 years / 3-5 Jahre

* More than 5 years / Mehr als 5 Jahre

Other (please specify) / Andere (bitte angeben):
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Question 2 / Frage 2. How many years of experience do you have evaluating images as part of simplified
language? / Wie viele Jahre Erfahrung haben Sie in der Bewertung von Bildern im Kontext vereinfachter
Sprache? (select one / eine Option wihlen)

e 0-1 years / 0-1 Jahr
e 1-2 years / 1-2 Jahre
* 3-5 years / 3-5 Jahre

* More than 5 years / Mehr als 5 Jahre

* Other (please specify) / Andere (bitte angeben):

Question 3 / Frage 3. What is your work setting in this field? / In welchem Arbeitsverhéltnis sind Sie in
diesem Bereich tétig? (select one / eine Option wihlen)

* Freelancer / Freiberuflich
* Employee at a company / Angestellt in einem Unternehmen
* Employee at a research institute / Angestellt in einem Forschungsinstitut

* Employee at an association / public sector organization / Angestellt in einem Verband / einer
offentlichen Einrichtung

* Other (please specify) / Andere (bitte angeben):

Main Questionnaire: Evaluation of AI-Generated Images and Text-Image Combination /
Hauptfragebogen: Bewertung von KI-generierten Bildern und Text-Bild-Kombinationen

Section 1/ Abschnitt 1: Overall Text Comprehension / Textverstindnis (all conditions a—c / alle
Bedingungen a—c) Question 4 / Frage 4. How simple is this text? / Wie einfach ist dieser Text?

* 1 = Very difficult / Sehr schwierig

* 2 = Somewhat difficult / Eher schwierig
* 3 = Neutral / Neutral

* 4 = Somewhat easy / Eher einfach

* 5 = Very easy / Sehr einfach

Other (please specify) / Andere (bitte angeben):

Question 5/ Frage 5. Is the text semantically adequate? / Ist der Text semantisch angemessen?
* 1 = Not at all / Uberhaupt nicht
* 2 = Mostly not / Meistens nicht

* 3 = Partially / Teilweise

4 = Mostly / GroBtenteils
* 5 = Completely / Vollstindig

* Other (please specify) / Andere (bitte angeben):
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Question 6 / Frage 6. Is the text fluent / grammatical? / Ist der Text fliissig / grammatikalisch korrekt?
* 1 = Not at all / Uberhaupt nicht

* 2 = Mostly not / Meistens nicht

3 = Partially / Teilweise
* 4 = Mostly / GroBitenteils

* 5 = Completely / Vollstindig

Other (please specify) / Andere (bitte angeben):

Section 2 / Abschnitt 2: Text-Image Alignment / Text-Bild-Ubereinstimmung (conditions b—c /
Bedingungen b—c) Question 7 / Frage 7. Does the image enhance the understanding of the text? /
Unterstiitzt das Bild das Verstidndnis des Textes?

* 1 = Not at all / Uberhaupt nicht

* 2 = Mostly not / Meistens nicht

3 = Partially / Teilweise

4 = Mostly / GroBtenteils
* 5 = Completely / Vollstindig

* Other (please specify) / Andere (bitte angeben):

Question 8 / Frage 8. How well does the text align with the image (meaning, message)? / Wie gut stimmt
der Text in Bedeutung und Botschaft mit dem Bild iiberein?

* 1 = Not aligned at all / Uberhaupt nicht iibereinstimmend
* 2 = Mostly not aligned / Meistens nicht iibereinstimmend
* 3 = Partially aligned / Teilweise iibereinstimmend

* 4 = Mostly aligned / GroéBtenteils tibereinstimmend

* 5 = Completely aligned / Vollstindig tibereinstimmend

* Other (please specify) / Andere (bitte angeben):

Question 9 / Frage 9. Which type of image do you think was used? / Was glauben Sie, welche Art von
Bild verwendet wurde?

* Al-generated / KI-generiert
* Manually created / Manuell erstellt

e Unsure / Unsicher

Other (please specify) / Andere (bitte angeben):
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Section 3 / Abschnitt 3: Image Quality Evaluation / Bildqualititsbewertung (conditions b—c /
Bedingungen b—c) Question 10 / Frage 10. How visually coherent are the images? / Wie visuell
kohérent ist das Bild?

* 1 = Not coherent at all / Uberhaupt nicht kohirent

* 2 = Mostly not coherent / Meistens nicht kohirent

3 = Partially coherent / Teilweise kohérent
* 4 = Mostly coherent / GroBtenteils kohdrent
* 5 = Completely coherent / Vollstindig kohérent

* Other (please specify) / Andere (bitte angeben):

Question 11 / Frage 11. What is the function of the image relative to the text? / Welche Funktion hat das
Bild in Bezug auf den Text?

* “Expansion” / Expansion

* “Exemplification” / Exemplifikation
* “Explication” / Explikation

* “Condensation” / Kondensation

* Other (please specify) / Andere (bitte angeben):

Reference within item / Referenz im Item: see (?7?).

Question 12 / Frage 12. How well does the image fulfill this function relative to the text? / Wie gut erfiillt
das Bild diese Funktion in Bezug auf den Text?

* 1 = Not at all / Uberhaupt nicht
* 2 = Mostly not / Meistens nicht

* 3 = Partially / Teilweise

4 = Mostly / GroBtenteils
* 5 = Completely / Vollstindig

* Other (please specify) / Andere (bitte angeben):

Question 13 / Frage 13. How well does the image style match the text? / Wie gut passt der Bildstil zum
Text?

* 1 = Not natural or pleasing at all / Uberhaupt nicht natiirlich oder ansprechend

* 2 = Mostly not natural or pleasing / GroBtenteils nicht natiirlich oder ansprechend
* 3 = Partially natural and pleasing / Teilweise natiirlich und ansprechend

* 4 = Mostly natural and pleasing / Grofitenteils natiirlich und ansprechend

* 5 = Completely natural and pleasing / Vollstdndig natiirlich und ansprechend

* Other (please specify) / Andere (bitte angeben):
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Post-study Questionnaire / Nachbefragung

Section 4 / Abschnitt 4: Comparison of Image Conditions / Vergleich der Bildbedingungen (for b &
c/fiirb & ¢) Question 14 / Frage 14. Which type of image do you find more useful? / Welche Art von
Bild empfinden Sie als niitzlicher?

* Al-generated images / KI-generierte Bilder
* Manually created images / Manuell erstellte Bilder

* No significant difference / Kein signifikanter Unterschied

Question 15/ Frage 15. Which type of image do you find more visually appealing? / Welche Art von
Bild empfinden Sie als visuell ansprechender?

* Al-generated images / KI-generierte Bilder
* Manually created images / Manuell erstellte Bilder

* No significant difference / Kein signifikanter Unterschied

Question 16 / Frage 16. Which type of image best supports comprehension of the text? / Welche Art von
Bild unterstiitzt das Textverstindnis am besten?

» Al-generated images / KI-generierte Bilder
e Manually created images / Manuell erstellte Bilder

* No significant difference / Kein signifikanter Unterschied

Section 5 / Abschnitt 5: Open Feedback / Offenes Feedback

Question 17 / Frage 17. Do you have any comments or suggestions on the text, images, or their
combination? / Haben Sie Kommentare oder Anregungen zum Text, zu den Bildern oder zu deren
Kombination?

* Response / Antwort:
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Abstract

Jargon identification is critical for improving
the accessibility of biomedical texts, yet mod-
els are often evaluated on isolated datasets,
leaving open questions about generalization.
After reproducing MedReadMe’s jargon de-
tection results and extending evaluation to
the PLABA dataset, we find that transfer
learning across datasets yields only modest
gains, largely due to divergent annotation ob-
jectives. Through manual re-annotation we
show that aligning labeling schemes improves
cross-dataset performance. Building on these
findings, we evaluate several jargon-aware
prompting strategies for LLM-based medical
text simplification. Explicitly highlighting
jargon in prompts does not consistently im-
prove simplification quality. When gains oc-
cur, they often trade off against readability and
are model-dependent. Human evaluation indi-
cates that simple prompting can be as effective
as more complex, jargon-aware instructions.
We release code to facilitate further research:
https://github.com/taikilazos/thesis_codebase.

1 Introduction

Medical text simplification is crucial for improving
health literacy by making technical content acces-
sible to lay readers, with jargon handling being a
central challenge. In this work, we define jargon as
any term or span of words that may be hard to un-
derstand for lay readers who are not in the medical
domain, such as technical abbreviations or com-
plex terminology requiring simplification. How-
ever, jargon detection models are often evaluated
on isolated datasets, leaving significant questions
about their generalization capabilities.

Recent resources like MedReadMe (Jiang and
Xu, 2024) and PLABA (Attal et al., 2023; On-
dov et al., 2025) provide valuable benchmarks for
jargon-centric research, but they employ different
annotation schemes, MedReadMe categorizes term
difficulty for lay readers, while PLABA identifies

36

PLABA Dataset

We studied 36 drop seizures in 5 patients with
myoclonic astatic epilepsy of early childhood
(MAEE) with simultaneous split-screen video
recording and polygraph. Sixteen were falling
attacks and 20 were either less severe attacks
exhibiting only deep head nodding or seizures
equivalent to drop attacks in terms of ictal
pattern but recorded in the supine position. All
seizures except those that occurred in patients in
the supine position showed sudden momentary
head dropping or collapse of the whole body
downward.

MedReadMe Dataset

The long-acting bronchodilator tiotropium and
single-inhaler combination therapy of inhaled
corticosteroids and long-acting beta 2-agonists
(ICS/LABA) are commonly used for main-
tenance treatment of patients with chronic
obstructive pulmonary disease (COPD). Com-
bining these treatments, which have different
mechanisms of action, may be more effective
than administering the individual components.

Figure 1: Example annotations from PLABA and Med-
ReadMe datasets. Underlined terms indicate identified
jargon.

terms requiring simplification via expert adapta-
tions (see Figure 1). This discrepancy creates a
fundamental barrier to cross-dataset evaluation and
generalization.

To address this, we first reconstruct the Med-
ReadMe experimental setup and extend evaluation
to PLABA to probe cross-dataset generalization.
Second, we investigate whether explicitly surfacing
detected jargon in prompts improves LLM-based
simplification of medical abstracts.

Our contributions are:

* We replicate MedReadMe’s jargon identifica-
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tion and release our implementation, estab-
lishing baselines on PLABA and a relabeled
subset for cross-dataset evaluation.

* We assess cross-dataset generalization, show-
ing transfer learning is limited by annotation
mismatches and that aligning schemes im-
proves performance.

* We introduce and evaluate jargon-aware
prompting strategies for simplification, find-
ing benefits are model-dependent and often
trade off against readability.

We release code and data to sup-
port reproducibility and future work on
jargon-aware  medical text simplification:

https://github.com/taikilazos/thesis_codebase.

2 Related Work

Text simplification aims to make specialized con-
tent accessible without sacrificing meaning, a par-
ticular challenge in medicine where technical ter-
minology is dense (Agrawal and Carpuat, 2024).
Our work connects four areas: lexical complex-
ity detection, biomedical simplification resources,
LLM prompting strategies, and evaluation. Lexi-
cal complexity and jargon detection have evolved
from surface heuristics to contextual models like
BERT (Devlin et al., 2019), with MedReadMe pro-
viding fine-grained jargon categories for lay reader
difficulty analysis (Jiang and Xu, 2024).

Work on biomedical text simplification lever-
ages datasets such as PLABA, which offers expert-
authored adaptations with span-level links to tech-
nical terms (Attal et al., 2023; Ondov et al., 2025),
though Bakker and Kamps (2024) and others high-
light challenges in sentence-level alignment (De-
varaj et al., 2021; Goldsack et al., 2022; Guo et al.,
2024). There has been limited exploration of LLM
prompting strategies that explicitly surface jargon
to control simplification (Xia et al., 2025). For eval-
uation, we assess how automatic metrics like FKGL
and SARI (Kincaid et al., 1975; Xu et al., 2016)
align with human judgments in this jargon-aware
setting.

The PLABA dataset has enabled research into
more controlled simplification approaches. No-
tably, Xia et al. (2025) conducted a study on jargon-
aware simplification by using detected jargon spans
to structure prompts for large language models.
Their findings suggest that while explicitly surfac-
ing jargon can be beneficial, its effectiveness is not
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Dataset # Sentences # Jargon
PLABA Training 1,602 2,586
PLABA Validation 178 296
PLABA Testing 4,500 9,126
MedReadMe Training 2,587 5,207
MedReadMe Validation 784 1,789
MedReadMe Testing 1,140 2,112

Table 1: Number of examples and total jargon terms in
the PLABA and MedReadMe datasets.

Metric PLABA MedReadMe
FKGL 10.73 14.08
Jargon / sent 1.92 1.76
Jargon Length 2.98 3.35

Table 2: Comparison of metrics between the PLABA
and MedReadMe datasets.

consistent across models and often comes at the
cost of readability, highlighting the complexity of
integrating detection with generation.

3 Methodology

3.1 Dataset Analysis

We study two biomedical datasets with distinct ob-
jectives and annotation schemes. MedReadMe
comprises 4,520 sentences from 180 complex-
simple article pairs sampled from 15 medical sim-
plification resources (Guo et al., 2024; Goldsack
et al., 2022; Devaraj et al., 2021) and provides a hi-
erarchical jargon taxonomy (binary/3-class/7-class)
annotated by non-experts to approximate lay com-
prehension (Jiang and Xu, 2024). PLABA consists
of PubMed abstracts paired with expert-authored
plain-language adaptations and marks spans that
require simplification (Attal et al., 2023; Ondov
et al., 2025). As shown in Table 1, the datasets dif-
fer in the number of examples and annotated jargon
terms; we preprocess PLABA to a sentence-level
format to match MedReadMe. In difficulty char-
acteristics (Table 2), MedReadMe exhibits higher
lexical and grammatical complexity (FKGL 14.08
vs. 10.73). PLABA shows slightly higher jargon
density but shorter jargon terms. Only 276 jargon
terms exactly overlap across datasets, underscor-
ing divergent annotation goals and target audiences.
For examples of the differing annotation focus, see
Figure 1.
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Figure 2: Sentence length distribution for train set: the

We also analyzed quantitative metrics to com-
pare the two datasets. Figure 2 illustrates the sen-
tence length distribution in the training splits, with
MedReadMe sentences averaging 31.8 tokens com-
pared to PLABA’s 22.7 tokens.

3.2 Model Selection and Training

We use standard BIO tagging for span detection:
MedReadMe is labeled at binary/3-class/7-class
levels, while PLABA is binary-only. Subword to-
kenization is handled via tokenizer word_ids(),
assigning B- to the first subword and I- to sub-
sequent subwords; special tokens ([CLS], [SEP],
[PAD]) are masked with —100 in the loss. Both
datasets are processed at the sentence level with
a maximum sequence length of 250 and attention
masks to ignore padding.

We reproduced the MedReadMe experiment us-
ing BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), BioBERT (Lee et al., 2019), and Pub-
MedBERT (Tinn et al., 2023), testing both base and
large variants of each model. Since the original pa-
per only referenced the Hugging Face API without
specifying model versions for BioBERT and Pub-
MedBERT, our specific choices are documented in
Table 3.

We standardized fine-tuning across models: op-
timizer AdamW (Loshchilov and Hutter, 2019),
learning rate 2e-5 (MedReadMe) and le-5
(PLABA), batch size 32, up to 20 epochs with early
stopping (patience 3) on validation entity-level F1.

3.3 Transfer Learning

We evaluated transferability via two settings: (1)
direct transfer (train on MedReadMe — evalu-
ate on PLABA; train on PLABA — evaluate

mean value for MedReadMe is 31.8 and for PLABA 22.7

Family Type Model

BERT Base  bert-base-uncased
RoBERTa Base  roberta-base

BERT Large bert-large-uncased
RoBERTa Large roberta-large
BioBERT Base  biobert-base-v1.1f
PubMedBERT Base  biomed-base-uncased?
BioBERT Large biobert-large-v1.17
PubMedBERT Large biomed-large-uncased?

Table 3: HuggingFace models used in experiments:
generic model architectures (top half) and biomedical
variants (bottom half). TFrom dmis-lab, ¥From mi-
crosoft/BiomedNLP.

on MedReadMe) and (2) sequential fine-tuning
(PLABA—MedReadMe evaluated on MedReadMe
and PLABA; MedReadMe—PLABA evaluated on
MedReadMe and PLABA).

All models were based on RoBERTa-large, fine-
tuned with a learning rate of 1 x 10~°, batch size of
16, and early stopping with max epoch of 20. Since
MedReadMe contains multi-class annotations, we
standardized both datasets to a binary classifica-
tion setting (jargon vs. non-jargon) for consistency.
Performance was primarily measured using entity-
level F1.

3.4 Manual Annotation of PLABA Sentences
Using the MedReadMe Scheme

To ensure that any observed differences in model
performance when transferring between Med-
ReadMe and PLABA are not solely due to mis-
matches in annotation schemes, we manually
re-annotated 100 PLABA sentences using the
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@ Sentence Labeling Tool

Selected Text:
Jargon Type:

Sentence Complesity:
Add Label

Current Annotations:

foveal regeneration -> Google Easy
retinal restoration -> Google Easy

|Goog|e Easy
© Complex

MNext Sentence

Purpose: The purpose of this study was to evaluate fowveal regeneration and the
association between retinal restoration and following reattachment
surgery for rhegmatogenous retinal detachment (RRD).

visual acuity

O Simple

Save

Figure 3: Screenshot of the custom sentence labeling tool. The tool allows the annotator to highlight spans
corresponding to jargon terms and assign one of seven MedReadMe classes (e.g., Google Easy, Google Hard,
Medical Name, etc.). The annotator can also specify whether a sentence is considered complex or simple, with the
latter defined as sentences containing no jargon or only a single Google Easy term.

MedReadMe seven-class taxonomy: Google-Easy,
Google-Hard, Medical Named Entity, Medical Ab-
breviation, General Abbreviation, General Com-
plex Term, and Multi-sense Word (Jiang and Xu,
2024). This approach allows us to directly as-
sess the impact of annotation scheme alignment
on model performance.

A custom annotation tool (see Figure 3) was
developed to facilitate this process, allowing the
annotator to highlight jargon spans and assign the
appropriate class. Sentences were also labeled as
"complex" or "simple," with "simple" defined as
containing no jargon or only a single Google Easy
term, and all the other cases as "complex."

All annotations were performed by a single an-
notator (the main author), following MedReadMe
guidelines (Jiang and Xu, 2024).

This relabeled subset allows for a fairer evalua-
tion of model transfer: if model performance im-
proves on the MedReadMe-labeled PLABA data,
it suggests that the original drop in transfer per-
formance was primarily due to annotation scheme
mismatch and label distribution differences, rather
than a fundamental inability of the model to gener-
alize. Sentences were classified as "simple" if they
contained no jargon or only a single Google Easy
term (aligned with MedReadMe’s lower CEFR lev-
els); "complex" sentences included any with addi-
tional jargon (e.g., multiple Google Easy or Google
Hard/Medical terms), though this feature was not
used in classification. The class distribution of the
relabeled data can be seen in the Table 4.
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Class Count
Google Easy 203
Google Hard 187
Medical Name 15
Medical Abbreviation 16
General Abbreviation 0
General Complex 16
Multisense 0

Table 4: True label distribution (token-level) for each
class in the evaluation set.

3.5 PLABA Test Set for Simplification

The PLABA test set comprises 300 medical ab-
stracts with 3,315 sentences, of which 3,041
(91.7%) contain at least one jargon term (Attal
et al., 2023). Sentences contain between 1 and
18 jargon spans, with most (64.6%) containing
1-4. Each span is annotated with one or more
recommended simplification actions (e.g., substi-
tute, explain, generalize, omit, exemplify). On
average, abstracts contain 26.57 jargon terms. Ac-
tion distribution is skewed toward substitution
(65.62%), followed by explanation (17.59%), omis-
sion (10.25%), generalization (6.12%), and exem-
plification (0.43%). Average jargon length is 1.79
words.

Reference simplifications were 40% shorter at
the sentence level (26.18 to 15.94 words) and 6.5
grade levels easier (FKGL 13.55 to 7.04; Kincaid



Original Text:
The patient exhibited tachycardia and dyspnea
during examination.

Base Instructions (applied to all prompts):

1) Write a clear sentence; 2) Preserve distinc-
tions and numbers; 3) Replace medical terms
only if meaning stays exact; 4) No notes or mul-
tiple versions.

1. Simple Prompt: Provide one simplified sen-
tence for the input (focusing on lexical simplifi-
cation of jargon).

2. Jargon-aware Prompt: Highlight detected
terms (e.g., tachycardia, dyspnea) and simplify
cautiously.

3. Ground Truth Jargons Prompt (GT): Use
ground truth jargon terms as guidance.

4. Ground Truth Actions Prompt (GT ac-
tion): Specify per-term actions (e.g., substitute,
explain).

Figure 4: Prompting strategies for sentence-level med-
ical simplification. See Appendix B for detailed infor-
mation.

et al., 1975), yet they contained more sentences (19
vs. 11.05), indicating frequent sentence splitting.

3.6 Prompt Design

We evaluate four prompting strategies, from a sim-
ple instruction baseline to prompts that explicitly
surface jargon terms and, in the most guided vari-
ant, specify actions per term. Jargon spans are
obtained from our PLABA jargon detector. Simpli-
fication operates at the sentence level; simplified
sentences are concatenated for abstract-level evalu-
ation.

Ground-truth variants estimate the upper bound
of jargon-aware prompting: if gold-guided prompts
outperform detected-jargon prompts, the bottleneck
lies in detection rather than prompting.

3.7 LLM Models for Simplification

We compare a general-purpose model, Llama-3.1-
8B-Instruct!, with a domain-specialized alterna-
tive, Medicine-Llama3-8B2. We standardize output

"https://huggingface.co/meta-1lama/Llama-3.
1-8B-Instruct

thtps://huggingface.co/instruction—pretrain/
medicine-Llama3-8B
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cleaning to remove prefixes and meta-commentary,
retaining only the simplified sentence for evalua-
tion.

3.8 Evaluation Methods for Simplification

For Jargon Detection tasks, we report F1 due to
class imbalance in medical texts. Token-level F1
measures correct classification of individual tokens
while ignoring padding tokens (—100) and non-
entity (O) predictions. Entity-level F1 requires
exact matches between predicted and gold enti-
ties in both span boundaries and type. We run
generation with fixed decoding settings: temper-
ature = 0.2, top_p = 0.9, repetition penalty = 1.3,
no_repeat_ngram_size = 3, and max tokens = 512.
Experiments use NVIDIA A100 GPUs; models are
loaded from shared storage for throughput. Evalu-
ation is computed at the abstract level by concate-
nating sentence-level outputs.

As for the simplification task, we report read-
ability (FKGL) (Kincaid et al., 1975) and semantic
similarity with BERTScore?, and we use SARI and
BLEU (via EASSE)* to assess add/keep/delete op-
erations relative to original and reference.

To validate our automatic metrics, we conducted
a human evaluation study’. We evaluated at the
abstract level rather than sentence level to better
reflect real-world reading, where users consume
full abstracts; complex sentences aggregated at this
level provide a fairer assessment of overall diffi-
culty. Each original medical text was presented
alongside five simplified versions: four generated
by our models and one gold-standard reference
(PLABA’s expert-authored simplifications), ran-
domly ordered to prevent bias. We recruited N=5
annotators, all fluent English speakers with at least
a graduate-level background in Computer Science-
related fields from the University of Amsterdam.
Each annotator evaluated three different medical
abstracts. For each abstract, they rated the five sim-
plified versions on a 1-5 scale along three aspects:
meaning preservation (accuracy of medical infor-
mation), simplicity (lexical accessibility to non-
experts, focusing on jargon reduction), and fluency
(natural and coherent writing).

For an action-based perspective, annotators also
evaluated the model’s ability to perform specific

3https://github.com/feralvam/easse/blob/
master/easse/bertscore.py

4https://github.com/Feralvam/easse

5https://qualitativeexpthesis—biomed.
streamlit.app/
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Model

Token-Level

Entity-Level

Bin 3Cls 7Cls Bin 3Cls 7Cls
BERT 88.12 (85.4) 86.61 (80.4) 75.02 (66.3) 70.85 (77.0) 67.74 (72.5) 56.47 (63.3)
2 RoBERTa 89.89 (86.2) 88.72 (81.7) 76.72 (66.7) 57.83 (79.7) 69.29 (75.2) 53.23 (66.6)
og BioBERT 87.83 (84.2) 87.39 (79.6) 76.10 (66.4) 68.51 (77.1) 67.12 (72.8) 58.22 (64.1)
PubMedBERT 84.98 (85.2) 84.72(81.2) 76.71(67.7) 71.57 (75.8) 72.50 (74.8) 63.68 (66.3)
BERT 88.05 (86.1) 87.18 (80.9) 76.25(67.9) 67.70 (78.5) 68.93 (74.1) 58.71 (43.9)
gb RoBERTa 89.73 (86.8) 88.72 (82.3) 78.65 (68.6) 73.42 (80.2) 68.87 (75.9) 62.63 (67.9)
S BioBERT 87.80 (85.3) 86.33(80.7) 75.98 (67.0) 73.40 (78.4) 70.51(72.2) 60.19 (64.9)
PubMedBERT 86.39 (85.7) 85.67 (82.3) 75.31(68.3) 72.32 (79.0) 69.70 (75.2) 61.67 (66.5)

Table 5: F1 scores (%) on the MedReadMe dataset. Our results are shown with original results in parentheses. The

highest value per column is bolded.

text transformation operations (substitute, general-
ize) informed by PLABA action annotations (Attal
et al., 2023; Ondov et al., 2025). In this setting,
each annotator rated three action types across five
randomly selected sentences, using the same 1—
5 scale. Detailed examples are provided in Ap-
pendix B.

4 Results and Analysis

4.1 Jargon Detection Performance

We successfully replicated the MedReadMe
(MRM) experiment, though with notable differ-
ences. As shown in Table 5, our implementa-
tion achieved higher token-level F1 scores (e.g.,
89.89% vs. 86.8% for RoBERTa-base) but lower
entity-level F1 scores (e.g., 73.42% vs. 80.2% for
RoBERTa-large) compared to the original study.
This suggests our models were better at classify-
ing individual tokens but worse at identifying exact
span boundaries, potentially due to differences in
the evaluation pipeline.

Performance varied significantly across jargon
categories (Table 6). The RoBERTa model excelled
at identifying medical abbreviations (F1=0.869) but
struggled with nuanced distinctions, such as differ-
entiating Google-Hard from Google-Easy terms
(F1=0.514). It failed completely on rare classes
like multisense terms, highlighting the impact of
severe class imbalance.

On the PLABA dataset, all models performed
worse than on MRM, with RoBERTa-large achiev-
ing the highest entity-level F1 of 46.70% (Ta-
ble 7). Surprisingly, domain-specific models like
BioBERT showed no clear advantage. This perfor-
mance gap is likely due to PLABA’s smaller size
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Class Prec. Rec. F1 Supp.
G_EASY 0.697 0.828 0.756 3,939
G_HARD 0.748 0391 0.514 1,178
MED_ABBR 0.831 0910 0.869 933
MED_NAME 0.506 0.701 0.588 455
GEN_CPLX  0.695 0.628 0.660 489
GEN_ABBR 0.866 0.792 0.827 130
MULTI 0.000 0.000 0.000 28

Table 6: 7-class performance for RoOBERTa-large on
MedReadMe (MRM) dataset. G: Google, MED: Med-
ical, GEN: General, ABBR: Abbreviation, NAME:
Name Entity, CPLX: Complex, MULTI: Multisense.

Model F1 Precision Recall
BERT 44.17 39.74 49.70
RoBERTa 46.70 46.06 47.36
BioBERT 43.42 46.99 40.35
PubMedBERT 45.43 43.19 47.92

Table 7: Entity-level performance metrics across dif-
ferent language models (large version) on the PLABA
dataset.

and, crucially, its different annotation objective.

4.2 Transfer Learning and the Impact of
Annotation Schema

Cross-dataset transfer learning yielded only mod-
est gains, underscoring the challenge of general-
izing across differently annotated resources (Ta-
ble 8). For instance, a model trained on Med-
ReadMe achieved only 33.71% entity F1 when
evaluated directly on PLABA.

To test if this was due to annotation mismatch,



Experiment Token F1 Entity F1

Setting SARI{ BERTScoret FKGL, BLEU?

MRM — PLABA 61.22 33.71
PLABA+MRM — PLABA 62.94 37.01
MRM+PLABA — PLABA 66.84 37.71
PLABA — MRM 59.01 25.03
PLABA+MRM — MRM 89.80 73.84
MRM+PLABA — MRM 73.96 46.64

Table 8: F1 scores (%) for transfer learning experi-
ments. Sequential transfer refers to fine-tuning on a
second dataset after initial training. MRM stands for
MedReadMe.

Setting SARIT BERTScoref FKGL| BLEUT

Simple  29.87 19.91 13.53 234
Jargon 29.92 19.07 14.16 240
GT 30.62 20.51 14.16  3.03
GT action 32.26 11.55 15.36 4.06

Table 9: Performance metrics for Llama-3.1-8B-Instruct
across different prompts.

we manually relabeled a 100-sentence PLABA sub-
set with the MedReadMe schema. When evalu-
ated on this aligned data, the MedReadMe-trained
model’s performance improved markedly from
33.71% to 42.00% entity F1. This confirms that the
performance drop was primarily due to divergent
annotation schemes rather than a model limitation.
When labels are aligned, models generalize effec-
tively.

4.3 Jargon-Aware Text Simplification

We next investigated whether explicitly highlight-
ing jargon in prompts improves LLM-based simpli-
fication. We evaluated four prompting strategies of
increasing complexity on both a general-purpose
(Llama-3.1, Table 9) and a domain-specialized
(Medicine-Llama3, Table 10) model.

The results were model-dependent and revealed
a consistent trade-off. For Llama-3.1, more explicit
guidance (e.g., providing ground-truth actions) led
to the best performance on operation-based metrics
like SARI (32.26) but at the cost of readability,
yielding the highest FKGL (15.36). In contrast,
the simple prompt achieved the best readability
(FKGL=13.53).

Contrary to expectations, the Medicine-Llama3
model performed best across all metrics with the
simple prompt and its performance degraded with
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Simple  28.81 13.59 12.69 1.69
Jargon 28.64 12.66 12776 1.65
GT 28.70 11.00 13.67 1.60
GT action 28.57 8.90 13.87 142

Table 10: Performance metrics for Medicine-Llama3-
8B across different prompts.

Version/Task Type Mean Rating SD
Ground Truth 5.00 0.00
Simple 3.33 1.41
Jargon 2.34 0.94
GT 2.84 1.18
GT action 2.67 0.94
Action-based Tasks 4.60 0.57

Table 11: Average Ratings and Standard Deviations by
Version and Task Type

more complex, jargon-aware instructions. This
suggests that domain-specific pre-training does not
automatically translate into an ability to effectively
leverage explicit jargon instructions.

4.4 Human Evaluation

A qualitative human evaluation (Table 11) revealed
that while the reference simplifications received
perfect scores, all model outputs were perceived as
lower quality. The simple prompt was competitive
(Mean=3.33), while jargon-aware prompts did not
reliably improve perceived quality. Notably, the
high standard deviations indicate substantial dis-
agreement among raters. A key observation was
that sentence-level simplification often led to a loss
of context and information across the abstract, lim-
iting overall coherence. See Appendix C for exam-
ples of generated outputs for different prompting
strategies.

5 Discussion and Conclusions

In this work, we thoroughly evaluated the auto-
matic jargon detection methods for biomedical
texts. We reproduced MedReadMe experiments, es-
tablished PLABA baselines, and showed that cross-
dataset transfer is limited primarily by annotation
mismatches. We then experimented with jargon-
aware prompting strategies for the automatic sim-
plification of these texts.

On jargon detection, our replications achieved



higher token-level but lower entity-level F1 than the
original report, highlighting remaining challenges
in precise span boundary modeling. Category-wise
analyses showed strong performance on frequent,
well-formed classes (e.g., medical abbreviations)
and weaknesses on rarer or nuanced classes (e.g.,
Google-Hard, multisense), reflecting severe class
imbalance. Importantly, evaluating on a PLABA
subset re-annotated with the MedReadMe scheme
(100 sentences) improved entity-level F1 from
33.71% to 42.00%, demonstrating that schema
alignment substantially boosts transferability.

Turning to simplification, our experiments show
that the effect of jargon-aware prompting is model-
dependent rather than uniformly beneficial. The
general-purpose Llama-3.1-8B-Instruct benefited
from more explicit guidance (best SARI/BLEU
with ground-truth actions), but with reduced read-
ability (higher FKGL). In contrast, the domain-
specialized Medicine-Llama3-8B performed best
with simple prompts, suggesting that domain pre-
training does not automatically translate into better
handling of explicit jargon instructions. This depen-
dency may arise from how models process prompts:
general models require explicit jargon surfacing to
prioritize medical terms, while specialized models
implicitly handle them, making simple instructions
sufficient.

Across models, we observed a consistent
trade-off: more detailed prompting can im-
prove operation- and overlap-based metrics (SARI,
BLEU) while harming readability (FKGL). Qual-
itative judgments echoed this tension: references
set a clear upper bound; simple prompts were com-
petitive, whereas jargon-aware prompts did not reli-
ably improve perceived quality, and sentence-level
processing likely contributed to information loss
across abstracts.

Thus, explicitly including identified jargon in
prompts does not consistently improve LLM medi-
cal text simplification. Jargon matters, but surfac-
ing terms alone is insufficient; benefits depend on
the model and come with readability trade-offs.

Future work should (i) improve span boundary
modeling and mitigate class imbalance in detection,
(i) explore schema-aware or multi-task training for
cross-dataset robustness, and (iii) couple detection
with controllable, document-level generation and
evaluation that jointly captures medical fidelity and
accessibility. We release code and data to support
further research.
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6 Limitations

The lack of multiple annotators for manual re-
annotation is a limitation and should be addressed
in future work to improve reliability. The small-
scale human evaluation (only 5 annotators from a
computer science background, evaluating just 3 ab-
stracts each) and resulting high rater disagreement
may limit generalizability of perceived quality. Au-
tomatic metrics like SARI may not fully capture
jargon-specific changes, and the low BLEU scores
in simplification experiments indicate challenges
in generating high-quality outputs. While the eval-
uation was at the document level, generation was
at the sentence level, losing the global context. Fu-
ture work could explore better prompt engineering,
larger-scale evaluations with diverse annotators,
and document-level generation to address these is-
sues.

7 Lay Summary

Medical texts are full of complex terms that can
confuse people without a scientific background.
This makes it hard for patients and the general
public to understand health information. Our re-
search focuses on two key areas: identifying these
difficult terms (called "jargon") and simplifying
medical texts so they’re easier to read.

First, we studied how well computer models can
spot jargon in medical writing. We compared two
datasets: MedReadMe, which labels terms by how
hard they are for lay people to understand, and
PLABA, which marks terms that experts think need
simplifying. We found that models trained on one
dataset don’t work as well on the other because
the datasets have different goals. But when we
manually relabeled some PLABA data to match
MedReadMe’s style, the models improved a lot,
showing that aligning how we define jargon helps
cross-dataset learning.

Second, we tested ways to make large language
models (like Al chatbots) simplify medical texts.
We tried simple prompts and more complex ones
that highlight detected jargon. Surprisingly, the
simple prompts often worked just as well or better
than the jargon-focused ones. Results depended
on the model—general-purpose models liked more
guidance, but specialized medical models did better
with basics. This suggests that just telling an Al
to simplify might be enough, without needing to
point out every jargon term.

Our work shows that making medical info ac-



cessible is tricky, but better data alignment and
smarter prompting can help. We hope this leads to
tools that make health communication clearer for
everyone, improving patient understanding and out-
comes. All our code and data are publicly available
to support future research.
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A Data, code, and models

We release code and data to support reproducibility
and future work on jargon-aware medical text sim-
plification: https://github.com/taikilazos/
thesis_codebase.

Extensive further documentation can be found
in (Papandreou-Lazos, 2025).

Related experiments were reported at the TREC
2024 PLABA track (Bakker et al., 2024) and at the
CLEF 2025 SimpleText Track (Papandreou et al.,
2025).

B Prompt Design
Original Text

The patient exhibited tachycardia and dyspnea
< during examination.

Base Instructions (applied to all prompts)

IMPORTANT: Follow these rules exactly:

Write a clear sentence

Keep ALL medical distinctions and patterns
Keep exact numbers and measurements

Replace medical terms with plain words ONLY if
meaning stays exactly the same

Keep medical terms if simplifying would lose
precision

No explanations or notes

No multiple versions

Nogpogphwne

1. Simple Prompt

Text to simplify: The patient exhibited
— tachycardia and dyspnea during examination.
Write one simplified sentence.
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2. Jargon-aware Prompt

Replace these terms ONLY if you can keep their
< exact medical meaning:

- tachycardia

- dyspnea

Text to simplify: The patient exhibited

< tachycardia and dyspnea during examination.
Write one simplified sentence.

3. Ground Truth Jargons Prompt

You must simplify the following terms in the

< sentence below (if present):

- tachycardia

- dyspnea

Text to simplify: The patient exhibited

< tachycardia and dyspnea during examination.
Write one simplified sentence.

4. Ground Truth Actions Prompt

For each marked term in the sentence below, take
— the specified action:

- tachycardia: substitute

- dyspnea: explain

Text to simplify: The patient exhibited

< tachycardia and dyspnea during examination.
Write one simplified sentence:

C Generated Text Examples

To illustrate the differences in simplification quality
across prompting strategies, we provide excerpts
from one test abstract. We selected two key sen-
tences with medical jargon and show how each
version handles them. Figure 5 shows the source,
reference (Ground truth human simplification), and
prediction based on either the Simple prompt, the
Jargon-aware prompt, the Ground truth jargons
prompt, and the Ground truth actions prompt

These examples highlight how simpler prompts
can be fluent but sometimes inaccurate, while
jargon-aware prompts vary in readability and fi-
delity.
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Original Sentence 1

Background: The purpose of the study was to examine
whether early repeated infections due to Trichomonas vagi-
nalis among human immunuodeficiency virus (HIV)-positive
and HIV-negative women are reinfections, new infections, or
cases of treatment failure.

Original Sentence 1

Ground Truth human simplification

Methods: Women attending an HIV outpatient clinic and a
family planning clinic in New Orleans, Louisiana, who had
culture results positive for T. vaginalis were treated with 2 g
of metronidazole under directly observed therapy.

For the study’s background, the study’s aim was to find
whether early repeated infections of Trichomonas vaginalis (a
parasite that can cause a sexually transmitted infection or STI)
among women with human immunuodeficiency virus (HIV)
and without HIV are reinfections, new infections, or cases of
treatment failing.

Ground Truth human simplification

For the study’s methods, women attending an HIV clinic and
family planning clinic in New Orleans, Louisiana, who had
tests detecting T. vaginalis, were treated with 2 grams (g)
of metronidazole (an antibiotic for infections) under directly
observed treatment.

Simple prompt

Simple prompt

The goal of this research is to figure out what happens when
many people get infected again by an STI called trichomonia-
sis in both those who have AIDS and do not have it.

Jargon-aware prompt

Women from two clinics received treatment at this place be-
cause they tested positive for Trichomonas vaginalis using
cultures; each woman was given 2000 milligrams of Metron-
idazol while being watched by healthcare workers during their
visit.

The goal is to figure out what happens when people get in-
fected again by this type of bacteria called trachomona’s vagi-
nallis, which can happen even after they have gotten better
because either it came back through there sexual partener as a
re-infection from them,or got another infeciton on its own, or
maybe the cure didnt work for some reason so now we need
to find out why.

Jargon-aware prompt

Women from clinics attended by people living with AIDS and
those seeking birth control services received treatment after
testing positive for a parasite causing STDs; this included
taking two grams of antibiotics while being watched as you
swallow them.

Ground Truth Jargons Prompt

Ground Truth Jargons Prompt

The goal of this research is to determine why some people
infected by Trichamonias get reinfected again after being
treated for it.

Ground Truth Actions Prompt

Women from two clinics received treatment after testing pos-
itive for Trichomonas infection; they took 2000 milligrams
of antibiotic medication while being watched by healthcare
workers during their visits.

The goal of this research is to determine what causes frequent
repeat occurrences of an infection caused by Trichamonias
vaginallis among both HIV-positive and negative females -
either they get it again after being treated previously, contract
it for the first time despite previous treatments, or their current
condition does not respond well to medication.

Ground Truth Actions Prompt

Women from two clinics in New York received treatment
after testing positive for Trichomonas infection; they took
2000 milligrams of antibiotic medication while being closely
monitored by healthcare workers during their visits.

Figure 5: Examples: Effect of prompt variation on the output.
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Abstract

Automatic readability assessment plays a key
role in ensuring effective and accessible written
communication. Despite significant progress,
the field is hindered by inconsistent definitions
of readability and measurements that rely on
surface-level text properties. In this work, we
investigate the factors shaping human percep-
tions of readability through the analysis of 8§97
judgments, finding that, beyond surface-level
cues, information content and topic strongly
shape text comprehensibility. Furthermore, we
evaluate 15 popular readability metrics across
five English datasets, contrasting them with
six more nuanced, model-based metrics. Our
results show that four model-based metrics con-
sistently place among the top four in rank cor-
relations with human judgments, while the best
performing traditional metric achieves an aver-
age rank of 8.6. These findings highlight a mis-
match between current readability metrics and
human perceptions, pointing to model-based
approaches as a more promising direction.

1 Introduction

Readability assessment can be used to deter-
mine the level of comprehension of a piece of
text (DuBay, 2004; Collins-Thompson, 2014). In
domains such as science communication (Kerwer
et al., 2021; August et al., 2023), health (Friedman
and Hoffman-Goetz, 2006; Hershenhouse et al.,
2024), law (Curtotti et al., 2015; Cheong et al.,
2024), and education (Vajjala and Luci¢, 2018),
readability assessment plays a key role in mak-
ing information accessible to individuals regardless
of their background or cognitive needs (Collins-
Thompson, 2014). It is important for highly-
specialized fields characterized by dense jargon and
complex language (Friedman and Hoffman-Goetz,
2006; Han et al., 2024), as well as for applications
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engaging with users of varied familiarity with the
domain (Joshi et al., 2025; Puech et al., 2025).

One challenge in advancing automatic read-
ability assessment is that readability is an over-
loaded term, measured in different ways by prior
work. Some studies treat readability as text diffi-
culty, using surface-level properties such as word
length, word frequency, and various word type
counts (Flesch, 1948; Kincaid et al., 1975; Leroy
et al., 2008). Others broaden the definition of read-
ability to consider syntactic and discourse-level
organization, including cohesion and coherence
properties (Graesser et al., 2004; Petersen, 2007;
Pitler and Nenkova, 2008; Feng et al., 2010; Es-
lami, 2014; Zhuang et al., 2025). A third line of
work views readability as a combination of text
characteristics and information content (Xia et al.,
2016; August et al., 2024).

Taken together, the diversity of interpretations
highlight the difficulty of pinning down readability,
and have led to the continued use of proxy metrics
that may not fit the task, domain, or are misaligned
with human comprehension judgments (Ahmed,
2023; Liu and Lee, 2023; Han et al., 2024).

2 Related Work

Readability Datasets. Despite growing interest
in readability assessment, high-quality datasets re-
main scarce (Xia et al., 2016). Existing document-
level datasets can be subdivided into parallel cor-
pora (Vajjala and Luci¢, 2018; August et al., 2024;
Joshi et al., 2025) and non-parallel corpora (Lu
et al., 2022; Crossley et al., 2024) and span various
tasks and content type, including literary and infor-
mational (Crossley et al., 2024), academic (August
et al., 2024), or information-seeking content (Lu
et al., 2022; Joshi et al., 2025). Recently, sentence-
level datasets have also been introduced (Arase
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et al., 2022; Naous et al., 2024).

Readability Metrics. While human judgments
remain the gold standard for readability evaluation,
their collection is often time-consuming and ex-
pensive (Rooein et al., 2024). Automated metrics
have emerged as a cheaper and quicker alternative.
Examples include metrics relying on basic linguis-
tic features, including sentences, words, and sylla-
bles counts, average reading time (Demberg and
Keller, 2008), language model perplexity (Collins-
Thompson, 2014; Pitler and Nenkova, 2008), and
fraction of functional (Leroy et al., 2008, 2010) or
uncommon words (August et al., 2024). Surface-
form features have been further combined to form
readability tests, such as the Automatic Reading In-
dex (Senter and Smith, 1967), Dale-Chall Readabil-
ity Score (Dale and Chall, 1948), Flesch-Kincaid
Reading Ease (Flesch, 1948), and Linsear Write
Formula (Klare, 1974). Despite critiques of brittle-
ness (Rooein et al., 2024; Collins-Thompson, 2014)
and limited domain suitability (Leroy et al., 2010),
these formulas continue to be used. Recently, both
fine-tuning (Arase et al., 2022; Naous et al., 2024)
and LLM-as-a-judge approaches (Rooein et al.,
2024; Trott and Riviere, 2024) have been proposed
to capture more abstract and nuanced aspects of
readability. However, since these methods rely
on implicitly learned representations, they are re-
garded as less interpretable than those grounded in
surface-level textual features.

3 How Do Humans Perceive Readability?

Given the divergent definitions of readability and
continued reliance on surface-form metrics, we
take a human-centric perspective, asking: What
guides human perceptions of readability? To ad-
dress this question, we analyze a subset of the
ELI-WHY (GPT-4) (Joshi et al., 2025) dataset, de-
signed to study whether LLLMs can generate expla-
nations tailored to various readability levels. The
dataset comprises GPT-4—generated explanations
for 299 “Why” questions, each annotated by hu-
mans into three readability levels— Elementary ,

High School , and Graduate —along with ac-
companying rationales justifying their judgments.
Each question—explanation pair was independently
rated by three annotators, and final labels were
determined via majority vote. For additional de-
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tails, see the original paper. Table 11 (in Appendix)
shows randomly selected examples of human ratio-
nales for each readability level.

Exploring Human Rationales. Although Joshi
et al. (2025) collected human rationales support-
ing readability judgments, their analysis primarily
focuses on the labels themselves, offering limited
insight into the factors shaping human perceptions.
We complement their study by providing a quanti-
tative perspective on the key factors driving human
text comprehension through the analysis of human
rationales. Two authors of this paper annotated
the human-provided readability rationales for 90
ELI-Why question—answer pairs, balanced evenly
across classes. Building on the original human an-
notation instructions, each rationale was labeled
with one or more of the following categories:

» Wording/Terminology: presence of scientific
words, abbreviations, or complex synonyms;

e Sentence Structure: comments on sentence
length or the number of concepts;

» Examples/Analogies: mentions of examples
or analogies as key factors;

* Details and Depth: mentions of the presence
or absence of details;

* Curriculum-based: links the information con-
tent or topic to a specific education level.

Figure 1 shows the consensus vote across read-
ability classes. The average sample-level Jaccard
index for the obtained annotations is 0.91, indicat-
ing high agreement between the two annotators.
Wording/Terminology emerges as the predominant
rationale for readability judgments, with annota-
tors distinctions in lexical complexity (e.g., “Words
like adherence are too advanced for elementary
school”) or simplicity (“uses basic words”). The
Curriculum-based category is invoked far more
often to justify High School and Graduate judg-

ments than Elementary , with annotators noting
that “The scientific terms... require an introductory
background or some foundational knowledge” or
that “a concept that will be brought up in chem-
istry classes in undergrad.” Conversely, Exam-
ples/Analogies is disproportionately used to sup-
port Elementary judgments, with comments such
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Figure 1: Distribution of justification reasons across
90 examples in ELI-WHY (GPT-4). Counts are based
on the consensus over 2-way annotations.

as “Examples are... what you’d say to a toddler” or
“The analogies used... make it more accessible to
elementary level.”. Notably, both categories rely
on comprehension and common-sense reasoning
that go beyond surface-level textual properties.

4 Re-evaluating Readability Metrics

Motivated by the gap between surface-form tex-
tual cues and human perceptions of readability, we
investigate how well existing readability metrics
correlate with human judgments across five diverse
datasets (see statistics in Table 1).!

4.1 Datasets

SCIENTIFIC PAPERS (August et al., 2024) con-
sists of 180 total query-focused summaries about
10 different academic papers (e.g., What did the
paper do?) and cover topics from public policy to
nanotechnology. Summaries were carefully curated
by an expert science writer to reflect three levels of
complexity: Low , Medium , and High .
CLEAR (Crossley et al., 2024) contains 4.7k
text excerpts sourced from open digital libraries
including Project Gutenberg and Wikipedia. The
texts are self-contained and cover both cover lit-
erary and informational content. Approximately
111k pairwise readability judgments from 1.1k an-
notators were aggregated under a Bradley-Terry

! Additional dataset details are available in Appendix A.

49

model to obtain continuous readability scores.
ELI-WHY (GPT-4) (Joshi et al., 2025) in-

cludes 897 GPT-4—generated explanations tai-

lored to three readability levels— Elementary ,

High School , and Graduate —each annotated
with human-assigned labels and rationales. Like-
wise, ELI-WHY (HUMAN) is a smaller dataset
with 123 answers that were manually curated.

SCIENCEQA (Lu et al., 2022) is a multi-modal
science reasoning dataset consisting of 21k multi-
ple choice questions sourced from K-12 curriculum,
covering various subjects (e.g., natural science, lan-
guage science, and social science). Each example
is associated with a reference solution (or expla-
nation) and reference knowledge (or lecture), both
of which are written at the readability level of the
intended student audience. We randomly sample
200 text-only examples per grade for our analysis.

4.2 Metrics 2

Surface-form metrics consist of direct counts of
properties of the text, such as characters, syllables,
monosyllables, polysyllables, words, and sentences.
These also include other specialized variants such
as estimated reading time in seconds, number of
difficult words, and functional words.
Psycholinguistic metrics, known as readability
tests, are typically formulated as weighted sums
of ratios involving surface-form properties. For
instance, Automatic Readability Index is based
on characters-to-words and words-to-sentences ra-
tio (Senter and Smith, 1967), the Flesch Kincaid
Reading Ease on words-to-sentences and syllables-
to-words (Flesch, 1948), and Dale-Chall Readabil-
ity on the fraction of difficult words and words-
to-sentences ratio (Dale and Chall, 1948). An ex-
ception is the Linsear Write Formula, which dis-
tinguishes easy from hard words using syllable
counts and computes their frequencies in a text
sample (Klare, 1974). We additionally report val-
ues for other popular metrics (Coleman and Liau,
1975; Gunning, 1952; Harry and Laughlin, 1969).
Model-based metrics are categorized into two
main classes: fine-tuned metrics (Zhuang et al.,
2025) and LLM-as-a-judge metrics (Zheng et al.,
2023). In this work, we use two fine-tuned met-
rics based on ModernBERT (Warner et al., 2024) —

2We refer readers to Appendix B for additional details.



. Avg. Avg.
Dataset Size  Label Type Labels #WORDS  #SENTS

SCIENTIFIC PAPERS (August 180 categorical Low < Medium < High 65.93 2.22
etal., 2024)
CLEAR (Crossley et al., 2024) 1000  continuous  N/A 199.23 9.45
ELI-WHY (GPT-4) (oshi 897 categorical Elementary < High School < Graduate 144.21 6.97
et al., 2025)
ELI-WHY (HUMAN) (Joshi 117 categorical Elementary < High School < Graduate 99.03 4.22
et al., 2025)
SCIENCEQA (Lu et al., 2022) 2295  categorical  Grade | < Grade 2 < ... < Grade 12 183.08 13.26

Table 1: Dataset statistics, including dataset size, readability label type (continuous vs categorical), average number

of words and sentences across examples.

META RATER (READABILITY) and META RATER
(PROFESSIONALISM), which were recently intro-
duced to evaluate texts along readability and profes-
sionalism dimensions, respectively (Zhuang et al.,
2025). The former considers factors such as clar-
ity, coherence, vocabulary complexity, and sen-
tence structure with the goal of assessing whether
a reader can understand a written text, whereas the
latter relies on the depth and content accessibil-
ity to determine the degree of expertise or knowl-
edge required to comprehend a text. Additionally,
we include a complementary BERT-based metric—
README++ (Naous et al., 2024)—which predicts
readability in terms of language learning capabili-
ties through the use of the 6-point Common Euro-
pean Framework of Reference for Languages scale.

We test three different LL.M-as-a-judge ap-
proaches, including the zero-shot continuous score
approach by Trott and Riviere (2024) (dubbed
LLM-AS-A-JUDGE CONTINUOUS 0-100). We
also test a categorical setting, in which a model
is tasked with predicting one of three read-
ability labels - Elementary , High School or

Graduate . We prompt the model with the
same instructions provided to human annotators
in Joshi et al. (2025) and, in the 5-shot set-
ting, include the five example annotations (two
Elementary , two Graduate , one High School ).
All LLM-as-a-judge approaches are performed us-
ing Llama-3.3-70B-Instruct with greedy decod-
ing (temperature=0).

4.3 Results & Discussion

An ideal metric should correlate strongly with hu-
man judgments of readability. To operationalize
this, and given that readability labels are ordinal,
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we map the discrete labels to monotonically in-
creasing numeric values ranging from O to & — 1.
We apply a similar transformation to the outputs
of model-based metrics to obtain numerical values
and then compute the correlation between metric
outputs and human annotations using the Kendall
Tau-b coefficient (Kendall, 1938).3* To assess over-
all performance, we report the average rank order
across all datasets (Avg. Rank).

Table 2 shows that model-based metrics sys-
tematically achieve stronger correlations with hu-
man judgments, surpassing surface-form and psy-
cholinguistic metrics by up to 0.24 absolute points.
Notably, all three LLM-as-a-judge metrics consis-
tently rank in the top three (average ranks 2.4-3.2),
followed closely by the fine-tuned META RATER
(PROFESSIONALISM) and README++ models.
Looking at the disagreements between metrics, we
find LLM-as-a-judge metrics to be more sensitive
to specialized terminology and sentence structure,
whereas fine-tuned models like README++ are
more sensitive to information density and presence
of connectors and cohesive devices. Comparing
META RATER (PROFESSIONALISM) with META
RATER (READABILITY), the latter shows an av-
erage correlation rank of 21.0, falling below psy-
cholinguistic and surface-form metrics, where the
best traditional metric achieves 8.6. This may be
because examples are generally clear, grammati-
cally correct, and coherent, leading the model to
systematically assign the same readability class.
Conversely, because META RATER (PROFESSION-
ALISM) reflects the depth and expertise demanded

3We use the implementation available in scipy.stats.
*See Appendix B for details on the categorical-to-
numerical mappings used for each metric.



Type Metric SCIENTIFIC PAPERS CLEAR ELI-WHY (GPT-4) ELI-WHY (HUMAN) SCIENCEQA Avg.
(August et al., 2024) (Crossley et al., 2024) (Joshi et al., 2025) (Joshi et al., 2025) (Luetal.,, 2022) Rank

# Words 0.16* -0.06* 0.46* 0.15 0.28* 17.0

# Sentences 0.25* 0.23* 0.38* -0.07 0.09* 17.0

Avg. Sentence Length -0.15 -0.25* 0.21* 0.40* 0.39* 16.4

Avg. Reading Time (s) 0.20* -0.23* 0.47* 0.25* 0.32* 14.8

Surface-form # Syllables 0.22* -0.28* 0.47* 0.28* 0.33* 13.2
# Monosyllables 0.08 0.16* 0.39* 0.01 0.22* 18.8

# Polysyllables 0.31* -0.33* 0.46* 0.47* 0.41* 9.6

# Difficult Words 0.26* -0.40* 0.45* 0.46* 0.48* 8.6

TE Score 0.35* -0.18* 0.34* 0.34* 0.06* 17.2

Automatic Readability Index 0.07 -0.33* 0.36* 0.56* 0.40* 11.0

Coleman Liau Index 0.30* -0.32* 0.31* 0.54* 0.35* 16.8

Dalle Chall Readability Score 0.37* -0.37* 0.37* 0.52* 0.22* 12.4

Psycholinguistics Flesch Reading Grade 0.15 -0.36* 0.37* 0.58* 0.40* 11.6
Flesch-Kincaid Reading Ease -0.32* 0.37* -0.35* -0.58* -0.36* 11.8

Gunning Fog 0.15* -0.37* 0.39* 0.57* 0.37* 14.0

Linsear Write Formula -0.06 -0.31% 0.24* 0.45* 0.40* 14.2

SMOG Index 0.14 -0.38* 0.37* 0.59* 0.37* 12.2

README++ 0.40* -0.45* 0.50* 0.50* 0.44* 6.2

Meta Rater (readability) -0.17 0.14* 0.00 0.00 0.09* 21.0

Model-based Meta Rater (professionalism) 0.49* -0.40* 0.51* 0.67% 0.44* 4.2
LLM-as-a-judge (0-shot) 0.57* -0.50% 0.49* 0.73* 0.60" 24

LLM-as-a-judge (5-shot) 0.61* -0.55* 0.43* 0.71* 0.61* 3.2

LLM-as-a-judge (continuous 0-100) -0.56* 0.59* -0.53* -0.68* -0.52* 24

Table 2: Rank correlations between readability metrics and human judgments of correctness across 5 datasets.
We report the Kendall Tau coefficient and boldface the four metrics exhibiting strongest correlations with human
judgments. *indicates correlation coefficients with p-value < 0.01.

by each input, we hypothesize it better aligns with
human perceptions of readability which go beyond
lexical and syntactic cues (see Section 3).
Together these results demonstrate the strong
performance of LLM-as-a-judge metrics. However,
we highlight the trade-off with inference cost, as
LLM-based evaluations typically require generat-
ing text for each instance, making them slower and
more resource-intensive approaches than fine-tuned
models. We also note that despite achieving the
strongest correlations with human judgments (up to
0.73), model-based metrics remain far from per-
fect alignment, suggesting room for improvement.
Overall, no single model-based metric consis-
tently dominates: while the continuous LLM-as-
a-judge metric achieves the highest correlations on
three datasets, it underperforms relative to LLM-
AS-A-JUDGE (0-SHOT) on ELI-WHY (HUMAN)
and SCIENCEQA. The two metrics differ consider-
ably: the continuous variant penalizes texts contain-
ing numbers and named entities (e.g., “The Barber
of Seville”), whereas the discriminative one is more
sensitive to scientific terminology (e.g., “hydropho-
bic effect”, “endergonicity”), complex sentence
structures, and equations. Despite its finer granular-
ity, the continuous approach shows marked score
saturation in SCIENCEQA (Li et al., 2025), with
81.30% of scores confined to three values.
Surface-form metrics outperform psycholin-
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guistic metrics on 4 (out of 5) datasets. With the
exception of ELI-WHY (HUMAN) dataset, Table 2
shows that there is always a simpler surface-level
metric (e.g., # DIFFICULT WORDS, or #SYLLA-
BLES) that is on par or outperforms popular met-
rics, such as the Automatic Readability Index or the
Flesch Kincaid Reading Ease. Upon further analy-
sis, we find that the stronger correlation observed
for average sentence length in the ELI-WHY (GPT-
4) can be attributed to length bias in the genera-
tions, where perceived readability is linked to the
explanation’s length (see Figure 3).

5 Conclusion

This work tackles the inconsistency of readabil-
ity definitions (and metrics) in the literature by
showing that human perceptions of readability go
beyond lexical and syntactic features, also consider-
ing topic and information content. Furthermore, we
benchmark 20+ reference-less metrics—including
LLM-as-a-judge and fine-tuned models—across five
datasets. Our results show that model-based met-
rics correlate more strongly with human judgments
than popular readability metrics, suggesting they
capture more nuanced features. Together, these
findings call for clearer definitions of readability
and more rigorous validation of metrics, paving the
way for assessments that better reflect how humans
understand text.



Limitations

The analysis conducted in this paper is limited to
the available datasets in the English language, there-
fore providing limited generalization to other lan-
guages. While we are partially motivated by the
lack of high quality labeled data in other languages,
a few exceptions exist namely in the French lan-
guage (Francois and Fairon, 2012). Future work
may consider expanding on this work through the
creation of additional readability datasets in other
languages or by expanding our analysis to other
languages.

Section 3 concerns the investigation of the
main factors shaping human readability judgments.
While our findings are intuitive and generally
aligned with prior discussion in the literature (Au-
gust et al., 2024; Klare, 1974), they are based on
information extracted from a single dataset in QA,
potentially leading to concerns about their gen-
eralizability. However, reasoning judgments are
not widely available in readability datasets, mak-
ing it non-trivial to extend this analysis to other
datasets. Future work could include building addi-
tional datasets, therefore, facilitating the expansion
of this analysis to other domains and tasks.

Lay Summary

Readability assessment helps ensure that informa-
tion can be understood by people with different
backgrounds and abilities. A key goal is to auto-
mate this process and reduce the need for human
evaluation.

Many datasets and methods have been developed
for automatic readability assessment, but they often
rely on different definitions of what makes text
readable. Even today, most approaches still use
basic measures, like the number of words, syllables,
or sentences, to estimate readability.

In this work, we show that people’s perceptions
of readability depend on more than simple text fea-
tures—they are strongly influenced by the content
and topic of the text. We compare traditional read-
ability measures with more advanced model-based
metrics across five datasets and find that conven-
tional measures often fail to capture what humans
consider readable. Our results emphasize the need
for clearer, standardized definitions of readability
and for moving beyond simple, surface-level met-
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rics.
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A Additional Details: Datasets

In this section, we provide additional details about
the datasets. Table 1 summarizes the general statis-
tics about the five datasets considered in this study,
including the readability label type, the size of the
dataset, but also the average example length in
terms of word count and sentence count.

A.1 SCIENCEQA (Lu et al., 2022)

SCIENCEQA is collected from elementary and high
school science curricula sourced from IXL learn-
ing’® and with topics ranging from natural, social,
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SCIENCEQA readability example

Lecture: {{lecture}}
Explanation: {{explanation}}

Figure 2: Formatting of each SCIENCEQA exam-
ple. Whenever examples miss the corresponding
{{lecture}} or {{explanation}} fields, we we omit
them from the template above.

and natural sciences. To ensure coverage across
grades 1-12, we sample from the full dataset. We
draw 200 examples per grade, except for 1st grade
where only 95 are available, yielding 2295 exam-
ples overall. Although primarily a multiple-choice
QA dataset, it also includes a lecture covering the
knowledge needed to answer each question and a
solution outlining how to use it to derive the answer.
For every question, we compute the readability by
concatenating the two fields as demonstrated in Fig-
ure 2. For some qualitative examples, see Table 3.
To compute the correlation with human judgments,
we use grades 1-12 as the readability judgments
(12-way classification), where a higher grade im-
plies added difficulty in comprehending a text.

A.2 CLEAR (Crossley et al., 2024)

CLEAR consists of 4.7k text excerpts sampled
from online digital libraries. Each example is cu-
rated to ensure the text is self-contained and com-
posed of full sentences. Unlike the other datasets,
the readability score in CLEAR is continuous and
represents the easiness of comprehension of a given
text (BT _easiness). We refer to the original paper
for additional details regarding the dataset. Table
5 illustrates a few examples from this dataset and
corresponding readability score. To balance effi-
ciency with generalization, we randomly sample
1k examples without replacement from the original
dataset and use them for our correlation analysis.
Table 6

A.3 SCIENTIFIC PAPERS (August et al., 2023)

SCIENTIFIC PAPERS dataset is a parallel corpus
for readability, comprising 3 human-edited variants
of the same summary for each example. Table 7
shows three human-curated versions of the question
“What did the paper find?” at different complexity
levels. The correlation analysis considers we all
examples and map the ordinal classes— Low =<
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Medium < High —onto a 0-2 scale.

A4 ELI-WHY (GPT-4) (Joshi et al., 2025)

Our analyses reveal the presence of length bias,
where there seems to exist a correlation between the
length of GPT4-generated explanations and human
perceived readability (see Figure 3). In fact, we
observe a propensity for responses deemed higher
readability to be longer, which can be explained by
the added detail and specificity often emphasized
by human experts. Future work could explore ways
of mitigating this bias by enforcing strict generation
lengths or, if a reference document with relevant
information is available by controlling the informa-
tion content within each generation (August et al.,
2024).

A.5 ELI-WHY (HUMAN) (Joshi et al., 2025)

Table 8 illustrates a few randomly selected exam-
ples for the ELI-WHY (HUMAN) datasets. These
explanations were manually curated by two authors
of the paper.

B Automated Metrics

This section discusses the implementation details
of the metrics evaluated in the main paper. All ex-
periments are implemented in Python: textstat®
is used to compute surface-form and psycholinguis-
tic metrics; transformers is used to implement
the model-based metrics, including fine-tuned and
LLM-as-a-judge approaches.

B.1 Psycholinguistics Metrics

The metrics listed below are commonly referred to
as readability tests and commonly used to gauge
the difficulty that human readers may have in un-
derstanding a given text.

Automatic Readability Index (ARI) (Senter
and Smith, 1967) estimates the US grade level
needed to comprehend a text. To do so, it uses
the ratio of characters-to-words and words-to-
sentences. Intuitively, these ratios capture the idea
that longer words and longer sentences are more
difficult to grasp. The character counts include both
numbers and letters. A score of 1 and 14 would
match that of a Kindergarten and a College student,

6ht’cps: //pypi.org/project/textstat/
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ELI-WHY (GPT-4) dataset.

respectively.
[4.71 (Forss) + 05 (seneences) — 21:43]

Coleman Liau Index (CLI) (Coleman and Liau,
1975) similarly to ARI, it also yields an estimate
of the minimum US grade level necessary to un-
derstand a piece of text. It is defined in terms of
the average counts of letters and sentences per 100
words in a text sample.

0.0588 - #letters — 0.296 - #sentences — 15.8

Dale Chall Readability (Dale and Chall, 1948)
leverages the fraction of difficult words in the doc-
ument, as well as the average word-to-sentence
count ratio to gauge the difficulty of a given text.
By design, the metric relies on a pre-defined subset
of 3k words that is empirically expected to be famil-
iar to the majority of 4th graders. The formula is
designed such that scores < 4.9 match grade 4 and
below, and scores > 10 match grades 16 and above.
Below we write the new Dale-Chall Formula:

#difficult_words
#words

#words
#sentences

|64 —0.95 ( ) —0.69 (

)

Flesch-Kincaid Reading Ease (FKRE) and
Flesch-Kincaid Grade Level (FKGL) (Flesch,
1948) rely on the same core properties of language,
such as average word length and average sentence
length, differing only in the coefficients. The for-
mulas were defined by the US Navy to gauge
the readability of the technical material and later
adopted by a few US states to impose readability

Elementary School [ole] [ole]

High School

——————{OOOOO (el

Graduate School

10
# Sentences

20 30

and sentences (# SENTENCES) per readability label in the

10

56

requirements on various legal documents (e.g., in-
surance policies) (McClure, 1987). The FKRE is
defined in as follows:

#syllables
#words

#words
#sentences

206.835 — 1.015 (

) - 846 (

whereas the FKGL is defined as:

#words

#syllables
#sentences

#words

0.39 ( )+ 118 ( )~ 15.59

Gunning Fog Index (GFI) (Gunning, 1952) pro-
vides an estimate of the number of formal education
required to understand the text on a first reading.
It works by first computing the average sentence
length, i.e., word-to-sentence ratio of a passage and
then computing the ratio of complex words in the
passage. In this formula, complex words are de-
fined as words with 3+ syllables that are not proper
nouns, familiar words, or compound words. Con-
ventionally, scores range between 6 and 17 which
indicate that 6th grade and College Graduate are
necessary to be able to understand a piece of text,
respectively.

#words

#complex_words
#sentences

#words

0.4 [( ) +100 (

)]
Linsear Write Formula (LWF) (Klare, 1974)
counts the number of easy and hard words in a 100-
word sample. To distinguish easy from hard words,
it utilizes the number of syllables in each word:
polysyllable words are considered hard words,
whilst words with less than 3 syllables are con-
sidered easy. It was originally designed to gauge



the readability of the technical manuals used in the
US Air Force.

_ 3-#thard_words+1-#easy_words
- #words

r

where the final linsear write score is given by

LWF = {

SMOG grade (Harry and Laughlin, 1969) was
proposed as a more accurate and easier to compute
alternative to Gunning Fog Index. It is defined in
terms of polysyllable counts (words with 3+ sylla-
bles) across three 10-sentence long texts.

r/2
r/2—1

if r > 20

else

30 4 31291

#sentences

1.043\/#p01ysy11ables -

B.2 Model-based Metrics

META RATER (PROFESSIONALISM) and META
RATER (READABILITY) (Zhuang et al., 2025) are
two fine-tuned based metrics, both operationalized
using a ModernBERT-base model. The models are
designed to evaluate the degree of required exper-
tise and ease of understanding in a 0-5 point scale,
respectively. To obtain the metric score associated
with a given text, each text is fed through the model
and the class with maximum probability is selected
(i.e., greedy prediction). This score is then used to
compute the correlation with human judgments.

README++ (Naous et al., 2024) is a model-
based metric that grounds readability assessment
in the capabilities of second-language learners.
Specifically, we use tareknaous/readabert-en,
a BERT-based model fine-tuned on the English por-
tion of the README++ corpus—a sentence-level
readability dataset spanning multiple domains (e.g.,
finance, economics, poetry, agriculture). Readabil-
ity scores are provided on a six-point scale aligned
with the Common European Framework of Refer-
ence for Languages (CEFR), where higher values
indicate greater language proficiency.

Since README++ was originally trained on sin-
gle sentences, we hypothesize that it may not gener-
alize well to multi-sentence inputs, such as those in
SCIENCEQA or ELI-WHY (GPT-4). To address
this limitation, we adopt a bottom-up approach: for
each document, we first compute the README++
score for each sentence, then average them to ob-
tain a document-level score (README++ (AVG)).
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We also evaluate another variant, README++
(MAX), which reflects the hypothesis that ad-
vanced readers can understand simpler texts, but
not vice versa. Table 9 summarizes the results.
While both README++ and README++ (MAX)
exhibit the same average rank (1.8), we observe that
README++ exhibits stronger correlations with hu-
man judgments in 3 (out of 5) evaluated datasets.
Notably, README++ (AVG) exhibits a an average
rank of 2.4, suggesting that this variant system-
atically under performs the other two variants in
terms of correlating with human judgments. For
brevity, and because of its superior performance,
we restrict the analysis in the main paper to the
original method—README++.
LLM-AS-A-JUDGE (0-SHOT) and LLM-AS-
A-JUDGE (5-SHOT) are prompt-based strategies to
extract the readability level from any text. Specifi-
cally, we use L1ama-3.3-70B-Instruct ’, a pop-
ular open-source instruction-following model. To
ensure that models’ predictions strongly align with
human readability judgments, we re-use instruc-
tions previously provided to humans (Joshi et al.,
2025). The prompt is discriminative in nature, be-
ing designed to extract 3-way readability labels
— Elementary , High School, Graduate . Origi-
nally, the prompt includes 5 examples of readabil-
ity judgments spanning the three classes, which
we refer to as LLM-AS-A-JUDGE (5-SHOT). Al-
though these examples improve alignment with hu-
man judgments and help constrain output structure,
they add runtime overhead. We therefore evaluate a
0-shot version that replaces examples with explicit
format instructions. Since our goal is to compute
correlations with human judgments, which can be
expressed as either categorical or continuous, we
map textual labels to numbers. Treating the la-
bels as ordinal ( Elementary < High School <

Graduate ), we assign them a 0-2 scale for corre-
lation analysis.

LLM-AS-A-JUDGE (CONTINUOUS 0-100),
first proposed in Trott and Riviere (2024), elic-
its continuous 0-100 readability scores from
GPT-4-Turbo and GPT-40-mini (Achiam et al.,
2024), with higher values denoting easier texts to
understand. We follow the same prompt as in the
original paper (Figure 4), but replace the model

"https://huggingface.co/meta-1lama/Llama-3.
3-70B-Instruct
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LLM-AS-A-JUDGE (CONTINUOUS 0-100)

{
"content”: "You are an experienced teacher
skilled at identifying the readability of
different texts.”,
"role": "system”

bip <
"content”: "Read the text below. Then
indicate the readability of the text, on a
scale from 1 (extremely challenging to
understand) to 100 (very easy to read and
understand). In your assessment, consider
factors such as sentence structure,
vocabulary complexity, and overall
clarity.\n<Text>{{text}}</Text>\nOn a scale
from 1 (extremely challenging to
understand) to 100 (very easy to read and
understand), how readable is this text?
Please answer with a single number.”,
"role": "user”

3

\.

Figure 4: Prompt used to extract a 0-100 continuous
score associated with the ease of readability of a given
text. The placeholder {{text}} is either the explana-
tion to a question or the text excerpts depending on the
dataset being evaluated.

with L1ama-3.3-7@0B-Instruct to ensure compa-
rability among LLM-as-a-judge metrics.®

In the main paper, we ensure the reproducibil-
ity of LLM-as-a-judge evaluations by reporting
correlations obtained from greedy generations
(temperature=0).° This decoding strategy is not
only deterministic but also commonly adopted in
prior work (Trott and Riviere, 2024; Gu et al.,
2025), being representative of the most likely (or
modal) behavior of the LLM.

C Human Perceptions of Readability

In the main paper, we examine the reasons driv-
ing the human’s annotations of various perceived
readability levels. To this end, we employ vari-
ous automatic pattern extraction techniques, includ-
ing frequency-based analysis (represented in the
form of wordclouds) and n-gram feature impor-
tance. The following sections provide additional
details about each of these experiments.

8| 1ama-3.3-70B-Instruct consistently generates a num-
ber between 1-100.

°Continuous LLM-as-a-judge approaches (LLM-AS-A-
JUDGE (CONTINUOUS 0-100)) are configured to generate at
most 3 tokens, whereas the discriminative approaches (LLM-
AS-A-JUDGE (0-SHOT) and LLM-AS-A-JUDGE (5-SHOT))
are configured to generate at most 20 tokens. We then extract
the corresponding readability label through the use of regular
expressions.
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C.1 Frequency-based Analysis

As part of our analysis, we conduct a frequency-
based analysis of the rationales behind the readabil-
ity judgments provided by the human annotators in
the ELI-WHY (GPT-4) dataset.

Methodology. We conduct our analysis by first
separating the dataset into three subsets accord-
ing to the perceived readability level of the GPT4-
generated explanations. In doing so, we obtain a
total of 324, 694, and 182 examples corresponding
to the Elementary , High School , and Graduate ,
respectively. Subsequently, we merge the annota-
tors justification field for each subset, remove the
English stopwords (as provided by the NLTK li-
brary). To aggregate words with similar meanings,
we further lemmatize each word using the WORD-
NETLEMMATIZER'?,

C.2 Predictive Analysis

We also conduct a model-based approach to deter-
mine the discriminative power of different phrases
for each readability class. In this analysis, each
annotator’s justification is considered to be an in-
dividual document and both term and document
frequencies are used to determine the readability
class of a annotators’ justifications.

Methodology. Similarly to the frequency-based
analysis, we first decompose the ELI-WHY (GPT-
4) dataset into three exclusive subsets based on
the human perceived readability label. Addition-
ally, we expand the justification field into individ-
ual documents, resulting in 707, 1665, and 416 to-
tal documents for Elementary , High School , and

Graduate , respectively. As preprocessing steps,
we remove the English stopwords using the NLTK
default list, lemmatize the text using the WORD-
NETLEMMATIZER, and lowercase the text. Finally,
we compute the term-to-document frequency ma-
trix using SKLEARN’s TFIDFVECTORIZER. To
ensure that we capture complex phrases and not
just individual words, we consider n-grams where
n € {1,2,3,4} and, to avoid overfitting to terms
that appear in a single document, set MIN_DF=2.

Having the term-to-document frequency matrix,
we adopt a one-vs-all approach, where we itera-

Ohttps://www.nltk.org/api/nltk.stem.
WordNetLemmatizer.html
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Figure 5: Frequency-based analysis of the language expressions used by human annotators when judging the
perceived readability of various GPT4-generated explanations in ELI-WHY (GPT-4). These word clouds are
collected over 324, 694, and 182 examples annotated for Elementary , High School , and Graduate , respectively.

tively fit a linear model to discriminate justifica-
tions of one class (e.g., Elementary ) from justifica-

tions outside of this class (e.g., High School and

Graduate ). While focusing on linear models such
as logistic regression allow us to directly exam-
ine the predictive importance of different n-grams,
it pre-assumes that the most is a strong predictor.
With the intent of selecting a good predictive model,
we perform hyperparameter optimization using 10-
fold cross-validation while using predictive accu-
racy as the evaluation criteria. We consider the
following hyperparameters and employ grid search:

estimator

LogisticRegression()

max_iter = {100, 300}

e C={0.01, 0.1, 1, 10, 100, 5003}
e penalty = {11, 12, elasticnet}
e solver = {liblinear, saga}

We list the best obtained models for each read-
ability class in Table 10. Across all readability
classes, we find that the fitted logistic regression
outperforms a simple baseline that predicts the ma-
jority class (MAJORITY ACCURACY) by at least
3% and up to 15% absolute points.

D Related Work

In this section, we extend the discussion of readabil-
ity metrics provided in the main paper. Specifically,
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we elaborate on the limitations of the previously
proposed LLM-as-a-judge approaches and remain-
ing challenges.

Readability Assessment using LLLMs. Rooein
et al. (2024) show that combining yes/no prompts
with conventional metrics yields stronger correla-
tions with human judgments than using either set of
metrics alone. Trott and Riviere (2024) use 0-shot
prompts to extract continuous readability scores
which correlate strongly with human judgments. In
spite of promising results, these approaches have
seen little adoption in practice. Their reliance on re-
peated prompting introduces significant inference
overhead, making them costly for large-scale evalu-
ation or use as reward functions. They also require
allocating part of the already limited readability
data to calibrate combinations or thresholds, fur-
ther limiting their practicality. Finally, although
prior work has explored continuous readability as-
sessments with LMs, to our knowledge their ability
to distinguish coarse-grained readability classes
remains unexplored.
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324, 694, and 182 examples annotated for Elementary , High School , and Graduate , respectively.
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Table 3: Randomly selected ScienceQA examples across 6 different readability classes (grade).

Grade

Subject
(Category)

Formatted Example

9

language science
(comprehension
strategies)

natural science
(weather and cli-
mate)

natural science
(traits and heredity)

natural science
(designing experi-
ments)

language science
(literary devices)

Explanation: A book is made of paper.\nA book tells a story.\nA teacher may read a book
out loud.

Lecture: The atmosphere is the layer of air that surrounds Earth. Both weather and
climate tell you about the atmosphere.\nWeather is what the atmosphere is like at a certain
place and time. Weather can change quickly. For example, the temperature outside your
house might get higher throughout the day.\nClimate is the pattern of weather in a certain
place. For example, summer temperatures in New York are usually higher than winter
temperatures.\n\nExplanation: Read the text carefully.\nWhere Sarah lives, winter is the
rainiest season of the year.\nThis passage tells you about the usual precipitation where
Sarah lives. It does not describe what the weather is like on a particular day. So, this
passage describes the climate.

Lecture: Organisms, including people, have both inherited and acquired traits. Inherited
and acquired traits are gained in different ways.\nInherited traits are passed down through
families. Children gain these traits from their parents. Inherited traits do not need to be
learned.\nAcquired traits are gained during a person’s life. Some acquired traits, such as
riding a bicycle, are gained by learning. Other acquired traits, such as scars, are caused
by the environment. Children do not inherit their parents’ acquired traits.\n\nExplanation:
People are not born knowing how to cook. Instead, many people learn how to cook. So,
cooking is an acquired trait.

Lecture: Experiments can be designed to answer specific questions. When designing an
experiment, you must identify the supplies that are necessary to answer your question. In
order to do this, you need to figure out what will be tested and what will be measured
during the experiment.\nImagine that you are wondering if plants grow to different heights
when planted in different types of soil. How might you decide what supplies are necessary
to conduct this experiment?\nFirst, you need to identify the part of the experiment that
will be tested, which is the independent variable. This is usually the part of the experiment
that is different or changed. In this case, you would like to know how plants grow in
different types of soil. So, you must have different types of soil available.\nNext, you
need to identify the part of the experiment that will be measured or observed, which is
the dependent variable. In this experiment, you would like to know if some plants grow
taller than others. So, you must be able to compare the plants’ heights. To do this, you can
observe which plants are taller by looking at them, or you can measure their exact heights
with a meterstick.\nSo, if you have different types of soil and can observe or measure the
heights of your plants, then you have the supplies you need to investigate your question
with an experiment!

Lecture: Figures of speech are words or phrases that use language in a nonliteral or
unusual way. They can make writing more expressive.\nA euphemism is a polite or
indirect expression that is used to de-emphasize an unpleasant topic.\nThe head of Human
Resources would never refer to firing people, only to laying them off.\nHyperbole is an
obvious exaggeration that is not meant to be taken literally.\nl ate so much that I think I
might explode!\nAn oxymoron is a joining of two seemingly contradictory terms.\nSome
reviewers are calling this book a new classic.\nA paradox is a statement that might at
first appear to be contradictory, but that may in fact contain some truth.\nAlways expect
the unexpected.\n\nExplanation: The text uses an oxymoron, a joining of two seemingly
contradictory terms.\nOpen secret is a contradiction, because open describes something
that is freely or publicly known, and a secret is hidden.
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Table 3: Randomly selected ScienceQA examples across 6 different readability classes (grade). (continued)

Grade

Subject
(Category)

Formatted Example

11

language science
(word usage and
nuance)

Lecture: Words change in meaning when speakers begin using them in new ways. For
example, the word peruse once only meant to examine in detail, but it’s now also commonly
used to mean to look through in a casual manner.\nWhen a word changes in meaning, its
correct usage is often debated. Although a newer sense of the word may be more commonly
used, many people consider a word’s traditional definition to be the correct usage. Being
able to distinguish the different uses of a word can help you use it appropriately for different
audiences.\nBritney perused her notes, carefully preparing for her exam.\nThe traditional
usage above is considered more standard.\nDavid perused the magazine, absentmindedly
flipping through the pages.\nThe nontraditional usage above is now commonly used, but
traditional style guides generally advise against it.\n\nExplanation: The first text uses
travesty in its traditional sense: a ridiculous imitation; a parody.\nDoug’s ill-researched
essay about the Space Race received a poor grade because it presented such a travesty
of the actual historical events.\nThe second text uses travesty in its nontraditional sense:
a disappointment or a tragedy.\nDoug realized that his essay about the Space Race was
a bit inaccurate, but he still thought it a travesty that such an entertaining essay should
receive a poor grade.\nMost style guides recommend to use the traditional sense of the
word travesty because it is considered more standard.
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Table 4: Randomly selected examples from the CLEAR dataset. In contrast to other datasets, each example
is associated with a continuous readability score obtained by fitting a Bradley—Terry model on pairwise human
judgments of reading ease.

Readability Category Text

Score

-2.91

-1.44

-1.21

-0.37

0.06

Info

Info

Literary

Literary

Literary

It must not be supposed that, in setting forth the memories of this half-hour between the moment
my uncle left my room till we met again at dinner, I am losing sight of "Almayer’s Folly." Having
confessed that my first novel was begun in idleness—a holiday task-I think I have also given the
impression that it was a much-delayed book. It was never dismissed from my mind, even when the
hope of ever finishing it was very faint. Many things came in its way: daily duties, new impressions,
old memories. It was not the outcome of a need—the famous need of self-expression which artists
find in their search for motives. The necessity which impelled me was a hidden, obscure necessity, a
completely masked and unaccountable phenomenon. Or perhaps some idle and frivolous magician
(there must be magicians in London) had cast a spell over me through his parlour window as I
explored the maze of streets east and west in solitary leisurely walks without chart and compass.
Till I began to write that novel I had written nothing but letters, and not very many of these.

In the second place, the Emperor is an exceedingly intelligent and highly cultivated man. His
mental processes are swift, but they go also very deep. He is a searching inquirer, and questions
and listens more than he talks. His fund of knowledge is immense and sometimes astonishing. He
manifests interest in everything, even to the smallest detail, which can have any bearing upon human
improvement. I remember a half hour’s conversation with him once over a cupping glass, which he
had gotten from an excavation in the Roman ruin called the Saalburg, near Homburg. He always
appeared to me most deeply concerned with the arts of peace. I have never heard him speak much
of war, and then always with abhorrence, nor much of military matters, but improved agriculture,
invention, and manufacture, and especially commerce and education in all their ramifications, were
the chief subjects of his thought and conversation. I have had the privilege of association with many
highly intelligent and profoundly learned men, but I have never acquired as much knowledge, in
the same time, from any man whom I have ever met, as from the German Emperor.

Moreover Grandmother Grant always dressed in one fashion; she had a calico dress for morning
and a black silk for the afternoon, made with an old-fashioned surplice waist, with a thick plaited
ruff about her throat; she sometimes tied a large white apron on, but only when she went into the
kitchen; and she wore a pocket as big as three of yours, Matilda, tied on underneath and reached
through a slit in her gown. Therein she kept her keys, her smelling-bottle, her pocket-book, her
handkerchief and her spectacles, a bit of flagroot and some liquorice stick. I mean when I say
this, that all these things belonged in her pocket, and she meant to keep them there; but it was
one peculiarity of the dear old lady, that she always lost her necessary conveniences, and lost
them every day.\n"Maria!" she would call out to her daughter in the next room, "have you seen
my spectacles?"\n"No, mother; when did you have them?"\n"Five minutes ago, darning Harrys
stockings; but never mind, there$ another pair in the basket."

The others were watching him closely. They guessed something of the nature of what must be
passing through Ned’s mind, for both Jack and Teddy followed his gaze up the uneven shore. Jimmy
had the glasses again, and was busily engaged in scrutinizing the blur on the distant horizon, which
all of them had agreed must be smoke hovering close to the water. Perhaps he half-believed the
fanciful suggestion made by Teddy, with reference to Captain Kidd, and was wildly hoping to
discover some positive sign that would stamp this fairy story with truth. All the previous adventures
that had befallen himself and chums would sink into utter insignificance, could they go back
home and show evidences of having made such a romantic discovery up there in the Hudson Bay
country.\n"See the feather they say he always wore in his hat, Jimmy?" asked Frank.

The other day, as I was walking through a side street in one of our large cities, I heard these words
ringing out from a room so crowded with people that I could but just see the auctioneer’s face
and uplifted hammer above the heads of the crowd.\n"Going! Going! Going! Gone!" and down
came the hammer with a sharp rap.\nl do not know how or why it was, but the words struck me
with a new force and significance. I had heard them hundreds of times before, with only a sense
of amusement. This time they sounded solemn.\n"Going! Going! Gone!"\n"That is the way it is
with life," I said to myself - "with time." This world is a sort of auction room; we do not know
that we are buyers: we are, in fact, more like beggars; we have brought no money to exchange for
precious minutes, hours, days, or years; they are given to us. There is no calling out of terms, no
noisy auctioneer, no hammer; but nevertheless, the time is "going! going! gone!"
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Table 5: Randomly selected examples from the CLEAR dataset. In contrast to other datasets, each example
is associated with a continuous readability score obtained by fitting a Bradley—Terry model on pairwise human

judgments of reading ease. (continued)

Readability Category Text

Score

0.19 Info There are various kinds of pitcher-plants. Some are shorter and broader than others; but they are
all green like true leaves, and hold water as securely as a jug or glass. They grow in Borneo and
Sumatra, hot islands in the East. The one shown in the drawing grows in Ceylon.\nSome grow in
America; but they are altogether different from those in Borneo and Ceylon. One beautiful little
pitcher-plant grows in Australia: but this is also very different from all the rest; for the pitchers,
instead of being at the end of the leaves, are clustered round the bottom of the plant, close to the
ground.\nAll these pitcher-plants, though very beautiful to look at, are very cruel enemies to insects:
for the pitchers nearly always have water in them; and flies and small insects are constantly falling

into them, and getting drowned.
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Table 6: Comparison of readability scores between the
original CLEAR (Original) and the 1k subsample used
to conduct the correlation analysis (Subsample).

Statistic  Original Subsample

Count 4724 1000
Mean -0.96 -0.97
Std 1.03 1.06
Min -3.68 -3.68
25% -1.70 -1.74
50% -0.91 -0.89
75% -0.20 -0.20

Max 1.71 1.71




Table 7: Randomly selected examples from the SCIENTIFIC PAPERS dataset, spanning all three readability classes.

Complexity Level Text

Low The researchers found that women who lived in countries that received less US foreign aid during
the policy used less contraceptives and had both more pregnancies and more abortions during
the years that the policy was in place. They also noted that the effects of the policy reversed once
it had been rescinded, further strengthening the researchers’ hypothesis that the Mexico City
Policy has an effect on a nation’s observed patterns of reproductive behavior.

Medium The researchers found that abortions and pregnancies increased when the Mexico City Policy
was in effect, which they correlate to a decreased availability in contraception during those years.
They also found that the effects varied by exposure to the policy, as women in high exposure
countries were more likely to experience abortion when the policy was enacted and less likely
when it wasn’t in effect. The alternating patterns of reproductive behavior depending on whether
the policy was enacted also strengthens the researchers’ hypothesis that it has a not insubstantial
effect on abortion rates in sub-Saharan Africa.

High When US support for international family planning organizations was conditioned on the policy,
coverage of modern contraception fell and the proportion of women reporting pregnancy and
abortions increased, in relative terms, among women in countries more reliant on US funding.
Although the degree to which abortions increase when contraceptive supply is curtailed is poorly
characterized, one analysis estimated that, depending on the total fertility of the population, a
10% decline in contraceptive use would lead to a 20-90% increase in abortions. The researchers
posit that the observed changes in abortion could be due to changing availability of modern
contraception, and that a change in the use of modernincontraception would be expected to
result in a change in pregnancy rates. Women in high-exposure countries experienced a relative
increase in abortion (and decrease in modern contraceptive use) when the policy was enacted
and a relative decrease in abortion (and increase in modern contraceptive use) when the policy
was rescinded.

Low Study looks at pushup capacity and heart health, finding that those who could do the most (over
40) push ups had the lowest risk of heart disease.

Medium Study examines the relationship between a person’s push up ability and their physical health,
finding that push ups are a good indicator of a person’s cardiovascular fitness.

High Association Between Pushup Exercise Capacity and Future Cardiovascular Events Among Active
Adult Men
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Table 8: Examples of different explanations for the ELI-WHY (HUMAN) for the questions “Why do we enjoy
horror movies or stories?”” and ““Why does DNA have a double helix structure?”. Each set of three examples refers
to the same question.

Readability  Topic Formatted Explanation

Elementary  Psychology  All the same reasons people like sad songs, Halloween, war documentaries, apocalyptic
fiction, etc. etc. It’s like any other film genre. Horror movies can be artistic; the
performances can be entertaining; the movies can be well-constructed or conceived; they
can be relatable or provide personal insight.

High School Psychology = According to these researchers, stimulation is one of the driving forces behind the con-
sumption of horror. Exposure to terrifying acts like stories of demonic possession or
alien infestation can be stimulating both mentally and physically. These experiences can
give rise to both negative feelings, such as fear or anxiety, and positive feelings, such as
excitement or joy. And we tend to feel the most positive emotions when something makes
us feel the most negative ones.

Graduate Psychology “The horror film occupies in popular culture roughly comparable to that of horror literature.
That is to say, it is generally ignored, sometimes acknowledged with bemused tolerance,
and viewed with alarm when it irritates authority - rather like a child too spirited to follow
the rules that rendition has deemed acceptable” (p. ix), a view that is echoed elsewhere.
For example, Tudor (1997) noted that “a taste of horror is a taste for something seemingly
abnormal and is therefore deemed to require special attention” (p. 446). Part of the reason
for the disdain, apart from the broad and base nature of the content, may be the relative
cheapness of horror film: these are often much less expensive to create than are other
genre films such as westerns, comedies, or science fiction.

Elementary  Biology DNA is made up of small components called nucleotides. A nucleotide is made up of 3
parts: a phosphate group, a sugar, and a base. The base can be 1 of 4 varieties: A, T, C, or
G. Simply put, because of their structures, A and T bond nicely with one another and C
and G bond nicely as well. As a result, a single strand of DNA will bond to a strand with
another strand with a "complimentary" sequence of bases. In other words, there will be
two strands with opposite, for lack of a better word, sequences of bases. The production
of strands that complement one another is a result of how DNA copies itself (known as
DNA replication). The second strand’s base sequence is ordered based on the first strands$
sequence.\n\nSo that answers the question of why DNA is a double helix instead of a
single helix. But why is it a helix at all? Why not a shaped like a ladder? In a cell, most of
the material present is water. Water is shaped in such a way where positive and negative
charges aren’t spread evenly throughout the water§ molecules. This is known as being a
polar molecule. Polar molecules "like" being around other polar molecules. Non-polar
molecules don’t "like" being around polar molecules like water. In DNA, the bases are
non-polar, but the phosphate groups are polar. As a result, the preferred shape puts the
phosphates in contact with the water and the bases are covered by being on the inside. The
twisting shape of DNA reduces the extent to which the bases are exposed to the water in
the outside environment.\n\nTL;DR: DNA is made of 3 components: bases, sugars, and
phosphates. The sugars bond with one another explaining the double-configuration of
DNA. To be stable, the bases need to stay in the inside of the molecule and phosphates
need to make up the molecule$ exterior, and a helical shape allows this to happen.

High School Biology The three-dimensional structure of DNA—the double helix—arises from the chemical and
structural features of its two polynucleotide chains. Because these two chains are held
together by hydrogen bonding between the bases on the different strands, all the bases are
on the inside of the double helix, and the sugar-phosphate backbones are on the outside.
To maximize the efficiency of base-pair packing, the two sugar-phosphate backbones wind
around each other to form a double helix, with one complete turn every ten base pairs.

Graduate Biology The stability of double-stranded DNA (dsDNA) at physiological temperature is due to the
hydrogen bonding between complementary bases and the stacking between neighboring
bases. However, these base-stacking interactions are of the order of magnitude of a
few k_B T thermal energy and the thermal fluctuations can lead (even at physiological
temperature) to local and transient unzipping of the double helix.
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SCIENTIFIC PAPERS CLEAR ELI-WHY (GPT-4) ELI-WHY (HUMAN) SCIENCEQA Avg.

Metric (August et al., 2024) (Crossley et al., 2024) (Joshi et al., 2025) (Joshi et al., 2025) (Luetal., 2022) Rank
README++ 0.40 -0.45 0.50 0.50 0.44 1.8
README++ (AVG) 0.23 -0.49 0.26 0.68 0.38 2.4
README++ (MAX) 0.35 -0.51 0.43 0.57 0.42 1.8

Table 9: Rank correlations between variants of the README++ metric and human judgments of correctness across
5 datasets. We boldface the variant exhibiting strongest correlation with human judgments. We report the Kendall
Tau coefficient. All correlation coefficients are statistically significant with p-value < 0.01.

Table 10: Hyperparameter configurations of the Logistic Regression models fit for each readability class. We
use a grid search to find the optimal combination over the hyperparameters C, PENALTY, and SOLVER. The best
configuration is defined as the best achieving accuracy determined using 10-fold cross-validation.

Readability Class Hyperparameters Majority Accuracy (%) Best Accuracy (%)

C=100
max_iter = 300
penalty =11
solver = saga

C =500
High School max_iter = 100 59.72 75.11
penalty =11

solver = saga

C =100
. max_iter = 300 85.08 88.34
penalty =11

solver = saga

Elementary 74.64 88.05
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Table 11: Human rationales underlying readability judgments across 3 different readability classes: Elementary ,

High School , Graduate . Each row refers to the analysis of the same “Why” question but different GPT-4
explanation, being sourced from ELI-WHY (GPT-4) (Joshi et al., 2025).

Elementary

High School

Graduate

- It’s probably too verbose for elemen-
tary levels, but I think people reading
at that level could understand this ex-
planation. The words are short enough.
- The explanation uses basic English
language to interpret why humans are
inclined towards social interactions.
There are not many technical or pro-
fessional terminologies, making it easy
to understand. The sentence structures
are simple, making it easy to follow.

- The details are very surface level and
it uses simple wording. - Simple sen-
tence structure with simple and short
explanations. Not detailed or in depth.
- They used simple wording and ex-
amples to make their point. - It uses
simple words like electricity, and can
be easily understood

- It gives clear examples like copper
being easy to stretch and not rusting,
the sentences are short and straightfor-
ward. It gives enough detail to under-
stand why copper is used in wires.

- Simple wording, a concept that most
students of elementary school age
should be able to grasp. Also not too
many details.

- The explanation uses simple and di-
rect language without complex termi-
nology, making it accessible to chil-
dren or adults with basic education.

- I think this text’s wording, exam-
ples, sentence structure, and amount
of detail are simple enough for an
elementary-age student to compre-
hend.

- Pretty easy and straight forward to
understand. Not using complex words
or scientific words.

- The sentences are short in length and
easy to digest. It uses terms like “ele-
ments” and “conductivity and ductility”
which require deeper understanding of
elements and reactions.

- The explanation is written in a way
that is easy to understand, but the de-
tails and some of the words used such
as “corrosion” would make it difficult
for an elementary reader to compre-
hend. However, the material is not so
specialized that you would learn it on
the graduate level, meaning this falls
into the high school reading level.

- The wording/terminology, examples,
and details suggest high school-level
engagement. It lacks the technicality
of graduate school while being too ad-
vanced for elementary school;

- Using terminology like “ritual”, “the-
ological” and “philosophical” which
requires basic knowledge of these
terms. Depth and detail are also moder-
ate levels but not quite a graduate level
understanding;

- Wording Terminology,
Structure, Details and depth

Sentence

- This response includes references to
Alzheimer’s, which I think would be
outside the understanding of a typical
4th grader. It also references brain
waves, which I think is covered in high
school-level science courses.

- It uses more elevated vocabulary than
Elementary School, however the lack
of citations and more complex con-
cepts and narrative structure make it
less than Graduate School.

- The terminology seems higher level
and more complicated than elementary
or high school;

- This is borderline HS/GS to me. But
the terms “parasocial” and “existential
fears” are a bit much for a typical high
school student. It should be simplified
a bit for an HS student.

- No way most high school students
could follow this;

- The details and depth show of a grad-
uate school person answering this.

- The language is more advanced and
mentions more specific scientific theo-
ries.

- The amount of detail and specific ter-
minology make me think it is a gradu-
ate level.
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Evaluating Health Question Answering Under Readability-Controlled Style
Perturbations

Md Mushfiqur Rahman and Kevin Lybarger
George Mason University
Fairfax, VA
{mrahma45,klybarge}@gmu.edu

Abstract

Patients often ask semantically similar med-
ical questions in linguistically diverse ways
that vary in readability, tone, and background
knowledge. A robust question answering (QA)
system should both provide semantically con-
sistent answers across stylistic differences and
adapt its response style to match the user’s in-
put; however, existing QA evaluations rarely
test this capability, creating critical gaps in
QA evaluation that undermine accessibility
and health literacy. We introduce SPQA, an
evaluation framework and benchmark that ap-
plies controlled stylistic perturbations to con-
sumer health questions while preserving se-
mantic intent, then measures how model an-
swers change across correctness, completeness,
coherence, fluency, and linguistic adaptabil-
ity using a human-validated LLM-based judge.
The style axes include reading level, formal-
ity, and patient background knowledge; all
perturbations are grounded in human annota-
tions to ensure fidelity and alignment with hu-
man judgments. Our contributions include a
readability-aware evaluation methodology, a
style-diverse benchmark with human-grounded
perturbations, and an automated evaluation
pipeline validated against expert judgments.
Evaluation results across multiple health QA
models indicate that stylistic perturbations lead
to measurable performance degradation, even
when semantic intent is preserved during per-
turbation. The largest performance drops oc-
cur in answer correctness and completeness,
while models also show limited ability to adapt
their style to match the input. These findings
underscore the risk of inequitable information
delivery and highlight the need for accessibility-
aware QA evaluation.

1 Introduction

Large Language Models (LLMs) have rapidly
become central to consumer-facing question-
answering (QA) systems, offering users quick and

"My mom was in a car accident two decades ago which
resulted in her left foot being severed and re-attached, her
left leg is shorter and pelvis tilted resulting in back pain that

has increased over the years. ... Her mental health is so bad

because she is living in constant pain, she is basically being

impri and tortured in her own body with no escape.

Where do we go from here? We are based in the U.K."
(Total length: 364 words)

Original Q

Original
QA

_Dataset

Style Transfer (Elementary school)

"My mom was in a car crash a long time ago and hurt her foot]
and leg. Now she has a lot of pain and can’'t walk or sleep
well. She takes some medicine, but it only helps a little. ...
She's worried people will think she's asking for too much

medicine. What should we do to help her feel better? We live

inthe U.K."
(Total length: 96 words)

QA Model (LLM)

['Hmm. This is a tough one, because what people are told and|
what they hear are often very different. ... Your mum should

return to her pain doctor to discuss how best to manage her

symptoms without more opioid medication, because they've

lalready told her that's not an option under current guidelines.”|
(Total length: 910 words)

Correctness

@_‘ Completeness
-,

Judge Coherence

,_
=
=

Linguistic Adaptability 3

Figure 1: Example of the Style Perturbed Question
Answering (SPQA) task

interactive access to information across a wide
range of domains (Yu et al., 2024; Chiang et al.,
2024; He et al., 2025). With this growing adop-
tion, these systems are increasingly relied upon in
critical areas such as healthcare, where users ex-
pect accurate and actionable guidance. However,
as the user base becomes more diverse, linguistic
variability in queries arising from differences in lit-
eracy, tone, and background knowledge presents a
substantial challenge (Epner and Baile, 2012; Vela
et al., 2022). Such diversity often affects the acces-
sibility and reliability of responses, creating dispar-
ities in the quality of information retrieved. Despite
its practical significance, this issue remains largely
understudied, and existing evaluations rarely as-
sess whether QA models can adapt to stylistic and
readability differences, even when the underlying
information need is unchanged.
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While prior research has documented that de-
mographic and stylistic factors influence model
outputs (Qu and Wang, 2024; Gosavi et al., 2024),
most evaluations have focused on narrow dimen-
sions such as adversarial perturbations or typo-
graphical noise (Gan et al., 2024; Li et al., 2024;
Wang et al., 2021). These approaches do not ad-
dress real-world variability in question phrasing
that affects user comprehension and system ac-
cessibility. Current QA assessments typically em-
phasize correctness and completeness but overlook
whether responses maintain quality and align with
the style of diverse user queries. We term this as
linguistic adaptability, and it is essential for ensur-
ing accessible information delivery and mitigating
inequities in high-stakes domains like health com-
munication.

To address this gap, we introduce Style Per-
turbed Question Answering (SPQA), an evalua-
tion framework and benchmark (Figure 1). SPQA
systematically perturbs user questions along prede-
fined stylistic axes - A) reading level, B) formal-
ity, and C) domain knowledge, while preserving
semantic intent. For each perturbed question, re-
sponses are evaluated against four comprehensive
criteria: correctness, completeness, coherence and
fluency, and linguistic adaptability. All perturba-
tions are grounded in human annotations to en-
sure realism, and evaluations are conducted using a
human-validated LLM-as-Judge for scalability and
reliability. SPQA serves as a general framework for
evaluating QA robustness under stylistic variation
and provides a structured protocol for stress-testing
QA systems under stylistic diversity, operationaliz-
ing accessibility as an evaluation dimension. In this
work, we apply SPQA to consumer health question
answering, where the selected stylistic axes capture
key factors influencing comprehension and acces-
sibility. Our key contributions are summarized
below:

1. Readability-Aware Evaluation Framework:
We introduce SPQA !, a framework for evaluat-
ing QA performance under readability- and style-
controlled perturbations, addressing an underex-
plored dimension of accessibility in QA.

2. Human-Grounded Perturbations with Auto-
mated Evaluation: We generate stylistic question
variants informed by human annotations and evalu-
ate responses using GPT-40 as an automated judge,
validated against expert annotations.

'Code: github.com/mushfiqurl 1/spqa
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3. Comprehensive LLM Benchmarking: We
benchmark major LLMs (Llama, DeepSeekR1,
Qwen, and Phi) across multiple configurations, re-
vealing their performance sensitivities to linguistic
perturbations.

4. Focus on Consumer Health: We apply SPQA
specifically to consumer health QA, emphasizing
implications for health literacy, accessibility, and
equity in medical information provision.

SPQA provides a systematic approach to eval-
uating QA systems under stylistic and linguistic
variations, extending efforts in text simplification
and readability assessment. Our experiments across
ten state-of-the-art LLMs reveal that stylistic per-
turbations lead to measurable and statistically sig-
nificant performance degradation, even when the
underlying question intent remains unchanged. The
largest declines occur in correctness and complete-
ness, while linguistic adaptability remains a per-
sistent challenge, indicating that models often fail
to align their response style with user phrasing.
Performance drops are particularly pronounced for
graduate-level and expert-style variants, underscor-
ing risks for both low-literacy and highly special-
ized users. These findings highlight the urgency of
accessibility-aware evaluations to ensure equitable
health information delivery.

2 Related Work

2.1 Open-ended QA Benchmarks for LLMs

LLMs are evaluated using a range of benchmarks
that assess language understanding (Hendrycks
et al., 2020; Bommasani et al., 2023), factual
knowledge (Lin et al., 2021; Kwiatkowski et al.,
2019; Thorne et al., 2018), reasoning (Zellers et al.,
2019; Ghazal et al., 2017), and question answering
(Abacha et al., 2017). While QA models frequently
use multiple-choice question datasets like ARC
(Clark et al., 2018), benchmarks targeting open-
ended QA for practical, real-world applications re-
main limited because of the difficulty in evaluation.
The prominent open-ended QA works (Yen et al.,
2023; Prabhu and Anand, 2024; Shah et al., 2024).
have used benchmarks like MT-Bench (Bai et al.,
2024) for dialogue coherence and Chatbot Arena
(Chiang et al., 2024) for pairwise response rank-
ing. Medical QA benchmarks prioritize accuracy
and clinical reliability. Notable datasets include
MedQA (Jin et al., 2020), and PubMedQA (Jin
etal.,2019). MedRedQA (Nguyen et al., 2023), the
QA dataset we used in experimentation, evaluates


https://github.com/mushfiqur11/spqa

responses to consumer-driven medical inquiries
from Reddit, making it highly relevant for study-
ing linguistic and stylistic variability in real-world
health queries.

To address robustness, literature use techniques
like, adversarial attacks (Huang et al., 2024; Singh
et al., 2024), and specialized frameworks like RIT-
FIS (Walsh et al., 2024). However, existing bench-
marks rarely assess whether QA models maintain
performance under stylistic variation, an essential
dimension of accessibility and linguistic robust-
ness.

2.2 Evaluation Criteria and Accessibility

Evaluation in QA traditionally emphasizes cor-
rectness, completeness, and coherence (Yalaman-
chili et al., 2024; Liu et al., 2023a), while medical
QA additionally incorporates trustworthiness (Zhu
et al., 2020). Literature has explored simplifying
biomedical text for lay readers (Shardlow et al.,
2024; Ondov et al., 2022; Rahman et al., 2024; Sta-
jner et al., 2022) and transferring domain-specific
language into more comprehensible forms. Such
work advances text generation for readability but
leaves unanswered how QA models respond to in-
puts that vary in readability and style, which SPQA
explicitly evaluates.

2.2.1 Automated Metrics and LLM-Judge

Traditional QA metrics like BLEU (Papineni et al.,
2002) and ROUGE-L (Lin, 2004) rely on n-gram
overlap, limiting their ability to capture deeper se-
mantic nuances or stylistic alignment. Embedding-
based measures, like BERTScore (Zhang* et al.,
2020), incorporate contextual embeddings but pri-
marily measure semantic similarities in topics and
themes rather than information accuracy. Re-
cently, LLM-based evaluators have shown strong
alignment with human judgments (Chiang et al.,
2024, Bai et al., 2024; Dubois et al., 2024). Chat-
bot Arena (Chiang et al., 2024), MT-Bench (Bai
et al., 2024), and AlpacaEval (Dubois et al., 2024)
utilize LLLM-based ranking systems for dialogue
evaluation. GPT-4 has demonstrated moderate to
strong correlation with human ratings in natural
language generation tasks, with Spearman coeffi-
cients around 0.51-0.65 (Liu et al., 2023b; Sot-
tana et al., 2023) and high interrater reliability with
intraclass correlation (ICC) scores between 0.94
and 0.99 (Hackl et al., 2023). These findings sug-
gest that LLM-Judge setups can serve as practical
and scalable proxies for human assessment. How-
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ever, applying such evaluators in readability-aware
and health-sensitive QA contexts remains underex-
plored. Unlike prior LLM-based evaluation frame-
works that focus primarily on general response
quality or user preference, SPQA extends the LLM-
as-Judge paradigm to explicitly address readability-
and accessibility-aware QA performance using a
human-validated setup that combines scalability
with rigor informed by domain expertise and health
question answering.

3 Methods

3.1 Dataset

For dataset preparation, we utilized MedRedQA
(Nguyen et al., 2023), a large QA dataset com-
prising 51,000 consumer questions and their corre-
sponding expert answers. During initial inspection,
we identified a small number of incomplete ques-
tions or entries missing answers. To ensure data
quality, we dropped the entries with incomplete
questions or ill-formatted or incomplete expert an-
swers. We randomly sampled 470 data points from
1000+ such clean QA pairs. Since the answers in
the original dataset are expert verified or expert gen-
erated, we used these answers as the gold standard
in our experiments.

We split our filtered dataset (of 470 samples) into
two parts: SYSTEM-VAL (N=120) and QA-BENCH
(N=350). In the SYSTEM-VAL subset, each of the
120 samples was assigned one of the eight pertur-
bation types, resulting in 15 instances per perturba-
tion type. These samples were used to validate the
style transfer process and LLM-Judge (see §3.4.1).
The QA-BENCH subset includes 350 unique original
questions, each transformed into all eight stylistic
variations, alongside the original version, totaling
3,150 QA pairs.

3.2 Task Formulation

The primary objective of QA systems is to generate
accurate, informative, and contextually appropriate
responses to user questions. Formally, this QA task
is represented as the mapping function:

f:Q—=A )]

where f denotes an LLM-based QA model that
generates an answer A’ given an input question
Q. The quality of the generated answer is eval-
uated via a scoring function g, which compares
the model-generated answer A’ against a gold-
standard, expert-validated answer A4



Criteria

Definition (This Work)

Prior Work and Their Definition

Correctness

Completeness

Coherence
and Fluency

Linguistic

Measures the factual correctness and
accuracy of the LLM generated re-
sponse considering the gold answer as
factually correct.

Evaluates what portion of the ques-
tion is fully answered by the LLM-
generated response.

Assesses the grammatical correctness
and logical coherence of the generated
response.

Measures how well an LLM adjusts its

Literature defines correctness as the factual alignment of gen-
erated responses with ground-truth data in QA tasks (Adlakha
et al., 2024; Yalamanchili et al., 2024; Scialom et al., 2021).

Literature examines the comprehensiveness of long-form an-
swers, analyzing whether the responses fully address the posed
questions without omitting essential information (Yalamanchili
et al., 2024; Xu et al., 2023; Scialom et al., 2021).

In literature, coherence is defined as response consistency, while
fluency is defined as grammatical correctness and naturalness
(Zhong et al., 2022).

No prior works systematically define this; our study introduces
this criterion to assess LLM robustness to stylistic perturbations.

response based on variations in tone,
and user expertise while preserving
factuality.

Adaptability

Table 1: Evaluation criteria used in this study for the perturbed QA task (See §A for details)

g(Q7 Agoldv AI) (2)

To systematically evaluate how linguistic varia-
tions affect QA performance, we formulate a modi-
fied QA task by linguistically perturbing the origi-
nal question (), generating a transformed question
@*. The new task now becomes:

st:Q—=Q = f:Q" = A 3)
consequently, the evaluation function is adjusted
accordingly:

g(Q*a Agolda A/) (4)

Importantly, while Q* differs from the original
question in phrasing, tone, complexity, or style,
the semantic intent remains constant. The gold-
standard answer A4 is based on the original
question (), emphasizing the necessity to verify
the model-generated answer remains accurate and
complete, while appropriately adapting its linguis-
tic style to the perturbed input.

3.3 Automated Style Transfer (AST)

The SPQA framework is broadly applicable across
various QA domains, with the specific linguistic
styles requiring careful selection based on the tar-
get task and domain context. Because relevant
linguistic styles vary significantly by domain, each
application of SPQA must identify style dimen-
sions critical to effective communication within
that context.

In this study, we specifically apply SPQA to
consumer health QA, given the critical importance
of providing medically accurate, reliable, and eas-
ily understandable health information to diverse
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user populations. To systematically assess QA ro-
bustness within this domain, we selected three lin-
guistic dimensions, for which we identified eight
distinct style variations: reading level, formality
spectrum, and domain-knowledge level (see Table
2). These dimensions were specifically selected for
their relevance to the consumer health context and
their known influence on information accessibility
and health literacy.

For the reading level dimension, we used four
commonly employed sub-categories spanning a
broad range of text complexity levels: elementary,
middle school, high school, and graduate school
(Petersen and Ostendorf, 2007; Balyan et al., 2020).
Variations in formality (formal vs. informal) and
domain knowledge (domain expert vs. layperson)
were similarly incorporated to reflect the realistic
range of ways consumers engage with health in-
formation, from casual and accessible to highly
specialized and formal. Additional or alternative
stylistic dimensions can be integrated based on the
specific QA task or domain context.

The linguistic perturbations were generated
via a zero-shot prompting approach utilizing
GPT-40-2024-08-06. Given an original question
Q, the model produced transformed versions Q*
that preserved the semantic intent while varying
linguistically according to the specified stylistic
criteria.

3.3.1 Validating AST Framework

We validated each perturbation through a rigor-
ous human validation process involving five health-
informatics from George Mason University’s Col-
lege of Public Health (Appendix §B.1). Each per-
turbed question QQ* in the SYSTEM-VAL subset was



Domain Category Definition
elementary Text written with very basic vocabulary and simple sentence structures, as used by an
Grade levels elementary school student.
middle Text written with basic but varied vocabulary and slightly longer sentences, reflecting a
middle school student’s style.
high Text featuring advanced vocabulary and sentence structures typical of a high school student.
graduate Text employing specialized terminology and dense, academic sentences characteristic of a
graduate student.
Formality formal Text using precise grammar and elevated word choice appropriate for a professional report.
spectrum ) . . . - -
informal Text using casual phrasing and contractions common in everyday conversation.
Domain domain-expert  Text incorporating field-specific terms and explanations suited for subject-matter experts.
knowledge
levels g layperson Text using everyday vocabulary and clear explanations geared toward a general audience.

Table 2: Definitions of each style transfer category

at first doubly annotated and then independently
adjudicated for evaluation on a 3-point Likert scale
using two criteria:

* Style Transfer Success: The degree to which the
intended linguistic transformation (e.g., adjust-
ing formality or reading level) was successfully
implemented.

¢ Meaning Preservation: The extent to which
the original medical meaning and intent of the
question were preserved after perturbation.

During annotation, the annotators were not told
what specific stylistic perturbation was performed
on a given sample. This quality-control step en-
sured that observed performance differences across
perturbations genuinely reflected model sensitiv-
ity to linguistic variations rather than unintended
semantic changes.

34 LLM-Judge

A comprehensive and scalable evaluation of LLM-
based QA systems using the SPQA framework re-
quires an automated evaluation approach closely
aligned with human judgments. To achieve this, we
implemented an automated evaluation mechanism
using GPT-40 as an LLM-Judge. Each generated
answer was compared with the gold answer as-
sociated with the original question and assessed
based on four criteria: correctness, completeness,
coherence and fluency, and linguistic adaptabil-
ity. Table 1 provides detailed definitions of these
criteria. Correctness assesses the factual accuracy
of the model-generated response, using the gold-
standard answer as the reference. Completeness
assesses the extent to which the generated answer
fully addresses the information needs expressed
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in the question. Coherence and fluency assess the
grammatical quality, clarity, and logical flow of the
generated answer. These three criteria are widely
used in literature. Linguistic adaptability, a new
criterion introduced in this study, evaluates how
effectively a system adjusts the tone, formality, and
style of its responses to align with the linguistic
style of the input questions. Within health contexts,
including patient-facing applications and educa-
tional tools, misaligned tone or style can undermine
comprehension and negatively impact user experi-
ence (Okoso et al., 2025). Incorporating linguistic
adaptability into our evaluation extends conven-
tional QA assessment beyond factual and structural
quality to include responsiveness to user style and
context, thereby advancing the accessibility and
inclusiveness of QA systems.

Each criterion is scored using a standardized 3-
point Likert scale (1-3). Figure A presents the final
zero-shot prompt used in the system. This prompt
was refined based on 20 selected samples from the
SYSTEM-VAL subset. Using these criteria and the
LLM-as-Judge setup, we evaluated the outputs of
10 different LLMs from four model families as
consumer health QA systems.

3.4.1 Validating LLM-Judge

We evaluated the reliability of the automated LLM-
as-Judge through an annotation study conducted
with three medical student annotators (Appendix
§)%. Annotators evaluated 120 selected QA pairs,
each comprising a stylistically perturbed question
(Q"), the original expert answer (Ayq4), and the
model-generated answer (A’), using the same four
evaluation criteria and Likert scale as the LLM-

This is different from the annotation described in §3.3.1



Judge. Annotation occurred in four rounds: an
initial calibration round, where each annotator eval-
uated eight samples followed by a training ses-
sion to align scoring practices, and three subse-
quent rounds. The resulting 120 annotated sam-
ples were randomly split into two subsets, with
20 samples reserved for refining the LLM-Judge
prompt (see §4.2 for results). To ensure the relia-
bility of the automated evaluation, the LLM-Judge
was tested using the held-out validation set (100
samples) that was never seen during prompt tun-
ing. The judge operated under blinded conditions,
where it was not informed whether a question was
the original or style-transferred version. This pro-
cedure minimized bias and potential information
leakage. Evaluation prompts were designed to in-
dependently compare generated and gold answers
for each question instance. This structured process
ensures rigorous assessment of the automated eval-
uation mechanism, enabling reliable identification
of LLM strengths and weaknesses across realistic
linguistic variations.

3.5 QA Benchmarking and Exp. Setup

Using our SPQA framework, we evaluated ten
state-of-the-art LLM variants from four LLM fam-
ilies: Phi-4, Llama3, Qwen3, and DeepSeek-R1-
Distilled®. Each model generated answers for the
same set of 350 consumer health questions in their
original forms and across eight stylistically trans-
formed variants, resulting in 3,150 total generated
answers per model. Each model’s generated re-
sponse was compared against the gold-standard
expert answer associated with the original question,
regardless of stylistic perturbation. This ensured
that all evaluations measured factual consistency
and completeness relative to the same ground truth
rather than stylistic similarity alone. Responses
were evaluated using GPT-40 as an automated
judge, scoring each answer on four criteria, cor-
rectness, completeness, coherence, and linguistic
adaptability, using a 3-point Likert scale. These
3-point Likert scores were scaled and normalized
to a 0-1 scale for ease of comparison.

All models were evaluated in a zero-shot setting
via HuggingFace without additional fine-tuning.
Inference was performed on an A100 GPU (80
GB VRAM), with average runtime per variant of

3For the DeepSeek model, we exclusively utilized locally
downloaded pretrained weights without employing any exter-
nal API, in compliance with institutional and state require-
ments.
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Figure 2: Distribution of ratings for Question Style
Transfer Validation where 3 indicates successful, 2 indi-
cates somewhat successful and 1 indicates failure

approximately five hours for larger models and two
hours for smaller ones.

4 Results
4.1 AST Validation Results

Figure 2 presents the final adjudicated results from
validating the stylistic transformations applied
specifically to the questions. The results demon-
strate that only 10.0% of the style-transferred ques-
tions did not fully achieve the desired stylistic mod-
ifications, and just 0.8% failed to retain the original
meaning of the question. The high validation suc-
cess indicates that the style transfer process reliably
preserves meaning while effectively applying the
intended stylistic modifications.

4.2 LLM-Judge Validation Results

Correctness Completeness

A B C GPT-4o A B C GPT-4o
Coherence Linguistic Adaptability
55555
[l
2
s 3
A B C GPT-4o A B C GPT-40

Figure 3: Score distribution for the human annotators
(marked as A, B, and C) and the LLM-Judge (GPT-40)
across the four evaluation criteria, indicating similar
scoring patterns between humans and the LLM-Judge

The moderate agreement score (0.47 Pearson
correlation) among the human annotators (see Ta-



Agreement Pearson Cohen’s
Type Correlation () Kappa (k)
puman o) 0.47 0.39
ggr’ﬁa%\ziLM—Judge) 0.36 0.33
Human vs. 0.23 0.18

Llama3-70B-Inst.

Table 3: The agreement scores between human experts
and the LLM-Judge are moderate. Human vs human
agreement and human vs LLM-Judge agreement are
quite similar indicating reliability of performance from
the LLM-Judge

ble 3) indicate the inherent complexity and sub-
jectivity involved in evaluating nuanced linguistic
adaptations in open-ended QA and medical QA
contexts. So, GPT-40’s score of 0.36 when com-
pared to human judgment (which is also considered
as a moderate correlation (Kuckartz et al., 2013))
makes it a decent choice for LLM-Judge. The Co-
hen’s Kappa among humans (0.39) and between
GPT-40 and humans (0.33) are not too far as well
which further strengthens the claim for GPT-40 as
an LLM-Judge.

Inter-annotator agreement among human annota-
tors, as well as alignment between human annota-
tors and the automated LLM-Judge, was assessed
using Pearson correlation coefficients and Cohen’s
Kappa scores.

Figure 3 presents the distribution of Likert scores
for human annotators and the LLM-Judge across
each evaluation criterion. This comparative anal-
ysis supports the reliability and suitability of the
LLM-Judge for automated evaluation in nuanced
medical QA tasks.

4.3 QA Benchmarking
Overall Degradation Across Styles

Table 4 provides results from the best performing
models from each LLM family (full table in §6).
The table shows the normalized scores for the origi-
nal questions and the performance change for each
stylistic variant compared to the original scores. To
assess the significance of this performance drop,
we performed a paired t-test with the null hypothe-
sis of no performance degradation. Fields marked
with * indicate statistically significant decreases
(p < 0.05).

Across all models and metrics, the quality of
the answers generated for stylistically altered ques-
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tions significantly decreased (with statistical signif-
icance) compared to answers generated for original
questions. These declines were most prominent for
correctness and completeness, suggesting that mod-
els either misinterpreted the question or failed to
provide adequate information. Linguistic adaptabil-
ity, a criterion introduced in our SPQA framework
to assess how well answer style matches question
style, also showed substantial drops, suggesting
models often fail to adjust their response style when
question phrasing shifts. In contrast, coherence re-
mained relatively stable, consistent with the known
ability of LLMs to produce fluent text even when
misinterpreting question intent.

Impact of Linguistic Axes

We further analyzed these performance drops to
identify patterns. Figure 4 presents the average
performance change across models, computed as
the difference between the mean score on original
questions and the mean score on stylistically altered
variants. The results are grouped into two broader
variants: (1) a simplified and informal style, aver-
aging elementary, informal, and layperson variants;
and (2) a formal and specialized style, averaging
graduate, formal, and expert variants, representing
advanced and specialized language usage.

As represented in the figure, the overall degrada-
tion in performance is higher in formal and special-
ized styles compared to simple and informal styles.
This result was consistent for all ten LLM variants
that we used in our experimentation.

Comparative Model Performance

All ten models demonstrated susceptibility to
style-induced performance degradation, although
the degree varied by model size and train-
ing approach. Larger models achieved higher
baseline accuracy but were also more sensi-
tive to stylistic perturbations. For example,
DeepSeek-R1-Distilled-L1lama3-70B achieved
the highest baseline scores on original ques-
tions but experienced disproportionately greater
performance drops under stylistic perturbations.
Similarly, DeepSeek-R1-Distilled-Qwen experi-
enced marked losses under formal and specialized
styles, indicating brittleness despite its size. In
comparison, L1lama3-70B-Instruct and Qwen-3,
though similar in size to their R1 counterparts, per-
formed marginally better on linguistic adaptability.

Mid-sized models like Phi-4 exhibited more sta-
ble performance across styles, albeit with lower
baseline performance. Qwen3-0.6B, the smallest



Drop in performance compared to original

Grade Level Formality Spectrum Domain-knowledge

Model Metric Original Elementary Middle High Graduate Informal Formal Layperson Expert
Coherence 0.71 -0.06*  -0.04* -0.05*% -0.08* -0.03*  -0.08* -0.06%  -0.12%*
DS-Llama3-70B+ Completeness 0.5 -0.04*  -0.05* -0.05* -0.07* -0.04*  -0.05* -0.03*  -0.11*
Correctness 0.62 -0.04*  -0.04* -0.06* -0.07* -0.04*  -0.06* -0.03*  -0.11%*

Linguistic Ad.  0.63 -0.06*  -0.03* -0.07* -0.13*  -0.03* -0.1% -0.05*%  -0.14*

Coherence 0.73 -0.06*  -0.07* -0.05* -0.1* -0.05*  -0.09* -0.07%  -0.12%*

DS-Qwen3-32B1 Completeness  0.48 -0.03*  -0.03* -0.04* -0.06% -0.04*  -0.04* -0.04*  -0.07*
Correctness 0.61 -0.05*  -0.04* -0.02* -0.07* -0.03*  -0.07* -0.03*  -0.09*

Linguistic Ad.  0.64 -0.07*  -0.06* -0.03* -0.13* 0.0 -0.11%* -0.05%  -0.11*

Coherence 0.69 -0.03*  -0.03* -0.05* -0.06* -0.02*  -0.07* -0.01*  -0.08*

Phid Completeness  0.44 -0.02% -0.01 -0.01 -0.05* -0.03*  -0.04* -0.01 -0.05%*
Correctness 0.56 -0.02 -0.01 -0.01 -0.04* -0.02 -0.04* -0.02 -0.05*

Linguistic Ad.  0.66 -0.04*  -0.03* -0.02 -0.08* -0.01 -0.07* -0.05*  -0.08*

Coherence 0.7 -0.06*  -0.05* -0.03* -0.09* -0.04*  -0.08* -0.04*  -0.09*

Qwen3-32B1 Completeness 0.5 -0.02 -0.03* -0.03* -0.05% -0.03*  -0.04* -0.03*  -0.08*
Correctness 0.61 -0.04* -0.01 -0.02* -0.05* -0.03*  -0.04* -0.04*  -0.07*

Linguistic Ad.  0.64 -0.09*  -0.06*% -0.06* -0.13* -0.02 -0.08%* -0.05*%  -0.09*

Table 4: Normalized mean scores of the best performing models from each family (Rounded to 2 Decimal Places).
Except for a few cases, all models have performed worse in case of the linguistic variants compared to the original.
(T indicates 8-bit quantization). * indicates statistical significance with p < 0.05. (See Figure 6 for full results and

Figures 5, 6, and 7 for significance test results)

model, had the smallest absolute drop but also the
lowest original performance. Interestingly, its re-
silience to informal and layperson styles may re-
flect its reduced specialization, leading to more
consistent outputs (Yang et al., 2025).

These observations suggest that model scale
and advanced training techniques (like Reinforce-
ment Learning with Human Feedback (RLHF)),
although beneficial for original phrasing, may am-
plify sensitivity to stylistic shifts. Instruction tun-
ing may reinforce specific interaction norms that
break down under atypical inputs.

Implications for Equity and Robustness

These results raise pressing concerns regarding
QA robustness in real-world deployments. While
the largest performance drops occurred with for-
mal and expert-style queries, there was still no-
table degradation for simplified and informal styles.
Users with low literacy or non-native speakers may
frame queries in simplified or unconventional ways.
Our findings show that such phrasing, though se-
mantically equivalent, often results in lower answer
quality. Conversely, expert users posing technically
precise questions also receive degraded responses,
an especially problematic outcome in clinical set-
tings. The performance degradation likely stems
from the models’ reliance on surface-level linguis-
tic patterns during fine-tuning, which reduces their
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ability to generalize across stylistically distinct but
semantically equivalent inputs.

This dual vulnerability suggests that current
LLMs may be more proficient with specific styles,
likely shaped by standard web-based corpora and
fine-tuning data that emphasize neutral, well-
formed text (Cao et al., 2025). As a result, models
fail to generalize across diverse communication
styles, reducing their utility for a broad population.

5 Conclusion and Future Work

This study introduces SPQA, a framework and
benchmark for evaluating linguistic robustness in
question-answering systems under controlled stylis-
tic perturbations. SPQA systematically assesses
how stylistic variations in questions impact QA
model performance across multiple evaluation di-
mensions. Unlike prior evaluations focused pri-
marily on accuracy under standard inputs, SPQA
captures a critical but overlooked dimension: the
ability of models to deliver consistent, accessible
answers across diverse linguistic contexts.

While broadly applicable, we applied SPQA to
consumer health QA, revealing vulnerabilities in
current LLMs when processing stylistic variations
reflecting real-world linguistic diversity. Our ex-
periments across ten state-of-the-art LLMs demon-
strate that stylistic changes, even when semantic
meaning is preserved, result in measurable per-



Simplified and Informal Styles
(Avg of Elementary, Informal, Layperson)

Formal and Specialized Styles
(Avg of Graduate, Formal, Expert)

-0.02
‘ v @ DeepSeek-Llama (8-bit q)
o —0.03 AA A DeepSeek-Qwen (8-bit q)
2 & A Llama3
E —0.04+ L ] V¥V Llama3 (8-bit q)
5 [ J & Phid
£ ~0.05 4 Qwen3
a Qwen3 (8-bit q)
C —0.06 A < g
2 $
© —0.071 v
S A
?
& —0.08
—0.09- &+ Py
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Model Size (B) Model Size (B)

Figure 4: Average performance drop (across 4 metrics) for evaluated LLMs, indicating that larger models are
more susceptible to performance degradation. Performance decline is more pronounced for formal and specialized

stylistic variants compared to simplified styles

formance degradation in answer generation. The
largest declines occur in correctness and complete-
ness, and models frequently fail to align response
style with question style. These findings reveal
systematic risks to health information accessibility,
affecting both users with limited literacy and ex-
pert users with specialized language needs, thereby
reinforcing the urgency of equity-aware QA evalua-
tions. SPQA provides a pathway toward addressing
this gap by offering a systematic, human-grounded,
and readability-aware evaluation protocol validated
through LLM-as-Judge. Future research should
extend SPQA to additional domains, including
multimodal inputs, spoken interactions, and low-
resource languages. Performance improvements
may be achieved through adaptive prompting, style-
diverse data augmentation, and patient-centered
metrics. This work underscores the need for robust
evaluation frameworks to ensure equitable access
to reliable information for all. Future extensions
should also incorporate readability-based user mod-
eling to guide real-world deployment strategies.

Lay Summary

People ask medical questions in many different
ways. Some use plain and simple words. Others
use more formal wording or include medical termi-
nology. This variability is important because an Al
system might work well with one style but struggle
with another. If an Al gives good answers to formal
questions but fails for simple ones (or vice versa),
then it may not serve all users equally.

To explore this issue, we create a formal process
that can be followed step-by-step to evaluate how
Al systems respond to changes in language style.
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We start with real medical questions and rewrite
each into several versions that differ in reading
level, tone, and technical detail, while keeping the
original meaning. We call this benchmark SPQA.
By doing this, we can test whether AI models re-
main accurate and helpful no matter how a question
is phrased.

We evaluate ten leading language models on ev-
ery rewritten version and compare their responses
across four dimensions: correctness, completeness,
fluency, and how well they match the style of the
question. Our results show that style variation has a
clear impact on answer quality. Models frequently
lose accuracy and completeness when questions are
highly formal or contain dense medical jargon, and
the same question can produce different answers
depending on how it is phrased. Some models
are more sensitive to these shifts than others, and
most do not adjust their response style to match the
user’s expression. These findings show that current
systems handle writing styles unevenly, which may
disadvantage some users.

Our work emphasizes the need for health
question-answering systems that give reliable, in-
clusive, and understandable answers for everyone,
regardless of how they phrase their questions.

Our work highlights the importance of develop-
ing health question-answering systems that provide
reliable, fair, and easy-to-understand information
for all users, regardless of how they write their
questions.

Limitations

This study has several limitations. Methodolog-
ically, errors introduced during the style-transfer
step could propagate through subsequent stages,



although validation showed that meaning was pre-
served in over 99% of cases. Occasional deviations
from the intended style may still influence down-
stream outcomes. In addition, evaluating gener-
ated answers through human and LLM-based scor-
ing introduces subjectivity. While the automated
LLM-Judge achieved performance comparable to
human annotators, moderate agreement levels sug-
gest residual bias or inconsistency that could affect
result validity. Future work should explore hybrid
or multi-judge evaluation strategies to improve re-
liability.

Beyond these methodological constraints, the
validation group consisted of medical students and
domain experts, limiting sociolinguistic diversity
and potentially affecting generalization across pop-
ulations. The current evaluation also focuses on
a single consumer health QA dataset; broader
experimentation across datasets and domains is
needed to establish the generalizability of the
SPQA framework. Finally, reliance on GPT-4o0 for
both style transfer and evaluation may introduce
model-specific biases, underscoring the importance
of future replication with diverse model architec-
tures.
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A LLM Judge Prompts

Since we used a zero-shot LLM-Judge, it was essential to have a rigorously engineered prompt for different
phases of our workflow. Appendix A represents the user-prompt provided to the LLMs to generate the
answers to the questions. Appendix A represents the system prompt with all the necessary definitions
provided to the LLM-Judge. These were also used as the base instructions for the annotators validating
the LLM-Judge. Keeping the instructions same, we ensured fair ground for the LLM-Judge and human
experts.

User-prompt for LLM-Judge

(S S

6

nnn

Evaluate the following QA sample:

Modified Question (Q_mod): [SEP] {question} [SEP]
Generated Answer (A_gen): [SEP] {answer} [SEP]
Gold Standard Answer (A_gold): [SEP] {gold} [SEP]

nnn

System-prompt for LLM-Judge

1
2
3

24
25

26

27
28

29

30

nnn

You

are a helpful assistant that evaluates medical QA samples.

For each sample, you must evaluate the generated answer (A_gen) as a response to

In

the modified question (Q_mod). Use the gold standard answer (A_gold) as the

medically accurate information regarding the topic.

this QA task, the generated answer (A_gen) and the gold standard answer (

A_gold) may come from different linguistic distribution. Do not penalize A_gen
for being linguistically different from A_gold.

Use the following four criteria. For each criterion, assign a score from 0 (

1.

lowest) to 2 (highest).

Correctness: Considering A_gold as medically correct, what portion of A_gen is
accurate in answering the Q_mod? A_gen can be significantly different from
A_gold.

- Score Definitions:

B

CRO: A_gen is completely incorrect. It does not have any medically accurate
information.

CR1: A_gen is mostly incorrect. It has very little medically correct advice
or information.

CR2: The generated answer is mostly correct.

Completeness: What portion of the queries made in Q_mod are answered by A_gen?

Score Definitions:

CMO: A_gen is absolutely irrelevant and does not answer any of the queries
made in Q_mod.

CM1: A_gen is somewhat incomplete, missing the essential details required to
address Q_mod.

CM2: A_gen answers Q_mod sufficiently. Important parts of the question in
Q_mod is addressed by A_gen.

Fluency and Coherence: How well is A_gen written in terms of language fluency
and logical structure?

- Score Definitions:

4.

FCO: A_gen is poorly written, with significant grammatical and structural
issues.

FC1: A_gen is somewhat fluent but contains noticeable issues and grammatical
errors.

FC2: A_gen is fluent and logically structured.

Linguistic Adaptability: How effectively does A_gen adopt the style and tone
of the modified question (Q_mod)?

- Score Definitions:

LAO: A_gen fails to match the tone or style of Q_mod and would be totally
unreadable for the user asking Q_mod.

LA1: A_gen somewhat matches the tone or style but would not be fully legible
for the user asking Q_mod.

LA2: A_gen is appropriate and easy to read for someone who asked the question
Q_mod.
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Return your evaluation in JSON format as follows:

w {

35 "correctness"”: <rating as an integer>,

36 "completeness”: <rating as an integer>,

37 "fluency_and_coherence"”: <rating as an integer>,
38 "linguistic_adaptability”: <rating as an integer>
39 3}

11 Ensure that your output contains only the JSON object.

nonon

B Human Annotation Details

This appendix provides details of the two independent annotation streams that supported this work. Both
streams involved the same set of 120 question—answer pairs but differed in purpose, annotator expertise,
and evaluation criteria.

B.1 Annotation Stream 1: AST Validation

Objective: Assess whether stylistic perturbations (generated via GPT-40) successfully applied the intended

style changes (reading level, formality, patient background knowledge) while preserving original meaning.
Annotator Profile: Five health informatics graduate students with training in health data interpretation.
Procedure:

» Each question—variant pair was evaluated independently by two annotators and adjudicated by a third
for disagreements.

* Annotations were based on two criteria using a 3-point Likert scale:

1. Style Transfer Success — Did the variant reflect the assigned stylistic dimension?

2. Meaning Preservation — Was the original medical intent maintained?
* Random audits (15% of samples) were conducted for quality control.

Outcome: High validation accuracy was achieved (Style Transfer Success: 76.7%, Meaning Preserva-
tion: 86.7%), confirming fidelity of stylistic transformations.

B.2 Annotation Stream 2: LLM-Judge Validation

Objective: Validate the reliability of GPT-40 as an automated judge by comparing its ratings to human
annotations for QA responses.
Annotator Profile: Three medical students (clinical track) with prior training in patient communication.
Procedure:

* Annotators rated the same 120 question—answer pairs on four evaluation criteria:

1. Correctness

2. Completeness

3. Coherence and Fluency
4. Linguistic Adaptability

* Process included a calibration round (8 samples), followed by three main annotation rounds after a
training session.

* Agreement metrics were computed using Pearson correlation and Cohen’s Kappa.

Outcome: Human-LLM alignment showed moderate agreement (Pearson’s » = (.36, Cohen’s
k = 0.33), supporting the use of LLM-as-Judge for scalable evaluation.
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B.3 Summary of Annotation Resources

* Total samples annotated: 120 (used for both streams).

* Annotators: 5 health informatics students (style validation) and 3 medical students (evaluation valida-

tion).

Table 5: Summary of Human Annotation Streams

Stream Annotator Group | Goal Criteria

Style Transfer Vali- | 5 Health Informat- | Validate stylistic | Style Transfer

dation ics Students perturbations Success, Meaning
Preservation

Evaluation Rubric | 3 Medical Students | Validate automated | Correctness,

Validation evaluation rubric Completeness,
Coherence and
Fluency, Linguistic
Adaptability

C Additional results

C.1 Significance Test
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Figure 5: Paired One-Sided T-Test: Style Variant < Original (Rounded to nearest third decimal place)

Section 4 mentions that a significance test was performed. Figures 5, 6, and 7 represent heatmaps of
the detailed results from the significance test.

C.2 Full Result

Table 6 represents the complete results table with all the models we have used in our experimentation. A
shorter and more concise version of this table has been presented in the main paper.
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Figure 6: Paired One-Sided T-Test: Style Variant < Original (Rounded to nearest third decimal place)
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Drop in performance compared to original

Grade Level Formality Spectrum Domain-knowledge

Model Metric Original Elementary Middle High Graduate Informal Formal Layperson Expert
DS-Llama-70Bf  Coherence 0.71 -0.06 -0.04 -0.05 -0.08 -0.03 -0.08 -0.06 -0.12
DS-Llama-70Bt Completeness 0.5 -0.04 -0.05 -0.05 -0.07 -0.04 -0.05 -0.03 -0.11
DS-Llama-70Bf Correctness 0.62 -0.04 -0.04 -0.06 -0.07 -0.04 -0.06 -0.03 -0.11
DS-Llama-70Bf Linguistic Ad.  0.63 -0.06 -0.03 -0.07 -0.13 -0.03 -0.1 -0.05 -0.14
DS-Qwen-32B7  Coherence 0.73 -0.06 -0.07 -0.05 -0.1 -0.05 -0.09 -0.07 -0.12
DS-Qwen-32Bt Completeness  0.48 -0.03 -0.03 -0.04 -0.06 -0.04 -0.04 -0.04 -0.07
DS-Qwen-32Bf  Correctness 0.61 -0.05 -0.04 -0.02 -0.07 -0.03 -0.07 -0.03 -0.09
DS-Qwen-32Bf Linguistic Ad.  0.64 -0.07 -0.06 -0.03 -0.13 0.0 -0.11 -0.05 -0.11
Llama3-1B Coherence 0.71 -0.04 -0.05 -0.03 -0.08 -0.04 -0.06 -0.06 -0.09
Llama3-1B Completeness  0.41 0.0 0.0 -0.01 -0.02 0.03 -0.03 -0.01 -0.05
Llama3-1B Correctness 0.54 -0.03 -0.01 -0.03 -0.04 -0.01 -0.05 -0.02 -0.06
Llama3-1B Linguistic Ad.  0.67 -0.08 -0.03 -0.04 -0.11 -0.02 -0.07 -0.07 -0.11
Llama3-3B Coherence 0.71 -0.04 -0.05 -0.04 -0.1 -0.04 -0.08 -0.03 -0.11
Llama3-3B Completeness  0.43 -0.04 0.0 -0.02 -0.05 -0.01 -0.04 -0.01 -0.06
Llama3-3B Correctness 0.54 -0.03 -0.01 -0.01 -0.05 0.0 -0.04 0.0 -0.06
Llama3-3B Linguistic Ad.  0.68 -0.07 -0.06 -0.03 -0.1 -0.01 -0.09 -0.05 -0.12
Llama3-8B Coherence 0.71 -0.05 -0.03 -0.03 -0.08 -0.04 -0.07 -0.06 -0.1
Llama3-8B Completeness  0.43 -0.01 -0.01 -0.02 -0.04 -0.01 -0.03 -0.03 -0.05
Llama3-8B Correctness 0.56 -0.03 -0.02 -0.03 -0.06 -0.01 -0.05 -0.02 -0.07
Llama3-8B Linguistic Ad.  0.66 -0.05 -0.03 -0.04 -0.07 -0.01 -0.07 -0.04 -0.07
Llama3-70Bt Coherence 0.69 -0.04 -0.04 -0.01 -0.06 -0.02 -0.06 -0.03 -0.08
Llama3-70Btf  Completeness  0.45 -0.01 -0.01 -0.01 -0.05 0.0 -0.05 0.0 -0.07
Llama3-70Bt Correctness 0.57 -0.03 -0.03 -0.02 -0.06 -0.01 -0.06 -0.02 -0.07
Llama3-70Bt  Linguistic Ad. 0.67 -0.07 -0.03 -0.03 -0.08 -0.01 -0.08 -0.04 -0.11
Phi4 Coherence 0.69 -0.03 -0.03 -0.05 -0.06 -0.02 -0.07 -0.01 -0.08
Phi4 Completeness  0.44 -0.02 -0.01 -0.01 -0.05 -0.03 -0.04 -0.01 -0.05
Phi4 Correctness 0.56 -0.02 -0.01 -0.01 -0.04 -0.02 -0.04 -0.02 -0.05
Phi4 Linguistic Ad.  0.66 -0.04 -0.03 -0.02 -0.08 -0.01 -0.07 -0.05 -0.08
Qwen3-0.6B Coherence 0.69 -0.04 -0.03 -0.01 -0.07 -0.03 -0.07 -0.06 -0.09
Qwen3-0.6B Completeness  0.46 -0.02 -0.02 -0.01 -0.03 -0.03 -0.01 0.0 -0.07
Qwen3-0.6B Correctness 0.59 -0.05 -0.02 -0.02 -0.06 -0.01 -0.05 -0.02 -0.08
Qwen3-0.6B Linguistic Ad.  0.63 -0.08 -0.04 -0.03 -0.09 -0.02 -0.07 -0.06 -0.11
Qwen3-4B Coherence 0.72 -0.07 -0.05 -0.06 -0.1 -0.03 -0.1 -0.04 -0.12
Qwen3-4B Completeness  0.48 -0.02 -0.04 -0.03 -0.05 -0.04 -0.05 0.0 -0.07
Qwen3-4B Correctness 0.62 -0.04 -0.04 -0.03 -0.08 -0.04 -0.06 -0.03 -0.1
Qwen3-4B Linguistic Ad.  0.65 -0.09 -0.07 -0.05 -0.11 -0.01 -0.09 -0.06 -0.13
Qwen3-32B7 Coherence 0.7 -0.06 -0.05 -0.03 -0.09 -0.04 -0.08 -0.04 -0.09
Qwen3-32B} Completeness 0.5 -0.02 -0.03 -0.03 -0.05 -0.03 -0.04 -0.03 -0.08
Qwen3-32B7 Correctness 0.61 -0.04 -0.01 -0.02 -0.05 -0.03 -0.04 -0.04 -0.07
Qwen3-32Bf Linguistic Ad. 0.64 -0.09 -0.06 -0.06 -0.13 -0.02 -0.08 -0.05 -0.09

Table 6: Full results table. { indicates models with 8-bit quantization.

D Declaration of use of Generative Al

During the preparation of this manuscript, the authors used ChatGPT to obtain editorial assistance focused
on writing clarity and proofreading. All scientific content, including analyses and interpretations, was
developed independently by the authors. The authors carefully reviewed and revised the text following the
use of these tools and assume full responsibility for the integrity and accuracy of the final manuscript.
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Abstract

Plain Language Summaries (PLS) improve
health literacy and enable informed healthcare
decisions, but writing them requires domain
expertise and is time-consuming. Automated
methods often prioritize efficiency over com-
prehension, and medical documents’ unique
simplification requirements challenge generic
solutions. We present a multi-agent system for
generating PLS using Cochrane PLS as proof
of concept. The system uses specialized agents
for information extraction, writing, diagnosis,
and evaluation, integrating a medical glossary
and statistical analyzer to guide revisions. We
evaluated three architectural configurations on
100 Cochrane abstracts using six LLMs (both
proprietary and open-source). Results reveal
model-dependent trade-offs between factuality
and readability, with the multi-agent approach
showing improvements for smaller models and
providing operational advantages in control and
interpretability.

1 Introduction

Health literacy is the ability of an individual to
access, understand, and apply health information.
This is essential for informed decision-making and
effective navigation of healthcare systems. Inad-
equate health literacy remains a global challenge,
contributing to poor treatment adherence, higher
hospitalization rates, and health disparities (Berk-
man et al., 2011; Sgrensen et al., 2015; Bahador
et al., 2020). Plain Language Summaries (PLS)
is a way to reduce health literacy gaps by translat-
ing medical texts into clear, accurate, and accessi-
ble language for non-technical audiences (Bahador
et al., 2020). However, producing high-quality PLS
manually is resource-intensive and requires exper-
tise in both medical content and health communi-
cation.

Recent advances in LLMs offer new opportuni-
ties to automate PLS generation. While early ef-
forts showed that LLMs can produce readable and
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semantically faithful summaries, most approaches
relied on single-pass generation and lacked system-
atic guardrails for factuality, readability, and regu-
latory compliance (Turbitt et al., 2023; Van Veen
et al., 2024). The increasing complexity of biomed-
ical content and the need for domain-specific stan-
dards underscore the importance of structured,
multi-step workflows over monolithic generation.

This work builds on our previous research in
LLM-based PLS generation (Arias-Russi et al.,
2025), which showed the potential of single-prompt
models to translate Cochrane abstracts into PLS
and Clinical Trials into Protocol Plain Language
Summaries (PPLS). However, generating these
kind of structured PLS that meet professional stan-
dards differs from generic text simplification; it
needs adherence to specific templates and guide-
lines, diagnostic feedback, and systematic quality
control. Unlike general simplification tasks that
focus only on reducing complexity, structured PLS
generation requires writing documents with well-
defined structures that balance accessibility with
medical accuracy.

Current LLMs struggle to balance simplicity
with factual accuracy, often oversimplifying com-
plex medical content or preserving meaning at the
cost of readability (Li et al., 2024). Our prior work
revealed similar domain-specific challenges, requir-
ing distinct prompts for different document types
(Cochrane PLS and PPLS). Also, this approach
did not provide mechanisms to identify specific
problems in the generated PLS drafts or provide
targeted corrections.

Based on these limitations, this research aims
to: (1) develop tools that allow a better understand-
ing of what makes a text non-compliant with PLS
standards and how to systematically address these
issues, and (2) create a multi-agent framework sup-
ported by diagnostic tools that can both generate
structured PLS and evaluate their quality through
some iterative refinement.

Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025), pages 87-104
November 4-9, 2025 ©2025 Association for Computational Linguistics



We propose a framework that decomposes PLS
generation into specialized subtasks, each handled
by dedicated agents: information extraction, writ-
ing, diagnostic, and evaluation (Figure 1). The
key component is a diagnostic feedback loop
where evaluation agents identify specific complex-
ity issues and guide targeted revisions using ver-
ifiable criteria. We instantiate this framework
for Cochrane PLS generation, as their guidelines
(Pitcher et al., 2022) provide an useful template
ideal for testing structured document generation.

2 Related Work

2.1 Plain Language Summaries

Recent work in biomedical text simplification ex-
plores different approaches. The BioLaySumm
shared task (Xiao et al., 2025) focuses on gen-
erating lay summaries from biomedical abstracts.
Participants showed various strategies: supervised
fine-tuning of TS5 and LLaMA models (Zhang
et al., 2025); extract-then-summarize pipelines
with persona-based prompts and UMLS defini-
tions (Gupta and Krishnamurthy, 2025); struc-
tured prompting with dynamic few-shot selec-
tion and RAG (Lossio-Ventura et al., 2025); and
Tree-of-Thought prompting with hybrid meth-
ods (Sivagnanam et al., 2025). Fine-tuning ap-
proaches include QLoRA adaptation with itera-
tive refinement (Binti Moriazi and Sung, 2025)
and readability-controlled instruction tuning (Tran
et al.,, 2025). Others focus on preprocess-
ing (Dehkordi et al., 2025) or evaluation met-
rics (Lyu and Pergola, 2024a; Scholz and Wenzel,
2025). More related work can be found in our
previous work (Arias-Russi et al., 2025).

Our work addresses a complementary task: gen-
erating structured PLS following Cochrane’s estab-
lished template. Unlike lay summaries that priori-
tize readability alone, structured PL.S must adhere
to specific section requirements (Title, Key Mes-
sages, Background, Methods, Results, Limitations,
Currency), maintain professional standards, and
balance accessibility with regulatory compliance.
We used some evaluation metrics from BioLay-
Summ and related work to assess both readability
and structural conformance.

2.2 Multi-agent Systems for Text
Simplification

Multi-agent systems have emerged as a promising
approach for text processing. The Society of Medi-
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cal Simplifiers (Lyu and Pergola, 2024b) simplifies
biomedical literature into general plain language
text, using five agents in three interaction loops—a
Layperson Agent identifies technical terms, a Med-
ical Expert provides clarifications, and a Simplifier
Agent edits text, focusing on making content ac-
cessible without following specific templates or
guidelines. ExpertEase (Mo and Hu, 2024) gener-
ates grade-specific simplified documents for edu-
cational purposes, using Expert, Teacher, and Stu-
dent agents that calibrate text complexity for target
reading levels like 2nd-3rd grade. For diagnostic
applications, MedAgent-Pro (Wang et al., 2025)
produces evidence-based medical diagnoses with
supporting visual evidence rather than simplified
text, employing RAG, Planner, and Tool agents
to integrate clinical guidelines for diseases like
glaucoma. AgentSimp (Fang et al., 2025) creates
general simplified documents focusing on coher-
ence and metaphor handling, using nine agents
including a Metaphorical Analyst and Terminol-
ogy Interpreter, but without adherence to medical
communication standards or structured templates.

Rather than generating general simplified text,
we aim to create structured PLS that facilitate the
work of medical writers, helping to automate the
process to get high-quality PLS drafts. Multi-agent
systems are particularly suited for this task be-
cause structured documents can be decomposed
into separate subtasks (extraction, integration, eval-
uation, and refinement) that align naturally with
specialized agents (see the conceptual framework
in Figure 1). From this abstract idea of generat-
ing structured PLS, we designed a multi-agent ap-
proach specifically for Cochrane PLS, as their de-
tailed guidelines provide a well-defined template
that serves as an ideal test case for our framework
(Pitcher et al., 2022). Our primary approach uses an
on-demand evaluator tool that the editor agent calls
when needed. Inspired by Self-Refine (Madaan
et al., 2023), we also tested an alternative itera-
tive approach where the evaluator runs multiple
refinement cycles independently, instead of being
invoked by the editor agent.'

3 Methodology

We present the methodology for developing and
evaluating a multi-agent system for automatic gen-

'All materials including agent prompts, datasets, eval-
uation scripts, and workflow implementation are avail-
able at: https://github.com/feliperussi/tsar-2025-
medical-writing-agent-cochrane
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Figure 1: Conceptual framework for generating PLS. The system orchestrates specialized agents for information
extraction, writing, terminology simplification, and evaluation. A diagnostic feedback loop enables evaluation
agents to identify complexity issues and guide targeted revisions. This modular architecture supports structured,
accurate, and readable PLS aligned with Cochrane standards.

eration of PLS from Cochrane medical abstracts.
The approach leverages linguistic analysis, medi-
cal glossaries, domain-specific glossaries, and ad-
vanced language models to produce accessible med-
ical communication. The methodology follows six
main steps: (1) Data Collection and Processing, (2)
PLS Linguistic Feature Extraction, (3) Percentiles
for PLS Diagnosis, (4) Develop Diagnostic Tools,
(5) Define Specialization, and (6) Define Architec-
ture for the multi-agent system (see Appendix A
for the complete workflow diagram).

3.1 Data Collection and Processing
3.1.1 Data Source

We collected 9,469 Abstract-PLS pairs (18,938 doc-
uments) extracted from the Cochrane Database
of Systematic Reviews (1996-2025), spanning
nearly 30 years of evolving medical communica-
tion practices (Cochrane Library, 2025). Prior work
has highlighted significant content misalignment
between abstracts and their corresponding PLS,
where summaries often incorporate information
from full-text articles (Bakker and Kamps, 2024).
To address this issue, the authors proposed a new
dataset (Cochrane-auto) that ensures better align-
ment between abstracts and PLS. Although we rec-
ognize this problem, we preferred to use the origi-
nal Cochrane data to maintain the integrity of the
dataset, and ensure easier evaluations and compari-
son between different strategies.

3.1.2 Data Processing Pipeline

We filtered and split the dataset into reference and
test sets, applying minimum length thresholds (200
words for abstracts, 150 for PLS). After filtering,
we retained 16,308 documents from the original
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18,938 documents. For our experiments, we used
only PLS texts from the reference corpus to com-
pute statistical thresholds for the evaluation agent
(ignoring their paired abstracts), and the test set
pairs for generation and evaluation. The test set
comprised recent publications (2023-2025) to align
with the 2022 Cochrane PLS guidelines. Table 1
shows the data used in our study (complete dataset
splits are available in the repository).

Data PLS Abstracts Total
Reference 6,754 - 6,754
Test 100 100 200
Total 6,854 100 6,954

Table 1: Dataset distribution. Reference corpus: PLS
texts for computing percentile thresholds. Test set:
Abstract-PLS pairs for evaluation.

3.2 PLS Linguistic Feature Analysis
3.2.1 Feature Extraction

We extracted 18 linguistic features from each docu-
ment (see Appendix B.1) comprising 9 readability
indices, 4 structural metrics, 3 vocabulary mea-
sures, and 2 content density indicators. These fea-
tures enable the multi-agent system to compare
any text against typical PLS patterns using per-
centile distributions. The Cochrane PLS guidelines
(Pitcher et al., 2022) recommend specific criteria:
maximum 850 words, active voice, personal pro-
nouns, and 20 words per sentence average.

These metrics answer concrete diagnostic ques-
tions: "Where does this text’s passive voice usage
fall compared to typical PLS?" or "Is this sentence



length in the common range?" Using the percentile
thresholds from Section 3.2.2, the evaluator agent
identifies specific deviations and provides feedback
to the editor agent for improving the draft.

3.2.2 Percentiles for PLS Diagnosis

We computed statistical thresholds from our refer-
ence corpus of PLS texts based on percentiles to
create a reference baseline for evaluation. These
thresholds function as an interpretable diagnostic
tool for the multi-agent system (or a human evalu-
ator), providing explicit information about where
generated text falls within the distribution of each
linguistic feature. This approach enables specific
improvements based on concrete positional feed-
back rather than abstract quality scores. We chose
percentiles over machine learning approaches (e.g.,
gradient boosting, decision trees with feature im-
portance) because when communicating diagnostic
feedback to an evaluator, percentile distributions
provide the most natural and interpretable way to
identify which features have atypical values and
where they fall relative to typical patterns.

We use a dual percentile system that adapts to
each metric’s direction. For metrics where lower
values are preferred, we label the ranges as P25,
P50, P75, and P90, corresponding to the actual
percentiles. For metrics where higher values are
preferred, we maintain the same labels but apply
them to the inverse percentiles (P75, P50, P25,
and P10 respectively). This ensures P25 and P75
consistently identify the best quartile regardless of
metric direction.

The tool provides the evaluator agent with spe-
cific positional information (e.g., "passive voice
falls in P90 range") that directly translates to ac-
tionable feedback. While deviation from typical
patterns (beyond P10 or P90) suggests that a re-
vision may be warranted, such deviations do not
automatically indicate poor quality. For instance,
a text scoring in the P90 range for complex vo-
cabulary may still be considered plain language
if those terms are medically necessary and prop-
erly defined. Complex medical procedures may
require precise technical terminology that cannot
be simplified without losing essential meaning (a
limitation discussed in Section 7). The percentile
ranges serve as diagnostic indicators rather than
absolute quality judgments, guiding targeted im-
provements while preserving content accuracy. Ap-
pendix B.2 presents the complete thresholds used
as the diagnostic baseline. These thresholds are

90

then integrated into the PLS Evaluation Tool (Sec-
tion 3.3.2) to enable automated quality assessment.

3.3 Diagnostic Tools Development

We developed two deterministic tools that emu-
late the resources and decision-making process of
professional medical writers: a medical glossary
service and a PLS evaluation tool. These tools
provide the editor agent with the same type of guid-
ance a human medical writer would use, including
professionally-recommended terminology simplifi-
cations and rapid interpretable indicators to identify
atypical text patterns. By grounding our tools in
professional practices mentioned in the Cochrane
PLS guidelines, we enable systematic evaluation
and improvement of generated text.

3.3.1

We collected 20,637 medical terms with plain
language alternatives from 11 professional dictio-
naries recommended by the Williams (2025) and
Cochrane Plain Language Summary Guidelines
(Pitcher et al., 2022, page 29, Appendix 1). Ta-
ble 2 shows the distribution of terms across sources,
spanning cancer terminology, public health, dia-
betes, genetics, clinical trials, and other healthcare
domains (see Appendix C for detailed source de-
scriptions). The tool uses a longest-match regex
algorithm to identify medical terms in submitted
text and returns structured JSON with the term,
its plain language alternative, and source; mirror-
ing how a medical writer would consult reference
materials during revision.

Medical Glossary Tool

Source Focus Area Terms
NCI-C Cancer terminology 9,416
NCI-D Cancer drugs 9,144
CDC-T Public health 891
ADA-D Diabetes 247
NCI-G Genetics 242
Ulowa General 242
MRCT Clinical trials 187
WA-PH Immunization 104
WebMD-A  Asthma 75
CCIIO Insurance 59
Cochrane Systematic reviews 30
Total 20,637

Table 2: Medical glossary sources with term counts and
focus areas.

3.3.2 PLS Evaluation Tool

Using the percentile thresholds computed in Sec-
tion 3.2.2, the evaluation tool provides rapid, inter-



pretable assessments that a medical writer would
typically perform manually. Given a text, it com-
putes 18 linguistic features using standard compu-
tational linguistics algorithms (no LLMs involved)
and maps each to its percentile range based on
the thresholds. The tool generates evaluation re-
ports showing word count compliance, metric-by-
metric analysis, percentile assignments, and revi-
sion suggestions for atypical patterns. This human-
interpretable output allows the editor agent to make
informed decisions about which deviations warrant
revision and which are contextually justified (see
Appendix B.3 for example output).

3.4 Multi-Agent System Architecture

We designed 14 specialized agents and their corre-
sponding prompts organized into four functional
groups: Information Extraction, Writer, Diagnostic,
and Evaluation. Each prompt was developed based
on the Cochrane PLS template (Pitcher et al., 2022),
iteratively refined through a combination of Gem-
ini 2.5 Pro and Claude Opus 4.1 generations with
human revision to ensure alignment with Cochrane
guidelines (see the repository for all the prompts).
Figure 2 illustrates the complete multi-agent archi-
tecture with all components and their interactions.
We first describe the core agent functionalities be-
low; the architectural variants (Baseline, V1, Vo)
are presented in Section 3.4.4.

3.4.1 Information Extraction Agents

These agents work (mostly) in parallel to extract
different parts of the abstract simultaneously, with
each agent based on a specific section of the
Cochrane PLS template (Pitcher et al., 2022).

To begin, the Plain Titles Agent reformulates
technical review titles into patient-friendly ques-
tions, following Cochrane’s recommendation to use
question-based titles that directly address patient
concerns. When complex medical terms appear in
titles, they are either replaced with plain language
alternatives or clearly defined for patient under-
standing. Similarly, the Key Messages Agent ex-
tracts 2—3 main findings as bullet points, ensuring
technical terms are either avoided or explained.

For the introductory content, the Background
Agent creates 2-3 subsections with question-based
headings that explain what the health condition
is (“What is [condition]?”), why it matters, and
what the researchers wanted to find out (“What
did we want to find out?”). This output includes
the review aims, which are then referenced by the
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Methods Agent. Building on these aims, the Meth-
ods Agent writes “What did we do?” in 1-2 sen-
tences, ensuring direct connection to the research
goals. It describes three key actions—searching for
studies, combining results, and rating confidence
in evidence—using standardized phrases like “We
searched for studies that compared. ..” while avoid-
ing specific study design mentions unless essential.

The Results Agent generates “What did we
find?” by coordinating two specialized tool agents:
the Characteristics Agent extracts study details
(number of studies, participants, duration, coun-
tries), while the Findings Agent translates techni-
cal findings into plain language, simplifying narra-
tives and avoiding technical statistical terms.

To complete the extraction pipeline, the Limita-
tions Agent identifies constraints from the review
findings, and the Date Extraction Agent standard-
izes when the evidence was collected.

3.4.2 Writer Agents

The Assembly Agent takes all the pieces from the
extraction agents and combines them into one com-
plete summary. It follows the exact order required
by Cochrane: title, key messages, background sec-
tions, “What did we want to find out?”, “What did
we do?”, “What did we find?”, and so on.

The Editor Agent improves the assembled draft
through revision. It checks for problems like un-
explained medical terms, complicated sentences,
or forbidden elements (like acronyms or statisti-
cal data), working in coordination with evaluation
mechanisms to ensure quality standards are met.

3.4.3 Diagnostic and Evaluation Agents

These agents provide specialized diagnostic sup-
port and quality assessment throughout the writing
process. The Technical Terms Recognizer Agent
identifies remaining medical terms that require ex-
planation in plain language context.

The Evaluator Agent is a hybrid agent with dual
functionality. In its diagnostic capacity, it identi-
fies specific issues by leveraging the diagnostic
tools developed in the previous section. As an eval-
uator, it performs comprehensive quality checks
by verifying factual accuracy through comparing
drafts against original extraction outputs to detect
hallucinations, ensuring all required sections are
present, and using the PLS Evaluation Tool to as-
sess readability metrics against the thresholds from
Section 3.2.2.
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Figure 2: Multi-agent system architecture for PLS generation (V). Information Extraction Agents (red) process the
abstract in parallel to extract different components. Writer Agents (green) assemble and refine content sequentially.
Diagnostic Agents (blue) provide specialized terminology support using deterministic tools (yellow). The hybrid
Diagnostic and Evaluation Agent (purple) performs both diagnostic analysis and final quality assessment. The
pipeline flows from extraction through assembly and iterative refinement until the PLS is approved.

3.4.4 Architectural Variants

We evaluated three system configurations to as-
sess different approaches to task decomposition
and quality control:

 Baseline: This configuration consolidates the
entire workflow of the agents viewed into
a single, complete prompt. This allows the
model to generate the complete PLS in a sin-
gle step, without the need for iterative refine-
ment or specialized agent roles.

* Version 1 (V;): The primary multi-agent ar-
chitecture shown in Figure 2 that integrates
all the agents and tools described in the previ-
ous sections. In this configuration, specialized
agents handle different subtasks as designed,
the Evaluator Agent operates as an on-demand
tool that the Editor can invoke when needed,
and the Medical Glossary Tool provides termi-
nology support through the Glossary Agent.

¢ Version 2 (V3): An iterative variant where
the Evaluator operates as a standalone agent
that systematically evaluates each draft and
provides feedback to the Editor. The pro-
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cess terminates when either (1) the Evalua-
tor approves the draft based on quality crite-
ria, or (2) the maximum of 10 iterations is
reached. Additionally, V5 removes the Med-
ical Glossary Tool to assess whether explicit
medical dictionaries are necessary. For more
details, V3 iterative approach is presented in
Appendix A.1.

These variants allow us to compare monolithic
versus multi-agent approaches, tool-based versus
iterative evaluation strategies, and assess the impact
of explicit glossaries on generation quality.

4 Evaluation and Results

We evaluated the three architectural configurations
(Baseline, V1, Vo) described in Section 3.4.4 across
multiple language models to assess the impact of
multi-agent decomposition and iterative refinement
on PLS generation quality.

4.1 Experimental Setup

We implemented the system using n8n (2025) work-
flow automation platform and evaluated on 100
Abstract-PLS pairs from 2023-2025. We tested



six language models: Gemini 2.5 Pro (Google Al
for Developers, 2025), GPT-5 (OpenAl, 2025b)
via Azure OpenAl, GPT-OSS-120B and GPT-OSS-
20B (OpenAl, 2025a) via Together Al (2025),
Llama 3.3 70B, and Llama 3.2 3B.

All models were evaluated with the Baseline
configuration. Vi was tested with Gemini 2.5 Pro,
GPT-5, and GPT-OSS-120B. V5 was tested with
Gemini 2.5 Pro, GPT-OSS-120B, GPT-OSS-20B,
Llama 3.3 70B, and Llama 3.2 3B (GPT-5 could
not be run with Vy due to implementation con-
straints). Additionally, we tested a hybrid variant
where Llama 3.3 70B (V3) used Gemini 2.5 Flash
as the Evaluator Agent. All models used temper-
ature 0.0 except GPT-5 (temperature 1.0 due to
API constraints). For each run, all agents within a
configuration used the same underlying model.

4.2 Evaluation Metrics

Generated PLS texts were evaluated across three
dimensions:

1. Relevance: Measuring the semantic simi-
larity between the LLM-generated summaries and
human-written reference PLS using BERTScore
(Zhang et al., 2020), which computes token-level
similarity through contextual embeddings. We also
calculated similarity against original abstracts to
assess information retention.

2. Factuality: Evaluating the consistency of
generated content with source abstracts (ensuring
no contradictory information is introduced) using
AlignScore (Zha et al., 2023) and MeaningBERT
(Beauchemin et al., 2023), which measure factual
alignment and semantic equivalence respectively.

3. Readability: Assessing grammaticality and
ease of comprehension through computational met-
rics. Additionally, we computed percentile distri-
butions across all 18 linguistic features to measure
conformity with typical PLS patterns, with “Best
25%” representing the percentage of features in the
optimal quartile.

4.3 Results and Analysis

Our evaluation reveals inconclusive results with
mixed patterns across models and configurations
(Tables 3 and 4). No single architectural approach
consistently outperforms others across all quality
dimensions and model types, with results suggest-
ing fundamental trade-offs between factuality and
readability that manifest differently depending on
base model characteristics.
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Gemini 2.5 Pro is the only model where we can
validly compare all three configurations (GPT-OSS-
120B V; had implementation limitations where the
evaluator tool could only be invoked once, mak-
ing it unsuitable for valid comparison). Gemini
shows a clear trade-off pattern: the Vg configu-
ration achieves the best semantic similarity and
factuality scores to the reference corpus, but the
baseline produces more readable text across most
readability indices. The V; configuration (with
medical glossary and evaluator as tool) achieves
readability metrics similar to baseline and better
than Vo, suggesting that the medical glossary may
help balance factuality and simplicity in agentic
workflows, though we cannot confirm this conclu-
sively. This pattern reflects a general trend where
agentic configurations tend to improve relevance
and factuality metrics, while baseline configura-
tions often produce more readable outputs, though
this varies across models.

GPT-5 agentic (V1) underperforms its baseline
across most metrics, with the exception of Align-
Score to the original abstract. For GPT-OSS-120B,
the baseline outperforms both V; and V4 variants
in factuality to reference and readability metrics,
though V3 shows improvements over V;.

Smaller models exhibit distinct behaviors. GPT-
OSS-20B demonstrates considerable improve-
ments with the V5 architecture in semantic sim-
ilarity and factuality compared to baseline, with
modest impact on readability. Llama 3.2 3B shows
an interesting pattern where both baseline and agen-
tic configurations achieve the highest AlignScore to
the original abstract among all tested models (with
baseline being globally highest), yet both produce
the least readable outputs, with the agentic version
particularly affected. This suggests smaller models
may compensate for limited capabilities by main-
taining strict alignment to source material while
struggling with linguistic transformation. The hy-
brid configuration (Llama 3.3 70B with Gemini 2.5
Flash as evaluator) achieves competitive semantic
quality while substantially improving readability
compared to standard Llama 3.3 70B, demonstrat-
ing that evaluator quality impacts generation qual-
ity.

Examining conformity to typical PLS patterns
(Best 25% in Table 4), results are inconclusive.
Gemini 2.5 Pro improves with agentic configura-
tions, but this does not generalize to other mod-
els. Most configurations achieve conformity lev-
els comparable to human reference patterns. Ap-



VS. ORIGINAL ABSTRACT

VS. REFERENCE PLS

Model Approach
BERTScore MeaningBERT AlignScore | BERTScore MeaningBERT AlignScore
Reference (human) 0.8482 0.6825 0.7551 - - -

Baseline 0.8352 0.5957 0.7820 0.8701 0.7162 0.7002
Gemini 2.5 Pro Agentic (V1) 0.8420 0.5928 0.7909 0.8708 0.6907 0.7157
Agentic (V2) 0.8469 0.6136 0.7992 0.8736 0.7153 0.7219
GPLS Baseline 0.8342 0.6075 0.7692 0.8619 0.6873 0.6598
Agentic (V1) 0.8278 0.5863 0.7887 0.8499 0.6718 0.6522
Baseline 0.8407 0.6477 0.7696 0.8650 0.7346 0.6878
GPT-0SS-120B Agentic (V1) 0.8321 0.6468 0.7995 0.8562 0.7304 0.6708
Agentic (V2) 0.8464 0.6557 0.7953 0.8651 0.7393 0.6595
GPT-0SS.208 Baseline 08327 05857 07396 0.8565 0.6697 0.6480
Agentic (V2) 0.8422 0.6680 0.8002 0.8615 0.7534 0.6590
Baseline 0.8514 0.6985 0.7536 0.8679 0.7158 0.7076
Llama 3.3 70B Agentic (V2) 0.8549 0.6818 0.7823 0.8708 0.7446 0.7140
Agentic (V2 + Gemini 2.5 Flash) | 0.8485 0.6514 0.7644 0.8711 0.7325 0.6982
Baseline 0.8477 0.6566 0.8499 0.8467 0.6302 0.6982

Llama 3.2 3B ——— e Hn 9i) 0.6592
Agentic (V2) 0.8551 0.6952 0.8403 0.8532 0.6672 0.6706

Table 3: Semantic similarity and factuality metrics for all tested models and approaches. Bold indicates best
performance within each model, underlined indicates worst within each model. Gray shading highlights best global
performance, red shading highlights worst global performance. Human reference excluded from comparisons. All

metrics averaged across 100 test samples.

Model Approach Words | FKGLL ARIL CLI] FRET GFIL LIX{ SMOG| RIX| DCRS| |Best25% P25% P50% P75% P90% P10%
Original Abstract 868 | 13.85 1407 1111 4212 2039 5926 1737 860 875 2761 739 1189 2022 1589 1.00

Reference PLS (human) 655 | 1138 1146 1121 4923 1621 5035 1423 607 737 5250 2589 17.89 2661 1478 022
Baseline 661 826 801 9.07 6445 1238 4121 1274 402 653 7844 4533 528 3311 1289 0.00

Gemini 2.5 Pro Agentic (V1) 591 856 849 942 6316 1251 4202 1216 421 639 8200 4656 922 3544 794  0.00
Agentic (V2) 567 | 940 947 1016 5878 13.54 44.64 1242 474  6.65 8322 4467 911 3856 7.06 0.00

GPLS Baseline 866 | 9.62 9.89 1046 57.97 1349 4508 14.62 487 674 6383 4133 556 2250 9.61 0.00
Agentic (V1) 879 | 1097 1159 1171 5114 1512 4834 1550 561 771 4933 2667 1400 2267 822 0.0

Baseline 623 982 994 974 59.10 1476 4598 1296 515  6.77 7344 3939 1056 3406 1322 0.0

GPT-0SS-120B Agentic (V1) 743 | 1105 1125 1112 5108 1655 49.62 1503 591 801 4672 2250 17.94 2422 1211  0.00
Agentic (V2) 623 | 1083 11.00 1082 5266 1632 4921 1387 58 775 8322 4467 911 3856 706 0.0

GPT-OSS-20B Baseline 541 | 1017 889 7.08 5828 13.85 4424 1184 504 632 7188 4011 1580 3176 885 0.1
Agentic (V2) 632 | 1050 1027 1014 5376 1578 47.78 1384 551 174 5932 3100 1352 2832 1697 0.17

Baseline 477 | 1201 1231 1105 4855 1689 51.89 1265 657 687 6156  29.17 2333 3239 961 044

Llama 3.3 70B Agentic (V2) 497 | 1223 1246 1259 4272 1691 53.08 1341 660  7.54 5728 2617 1761 3111 1678 0.00
Agentic (V2 + Gemini 2.5) | 514 | 997 1013 1091 5497 1424 4669 1248 511 684 58.89 2078 2422 3811 1039 0.17

Liama 3.2 38 Baseline 477 | 958 895 10.60 53.56 1432 4581 12.88 4.68  6.82 69.67 4511 1933 2456 606 028
Agentic (V2) 536 | 1293 1272 1265 37.95 17.57 5441 1406 695  7.96 4569 1998 2193 2571 1430 150

Table 4: Readability metrics and percentile

distribution for all tested models. Left:

average readability scores

(arrows: | lower is better, T higher is better). Right: percentage of linguistic features in each percentile range
across 18 selected features. Best 25% represents percentage in optimal quartile. Bold indicates best performance
within each model, underlined indicates worst within each model. Gray shading highlights best global performance,
red shading highlights worst global performance. Original Abstract and Reference PLS (human) excluded from
comparisons. Averages computed across 100 test samples.

pendix A.2 presents a detailed example of the Vo
iterative refinement process, illustrating how the
Evaluator Agent provides structured feedback that
guides draft improvements from 83.33% to 94.44%
best quartile conformity.

5 Discussion

Our evaluation reveals inconclusive results regard-
ing which approach is superior, with both baseline
and multi-agent configurations showing distinct ad-
vantages depending on use case requirements. The
baseline proves remarkably effective when properly
designed with comprehensive instructions based
on Cochrane guidelines, demonstrating that sys-
tematic prompt engineering grounded in domain
standards can produce high-quality PLS. The multi-
agent architecture, while not completely superior,
provides specific benefits in certain contexts.
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For smaller models, the multi-agent approach
shows improvements in relevance and factuality
metrics. GPT-OSS-20B improves in semantic sim-
ilarity and factual alignment when using the Vo
configuration, though with a slight deterioration
in readability. Notably, smaller models achieve
competitive or higher factuality scores compared
to larger models, something we noticed in our
prior work (Arias-Russi et al., 2025), suggesting
these models may be more conservative in adher-
ing to source material. A potential strategy to ad-
dress readability limitations would involve using
a smaller model for content extraction followed
by a larger model for final linguistic refinement,
potentially offering cost-effective generation while
preserving factual accuracy.

The multi-agent architecture provides opera-
tional advantages in terms of control and inter-



pretability. Separating extraction, assembly, and
evaluation into distinct agents makes each com-
ponent transparent and independently modifiable.
While the baseline consolidates all instructions into
a single comprehensive prompt, the decomposed
approach allows for targeted refinement of specific
subtasks without affecting the entire pipeline. This
modularity also produces intermediate outputs for
each section, which are stored separately in our
repository and can be inspected individually for
diagnostic purposes.

However, the multi-agent approach incurs higher
token costs due to multiple agent invocations and
memory preservation through context repetition
across agents. The V; configuration, which in-
cludes the medical glossary tool, is particularly
token-intensive, with processing costs reaching ap-
proximately 10M tokens (input + output combined)
per 100-abstract batch. Most tokens are input to-
kens, which are typically cheaper than output to-
kens, though iterative configurations may generate
similar text multiple times, increasing output costs.
The baseline, requiring only a single model invo-
cation per abstract, proves more cost-effective in
terms of API usage. This cost-benefit trade-off
must be considered when selecting an approach for
production deployment.

The effectiveness of smaller models like GPT-
OSS-20B with the multi-agent approach could en-
able local deployment in medical contexts where
data privacy is critical. While the current task
of simplifying published Cochrane reviews does
not involve sensitive information, other medical
text simplification scenarios could benefit from lo-
cal processing. For instance, healthcare providers
might need to simplify patient-specific medical re-
ports or treatment explanations without transmit-
ting sensitive data to external APIs. In such con-
texts, the ability to run smaller models locally while
maintaining reasonable quality through multi-agent
decomposition could provide a viable solution.

Beyond technical performance metrics, this
work addresses the practical need of facilitating
medical writers’ work and improving health in-
formation accessibility. Our framework provides
diagnostic tools and automated first drafts that meet
professional PLS standards, potentially reducing
the manual effort required to produce accessible
health communication materials.
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6 Future Work

Future work could explore alternative evaluation
approaches beyond percentile-based diagnostics,
including different metrics and quality assessment
methods for iterative refinement. Multi-agent hy-
brid systems where different agents use specialized
models could balance cost and quality. Extending
the architecture to other plain language formats
such as PPLS or documents following the Fed-
eral Plain Language Guidelines (Williams, 2025)
would test its generalizability. Additionally, in-
corporating full-text papers as input sources rather
than abstracts alone could address content cover-
age limitations, potentially leveraging datasets like
Cochrane-auto for improved alignment between
source and simplified text.

7 Limitations

Our system may perpetuate suboptimal informa-
tion prioritization patterns from the training data
(Bakker and Kamps, 2024). Computational con-
straints and API rate limits restricted experimen-
tation scope, and we did not conduct formal sta-
tistical hypothesis testing. GPT-5 could not be
tested with V5 due to API rate limits, only supports
temperature 1.0% preventing deterministic gener-
ation, and exhibited inconsistent behavior (some-
times the model did not use the evaluation tool
for V1). GPT-OSS-120B V; had implementation
issues with the evaluator tool. V; intermediate out-
puts were lost due to storage issues; Vo outputs
are available in the repository. The Vo example
in Appendix A.2 represents a single cherry-picked
case. Our percentile-based evaluation framework
represents statistical conformity rather than abso-
lute quality, and strict percentile ranges could pe-
nalize innovative plain language strategies.

8 Lay Summary

Medical research papers often contain complex lan-
guage that makes them difficult for patients and
the general public to understand. Plain Language
Summaries help solve this problem by explaining
research findings using everyday words. Organiza-
tions like Cochrane create these summaries for their
systematic reviews, which combine results from
many studies to answer health questions. However,

Zhttps://web.archive.org/web/20250903093505/
https://community.openai.com/t/temperature-in-
gpt-5-models/1337133/20


https://github.com/feliperussi/tsar-2025-medical-writing-agent-cochrane
https://github.com/feliperussi/tsar-2025-medical-writing-agent-cochrane
https://web.archive.org/web/20250903093505/https://community.openai.com/t/temperature-in-gpt-5-models/1337133/20
https://web.archive.org/web/20250903093505/https://community.openai.com/t/temperature-in-gpt-5-models/1337133/20
https://web.archive.org/web/20250903093505/https://community.openai.com/t/temperature-in-gpt-5-models/1337133/20

writing plain language summaries requires med-
ical expertise and takes considerable time. This
creates a bottleneck in making health information
accessible to everyone.

We wanted to find out whether computer sys-
tems using Al could automatically generate high-
quality plain language summaries. Specifically,
we tested whether breaking down the writing task
into smaller steps handled by specialized Al agents
would work better than using a single comprehen-
sive instruction. We also wanted to know if this
approach would be more helpful for some Al mod-
els than others.

We built a system that divides summary writing
into four stages: extracting information from the
medical abstract, assembling it into a draft, check-
ing for medical terms that need simplification, and
evaluating readability. The system uses a medical
dictionary with over 20,000 terms and their plain
language alternatives. It also includes a statistical
analyzer that compares the generated text against
patterns found in human-written summaries. We
tested this system using 100 Cochrane medical ab-
stracts and six different Al models, ranging from
large commercial models to smaller open-source
ones.

Our results are mixed and there is no clear win-
ner among the designed architectures. The base-
line approach, which uses a single well-designed
instruction, performed surprisingly well. The
multi-agent system did not consistently outperform
the baseline, but it showed specific advantages.
Smaller AI models improved notably when using
the multi-agent approach, achieving better accu-
racy in preserving medical facts, though sometimes
at the cost of readability. We also found that the
multi-agent system provides greater control and
less black-box effect, allowing users to inspect and
modify individual steps separately.

Healthcare organizations and research institu-
tions working with limited computational resources
could benefit from these findings. The results sug-
gest that smaller, locally-run Al models combined
with the multi-agent approach could generate rea-
sonably accurate summaries while maintaining data
privacy. The modular design also makes it easier to
adapt the system for different types of medical writ-
ing beyond Cochrane summaries. However, more
work is needed to improve readability when using
smaller models and to reduce the computational
costs of the multi-agent approach.
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A System Architecture and Methodology
Workflow

Figure Al illustrates the complete methodology
workflow for developing and evaluating the multi-
agent system.

A.1 Tterative Architecture

Initial experiments revealed that the baseline con-
figuration considerably outperformed the V; ar-
chitecture in several metrics. This motivated the
development of V; as an alternative approach to
test different architectural strategies and increase
result diversity. The Vo configuration (Figure A2)
addresses two key observations from preliminary
testing: (1) smaller models struggle to properly
utilize tools, performing significantly better with
iterative workflows rather than on-demand tool in-
vocation, and (2) the Medical Glossary Tool, while
conceptually useful, consumes substantial tokens
without proportional quality gains.

The V5 architecture maintains the same special-
ized agents as V; but reorganizes their interaction
pattern. Instead of the Editor invoking the Evalua-
tor as a tool when needed, the Evaluator operates as
an independent agent that systematically reviews
each draft and provides structured feedback to the
Editor. This iterative loop continues for up to 10
cycles or until the Evaluator approves the output
based on quality criteria. When the maximum iter-
ation limit is reached without approval, we select
the iteration that achieves the highest percentage of
linguistic features in the optimal quartile. For each
generated text, the PLS Evaluation Tool computes
18 linguistic features and maps them to percentile
ranges (P25, P50, P75, P90).

The optimal quartile corresponds to P25 for
lower-is-better metrics and P75 for higher-is-better
metrics. We calculate what percentage of all fea-
tures fall within this optimal range and select the
iteration with the highest percentage. While met-
rics like AlignScore might provide more reliable
quality assessment, we opted for this percentile-
based approach due to computational efficiency
constraints, as computing AlignScore for each iter-
ation would significantly extend processing time.
The removal of the Medical Glossary Tool reduces
token consumption while testing whether explicit
medical dictionaries are necessary for quality PLS
generation.

This architectural variant allowed us to compare
monolithic (Baseline), tool-based (V1), and iter-
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ative (Vg) approaches using identical underlying
models and agents, providing insights into how in-
teraction patterns affect generation quality across
different model sizes.

A.2 Example V; Iterative Refinement Process

This section illustrates the V5 iterative refinement
process using Cochrane review CD002120.PUB4
(“Combined oral contraceptive pill for primary dys-
menorrhoea”) as a representative example.

The Information Extraction Agents processed
the abstract and produced structured outputs for
each required PLS component:

Plain Title: What are the benefits and harms of
the combined birth control pill for treating painful
periods (primary dysmenorrhoea)?

Key Messages:

* For women with painful periods, the com-
bined birth control pill reduces pain more
than a placebo. However, it may cause un-
wanted effects such as irregular bleeding,
headaches, and nausea.

Taking the pill continuously may be better
at reducing pain than taking it in the stan-
dard way.

Because the studies were short, the long-
term effects are not known. It is also unclear
if the pill is more effective than other pain
medicines due to a lack of studies directly
comparing them.

Background: Many women experience painful
menstrual cramps, a condition known as dys-
menorrhoea. When these painful cramps are not
caused by another underlying medical condition
in the pelvis, it is called ‘primary dysmenorrhoea’.
Combined oral contraceptive pills are a common
treatment for this pain.

Methods: We searched for studies that compared
combined oral contraceptive pills with a placebo,
other contraceptive pills, or anti-inflammatory
drugs for treating painful periods. We then com-
bined the results and rated our confidence in the
evidence.

Results: This review included 21 randomised con-
trolled trials involving 3723 women. For women
with painful menstrual cramps, OCPs reduce pain
more effectively than placebo. However, OCPs
increase the risk of irregular bleeding. Continu-
ous use may reduce pain more effectively than the
standard schedule. . .

Limitations: Our confidence in the evidence is
only moderate because there are not enough stud-
ies to be certain about all outcomes. The evidence
does not cover long-term effects.

Currency: The evidence is up to date to March
2023.

The Assembly Agent constructed the initial draft
of 617 words, achieving 83.33% of features in
the best quartile. The Evaluator identified three
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key issues: (1) a non-question subheading (“Main
results: oral contraceptives for painful menstrual
cramps”), (2) complex phrasing such as “When
these painful cramps are not caused by another un-
derlying medical condition in the pelvis...”, and
(3) excessive passive voice constructions. Three
metrics fell in the P90 range: nouns (158), complex
words (241), and long words (165). The draft was
marked NOT_APPROVED.

What are the benefits and harms of the combined birth control
pill for treating painful periods. ..

Key messages [same as extracted]

‘What is primary dysmenorrhoea and what did this review
study?

What is primary dysmenorrhoea? Many women experience
painful menstrual cramps, a condition known as dysmenorrhoea.
It is a common and major cause of pain. When these painful
cramps are not caused by another underlying medical condi-
tion. ..

What did we want to find out? We wanted to find out about the
benefits and harms of using combined oral contraceptive pills. . .

How was the review conducted? We searched for studies
that compared combined oral contraceptive pills with a placebo,
other contraceptive pills, or anti-inflammatory drugs. ..

Main results: oral contraceptives for painful menstrual
cramps For women with painful menstrual cramps, the pill
reduces pain more effectively than a placebo. However, the pill
comes with unwanted effects. ..

How reliable is this evidence? Our confidence in the evidence
is only moderate because there are not enough studies to be
certain. ..

How up to date is this evidence? The evidence is up to date to
March 2023.

The Editor incorporated this feedback in Draft
2, reducing word count to 561 and improving the
best quartile percentage to 94.44%. The Editor con-
verted the non-question subheading to “What are
the main results of the review?”, simplified phras-
ing (e.g., “This is called ‘primary dysmenorrhoea’
when the pain is not caused by another medical
problem” instead of the more complex original
wording), and reduced passive voice from 17 to
13 instances. All linguistic metrics moved within
P75 or better, with no metrics remaining in the P90
range. The draft was marked PASS.

What are the benefits and harms of the combined birth control
pill for treating painful periods. ..

Key messages [same as extracted]

What is primary dysmenorrhoea? Many women experience
painful menstrual cramps, a condition known as dysmenorrhoea.
This is called ‘primary dysmenorrhoea’ when the pain is not
caused by another medical problem in the pelvis. ..

‘What did we want to find out? We wanted to find out about
the benefits and harms of using combined oral contraceptive
pills. ..

How did we conduct this review? We searched for studies that
compared combined oral contraceptive pills with a placebo. We
found 21 studies, known as randomised controlled trials, with
a total of 3723 women. In these studies, researchers randomly
put people into one of 2 or more treatment groups. . .

What are the main results of the review? For women with
painful menstrual cramps, the pill reduces pain more effectively

than a placebo. However, the pill comes with unwanted ef-
fects. ..

How reliable is this evidence? Our confidence in the evidence
is only moderate because there are not enough studies to be
certain about all health effects. ..

How up to date is this evidence? The evidence is up to date to
March 2023.

Table Al quantifies the improvements between
iterations.

Metric Draft 1 Draft 2
Word count 617 561
FKGL 9.68 9.54
Passive voice 17 13
Nouns 158 142
Complex words (DC) 241 213
Long words 165 147
Best quartile (%) 83.33 94.44
P90 metrics 3 0
Decision FAIL PASS

Table Al: Metric improvements from Draft 1 to Draft 2
for CD002120.PUB4.

B Linguistic Analysis Framework

B.1 Linguistic Features

We computed 20 linguistic features for each doc-
ument using the Readability (2019) and SpaCy
(2025) libraries. Here we describe the 20 features
selected for quality assessment (see Table B1 for
the percentile thresholds):

1. Words: Total word count in the text.
2. Sentences: Total sentence count in the text.

3. Flesch Reading Ease (FRE): Produces a
score where higher values indicate easier read-
ability (Flesch, 1948; Kincaid et al., 1975).

4. Flesch-Kincaid Grade Level (FKGL): Esti-
mates the U.S. school grade level needed to
comprehend the text (Flesch, 1948; Kincaid
et al., 1975).

5. Gunning Fog Index (GFI): Estimates the
number of years of formal education needed
to understand the text (Gunning, 1952).

6. SMOG Readability Formula (SMOG): Es-
timates readability by counting polysyllabic
words (Mc Laughlin, 1969).

7. Dale-Chall Readability Score (DCRS): As-
sesses readability by comparing text words

against a list of familiar words (Chall and
Dale, 1995).
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8. Coleman-Liau Index (CLI): Measures read-
ability based on letter and word counts per
sentence (Coleman and Liau, 1975).

9. Automated Readability Index (ARI): Com-
putes readability using characters, words, and
sentences (Senter and Smith, 1967).

10. LIX: Calculates readability by analyzing the
proportion of long words in the text (Ander-
son, 1983).

11. RIX: Computes readability from the number
of long words per sentence (Anderson, 1983).

12. Words per Sentence: Average number of
words per sentence, computed as total words
divided by total sentences.

13. Passive Voice: Frequency of passive voice
constructions, determined via verb forms
tagged as VBN (e.g., “was given”).

14. Active Voice: Frequency of active voice con-
structions, counted as verbs not tagged as
VBN (e.g., “ran”, “decided”).

15. Nominalization: Count of nominalizations,
where verbs or adjectives are transformed into
nouns (e.g., “development” from “develop”).

16. Complex Words (DC): Count of complex
words according to the Dale-Chall method
(unknown polysyllabic words from a list of
basic words).

17. Long Words: Count of words exceeding 7
letters in length.

18. Complex Words: Count of words with three
or more syllables (e.g., “inconceivable”).

19. Pronouns: Count of pronouns in the text, de-
termined by tokens with the part-of-speech
PRON (e.g., “him”, “she”).

20. Nouns: Count of nouns in the text, de-
termined by tokens with the part-of-speech
NOUN (e.g., “book”, “concept”).

B.2 Percentile-Based Reference Thresholds

We derived these thresholds from the training cor-
pus of 6,754 Plain Language Summaries. The la-
beling system adapts to metric directionality as de-
scribed in Section 3.2.2: for lower-is-better metrics
({), the labels correspond to actual percentiles; for

higher-is-better metrics (1), the same labels repre-
sent inverse percentiles. This ensures P25 and P75
consistently identify what we could consider the
"best" quartile across all metrics (having in mind
that not being in this quartile does not necessarily
mean that the text is bad/not plain).

B.3 Example PLS Evaluation Tool Output

The PLS Evaluation Tool generates structured text
output (both JSON and human-readable format)
that is directly provided to the LLM agents as in-
put. Table B2 illustrates the tool’s analysis of an
abstract-PLS pair from the same publication. The
original abstract deviates significantly from typi-
cal PLS patterns, while its professionally written
PLS achieves better conformity. For each metric
deviating from typical patterns (P90 or beyond),
the tool automatically generates specific feedback
suggesting reduction to median values. The actual
tool produces formatted text, but we present it here
in tabular form for clarity.

C Medical Glossary Sources

We compiled medical glossaries from eleven au-
thoritative sources to support plain language trans-
lation (Table 2 in the Methodology section presents
the source distribution and term counts). Most
of these resources are compiled in the University
of Maryland’s Williams (2025), which provides
comprehensive plain language resources for health
communication. Each source provides specialized
terminology translations for different healthcare
domains:

¢ NCI-C (National Cancer Institute, 2025a):
National Cancer Institute’s comprehensive
cancer dictionary covering types, treatments,
procedures, and side effects for patient educa-
tion.

 NCI-D (National Cancer Institute, 2025a):
National Cancer Institute’s drug database with
chemotherapy agents, targeted therapies, and
immunotherapy medications.

¢ CDC-T (Centers for Disease Control and Pre-
vention, 2011): CDC’s thesaurus providing
plain language alternatives for epidemiologi-
cal and public health terminology.

e ADA-D (American Diabetes Association,
2024): American Diabetes Association’s glos-
sary covering diabetes types, management,
complications, and monitoring terms.
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READABILITY INDICES

Feature P25/P75% P50 P75/P25*  P90/P10*
FRE 1 >48.17 > 4048 > 32.68 < 25.27
FKGL | <1177 <1316 <14.59 > 16.05
GFI | <16.15 <1779 <19.39 > 21.05
SMOG | <10.68 <1211 <1358 > 14.87
DCRS | <7.19 <17.65 <8.16 > 8.63
CLI| <11.36 <1266 <1396 > 15.16
ARI | <12.02 <13.60 <15.29 > 16.95
LIX | <50.25 <5432 <5840 > 62.38
RIX | <6.04 <17.04 <8.14 > 9.36
STRUCTURAL COMPLEXITY
Words/Sent. | < 19.81 <2213 <2476 > 27.60
Passive Voice | <9 <13 <18 > 23
Active Voice T >41 > 29 > 20 < 14
Nominalization | <8 <13 <20 > 27
VOCABULARY COMPLEXITY
Complex Words (DC) | <115 <160 <213 > 277
Long Words | < 88 <122 < 164 > 208
Complex Words | <60 <84 <115 > 145
CONTENT DENSITY
Pronouns 1 >21 > 13 >8 <5
Nouns | <83 <116 < 157 > 202

Table B1: Percentile-based reference ranges for 18 linguistic features derived from 6,754 PLS texts. Column headers
show actual percentiles for lower-is-better metrics (}) and with asterisk (*) for higher-is-better metrics (). For
example, P25/P75* means 25th percentile for | metrics and 75th percentile for 1 metrics, both representing the best
quartile.

¢ NCI-G (National Cancer Institute, 2025b):
National Cancer Institute’s genetics dictionary
explaining hereditary conditions, genetic test-
ing, and molecular biology concepts.

* Ulowa (Human Subjects Office, University
of Towa, 2021): University of Iowa’s gen-
eral medical term translations designed for
informed consent documents and patient com-
munication.

* MRCT (The Multi-Regional Clinical Trials
Center of Brigham and Women’s Hospital and
Harvard, 2025): Multi-Regional Clinical Tri-
als Center’s glossary for clinical research pro-
tocols, trial phases, and regulatory terminol-

ogy.

* WA-PH (Washington State Department of
Health, 2023): Washington State’s glossary fo-
cused on vaccine types, immunization sched-
ules, and disease prevention terminology.

* WebMD-A (WebMD, 2022): WebMD’s
asthma-specific dictionary covering triggers,
medications, devices, and respiratory symp-
toms.

¢ CCIIO (Center for Consumer Information &
Insurance Oversight, 2024): Health insurance
glossary explaining coverage terms, benefits,
deductibles, and healthcare plan types.

e Cochrane (Pitcher et al., 2022): Cochrane’s
guideline for writing systematic review sum-
maries with standardized plain language tem-
plates.

D Complete Linguistic Feature Analysis

Table D1 presents a comprehensive analysis of

all 20 linguistic features across all tested mod-
els, organized into three categories:

Structure

(word/sentence metrics), Style (voice and pronoun
usage), and Readability & Complexity (traditional
readability indices and vocabulary measures).
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(a) Original abstract: 1019 words (b) Corresponding PLS: 672 words

Metric Value Target Rating Metric Value Target Rating

Within typical ranges Within typical ranges

FRE 38.55 > 40.48 P25 Words/Sent. 19.76 <2213 P25

Active Voice 83 >29 P75 FKGL 11.68 <13.16 P25

Pronouns 30 >13 P75 GFI 15.47 <17.79 P25

CLI 11.95 < 12.66 P50 Active Voice 52 >29 P75
Pronouns 36 >13 P75
CLI 12.75 < 13.96 P75
FRE 46.53 > 40.48 P50
ARI 12.52 < 13.60 P50
LIX 52.06 <5432 P50
RIX 6.38 <7.04 P50
DCRS 7.30 <17.65 P50

Deviating from typical patterns Deviating from typical patterns

FKGL 15.11 <13.16 P90 Nominalization 22 <13 P90

ARI 16.17 < 13.60 P90 Nouns 198 <116 P90

Words/Sent. 29.11 <2213 Beyond P90 SMOG 14.18 <1211 P90

Passive Voice 42 <13 Beyond P90 Complex Words (DC) 269 < 160 P90

Nominalization 44 <13 Beyond P90 Complex Words 127 <84 Po0

Nouns 326 <116 Beyond P90 Passive Voice 31 <13 Beyond P90

GFI 22.72 < 17.79  Beyond P90 Long Words 217 <122 Beyond P90

LIX 64.15 <5432  Beyond P90

RIX 10.20 <704 Beyond P90

SMOG 18.97 < 12.11 Beyond P90

DCRS 9.30 < 7.65 Beyond P90

Complex Words (DC) 507 < 160 Beyond P90

Complex Words 282 < 84 Beyond P90

Long Words 357 <122 Beyond P90

Table B2: Example of PLS Evaluation Tool output comparing an abstract-PLS pair. The original abstract (a)
exceeds the word limit and shows poor conformity with 14 of 18 metrics deviating from typical patterns. Its
corresponding PLS (b) meets the word limit and achieves moderate conformity with only 7 metrics deviating. The
tool automatically generates feedback suggesting median target values for all metrics at P90 or beyond.

Structure Lexical Features
Model Approach
Words Sent. WPS | Pass. Act. Pron. Nom. Nouns CW-DC CW Lw
Original Abstract 868 33.82 26.04 | 24.56 49.85 2042 4335 278.62 411.69 21547 285.83
Reference PLS (1 ) 655 33.08 20.08 | 19.64 57.95 35.01 25.02 187.50 263.36 133.12 197.00
Baseline 661  41.64 16.05| 1475 6643 4552 19.05 171.80 240.15 98.59 166.07
Gemini 2.5 Pro Agentic (V1) 591  36.10 16.53 | 11.49 63.20 40.19 17.68 15935 208.00 86.35 149.57
Agentic (V2) 567 3273 17.48 | 12.05 59.57 35.07 17.92 15356 207.12 92.02 152.80
GPLS Baseline 866  48.69 17.90 | 18.59 90.29 46.74 22.09 249.45 32140 136.71 235.15
Agentic (V1) 879 4560 19.49 | 21.67 9290 44.73 25.89 27874 375.02 160.88 253.35
Baseline 623 3247 1934 |14.17 6393 3552 19.92 16030 229.30 109.29 165.78
GPT-0SS-120B Agentic (V1) 743 3770 19.80 | 18.73 75.59 39.10 25.68 218.46 33097 160.50 221.94
Agentic (V2) 623  31.62 19.80 | 1437 64.15 3324 21.29 177.80 266.55 130.59 182.99
GPT-0SS-20B Bascl»line 541 27.52 19.31|12.18 57.55 3231 16.08 141.26 193.89 87.96 141.78
Agentic (V2) 632 3341 18.88 | 1547 6561 3276 2092 179.55 275.15 131.01 183.65
Baseline 477 21.65 2223 | 9.51 4443 2926 19.56 130.86 173.90 95.13 141.06
Llama 3.3 70B Agentic (V2) 497 2526 19.85|10.89 46.97 2349 1993 148.66 207.16 112.08 16590
Agentic (V2 + Gemini 2.5 Flash) | 514 2937 17.62 | 9.57 5474 32.64 17.86 143.63 19428 92.17 14895
Llama 3.2 3B Baseline 477 3140 1528 | 11.94 3827 2536 19.09 127.76 185.00 98.34 14572
Agentic (V2) 536 27.83 19.79 | 1573 40.84 1742 25.17 16241 239.07 13042 187.85

Table D1: Linguistic feature analysis (Structure and Lexical Features) across all tested models and approaches.
Gray shading highlights original abstract and human reference baseline. Abbreviations: Words Per Sentence (WPS),
Passive voice (Pass.), Active voice (Act.), Pronouns (Pron.), Nominalization (Nom.), Complex Words Dale-Chall
(CW-DC), Complex Words (CW), Long Words (LW). Averages computed across 100 test samples.
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Abstract

This work presents a system for on-device
text simplification that enables users to pro-
cess sensitive text without relying on cloud-
based services. Through the use of quantiza-
tion techniques and a novel approach to con-
trollable text simplification, we reduce model
size by up to 75% with minimal performance
degradation. Our models demonstrate efficient
state-of-the-art results using a synthetic dataset
of 2,909 examples, outperforming prior work
trained on 300K examples. This efficiency
stems from: (1) a single control token strat-
egy that precisely targets specific reading lev-
els, (2) a multi-level training approach that ex-
poses models to transformations from multiple
source complexity levels, and (3) individual
models that dedicate full parameter capacity
to specific reading level transformations. Our
best models achieve up to 82.18 BLEU (at the
Advanced level) and 46.12 SARI (at the Ele-
mentary level) on standard benchmarks, with
performance preserved even after aggressive
quantization. This work is implemented as
a collaboration with the Mozilla Al team to
processes text entirely locally, ensuring sensi-
tive information never leaves the user’s device.
We have a demonstration video' and a web
demo available at: https://pablorom2004.
github.io/Simplification-Web-Demo/

1 Introduction

Text simplification aims to reduce textual complex-
ity while preserving essential meaning, thereby im-
proving accessibility for a broad range of readers
(Alva-Manchego et al., 2021). Today, sequence-
to-sequence neural models provide state-of-the-art
results, but many existing solutions require server-
side processing, raising concerns about data privacy
and latency when processing sensitive content like
medical information or legal documents.

"https://youtu.be/TzmaxnARMzg

Our work addresses these issues by introducing
an on-device text simplification system with two
core innovations. First, we implement a single con-
trol token strategy instead of relying on multiple
complexity metrics. This approach departs from
previous work (Li et al., 2022) that employed mul-
tiple tokens to represent various linguistic features.

Second, we create a high-quality synthetic
dataset comprising only 2,909 examples generated
by carefully prompting large language models. De-
spite its relatively small size, this dataset outper-
forms the 300K-example WikiLarge corpus (Zhang
and Lapata, 2017) on standard benchmarks, high-
lighting that data quality can far outweigh quantity
for efficient model training.

We deploy our models locally in the browser via
transformers.js*, ensuring that all data processing
happens directly on the user’s device. Experiments
on standard benchmarks show that our models rival
or outperform previous approaches, and maintain
their quality even when quantized for efficient on-
device operation.

2 Related Work

Text simplification has progressed from rule-based
approaches (Elhadad and Sutaria, 2007; Yatskar
et al., 2010; Biran et al., 2011) to data-driven meth-
ods leveraging parallel corpora (Surya et al., 2019;
Martin et al., 2020; Omelianchuk et al., 2021; Mar-
tin et al., 2022). For comprehensive overviews of
recent developments, see (North et al., 2025). Pre-
trained language models like BART (Lewis et al.,
2019) have enabled more fluent and faithful simpli-
fications.

Control tokens for controllable text simplifica-
tion were first introduced by (Scarton and Specia,
2018), with (Martin et al., 2020) and (Spring et al.,
2021) further expanding on controllable simplifica-
tion. (Li et al., 2022) explored different control

Zhttps://huggingface.co/docs/transformers. js
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token configurations and found that tokens rep-
resenting distinct aspects of complexity (e.g., de-
pendency tree depth, word rank, and length ratio)
could effectively guide generation. However, their
approach used multiple tokens simultaneously, po-
tentially creating competition for model attention
and parameter space. Our work builds on this line
of research by using a single, level-based control
token.

Synthetic data generation using large language
models has emerged as a promising direction for
low-resource NLP tasks (Wang et al., 2023). Re-
cent work has demonstrated that high-quality syn-
thetic data can match or exceed naturally collected
data for various applications (Yang et al., 2023).
Our work emphasizes quality and diversity over
quantity, showing that careful prompt engineering
can produce highly effective training examples.

On-device NLP has gained traction with growing
privacy concerns and the need for offline capabil-
ity. Mozilla’s Firefox Translations project (Mozilla
NLP Team, 2023) pioneered browser-based ma-
chine translation using ONNX format (Founda-
tion, 2017) (Open Neural Network Exchange, an
open standard for machine learning deployment)
and WebAssembly. Model compression techniques
like distillation and quantization (Jain, 2022) have
been essential for deploying models in resource-
constrained environments. Our work extends these
approaches to text simplification, demonstrating
successful deployment with minimal performance
loss.

3 Model

3.1 Synthetic Dataset Creation

We created a synthetic dataset of 2,909 examples,
each with three levels of simplification: Elemen-
tary, Secondary, and Advanced. The dataset gener-
ation involved a two-stage approach:

First, we developed a detailed prompt® using
Claude 3.5 Sonnet (Anthropic, 2024), specifically
describing task requirements, formatting, and qual-
ity expectations. This meta-prompting approach,
asking one language model to create prompts for
another, represents a valuable technique for data
creation. Our prompt included specific instructions
for creating sentences at different reading levels,
with clear definitions for each simplification level:

3https://github.com/pabloRom2004/
Simple-Synthetic-Dataset/blob/main/Promt1.txt

* ELEMENTARY: Uses very simple words
and straightforward structure. Suitable for
5th-7th grade.

* SECONDARY: Simple vocabulary. Suitable
for 8th-12th grade.

* ADVANCED: Keep as one sentence but
slightly simpler than complex.

The resulting prompt was then used with Ope-
nAl’s ol model (OpenAl, 2024) (a large multi-
modal model with strong reasoning capabilities) to
generate 2,284 synthetic examples (an example is
the complex sentence and the three levels of sim-
plification). We chose the ol model due to its large
context window and reasoning capabilities, which
helped ensure high-quality, diverse examples. The
prompt instructed the model to generate content
across various topics (news, technology, health,
education) that Firefox users might encounter dur-
ing web browsing. We enhance model training
by including multiple examples (e.g., training the
Elementary model on Complex — Elementary, Ad-
vanced — Elementary, and Secondary — Elemen-
tary inputs).

To ground our dataset in established benchmarks,
we supplemented the synthetic data with 625 ex-
amples derived from the WikilLarge training set,
where we extracted complex sentences and used
our ol prompt* to generate three simplified ver-
sions. This hybrid approach balances novel gener-
ation with grounding in established datasets. The
dataset can be found here: https://github.com/
pabloRom2004/Simple-Synthetic-Dataset

3.2 Control Token vs. Separate Models
Approaches

We explored two distinct approaches to modeling
reading level control:

3.2.1 Control Token Model

For the Control Token Model approach, we trained
a single BART-base model with a prepended
control token (e.g., <LEVEL_ELEMENTARY>,
<LEVEL_SECONDARY>, or <LEVEL_ADVANCED>)
indicating the desired reading level. Unlike
previous approaches that used multiple control
tokens for different aspects of simplification (Li
et al., 2022), our approach uses a single token for
the entire simplification level.
*https://github.com/pabloRom2004/

Simple-Synthetic-Dataset/blob/main/
Promt2WikilLarge. txt
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This single token strategy simplifies the control
mechanism and allows the model to learn a more di-
rect mapping between the token and the desired out-
put style. For example, rather than specifying multi-
ple complexity dimensions such as dependency tree
depth, word rank, levenshtein distance and length
ratio, we simply use <LEVEL_ELEMENTARY> to in-
dicate the overall desired simplification level, in
line with the main takeaway from the bitter lesson’,
a principle in Al research suggesting that general
methods leveraging computation ultimately outper-
form human-engineered approaches.

3.2.2 Individual Models

For the Individual Models approach, we trained
three separate models, each dedicated to one target
reading level. This approach exposes models to
transformations from multiple source complexity
levels during training. The Elementary model is
trained using Complex — Elementary, Secondary
— Elementary, and Advanced — Elementary trans-
formation pairs. Similarly, the Secondary model
incorporates Complex — Secondary and Advanced
— Secondary examples, while the Advanced model
focuses only on Complex — Advanced transforma-
tion pairs. This multi-level training strategy pro-
vides each model with a richer set of transformation
patterns, helping it learn more robust simplification
strategies by observing how text at different com-
plexity levels can be transformed to its target level.

From a theoretical perspective, individual mod-
els allocate the entire parameter space to learning
one specific level of transformation, avoiding the
parameter competition that might occur in a sin-
gle model trying to learn multiple transformation
levels simultaneously. This parameter efficiency
becomes particularly important in smaller models
like BART-base, where the capacity to represent
multiple complex transformations may be limited.

3.3 Training Configuration

We used a BART-base sequence-to-sequence model
(Lewis et al., 2019) as our foundation, with the
following hyperparameters: 8 epochs, batch size
of 8, learning rate of le-4 with Adam optimizer,
weight decay of 0.01, and 10% warmup steps.
The dataset was split using a 99/0.8/0.2 ratio for
train/test/validation. This high train percentage was
chosen because we evaluated on the standard AS-
SET Test Set as our benchmark rather than using

5http://www.incompleteideas.net/IncIdeas/
BitterLesson.html

our own test set, making it possible to allocate more
data for training.

Because of the relatively small dataset size, train-
ing on an NVIDIA 4080 Super took only approxi-
mately 30 minutes, highlighting the computational
efficiency of our approach. This rapid training
time stands in stark contrast to models trained on
large datasets like WikilLarge, which can take many
hours to train. The efficiency gain comes from both
the smaller dataset size and the clear learning signal
provided by our high-quality synthetic examples.

3.4 Deployment via transformers.js

We deploy our models on-device using Hugging-
Face’s transformers.js framework directly adher-
ing to the FireFox documentation®, which allows
running models hosted on HuggingFace’ with the
ONNX format directly in web browsers. Our de-
ployment pipeline involves two key steps:

We convert our trained models to ONNX format
for compatibility with a script provided by trans-
formers.js. This conversion is essential for allowing
the models to run in standard web browsers with-
out specialized hardware acceleration. In this same
script, quantization is applied to reduce model size
and memory footprint. We experimented with both
INTS8 and 4-bit quantization, which reduced file
sizes by up to 75% compared to the full-precision
FP-32 model with minimal performance degrada-
tion.

The resulting system stores models in the
browser’s local storage, enabling persistent avail-
ability across sessions without repeated downloads.
Once downloaded, models can be used completely
offline, ensuring privacy and reliability even in dis-
connected environments.

4 Results

4.1 Evaluation Setting

We evaluate on two widely-used text simplifica-
tion benchmarks: The ASSET Test Set (Alva-
Manchego et al., 2020) and TurkCorpus (Xu
et al., 2016), these two benchmarks feature human
made simplifications of 359 English sentences from
Wikipedia, focusing on fluency, meaning preserva-
tion, and simplicity. As a relatively recent bench-
mark, it offers multiple reference simplifications

6https://firefox—source—docs.mozilla.org/
toolkit/components/ml/

7https://huggingface.co/collections/pabRomero/
firefox-simplification-67d70f0d3dcb47939026303f
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per sentence, created through crowdsourcing with
detailed guidelines.

For evaluation, we employ multiple complemen-
tary metrics:

* BLEU (Papineni et al., 2002): Measures n-
gram overlap with reference texts, capturing
fluency and preservation of meaning

* SARI (Xuetal., 2016): Focuses on evaluating
Add, Delete, and Keep operations compared
to references, specifically designed for text
simplification evaluation

* BERTScore (Zhang et al., 2020): Captures
semantic similarity using contextual embed-
dings, offering a more nuanced measure of
meaning preservation

¢ LENS (Maddela et al., 2023) a learnt evalua-
tion metric for simplicity assessment

¢ SALSA (Heineman et al., 2023): An edit-
level simplification evaluation metric

4.2 Distillation and Quantization

Table 1 shows that quantized models (INT8 or
BNB-4) lose minimal performance compared to
FP-32 while reducing size by up to 75%. Notably,
the INT8 model (136MB) achieves the highest read-
ability scores (LENS, SALSA) despite its smaller
size, while BNB-4 outperforms on semantic preser-
vation metrics (BERT-P/R/F1). These results sug-
gest quantization may act as beneficial regulariza-
tion for certain simplification aspects, making these
compressed models ideal for resource-constrained
environments without sacrificing quality. The quan-
tization of the models was performed using the
framework provided by transformers.js.

4.3 Model Performance on ASSET Test Set

Table 2 compares our approaches with a baseline
BART model (Li et al., 2022) trained on Wiki-
Large.

Both our control token model and individ-
ual models outperform the baseline trained on
WikilLarge across all metrics, despite our syn-
thetic dataset containing 100 times fewer examples
(300,000 vs. 2,909). This striking result challenges
conventional wisdom, suggesting that a small set
of high-quality synthetic examples can be more ef-
fective than a large corpus of lower-quality or less
focused examples. The individually trained models
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Figure 1: Distribution of Flesch-Kincaid readability
scores for original ASSET Test Set sentences. Mean
score is around 47.4, reflecting moderate complexity.

outperform the control token model and the base-
line, showing the efficacy of specialization into a
single, well-defined task for these small language
models like BART.

4.4 Readability Analysis

Figure 1 shows the distribution of Flesch-Kincaid
readability scores for the original ASSET Test Set
sentences. These scores range from 0-100, with
higher scores indicating easier readability. Figure 2
shows the distribution of Flesch-Kincaid readabil-
ity scores of the individual models after simplifica-
tion.

Figure 3 visualizes how our Individual Models
transform text readability according to the Flesch-
kincaid score. Each point represents a sentence,
with readability score of the original text on the x-
axis and the readability of the simplified text on the
y-axis. Points above the diagonal line (y=x) indi-
cate simplification; points below it show increased
complexity.

This visualization confirms that our three models
effectively target distinct reading levels, with clear
separation in their simplification behaviours. The
Advanced level model stays around the y=x line,
which means that the model is generally just re-
writing the sentences in a similar level of complex-
ity just with different structure, potentially helping
a user understand the sentence once it is re-worded.
The Elementary level model shows clear simplifi-
cation from input to output, nearly all of the ex-
amples show clear improvements in their Flesch-
Kincaid scores which shows great simplification
ability from the model. While we acknowledge
that Flesch-Kincaid and other automatic readabil-
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Dataset Model BLEU SARI BERT-P BERT-R BERT-F1 LENS SALSA  Size
FP-32  51.17 42.07 0.682 0.667 0.657 58.80  68.88  540MB

ASSET INTS 4996 42.06 0.677 0.668 0.657 59.19 69.86 136MB
BNB-4 51.07 42.12 0.688 0.674 0.665 58.66  68.86 212MB

Table 1: Performance comparison of BART model variants with different quantization levels on text simplification

tasks.
Model Level BLEU SARI BERT-P BERT-R BERT-F1 LENS SALSA
Baseline - 51.17 42.07 0.682 0.667 0.657 58.80 68.88
Control  Elem 57.25 43.21 0.728 0.701 0.701 68.97 75.42
Control  Sec 6298 41.76 0.766 0.750 0.745 61.21 69.83
Control  Adv 5296 40.32 0.680 0.699 0.678 50.49 65.03
Indiv. Elem 5841 46.12 0.754 0.747 0.737 71.39 77.54
Indiv. Sec 72.81 42.19 0.828 0.828 0.817 62.46 68.91
Indiv. Adv 82.18 35.82 0.870 0.877 0.866 59.42 65.32

Table 2: Model performance on the ASSET Test Set. Individual Models outperform both the baseline and the

Control Token model.

ity metrics have known limitations in evaluating
text simplification quality (Alva-Manchego et al.,
2021), we present these scores as exploratory in-
dicators of relative complexity changes across our
models rather than definitive measures of simplifi-
cation success.

4.5 Example Simplifications

Table 4 in the Appendix presents selected exam-
ples from our models, highlighting successes and
challenges across different reading levels.

These examples highlight both the strengths of
our models (effective simplification at appropri-
ate levels) and areas for improvement (maintaining
factual accuracy and avoiding unnecessary trans-
formations).

S Prototype Implementation

We developed a web-based prototype that demon-
strates our text simplification models operating
directly in the browser. The implementation
uses transformers.js, for all processing locally,
ensuring privacy by keeping sensitive text on
the user’s device. The source code is avail-
able at https://github.com/pabloRom2004/
Simplification-Web-Demo.

5.1 Technical Architecture

The prototype follows a fully client-side architec-
ture, operating entirely within the browser without

server-side processing. The core components in-
clude:

* Model Management: Handles downloading,
storing, and loading of quantized ONNX mod-
els

* Text Processing: Implements sentence split-
ting for input paragraphs, tokenization, and
recombination

* Inference Pipeline: Configures and executes
the simplification models

* Readability Analysis: Calculates Flesch-
Kincaid scores for original and simplified text

* Visualization: Provides interactive display of
simplification results with sentence mapping

When a user first visits the application, they se-
lect a quantization level (FP32, INTS, or BNB-4)
based on their device capabilities and memory con-
straints. They can then download one or more
models at their chosen reading levels. Once down-
loaded, models persist in the browser’s local stor-
age, eliminating the need for re-downloading in
future sessions.

For longer texts, we implement a sentence-
splitting algorithm that identifies sentence bound-
aries while accounting for common abbreviations
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Figure 3: Scatter plot of original (x-axis) vs. simplified (y-axis) readability for the Individual Models. Points above
the diagonal line represent simplification, while points below it indicate increased complexity.

and special cases. Each sentence is processed in-
dependently before being recombined, allowing
efficient handling of paragraphs without exceeding
browser memory constraints.

6 Discussion

Our experiments reveal several key insights with
broader implications. First, our small but high-
quality synthetic dataset (2,909 examples) outper-
forms the WikiLarge corpus (300K examples), chal-
lenging conventional wisdom about data require-
ments for fine-tuning. This finding suggests that
pre-trained models already possess substantial lin-
guistic knowledge and primarily need clear, unam-
biguous direction rather than extensive examples.
Our synthetic data succeeds by precisely pointing
the model toward the desired task through concise,
well-crafted examples that demonstrate the exact
transformation patterns required. The clarity and
quality of this directional signal prove significantly
more valuable than quantity, indicating that care-
fully engineered LLM prompts can create highly
effective training data for a wide range of down-
stream NLP tasks.

Second, our single control token strategy demon-
strates that simplicity can outperform complexity
in control mechanisms. By using a single token that
directly indicates the target reading level rather than
multiple tokens representing different complexity
features, we reduce potential parameter competi-
tion and make training more efficient for smaller
models.

Third, our finding that individually trained mod-
els outperform the control token approach high-
lights the importance of parameter efficiency in
smaller architectures. By dedicating the entire pa-
rameter space to learning one specific transforma-
tion, these models develop more robust simplifica-
tion strategies for their target reading levels.

Finally, the impressive stability of performance
across quantization levels (with size reductions up
to 75%) indicates that many NLP tasks may not
require full floating-point precision. The INTS8
model’s superior performance on readability met-
rics despite its smaller size suggests that quantiza-
tion may actually function as beneficial regulariza-
tion for certain aspects of text simplification.

While effective for sentence-level simplification,
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we found extending to longer contexts or domain-
specific text challenging for our BART-base mod-
els, suggesting larger architectures may be needed
for these scenarios.

7 Conclusion

This work presents an on-device text simplifi-
cation approach using synthetic data and model
quantization that processes text locally in Firefox
browsers. Our contributions include: (1) demon-
strating synthetic LLM-generated data can outper-
form much larger human-annotated datasets, (2)
showing specialized models outperform control
token approaches for smaller architectures, and
(3) providing a privacy-preserving implementation
with state-of-the-art quantization techniques that
together enable efficient and private language tech-
nologies.

Limitations

Our approach has several limitations. Our reliance
on synthetic data, while effective, may miss cer-
tain nuances of human-authored simplifications.
Our current implementation emphasizes sentence-
level simplification rather than document-level co-
herence, potentially creating local optimizations
that do not maintain global coherence in longer
texts. We have also not conducted extensive human
evaluation, which would be valuable for assess-
ing subjective aspects of simplification quality that
automatic metrics may not capture.

Future work will incorporate structured human
evaluation with university students to validate our
findings beyond automatic metrics, and explore
extending the approach to longer contexts and ad-
ditional languages.

Lay Summary

Reading complex text online can sometimes be too
hard to read for some users, especially when en-
countering technical articles, legal documents, or
medical information. This work presents a sys-
tem that simplifies difficult text directly in your
web browser without sending your data to external
servers, protecting your privacy.

Our approach makes two key innovations. First,
instead of training our models on hundreds of thou-
sands of examples like previous work, we cre-
ated just 2,909 high-quality examples by carefully
prompting advanced Al systems to generate sim-
plified versions of sentences at three reading levels:
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Elementary (suitable for middle school), Secondary
(suitable for high school), and Advanced (slightly
simplified but maintaining sophistication). Surpris-
ingly, this small, carefully crafted dataset outper-
formed much larger datasets, demonstrating that
quality matters more than quantity.

Second, we made these models small enough
to run in a web browser by compressing them to
25% of their original size while maintaining perfor-
mance. This means users can simplify sensitive text
like medical records or legal documents without
that information ever leaving their device.

The system offers three simplification levels, al-
lowing users to choose how much simplification
they need. For example, a medical article about
"dextromethorphan occurring as a white powder in
its pure form" might become "Dextromethorphan
is a white powder" at the Elementary level, while
maintaining more detail at higher levels.

We built this as a working web demo and collabo-
rated with Mozilla’s Firefox team to integrate it into
the browser. The models work entirely offline once
downloaded, making simplified reading accessible
even without an internet connection. This work
shows that privacy-preserving, accessible language
technology can be both practical and powerful.

References

Fernando Alva-Manchego, Louis Martin, Antoine Bor-
des, Carolina Scarton, Benoit Sagot, and Lucia Spe-
cia. 2020. ASSET: A dataset for tuning and evalua-
tion of sentence simplification models with multiple
rewriting transformations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4668—4679, Online. Association
for Computational Linguistics.

Fernando Alva-Manchego, Carolina Scarton, and Lucia
Specia. 2021. The (un)suitability of automatic evalu-
ation metrics for text simplification. Computational
Linguistics, 47(4):861-889.

Anthropic. 2024. Introducing claude 3.5 sonnet. Ac-
cessed on March 14, 2025.

Or Biran, Samuel Brody, and Noémie Elhadad. 2011.
Putting it simply: a context-aware approach to lex-
ical simplification. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
496-501.

Noemie Elhadad and Komal Sutaria. 2007. Mining a
lexicon of technical terms and lay equivalents. In
Biological, translational, and clinical language pro-
cessing, pages 49-56.


https://doi.org/10.18653/v1/2020.acl-main.424
https://doi.org/10.18653/v1/2020.acl-main.424
https://doi.org/10.18653/v1/2020.acl-main.424
https://doi.org/10.1162/coli_a_00418
https://doi.org/10.1162/coli_a_00418
https://www.anthropic.com/news/claude-3-5-sonnet

Linux Foundation. 2017. ONNX | onnx.ai.
//onnx.ai/. [Accessed 14-03-2025].

https:

David Heineman, Yao Dou, Mounica Maddela, and
Wei Xu. 2023. Dancing between success and failure:
Edit-level simplification evaluation using SALSA.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3466-3495, Singapore. Association for Computa-
tional Linguistics.

Shashank Mohan Jain. 2022. Hugging face. In Introduc-
tion to transformers for NLP: With the hugging face
library and models to solve problems, pages 51-67.
Springer.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Zihao Li, Matthew Shardlow, and Saeed Hassan. 2022.
An investigation into the effect of control tokens on
text simplification. In Proceedings of the Workshop
on Text Simplification, Accessibility, and Readability
(TSAR-2022), pages 154—165, Abu Dhabi, United
Arab Emirates (Virtual). Association for Computa-
tional Linguistics.

Mounica Maddela, Yao Dou, David Heineman, and Wei
Xu. 2023. LENS: A learnable evaluation metric for
text simplification. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 16383—
16408, Toronto, Canada. Association for Computa-
tional Linguistics.

Louis Martin, Eric de la Clergerie, Benoit Sagot, and
Antoine Bordes. 2020. Controllable sentence sim-
plification. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 4689—
4698, Marseille, France. European Language Re-
sources Association.

Louis Martin, Angela Fan, Eric de la Clergerie, Antoine
Bordes, and Benoit Sagot. 2022. MUSS: Multilin-
gual unsupervised sentence simplification by mining
paraphrases. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
1651-1664, Marseille, France. European Language
Resources Association.

Mozilla NLP Team. 2023. Mozilla translations: Open-
source neural translation in the browser. In Proceed-
ings of Machine Translation Summit.

Kai North, Tharindu Ranasinghe, Matthew Shardlow,
and Marcos Zampieri. 2025. Deep learning ap-
proaches to lexical simplification: A survey. Journal
of Intelligent Information Systems, 63:111-134.

Kostiantyn Omelianchuk, Vipul Raheja, and Oleksandr
Skurzhanskyi. 2021. Text Simplification by Tagging.
In Proceedings of the 16th Workshop on Innovative

Use of NLP for Building Educational Applications,

pages 11-25, Online. Association for Computational

Linguistics.

OpenAl.  2024. Learning to reason with
LLMs. https://openai.com/index/
learning-to-reason-with-11lms/. [Accessed
14-03-2025].

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Carolina Scarton and Lucia Specia. 2018. Learning sim-
plifications for specific target audiences. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 712-718, Melbourne, Australia. Association
for Computational Linguistics.

Nicolas Spring, Annette Rios, and Sarah Ebling. 2021.
Exploring German multi-level text simplification.
In Proceedings of the International Conference on
Recent Advances in Natural Language Processing
(RANLP 2021), pages 1339—-1349, Held Online. IN-
COMA Ltd.

Sai Surya, Abhijit Mishra, Anirban Laha, Parag Jain,
and Karthik Sankaranarayanan. 2019. Unsupervised
neural text simplification. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2058-2068, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen,
and Chris Callison-Burch. 2016. Optimizing sta-
tistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401-415.

Rui Yang, Haotian Lin, Cheng Wang, and Hao Qian.
2023. Gptdtools: Teaching large language models to
use tools via self-instruction. In Proceedings of the
40th International Conference on Machine Learning.

Mark Yatskar, Bo Pang, Cristian Danescu-Niculescu-
Mizil, and Lillian Lee. 2010. For the sake
of simplicity: Unsupervised extraction of lexical
simplifications from wikipedia. arXiv preprint
arXiv:1008.1986.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore:

Evaluating text generation with bert. Preprint,
arXiv:1904.09675.

112


https://onnx.ai/
https://onnx.ai/
https://doi.org/10.18653/v1/2023.emnlp-main.211
https://doi.org/10.18653/v1/2023.emnlp-main.211
https://doi.org/10.18653/v1/2022.tsar-1.14
https://doi.org/10.18653/v1/2022.tsar-1.14
https://doi.org/10.18653/v1/2023.acl-long.905
https://doi.org/10.18653/v1/2023.acl-long.905
https://aclanthology.org/2020.lrec-1.577/
https://aclanthology.org/2020.lrec-1.577/
https://aclanthology.org/2022.lrec-1.176/
https://aclanthology.org/2022.lrec-1.176/
https://aclanthology.org/2022.lrec-1.176/
https://github.com/mozilla/translations
https://github.com/mozilla/translations
https://doi.org/10.1007/s10844-024-00882-9
https://doi.org/10.1007/s10844-024-00882-9
https://aclanthology.org/2021.bea-1.2/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/P18-2113
https://doi.org/10.18653/v1/P18-2113
https://aclanthology.org/2021.ranlp-1.150/
https://doi.org/10.18653/v1/P19-1198
https://doi.org/10.18653/v1/P19-1198
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.1162/tacl_a_00107
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675

Xingxing Zhang and Mirella Lapata. 2017. Sen-
tence simplification with deep reinforcement learning.
arXiv preprint arXiv:1703.10931.

113



A Additional Results and Examples

Model Level BLEU SARI BERT-P BERT-R BERT-F1 LENS SALSA

Baseline 46.94 36.87 0.678 0.613 0.636 58.65 68.88

Control Elem 51.25 37.63 0.720 0.652 0.679 68.67 7542
Control ~ Sec 59.87 38.28 0.778 0.726 0.745 61.62  69.83
Control  Adv 5275 36.76 0.693 0.682 0.681 5122 65.03

Indiv. Elem 50.60 39.48 0.733 0.693 0.704 70.89  77.54
Indiv. Sec 71.45 40.37 0.846 0.814 0.825 63.00  68.91
Indiv. Adv 84.92 37.63 0.912 0.894 0.900 61.10  65.32

Table 3: Model performance on TurkCorpus.
B Dataset Creation Prompts

The prompts used to generate our synthetic dataset (including the WikiLarge-based simplifications) are
available at: https://github.com/pabloRom2004/Simple-Synthetic-Dataset

Text Simplification Demo

Current Quantization: int8. To change, return to selection screen. RGUGRCEEEEIELESEEEE

Models:
pabRomero /BART-Firefox-Simplification-Elementary-ONNX ints (0 ‘;?; Download Model
pabRomero/BART-Firefox-Simplification-Secondary -ONNX N pending \t\:l;s Download Model

pabRomero/BART-Firefox-Simplification-Advanced-ONNX int8 [0 ) (’\;: Download Model

Enter text to simplify...

Random Sentence Simplify Text

Figure 4: Screenshot of the web-based prototype interface showing model selection, text input, and results display
with color-coded sentence mapping.
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Type ‘ Example

Elementary (Success)

Original The SAT Reasoning Test (formerly Scholastic Aptitude Test and Scholastic Assessment
Test) is a standardized test for college admissions in the United States.

Simplified | The SAT is a test that students can take to get a good grade. It’s used to help them find
colleges.

Elementary (Failure)

Original In its pure form, dextromethorphan occurs as a white powder.

Simplified | Dextromethorphan is a white powder.

Secondary (Success)

Original Below are some useful links to facilitate your involvement.
Simplified | Here are some helpful resources to help you get involved.
Secondary (Failure)

Original Protests across the nation were suppressed.

Simplified | Demonstrations across the nation were peaceful.

Advanced (Success)

Original Minor planet designations are number-name combinations overseen by the Minor Planet
Center, a branch of the TAU.

Simplified | Minor planets are classified by the Minor Planet Center, a branch of the IAU.

Advanced (Failure)

Original About 95 species are currently accepted.

Simplified | Approximately 95 species are currently accepted.

Table 4: Example simplifications from different models and reading levels. "Failures" are cases where the model
either fails to maintain factual accuracy (e.g., changing "suppressed" to "peaceful"), performs minimal transformation
when simplification is needed, or unnecessarily complicates simple text (e.g., "about" to "approximately").

Show sentence mapping highlights

Original:

Together they formed New Music Manchester, a group committed to contemporary music. The string can vibrate in
different modes just as a guitar string can produce different notes, and every mode appears as a different particle:
electron, photon, gluon, etc. Origin Irmo was chartered on Christmas Eve in 1890 in response to the opening of the
Columbia, Newberry and Laurens Railroad. Britpop emerged from the British independent music scene of the early 1990s
and was characterised by bands influenced by British guitar pop music of the 1960s and 1970s.

Reading Level: 39.8 (College)

Elementary:

They formed New Music Manchester to play contemporary music. A guitar string can play many notes, and every particle
can change its position. Scientists study Origin Irme by looking at each particle, even if it's electron, photon, gluon,
glucen, ete.Origin Irmo was charted on a special day. Britpop started in the early 1990s. It was influenced by British guitar
music from the 1960s and 1970s.

Reading Level: 59.4 (10th-12th Grade)

Figure 5: Screenshot of the web-based prototype interface showing sentence splitting from a paragraph, each
sentence is individually processed by the model, then re-constructed.
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Abstract

This paper presents the findings of the first
Shared Task on Readability-Controlled Text
Simplification at TSAR 2025. The task re-
quired systems to simplify English texts to spe-
cific target readability levels of the Common
European Framework of Reference for Lan-
guages (CEFR). We received 48 submissions
from 20 participating teams, with approaches
predominantly based on large language mod-
els (LLMs), which included iterative refine-
ment, multi-agent setups, and LLM-as-a-judge
pipelines. For this shared task, we developed a
new dataset of pedagogical texts and evaluated
submissions using a weighted combination of
semantic similarity and CEFR-level accuracy.
The results of the participating teams demon-
strate that while LLMs can perform substan-
tially well on this task, dependable and con-
trolled simplification often requires complex,
multi-iterative processes. Our findings also sug-
gest that the capabilities of current systems are
beginning to saturate existing automatic eval-
uation metrics, underscoring the need for re-
evaluation and practicality.

1 Introduction

Text simplification consists of automatically rewrit-
ing a text to make it easier to read and understand
while preserving meaning, supporting applications
in education, accessibility, and second-language
learning (Alva-Manchego et al., 2020). Many pre-
vious shared tasks have focused on lexical simpli-
fication (Specia et al., 2012; Saggion et al., 2022;
Shardlow et al., 2024) or on complexity prediction
(Paetzold and Specia, 2016; Yimam et al., 2018;
Shardlow et al., 2021). However, these tasks typi-
cally do not require control over output readability
level, which is essential if simplification is to be
adaptive to learner needs.

In this work, we introduce a new shared task
for readability-controlled text simplification in En-
glish, in which systems must simplify a source text

to a specified CEFR level (e.g., A2 or B1). In this
way, the target complexity explicitly aligns with
educational and pedagogical goals. Our task builds
on, but also departs from, earlier shared tasks in
lexical simplification, in that participating systems
must simplify short passages under a CEFR con-
straint, rather than single words or phrases based
on a target audience.

To support this shared task, we curated a
new CEFR-based reference dataset of 100
paragraph-level English texts drawn from ped-
agogical reading materials for language learners.
Each source text was manually simplified by ex-
perienced English-language teachers to two lower
target levels, resulting in a total of 200 reference
simplifications. In addition, we trained a CEFR
evaluator model to estimate the readability level
of system outputs automatically. The model was
trained on CEFR-annotated texts and fine-tuned to
classify English texts into CEFR levels with high
reliability. Both resources are publicly released to
support further research.

The shared task challenged participants to gen-
erate simplified versions of the same source texts
at specified CEFR targets, requiring systems to
demonstrate both readability control and seman-
tic fidelity. Submissions were assessed using the
CEFR evaluator model to measure compliance with
the target level and MeaningBERT (Beauchemin
et al., 2023) to assess source and reference-wise
meaning preservation. The resulting metric scores
were combined into a single ranking using AU-
TORANK (Kocmi et al., 2025), an aggregation
method that normalizes metric scales and mitigates
the effect of outliers.

2 Related Work

The task of readability-controlled text simplifi-
cation (RCTS) aims to generate simplified text
aligned with specific difficulty levels, often us-
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ing frameworks such as the Common Core Stan-
dards or the CEFR for reference (Xu et al., 2015;
Uchida et al., 2018; Scarton et al., 2018). The
main challenge with RCTS is that it requires finer-
grained generation control across multiple versions
of the exact text, tailored to different audiences.
Early approaches treated RCTS as a supervised
sequence-to-sequence problem requiring a parallel
corpus annotated with readability (Scarton and Spe-
cia, 2018), which then followed by more advanced
techniques including the addition of low-level con-
trol tokens (Nishihara et al., 2019; Agrawal and
Carpuat, 2023), lexical-based constrained decod-
ing for better handling of complex words (Zetsu
et al., 2022), and reinforcement learning to reward
readability-aligned texts (Yanamoto et al., 2022;
Ribeiro et al., 2023; Malik et al., 2024).

Despite the substantial progress, current meth-
ods remain heavily dependent on gold-standard
parallel data. To address this, more recent works
have explored techniques that take advantage of
instruction-tuned LLMs’ few-shot learning capa-
bilities for shifting the readability levels of texts
without the need for additional training data (Kew
et al., 2023; Imperial and Tayyar Madabushi, 2023;
Imperial et al., 2024; Farajidizaji et al., 2024; Ma-
lik et al., 2024; Barayan et al., 2025). However,
achieving precise readability control while main-
taining the quality of generated simplifications re-
mains challenging, motivating further research into
fine-grained level alignment.

3 CEFR Evaluator Model

We detail the steps we followed to train the CEFR-
based evaluator model we will use to evaluate the
CEFR alignment of system submissions with gold-
standard reference simplifications.

3.1 Data

We used the English subset of the UNIVERSAL-
CEFR (Imperial et al., 2025) dataset, which
contains gold-standard CEFR-annotated texts at
multiple granularities (sentence-, paragraph-, and
document-level). We constructed three separate
training sets with variations of granularities and
language coverage:

TRAIN_DOC_EN This split contains 650 English
documents from CAMBRIDGEEXAMS (Xia et al.,
2016) and ELG-CEFR-EN (Breuker, 2022).!

'AbdullahBarayan/ModernBERT-base-doc_en-Cefr

TRAIN_DOC_SENT_EN This split contains
13,476 English sentence- and document-level
texts, combining TRAIN_DOC_EN with additional
data from CEFR-SP (Arase et al., 2022) and
README++ (EN) (Naous et al., 2024).2

REFERENCE_ALLLANG This is the largest split
with 56,963 multilingual instances at the sen-
tence, paragraph, and document levels, integrat-
ing data from multiple languages together with
TRAIN_DOC_EN.3 See Table 7 in the Appendix for
the list of datasets and languages.

For our validation and test sets, we use the corre-
sponding test splits of the English document-level
subsets CAMBRIDGEEXAMS and ELG-CEFR-EN.
Stratified sampling was applied to maintain a pro-
portional representation across CEFR levels, with
15% of the data allocated to validation and 15% to
testing. The final distribution of instances across
splits and CEFR levels is shown in Table 6 (Ap-
pendix).

3.2 Base Model Architecture

We fine-tuned MODERNBERT-BASE (Warner
et al., 2024), a 395M-parameter LLM on each of
the three training sets previously discussed. Us-
ing this training regime, we produce the follow-
ing: (1) a document-level English evaluator model
using the TRAIN_DOC_EN split, (2) a combina-
tion of sentence and document multi-level English
evaluator model using the TRAIN_DOC_SENT_EN
split, and (3) a multilingual sentence, paragraph,
and document evaluator model using the REFER-
ENCE_ALLLANG split. All evaluator model vari-
ations were trained for 10 epochs, with the best
checkpoint selected based on the highest weighted
F1 score on the validation set. Additional training
details can be found in Table 4 of the Appendix.

In addition to training MODERNBERT-BASE,
we explored two ensemble-based strategies for re-
solving the final CEFR prediction:

* Majority Vote: Labels were assigned based
on agreement among at least two models. In
cases without a majority, the median CEFR
level was chosen.

* Confidence-Based: Predictions were taken
from the model with the highest confidence
score for the given instance.

2Abdu11ahBarayan/ModernBERT-base—doc_sent_
en-Cefr

3AbdullahBarayan/ModernBERT—base—reference_
AlllLang2-Cefr2
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AbdullahBarayan/ModernBERT-base-doc_en-Cefr
AbdullahBarayan/ModernBERT-base-doc_sent_en-Cefr
AbdullahBarayan/ModernBERT-base-doc_sent_en-Cefr
AbdullahBarayan/ModernBERT-base-reference_AllLang2-Cefr2
AbdullahBarayan/ModernBERT-base-reference_AllLang2-Cefr2

Model Setup Al A2 B1 B2 C1 C2 Avg AdjAcc RMSE
TRAIN_DOC_EN 080 090 0.84 084 074 0.83 0.83 0.97 0.50
TRAIN_DOC_SENT_EN 0.00 0.83 090 094 085 0.86 0.86 0.99 0.38
REFERENCE_ALLLANG 050 086 0.89 097 0.88 0.88 0.89 1.00 0.32
MAIJORITY VOTE 050 0.87 092 095 085 0.86 0.89 0.99 0.35
CONFIDENCE-BASED 0.00 0.89 094 094 0.87 0.89 0.89 0.99 0.34

Table 1: Performance of various training data and model prediction setups integrated with ModernBERT-Base on
the test set. We selected the CONFIDENCE-BASED setup for our final CEFR evaluator model due to its optimal

performance (low RMSE and high averages).

3.3 Results

Table 1 reports the performance of the three fine-
tuned models and the two ensemble strategies on
the test set (Table 8 in the Appendix reports re-
sults in the validation set). Results are presented
in terms of class-wise F1 scores, weighted aver-
age F1, adjusted accuracy, and RMSE. The re-
sults demonstrate that all three fine-tuned models
achieve strong performance, with the confidence-
based ensemble providing the most consistent accu-
racy and lowest error across both validation and test
sets. We therefore adopt this ensemble to assess
CEFR compliance of simplified outputs.

4 Shared Task Dataset

Our primary shared task dataset was designed to
support readability-controlled simplification in En-
glish aligned with the Common European Frame-
work of Reference for Languages (CEFR). The
dataset is also aimed towards evaluating systems
that can simplify texts to a target readability level
while preserving meaning.

4.1 Data Source

All texts were extracted from The British Council’s
LearnEnglish website*, a major UK-based open-
access platform offering pedagogical content for
learners of English. We were granted formal per-
mission to use the materials for research and dis-
tribution as part of this shared task. The acquired
material includes graded reading passages, each
associated with a specific CEFR level. The content
covers a range of everyday topics and was authored
and reviewed by professional educators.

From the available materials, we selected a sub-
set of texts originally labeled as C1 and B2 to serve
as source texts for simplification. These upper-
intermediate and advanced texts provide sufficient
lexical and syntactic complexity to enable mean-
ingful simplification toward lower CEFR levels.

*https://learnenglish.britishcouncil.org/

4.2 Data Annotation

The annotation process involved producing sim-
plified versions of the original C1 and B2 source
texts at lower CEFR levels. Each selected text was
simplified to B1 and A2 target levels, resulting in
two simplified versions per source. The dataset was
divided into two parts: (1) trial data (20 instances),
simplified by one annotator and released for sys-
tem development; and (2) test data (80 instances),
simplified by two annotators and used for official
evaluation. All annotators were teachers of English
as a foreign language and familiar with the CEFR
framework, although with varied experience levels.

Before the main annotation phase, all annotators
completed a qualification task to ensure a consistent
understanding of CEFR levels and simplification
principles. During annotation, each annotator re-
ceived: (1) the original C1 or B2 text; (2) the target
CEFR level (A2 or B1); and (3) a set of annotation
guidelines describing the expected linguistic char-
acteristics of the simplified output. These guide-
lines specified that simplifications should preserve
meaning, reduce syntactic and lexical complexity
in line with the target level, and maintain grammat-
icality and fluency. The full qualification task and
annotation guidelines are included in the dataset
release.

4.3 Quality Control

All simplifications were reviewed by the organisers
for formatting consistency and completeness. No
additional post-editing or filtering was applied to
preserve the natural stylistic variation introduced
by each annotator.

Inter-annotator agreement was not computed, as
the annotators worked on disjoint subsets of the
data. Instead, we assessed reliability by comparing
the target CEFR levels assigned during annotation
with the levels predicted by our automatic CEFR
evaluator model (Sec. 3). The average RMSE was
0.6, suggesting moderate agreement between hu-

118


https://learnenglish.britishcouncil.org/

man and model estimates. While lower values
would indicate stronger alignment, this level of
divergence is expected given the subjectivity of
CEFR judgments and the coarse step size between
adjacent levels. Detailed metrics per annotator are
provided in the Appendix.

5 Evaluation Setup

We describe the evaluation pipeline, combining nor-
malization procedures, weighting decisions, and
ranking methodology, used to assess the perfor-
mance of system submissions using the shared task
data and a trained CEFR evaluator model. Follow-
ing the AUTORANK framework proposed in the
WMT 2025 General Machine Translation Shared
Task (Kocmi et al., 2025), we aggregate multi-
ple evaluation metrics into a single overall rank-
ing to increase robustness against outliers and im-
prove interpretability. We present two forms of
AUTORANK rankings: one for all submitted runs
and another for the best run per team.

5.1 Maetrics

We evaluated each system submission based on
three variables: CEFR level compliance, meaning
preservation, and gold-standard reference similar-
ity. We describe the metrics chosen to measure
each variable below:

1. CEFR Level Compliance. We use the Root
Mean Squared Error (RMSE) from the trained
CEFR model evaluator to assess CEFR level
compliance. Lower RMSE values indicate bet-
ter control of a submitted system with respect
to the target CEFR readability level.

2. Meaning Similarity. We use MeaningBERT
(Beauchemin et al., 2023) to measure the se-
mantic similarity between the source text and
the submitted system’s output.

3. Reference Similarity. Similar to Meaning
Similarity, we also use MeaningBERT (Beau-
chemin et al., 2023) to measure the semantic
similarity between the expert-written simplifi-
cations and a submitted system’s output.

We considered other computed metrics, in-
cluding adjacent accuracy, weighted F1, and
BERTScore, but they were ultimately not used in
the official ranking for several reasons. Adjacent
accuracy is less informative than RMSE because it
does not account for the degree of mismatch. On

the other hand, RMSE penalizes predictions pro-
portionally to their distance from the target level.
Weighted F1 reflects categorical performance but
does not capture the severity of misclassification.
Lastly, while BERTScore (Zhang et al., 2020) is a
popular general-purpose similarity metric, it was
not trained for simplification and often overesti-
mates similarity when there is lexical overlap with-
out true semantic preservation. MeaningBERT, on
the other hand, was trained on human annotations
for preserving meaning during simplification and
is a more task-appropriate choice.

5.2 Submission Filtering

We observed that some teams submitted model sim-
plifications with fewer runs than the expected total
of 200. Since missing outputs would bias the eval-
uation, all runs with fewer than 200 outputs were
discarded before scoring and ranking.

5.3 Normalization of Metrics

Metrics operate on different scales and distribu-
tions. RMSE included very low outliers, including
values close to 0.0, representing perfect or near-
perfect CEFR compliance. MeaningBERT values
were tightly clustered. If we combined these raw
values directly, it is evident that RMSE would dom-
inate because of its larger relative variance. To
address this, following (Kocmi et al., 2025), we ap-
plied median—interpercentile scaling to each metric.
This normalization method reduces the influence
of outliers while making scores comparable across
metrics. Unlike min—max scaling, which is highly
sensitive to outliers, this approach ensures that mid-
ranked systems remain fairly distinguished. For
RMSE, since lower values are better, we invert
the scaled scores so that for all metrics, higher is
always better.

5.4 Weighting

To reflect the balance required to optimize readabil-
ity control and meaning preservation, we assign
equal global weights of 50% to these two variables.
While both semantic similarities in the source text
and reference simplifications are essential, the lat-
ter generally correlates more strongly with expert
judgments of simplification quality. For this reason,
we weight the reference-based score twice as much
as the source text-based score. The final weights
are 0.500 for RMSE, 0.167 for meaning similarity
via MeaningBERT, and 0.333 for reference similar-
ity via MeaningBERT.
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5.5 Aggregation and AUTORANK Mapping

After normalization and weighting, we computed
the system-level scores as weighted averages across
the three metrics. These averages were linearly
scaled to the range of [1, N], where N is the num-
ber of valid runs. Following the WMT25 AuU-
TORANK convention, we apply a final linear map-
ping where the best-performing system was as-
signed AUTORANK = 1, the worst-performing sys-
tem was assigned AUTORANK = N, and the in-
termediate middle-ranking systems were spaced
proportionally between these endpoints.

6 Participants and System Descriptions

6.1 Overview

We received overall 48 submissions by 20 partic-
ipating teams. Each team was allowed to submit
outputs of up to three systems or runs. The most
dominant strategy of the submissions was prompt-
ing (28 submissions), including evaluations with a
CEFR labeling system (14 submissions) or an LLM
as a judge (6 submissions). Other strategies ranged
from rule-based systems (4 submissions), agentic
approaches (7), fine-tuning of LLMs (4), training
of neuronal networks (3), and other approaches (2).

6.2 System Summaries

Archaeology (Roscan and Nisioi, 2025) submit-
ted three submissions. For two of them, they
prompt an LLM (Claude-Sonnet-4 vs. Llama-3.1-
8B-Instruct) to generate simplifications iteratively.
They added feedback on the enforced CEFR level
to the prompt at each iteration until the level is
reached or 5 runs have been completed. They se-
lect the best candidates of the model with Mini-
mum Bayes Risk. Additionally, they fine-tuned a
lightweight Llama model on synthetic data with
CEFR levels A2 and B1 and repeated the process
previously described, but achieved lower scores
with this approach.

BU-IntelPA proposed two multi-agent systems
with zero-shot simplification using either GPT-
OSS-20B or Mistral-NeMo-12B. Unfortunately,
we cannot provide more information as no system
description paper has been submitted.

Cappuccino submitted system outputs based on
zero-shot prompting using LLMs. Their prompts
are focusing on simplification, meaning preserva-
tion, short sentences, controlled vocabulary, and a
consistent style. Unfortunately, we cannot provide

more information as this team has not submitted a
system description paper.

EasyJon (Barbu et al., 2025) proposed a sys-
tem that selects the best simplification out of
seven LLMs’ outputs. They prompt seven differ-
ent LLMs (Qwen3-235B-A22B, Llama-3.3-70B-
Instruct, DeepSeek-R1, Gemma-3-27B, GPT-OSS-
120B, Claude-Sonnet-4, Mistral-Medium-3.1) with
either short, descriptive, and descriptive prompts
with examples and use an LLM-as-a-judge ap-
proach to select the best candidates.

EhiMeNLP (Miyata et al., 2025) is ranked first
overall with one of their three different systems.
All three systems follow the same two-fold strategy
of generating simplified candidates by prompting
LLMs with four prompt types (fine-grained simpli-
fication, controlling CEFR level, US grade levels,
and edit operations), and evaluating the candidates
based on CEFR labelling and meaning preservation
relative to the source text. In their best performing
submission, they ensemble several LLMs (GPT-5,
GPT-4.1, 03, GPT-OSS-20B, Qwen3-32B, Llama-
3.3-70B-Instruct) and all prompting strategies. In
the other approaches, they use GPT-5 and combine
only two of the four prompting strategies.

GPLSI submitted three runs, including one that
is based on a fine-tuned Flan-T5 model, whereas
the others are based on prompting Llama-3.2-3B-
Instruct. Unfortunately, we cannot provide more
information as this team has not submitted a system
description paper.

GRIPF (Alfter and Gombert, 2025) proposed
three different systems variations. The simplifi-
cations of their first system are the outputs of a
discussion between two LLMs (i.e., GPT-5 and
Claude-Opus-4.1,) which generate, criticize, and
revise each others simplified outputs. The submit-
ted candidate is either selected by the two models
or, if they do not agree, by a third LLM (Llama-3.2-
3B-Instruct), which judges the best output. In their
second approach, the authors also provide specific
vocabulary for each CEFR level to the LLMs. The
third approach uses GPT-4o to generate the simpli-
fied candidates. Afterwards, another LLM provides
feedback based on the CEFR level of the generated
texts and potentially rewrites the text, provided the
level matches (or after three runs).

HIT-YOU (Shimada et al.,, 2025) explored
readability-controlled simplification with a prompt-
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ing and LLM-as-a-judge approach. For two of their
three approaches, they generated multiple candi-
dates with 4 LLMs (i.e., GPT-5, Gemini-2.5-Flash,
Claude-4-Sonnet, and ol) and three prompting
techniques, and used an LL.M-as-a-judge (either
Gemini or GPT-5). Their prompts are either zero-
shot, one-shot, or include a round-trip translation.
The third approach contains a self-refinement loop
in which a CEFR labeling system provides contin-
uous feedback until the generated text matches the
expected level or the maximum number of itera-
tions is reached.

HOPE (Maharjan and Shrestha, 2025) proposed
two rule-based approaches and an additional multi-
stage pipeline. Their first rule-based approach fo-
cuses only on lexical simplification, whereas the
second approach combines lexical and syntactical
simplification via word substitution and sentence
splitting. In the multi-stage pipeline, they com-
bined lexical and syntactical preprocessing with
zero-shot prediction of a T5 model.

HULAT-UC3M (Sanchez-Gomez et al., 2025)
submitted two systems to the shared task. Both
approaches are based on prompting LLMs (Ettin
Suite and LLama-3). Their reinforced prompts
contain either detailed descriptions of CEFR levels
or only brief descriptions.

ITU (Ding et al., 2025) explored prompting GPT-
40 in a three-step manner. First, they ask the model
to simplify with respect to syntactic simplification.
In the second round, they ask the model to con-
sider lexical simplification during generation based
on syntactically simplified text. Finally, they ask
the model also to include elaborations in the sim-
plification. Each prompt includes some rules for
simplification as well as examples for it.

Know-AI (Wu et al., 2025) proposed two differ-
ent submissions. Both submissions can be summa-
rized as an iterative generation of simplifications
using GPT-40 until the target CEFR level is reached.
In the first submission, the CEFR level is estimated
based on an alignment between the CEFR levels
and the Flesch-Kincaid Grading Level. For the
other approach, they evaluate the readability with
the CEFR leveling system provided by the shared
task organizers.

MMU_NLP tackled readability-controlled sim-
plification via neural networks. They use exist-
ing parallel simplification corpora and enrich them
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first with CEFR levels. Afterwards, they generate
sentence embeddings for the additional data using
SONAR and train a simple feed-forward neural
network on them and the target level. This model
is then used to generate simplifications of the sen-
tences of the test set. In the different approaches
of MMU_NLP, a) separate models are trained per
CEFR level (run 1), b) the models are trained on
all data at once (run 2), or ¢) are trained at once,
but using 1-hot vectors (run 3). Unfortunately, this
team has not submitted a system description pa-
per, which would provide more insight into their
approach.

OneNRC (Vajjala, 2025) proposed two agentic
approaches using Gemini-2.5-Flash and Gemma-
3-12B. For both submissions, they use zero-shot
prompting and two tools to evaluate the generated
simplifications. The first tool is a CEFR labeling
system, and the second tool measures the preserva-
tion of meaning in the original text.

OUNLP (Huynh and Cao, 2025) submitted the
output of two systems, which were built on top of
each other. The first model is rule-based, whereas
the second model uses the output of the first as
part of an input prompt for an LLM, i.e., GPT-
40. The prompt is enriched with instructions for
improving readability, e.g., synonym replacement,
clause trimming, sentence splitting, and word limit
restrictions.

SQUREL (Sokova et al., 2025) used a fine-
tuning approach for two of their three submissions.
In the first approach, they fine-tune Llama-3.2-1B
Instruct with two reward functions via the CEFR
level of the generated text and sentence similarity
between the generated text and the source texts. In
the second approach, they focus on simplifications
with a larger gap between the source and target
CEFR levels. Therefore, they use a more relaxed
CEFR reward function that reduces penalties for
larger gaps between levels. In their third approach,
they focus on lexical simplification. For the substi-
tution, they iteratively select words that could be
simplified based on the WordNet lexicon. After-
wards, they use an LLM for integrating the words
well into the text.

STARLING (Przybyta, 2025) proposed three
submissions to the shared task. All three sub-
missions are prompting-based approaches based
on the BLESS benchmark using Gemma-3-27B.
Based on multiple generated candidates, the best



one is selected using the CEFR classifier provided
by the shared task organizers. This team compared
whether selecting the best candidates works bet-
ter when providing 5 good candidates, 10 good
candidates, or 5 random candidates.

taskGen (Oviedo et al., 2025) submitted three ap-
proaches using prompting strategies with the same
LLM, i.e., Llama-3.1-8B. Each of their prompt lists
the relevant CEFR descriptors and examples of
appropriate vocabulary, morphological, and gram-
matical structures. In comparison, their first sub-
mission contains no cleaning, whereas the second
includes some cleaning, and the third contains can-
didate selection based on CEFR levels and meaning
preservation.

Uniandes (Russi et al., 2025) proposed a few-
shot learning and agent-based approach using dif-
ferent LLMs for each of the three submissions. For
all submissions, they use an LLM as a judge, which
provides feedback for the next iteration in the sim-
plification loop. In the first run, Gemini-2.5-Pro
is prompted, Gemini-2.5-Flash in the second, and
GPT-OSS-120B and Gemini-2.5-Pro in the third.

UoL-UPF (Hayakawa et al., 2025) addressed
the task of readability-controlled simplification via
prompting and candidate selection out of different
model and prompt combinations. For candidate
selection, they use Minimum Bayes Risk and the
CEFR labeler provided by the shared task organiz-
ers. One of their approaches focuses on simplify-
ing on the paragraph level, another on the sentence
level, and the third one combines the sentence and
paragraph levels.

7 Results

We report two separate rankings to provide a com-
prehensive view of system performance. Table 2
presents every valid submission, allowing us to
compare the relative performance of all system
variants submitted by each team. In contrast, Table
3 shows only the highest-scoring run per team to
highlight each team’s most performant approach.
Analyzing model variations across the submitted
systems, we identified that 34 distinct LLMs were
used for the shared task, of which 23 were open-
source and the remaining were commercial.
Comparing approaches that used only one LLM,
system submissions that used commercial ones like
GPT-5 or Gemini 2.5 performed substantially bet-
ter in terms of average performance (EhiMeNLP,

HIT-YOU, or Uniandes) than with system submis-
sions that used open-weight models like Llama or
Gemma (taskGen, Archaeology, and STARLING).
The best model, which uses only open-weight mod-
els, is taskGen, with an AUTORANK score of 7.48
using Llama-3.1-8B. On the other hand, system
submissions that used multiple LLMs achieved
even better results, including the top 5 submissions,
where one is from EhiMeNLP and two from UoL-
UPF and HIT-YOU. All these top-scoring system
submissions used at least four LLLM variants, ex-
cept for EasyJon, which has also used a collec-
tion of seven LLMs, but was only ranked 8.88.
Thus, it is clear that the selection of LLMs and the
prompting technique largely affect the performance.
Likewise, we also observe a clear pattern from the
system submissions where the use of commercial
GPT-based models leads to a substantially stronger
performance.

Based on the system submissions, prompting
strategies achieved, on average, the best AU-
TORANK placement of 7.70, followed by agentic
approaches with 8.48 and rule-based approaches
with 13.00. Comparing the prompting strategies,
the approaches with an LLM-as-a-judge performed
slightly better, with an AUTORANK placement of
6.33, than the approaches using a CEFR labeling
system for evaluation, with 6.70. Due to the lack
of training data, some participants used external re-
sources, such as related simplification corpora, lex-
icons, and more informative descriptions of CEFR
levels to enhance their prompts. The teams also
used reference-less metrics, such as readability-
based formulas like Flesch-Kincaid and semantic
similarity via MeaningBERT, to pre-evaluate their
systems and feed the results back into their models
in an iterative process.

8 Discussion

Are LLMs the Only Way Forward for Text
Simplification? The use of LLMs as a core re-
source across the majority of system submissions
reflects a decisive shift away from traditional rule-
based simplification methods to generative mod-
els. We observe a similar pattern with the pro-
liferation of LLMs achieving state-of-the-art per-
formance across general readability control bench-
marks (Kew et al., 2023; Imperial et al., 2025).
This transition has significant implications for eval-
uation, shifting from measuring output quality to
assessing real-world impact (Reiter, 2025). As a
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Team Model RMSE MeaningBERT (Src) MeaningBERT (Ref) Avg  AUTORANK
EhiMeNLP % runl 0.000 0.902 0.845 0.636 1.000
UoL-UPF % uol-upf_submission3 0.000 0.856 0.857 0.603 1.410
UoL-UPF % uol-upf_submission] 0.000 0.849 0.856 0.590 1.580
HIT-YOU run2_gpt_ensemble_4 0.158 0.852 0.835 0.429 3.610
HIT-YOU runl_gemini_ensemble_4 0.187 0.863 0.833 0.424 3.670
EhiMeNLP run3 0.234 0.847 0.840 0.390 4.100
EhiMeNLP run2 0.200 0.838 0.816 0.322 4.970
HIT-YOU run3_self_refine 0.245 0.822 0.820 0.282 5.460
Uniandes run_1 0.212 0.817 0.814 0.275 5.560
Uniandes run_2 0.200 0.825 0.803 0.260 5.740
Archaeology claude_sonnet_4 0.122 0.779 0.804 0.238 6.010
Uniandes run_3 0.510 0.847 0.813 0.138 7.280
taskGen submit_3 0.628 0.856 0.826 0.122 7.480
ounlp test_data_output_for_First_Program 0.755 0.855 0.849 0.121 7.500
Archaeology llama_3.1_8b 0.265 0.782 0.789 0.109 7.640
BU-intelPA runl 0.628 0.831 0.830 0.099 7.780
Cappuccino Cappuccino_TSAR2025_Submission 0.718 0.826 0.843 0.077 8.050
GRIPF tsar2025_ezscalar_lexical_gripf 0.689 0.857 0.820 0.070 8.130
GRIPF tsar2025_ezscalar_nonlexical_gripf 0.721 0.856 0.824 0.060 8.270
Know-Al run2 0.700 0.821 0.835 0.053 8.350
Know-Al runl 0.659 0.801 0.832 0.036 8.560
EasyJon run_1 0.822 0.838 0.836 0.011 8.880
SQUREL SQUREL_Run3 1.153 0.979 0.819 -0.022 9.300
HULAT-UC3M  run2_llama3-8b_reinforced-prompt 0.608 0.793 0.806 -0.028 9.370
oneNRC onenrc_google25flash_withtoolcall 0.534 0.772 0.800 -0.033 9.440
STARLING starling_1_g5-best 0.621 0.811 0.791 -0.053 9.690
ITUNLP itunlp 0.632 0.797 0.797 -0.063 9.820
oneNRC onenrc_gemma312b_react_notool 0.579 0.761 0.803 -0.069 9.880
SQUREL SQUREL_Runl 0.718 0.821 0.797 -0.076 9.980
taskGen submit_1 0.592 0.791 0.786 -0.084 10.070
HULAT-UC3M  runl_llama3-8b_reinforced-prompt 0.682 0.790 0.791 -0.122 10.560
GRIPF tsar2025_saga_gripf 0.831 0.827 0.796 -0.140 10.780
SQUREL SQUREL_Run2 0.632 0.779 0.778 -0.153 10.950
STARLING starling_2_g10-best 0.678 0.795 0.777 -0.160 11.040
Archaeology llama_3.2_1b 0.212 0.706 0.731 -0.165 11.100
taskGen submit_2 0.561 0.752 0.773 -0.169 11.150
STARLING starling_3_g5-random 0.812 0.816 0.785 -0.180 11.280
HOPE HOPE_runl 1.428 0.945 0.815 -0.255 12.230
GPLSI runl_llama_knowledge 0.998 0.865 0.772 -0.258 12.270
GPLSI run2_llama_zs 0.640 0.772 0.750 -0.258 12.270
ounlp test_data_output_for_Second_Program 0.714 0.865 0.701 -0.313 12.960
HOPE HOPE_EXPERT _runl 1.402 0.919 0.797 -0.337 13.260
MMU_NLP mmu_tsar25_test_system2 1.005 0.845 0.754 -0.350 13.430
BU-intelPA run2 0.612 0.715 0.739 -0.368 13.650
MMU_NLP mmu_tsar25_test_system3 1.010 0.832 0.752 -0.381 13.830
MMU_NLP mmu_tsar25_test_system_1 0.822 0.735 0.676 -0.664 17.390
HOPE HOPE_SOTA _runl 1.600 0.841 0.730 -0.795 19.030
GPLSI run3_flan_knowledge 0.883 0.221 0.182 -3.093 48.000

Table 2: Final ranked results for all submitted runs using AUTORANK with custom weighting.

Team Model RMSE MeaningBERT (Src) MeaningBERT (Ref) Avg  AUTORANK
EhiMeNLP % runl 0.000 0.902 0.845 0.636 1.000
UoL-UPF % uol-upf_submission3 0.000 0.856 0.857 0.603 1.410
HIT-YOU % run2_gpt_ensemble_4 0.158 0.852 0.835 0.429 3.610
Uniandes run_1 0.212 0.817 0.814 0.275 5.560
Archaeology claude_sonnet_4 0.122 0.779 0.804 0.238 6.010
taskGen submit_3 0.628 0.856 0.826 0.122 7.480
ounlp test_data_output_for_First_Program 0.755 0.855 0.849 0.121 7.500
BU-intelPA runl 0.628 0.831 0.830 0.099 7.780
Cappuccino Cappuccino_TSAR2025_Submission ~ 0.718 0.826 0.843 0.077 8.050
GRIPF tsar2025_ezscalar_lexical_gripf 0.689 0.857 0.820 0.070 8.130
Know-Al run2 0.700 0.821 0.835 0.053 8.350
EasyJon run_1 0.822 0.838 0.836 0.011 8.880
SQUREL SQUREL_Run3 1.153 0.979 0.819 -0.022 9.300
HULAT-UC3M  run2_llama3-8b_reinforced-prompt 0.608 0.793 0.806 -0.028 9.370
oneNRC onenrc_google25flash_withtoolcall 0.534 0.772 0.800 -0.033 9.440
STARLING starling_1_g5-best 0.621 0.811 0.791 -0.053 9.690
ITUNLP itunlp 0.632 0.797 0.797 -0.063 9.820
HOPE HOPE_runl 1.428 0.945 0.815 -0.255 12.230
GPLSI runl_llama_knowledge 0.998 0.865 0.772 -0.258 12.270
MMU_NLP mmu_tsar25_test_system2 1.005 0.845 0.754 -0.350 13.430

Table 3: Best run per team using AUTORANK with custom weighting.
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result, the central question is no longer "Can this
model generate simplified texts?" But rather, "Are
this model’s outputs of sufficient quality to be used
with CEFR-based learners?" Hence, this shared
task supports further research on pedagogical val-
idations (e.g., expert-in-the-loop) to ensure that
LLM-generated simplifications are aligned with
CEFR-based learning objectives rather than pro-
ducing superficial, simpler texts.

Where Do We Position Synthetic Data? While
the shared task was ultimately successful in produc-
ing a new parallel CEFR-based reference dataset
for validation and testing, it is worth noting the
substantial effort and financial support required for
resource development. In line with this, we ask the
question "Is it time to use LLM-generated CEFR
data to complement expert-produced data?" While
adjacent NLP tasks like grammatical correction
and essay scoring have benefited from the perfor-
mance advantages of synthetic data, its practicality
for readability and text simplification applications
has only ever been explored recently (Stahlberg
and Kumar, 2021; Kloser et al., 2024; Latouche
et al., 2024; Qwaider et al., 2025). For text simpli-
fication that is anchored on a real-world language
proficiency framework like CEFR, there are both
opportunities and risks. On the one hand, LLMs are
capable of generating fluent text guided by CEFR
specifications, as evident in the top submissions of
this shared task. This could potentially be valuable
for low-resource languages across various domains,
genres, and text types where expert-annotated re-
sources are scarce. However, using synthetic data
without careful validation checks risks producing
noisy approximations of CEFR levels, which may
reinforce undesirable simplification patterns. As
such, our stance on this is that we should estab-
lish a community-accepted framework to integrate
synthetic data, involving steps such as filtering and
expert validation stages. For the next iteration of
this shared task, we propose a direction exploring
how the use of LLM-generated synthetic data can
perform well on test and validation data generated
by experts.

Cost-Performance Tradeoffs Our leaderboard
results show that top-ranked systems achieved
strong performance by leveraging ensembles of
multiple LLMs. However, these submissions come
with substantial computational and financial costs.
For example, the rank-one system EhiMeNLP com-
bined six LLMs, including GPT-5, GPT-4.1, 03,

GPT-0OSS-20B, Qwen3-32B, and Llama-3.3-70B-
Instruct to generate up to 120 candidate simpli-
fications per input. While such methods clearly
demonstrate the potential of ensemble-based tech-
niques for producing precise readability-controlled
simplifications, their heavy resource demands may
limit their adoption in educational and resource-
constrained contexts where computational budget
to run more than one commercial model is unavail-
able. Future work should therefore explore ap-
proaches that strike a balance between achieving
decent performance and computational efficiency.
Likewise, combining resource-aware evaluation
procedures with performance-based metrics may
encourage participants to propose innovative and
computationally viable methods that are effective
in real-world CEFR-based text simplification set-
tings.

9 Conclusion

The TSAR 2025 Shared Task introduced a bench-
mark for readability-controlled text simplification
explicitly aligned with CEFR levels. Two main
resources were developed as contributions to the
community: a) a CEFR-aligned dataset of pedagog-
ical paragraph-level English texts simplified to A2
and B1 levels, and b) a CEFR evaluator model fine-
tuned to estimate text difficulty along the CEFR
scale.

The results from participating teams indicate that
although LLMs achieve strong performance on this
task, achieving dependable and fine-grained con-
trol over simplification often relies on complex,
iterative generation strategies. Moreover, our anal-
ysis suggests that current systems are approaching
the limits of existing automatic evaluation metrics,
underscoring the need to adapt these metrics for
greater robustness and practical relevance.

Limitations

We acknowledge several limitations in the conduct
of this shared task, which we believe can serve as a
springboard for future iterations.

Dataset and Annotation Coverage. For our pri-
mary shared task dataset, we use a single-source
English-only dataset from The British Council.
This is the result of our prioritized search for a
new gold-standard CEFR-based parallel dataset
that has not been published before, as a contribu-
tion to the community from the Shared Task. The
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dataset we acquired was provided in paragraph-
level format due to the unavailability of resources
in longer forms. One can argue for transforming
the paragraph-level data into sentence-level data
to account for variance; however, we did not pur-
sue this option since sentence-level CEFR data are
already available, such as CEFR-SP (Arase et al.,
2022) and ReadMe (Naous et al., 2024). Likewise,
due to budget constraints, we were only able to
provide one expert-written simplification for each
instance of the trial and test set. We acknowledge
that expanding this, for example, by asking more
language experts to produce separate annotations
will allow better convergence of evaluation scores.

Automatic Metrics for System Evaluations.
Our main evaluation pipeline, which determined
the system rankings, primarily relied on auto-
matic metrics including a combination of weighted
RMSE and ModernBERT scores, which compared
system outputs to reference and target expert-
written simplifications. While this setup is conve-
nient from a shared task perspective, an additional
round of expert validation from text simplifications
of each system submission would be valuable in as-
sessing linguistic and pedagogical appropriateness
that automatic metrics do not capture. However,
we were unable to conduct this due to time and
funding constraints.

Ethics Statement

The dataset used for this shared task was acquired
with the British Council’s formal permission. The
collection of manual simplifications received a
favourable opinion from the Ethics Committee of
the School of Computer Science and Informatics
at Cardiff University. All artifacts, including the
dataset with expert reference simplifications and
evaluation scripts, will be released to the research
community to support future work. All participat-
ing teams are credited for their submissions. Sys-
tem description papers were included when avail-
able, ensuring transparency and proper attribution
of their methods.

We acknowledge that the LLMs used by par-
ticipants and in our evaluation tools may contain
inherent biases reflecting their training data. This
work is an analysis of system performance and
does not constitute an endorsement of these models
for direct pedagogical applications without further
expert-in-the-loop validation. Our aim is to bench-
mark the current state of the art to encourage the

responsible development of text simplification tech-
nology.
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A Appendix
A.1 Data Distribution

Table 6 shows the distribution of instances across
CEFR levels in the training, validation, and test
splits.

A.2 Hyperparameter Values

Table 4 reports the hyperparameters used to fine-
tune the pre-trained MODERNBERT model.

Hyperparameter Value
Learning rate 3.6 x 1075
Train batch size 3
Evaluation batch size 3
Random seed 42
Gradient accumulation steps 16
Total effective batch size 48
Optimizer adamw_torch_fused
Betas (0.9,0.999)
Epsilon 1078
Learning-rate scheduler linear
Warm-up ratio 0.1

Table 4: Hyperparameter values used to fine-tune the
pre-trained MODERNBERT model.

A.3 Annotators’ Reliability

Table 5 shows different metrics between the target
CEFR level assigned during annotation with the
levels predicted by our automatic CEFR evaluator
model in the shared task dataset.

Annotator Data (N) P Acc  AdjAcc RMSE
1 Trial (20) 0.68 0.63 1.00 0.61
2 Test (20)  0.37 0.65 1.00 0.59
3 Test (80) 0.43 0.61 1.00 0.62

Table 5: Reported reliability and accuracy scores of the
annotators with respect to the data splits they produced
the reference text simplifications.

A.4 Classifier Performance

Table 8 presents the performance of the CEFR clas-
sifier in the validation set.
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Split Al A2 B1 B2 C1 C2 Total

TRAIN_DOC_EN 17 122 152 148 115 96 650
TRAIN_DOC_SENT_EN 323 2,066 4,080 4,374 27236 397 13,476
REFERENCE_ALLLANG 2,318 19,838 22,270 7,257 3,802 1,478 56,963

VALIDATION 4 26 33 31 24 21 139
TEST 3 26 33 32 25 21 140

Table 6: Distribution of instances across CEFR levels in training, validation, and test splits.

Source Name Language
cefr-sp (Arase et al., 2022) en
apa-1lha (Spring et al., 2021) de
deplain-apa-doc (Stodden et al., 2023) de
deplain-apa-sent (Stodden et al., 2023) de
deplain-web-doc (Stodden et al., 2023) de
elg-cefr-de (Breuker, 2022) de
elg-cefr-nl (Breuker, 2022) nl
hablacultura (Vasquez-Rodriguez et al., 2022) es

kwiziq (Vdsquez-Rodriguez et al., 2022) es

kwiziq (Imperial et al., 2025) fr
learn_welsh_cy (Imperial et al., 2025) cy

readme (Naous et al., 2024) en, ar, fr, hi, ru

Table 7: List of datasets and languages included in the REFERENCE_ALLLANG split

Model Setup Al A2 Bl B2 C1 C2 Avg AdjAcc RMSE

TRAIN_DOC_EN 0.57 0.85 0.77 0.81 0.78 0.91 0.81 0.97 0.50
TRAIN_DOC_SENT_EN 040 0.87 082 0.81 0.84 0.95 0.84 0.99 0.42
REFERENCE_ALLLANG 0.00 0.84 0.79 0.78 0.81 0.95 0.80 1.00 0.43
MAIJORITY VOTE 040 0.87 0.84 0.82 0.84 095 0.84 0.99 0.42
CONFIDENCE-BASED 0.40 0.88 0.87 0.84 0.86 0.98 0.87 0.99 0.39

Table 8: Performance of various training data and model prediction setups integrated with ModernBERT-Base on
the validation set. We selected the CONFIDENCE-BASED setup for our final CEFR evaluator model due to its
optimal performance (low RMSE and high averages).
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Abstract

In this system description paper, we describe
the team OneNRC’s experiments on readability
controlled text simplification, focused on using
smaller, quantized language models (< 205).
We compare these with one large proprietary
model and show that the smaller models offer
comparable results in some experimental set-
tings. The approach primarily comprises of an
agentic workflow, and tool calling. The best
results were achieved while using a CEFR pro-
ficiency classifier as a verification tool for the
language model agent. In terms of comparison
with other systems, our submission that used
a quantized Gemma3:12B model that ran on a
laptop achieved a rank of 9.88 among the sub-
mitted systems as per the AUTORANK frame-
work used by the organizers. We hope these
results will lead into further exploration on the
usefulness of smaller models for text simplifi-
cation.

1 Introduction

Automatic Text Simplification (ATS) is the task of
translating a text written in a more advanced lan-
guage into more accessible language. ATS research
in NLP is over two decades old and most of the
research focused on a single complex — > simple
language text generation task, considering the un-
availability of large scale graded simplification cor-
pora. Siddharthan (2014) and Alva-Manchego et al.
(2020) are two well-known surveys on the topic.
The advent of Large Language Models (LLMs)
made it possible to overcome the ATS dataset bar-
rier to some extent with good zero-/few- shot per-
formance on English text simplification (Kew et al.,
2023) and some recent research explored zero-shot
text simplification targeting specific reading lev-
els (Farajidizaji et al., 2024; Barayan et al., 2025).
Extending this strand of research, the TSAR 2025
Shared Task on Readability-Controlled Text Sim-
plification (Alva-Manchego et al., 2025) aimed to
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compare systems that can generate simplified ver-
sions of text that conform to a target CEFR read-
ing level, while preserving the meaning. No train-
ing data was provided and the test data had 100
texts, each with targeted simplification levels of
A2 and B1 (i.e., 200 in total). Reference simpli-
fications were provided after the task completion.
AUTORANK (Kocmi et al., 2025) was used to rank
the submitted systems.

Approach Summary: Team OneNRC'’s ap-
proach to this task focused on comparing how far
can small language models go in zero-shot readabil-
ity controlled ATS when they are supported with
an agentic workflow and tool support. We used two
tools: a) a CEFR prediction tool to help the lan-
guage model agent verify its generated output and
regenerate as needed, and b) an optional second
tool to check the similarity between the generated
text and the original text. For comparison, we also
re-ran the same experiments with a larger propri-
etary model (Gemini-2.5-flash), and presented an
analysis of the differences in the paper.

Motivation: Several small, open-weight lan-
guage models were released with 1B-20B param-
eter range over the past year or two, and some of
them can even be run for inference on consumer
laptops, often in a quantized form. However, it is
unclear how useful are they for many NLP tasks
as they are not commonly compared with larger
models in existing research. This gap motivates
OneNRC’s submission to this shared task.

In terms of the performance, one of the runs we
submitted (using a 4-bit quantized Gemma3:12B
model on a laptop) achieved an AUTORANK of
9.88, among the 40 submitted runs(Alva-Manchego
et al., 2025). In this paper, we describe our ap-
proach in detail (Section 2), discuss other exper-
iments which achieve better results than the sub-
mitted runs, share some qualitative observations
(Section 3) along with broad conclusions on learn-
ings through this study. (Section 4).

Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025), pages 131-136
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2 Approach

Our approach primarily concentrated on exploring
the power of small language models for this task,
under the following zero-shot settings:

1. Plain prompting with local models

2. Prompting in a ReAct (Yao et al., 2022) agent
setup using smolagents' with or without tool
support. Two tools were used: a) a CEFR
level prediction tool and b) a meaningBERT
similarity score comparison tool - both pro-
vided by the organizers as a part of the shared
task.

3. Prompting in a ReAct agent setup, but with
structured prompt, input and output specifi-
cation using dspy ? (Khattab et al., 2024) in-
stead of free-form prompting used in smola-
gents. The same two tools were explored in
this setting too. Note that dspy supports fur-
ther inbuilt automatic prompt optimization us-
ing few-shot examples, but we did not explore
that in this paper.

These three settings focus on incrementally en-
hancing an LLM’s built in capabilities without fine-
tuning. The first setting relies on a hand-crafted
prompt, and is potentially subject to more variation
in the output depending on even minor changes in
prompts. The ReAct approach aims to interleave
reasoning and actions performed by the LLM with
or without additional tools, and and is expected
to provide more reliable outputs supported by a
reasoning trace. Dspy focuses on structured speci-
fication of prompts, inputs, and outputs and empha-
sizes on a more programmatic interface to interact-
ing with an LLM instead of handcrafted prompts,
which further adds another layer of support to the
base LLM. Thus, these three experimental settings
can be viewed as a sequence of incremental adjust-
ments to LLMs.

Compute and Costs:  All experiments were run
on a Macbook Pro M1 Pro laptop with a 32 GB
RAM, and the costs for running the gemini-2.5-
flash experiments amounted to 5 USD. All the
implementation code including the used prompts
are provided in the github for replication and repro-
duction.’

"https://smolagents.org/

2https://dspy.ai/

3https://github.com/nishkalavallabhi/
tsarst2025-paper

3 Results

We report results using the three official measures
(RMSE, MeaningBERT-Orig, MeaningBERT-Ref)
along with the weighted-F1 for CEFR level com-
pliance (which our approach optimized for), and
the following three models:

1. A 4-bit quantized Gemma3:12B (Team et al.,
2025) model that does not natively offer tool
support (which we nevertheless used with tool
support).

2. GPT-0ss-20B (Agarwal et al., 2025), a model
post-trained with quantization of the model’s
mixture-of-expert weights to MXFP4 format
4 and can run natively without additional
quantization on a laptop.

3. Gemini-2.5-Flash (Comanici et al., 2025), a
large proprietary model as a comparison.

The first two models run on a consumer laptop
using ollama®. The gemini-2.5-flash model was
accessed through API calls with OpenRouter®. Our
final results are summarized in Table 1.

[ Model | CEFRF1  RMSE MB-Orig  MB-Ref |
Basic Prompting with local models
gemma | 0.6765 0.5745 0.7514 0.7917
gptoss | 0.5657 0.7517  0.8216 0.8308
ReAct Agent, No Tools

gemma | 0.6585 0.6042 0.7648 0.8055
gptoss | 0.5612 0.7937  0.8178 0.826

gemini | 0.6528 0.6124  0.7702 0.8152

ReAct Agent, CEFR Compliance Tool
gemma | 0.6559 0.6403  0.7304 0.7605
gptoss | 0.7903 0.4796  0.795 0.8152
gemini | 0.9494 0.2449 0.7689 0.8029
ReAct Agent, two tools
gemma | 0.6676 0.6671  0.7377 0.7616
gptoss | 0.7969 0.4796  0.7938 0.8177
gemini | 0.917 0.3 0.7749 0.8007
ReAct Agent in DSpy, No Tools
gemma | 0.622 0.6083  0.7466 0.7753
gptoss | 0.5766 0.7616  0.8209 0.8308
gemini | 0.631 0.6 0.7449 0.8027
ReAct Agent in DSpy, CEFR Compliance Tool

gemma | 0.7204 0.5292  0.7488 0.7844
gptoss 0.6071 0.7937  0.8144 0.8243
gemini | 0.9646 0.2 0.7618 0.7997

Table 1: Comparison of results across different ap-
proaches

4https://ollama.com/library/gpt—oss

5https://ollama.com/

6https://openrouter.ai/google/gemini—z.
5-flash

132


https://smolagents.org/
https://dspy.ai/
https://github.com/nishkalavallabhi/tsarst2025-paper
https://github.com/nishkalavallabhi/tsarst2025-paper
https://ollama.com/library/gpt-oss
https://ollama.com/
https://openrouter.ai/google/gemini-2.5-flash
https://openrouter.ai/google/gemini-2.5-flash

Discarded models:  We initially experimented
with a some of the small (quantized) models
that support tool use e.g., LLama3.2:1B and 3B,
Qwen3:4B and 8B, primarily to start with as small
models as possible, but adding tool support or
agentic setup resulted in a drastic decline in per-
formance for all models under 12B that we ex-
plored. For example, a react agent regenerated
the same text for 20 iterations in one case, with
the LLama3.2:1B model. So, we did not perform
additional experiments with the models under 12B.

3.1 Discussion

Without any tool calling, in a plain prompt based
setup, the quantized Gemma3 model is surprisingly
better than a larger gpt-oss model in terms of CEFR
compliance and there is no substantial difference
compared to even a much larger Gemini model
when no tools are used in a react agent setup. It
is also important to note that there is not much
difference between using a ReAct agent without
tools versus just prompting the model across dif-
ferent evaluation measures. The local Gemma3
model without ReAct agent even shows slightly
better CEFR compliance than the Gemini model in
the same setup. While using a tool did not benefit
Gemma3 much in a prompt + react agent setup,
it did result in a 5% boost in CEFR compliance
compared to basic prompt setup, when used with
dspy, which could be attributed to the differences in
the react prompting setup between smolagents and
dspy, and dspy’s focus on a more structured input
approach to prompting. Considering that Gemma3
does not natively support tool use, it is interest-
ing to note the performance improvement it could
achieve with tool support and structured prompting.
This could be further explored in future with few-
shot prompt optimization. Gpt-oss and Gemini saw
major improvements in overall CEFR compliance
after tool support, but this came with a drop in both
the meaningBERT similarity scores.

The usage of a second tool to verify meaning
similarity did not seem to benefit any of the mod-
els, in any settings. Gpt-oss model consistently
maintained better meaningBERT scores across all
our experimental settings, and was consistently bet-
ter than Gemma3 model even in CEFR compliance
once tool calling was added to plain prompting.
Clearly, adding tool calling benefited both in terms
of CEFR compliance and meaning preservation.

Best results: Overall, the best result we
achieved with a small model in terms of the
official evaluation measures is with gpt-oss:20B
(RMSE: 0.4796, MeaningBERT-Orig:0.7938,
MeaningBERT-Ref:0.8177) in the ReAct+CEFR
tool setup with smolagents, and the best result
with Gemini-2.5-Flash is achieved in the Re-
ACT+CEFR Tool+Dspy setting (RMSE: 0.2,
MeaningBERT-Orig:0.7618, MeaningBERT-
Ref:0.7997). For a comparison, the best submitted
system amongst all the shared task systems
(EHIMENLP) achieved the scores of 0 for RMSE,
0.902 and 0.845 for MeaningBERT-Orig and Ref
respectively (Alva-Manchego et al., 2025). While
we don’t know the details of this system yet, it
is interesting to see that high scores on mean-
ingBERT were maintained despite low RMSE,
which clearly was not the case in our experiments.
In our experiments, we consistently observed
that lower RMSEs are accompanied by lowering
of the meaningBERT scores. Additionally, all
our approaches had a higher MeaningBERT-Ref
score than MeaningBERT-Orig score, unlike the
EHIMENLP system.

Qualitative Comparison: To get a feel for how
much difference do these approaches bring into the
outputs themselves, Table 2 shows an example text
and the outputs with the some of the approaches,
along with the reference simplification. In this ex-
ample, interestingly, except one (Gemini+React+2
Tools), all the approaches left out the expansion
of the abbreviation. Gemma3 based approach ap-
pears to focus on generating short sentences. There
is a small amount of hallucination in the gpt-oss
model’s output for this example, where "mother"
in the original was transformed into "sister" in the
simplified version. Only one model seems to miss
the detail that that the asteroid is 800 meters wide,
which is present in the original and reference texts.
Going beyond these minor differences between
models, the generated text generally seems to have
undergone some form of simplification, and there
are substantial similarities with the given reference
text.

Table 3 shows an example text and a 4-bit quan-
tized Gemma3 model’s output for the two target
CEFR levels-A2 and B1 using plain prompting
without any tool support or agentic setup. The
output shows that even this basic model is able to
distinguish between the two levels to some extent in
terms of language use. That indicates that smaller

133



Original

The first is DART — the Double Asteroid Redirection Test. Plans are scheduled to test DART on the
moon of an asteroid called Didymos. Didymoon’ is 150 metres wide, orbiting its 800-metre mother, and
hopefully the impact of DART will knock it out of its orbit enough for Earth-based telescopes to pick up.

Plain Gemma3

There is a project called DART. DART will test something on the moon of an asteroid. The asteroid is
called Didymos. Didymoon is part of Didymos. It is about 150 metres wide. Didymoon goes around
Didymos, which is bigger - about 800 metres wide. We hope DART will push Didymoon a little bit.
Then, telescopes on Earth will be able to see the change.

Gemma3+ Re-
Act + CEFR
Tool

DART is a test. It will hit the moon of an asteroid called Didymos. The moon is called Didymoon. It is
small, 150 meters. The asteroid is bigger, 800 meters. We want to see if DART can change Didymoon’s
path.

Gpt-oss + Re-
Act  +CEFR
Tool

DART is a mission to change an asteroid. Scientists will test it on the moon of the asteroid Didymos.
The moon is called Didymoon. It is 150 metres wide. It goes around its larger sister, an asteroid 800
metres wide. The plan is that DART will hit Didymoon and move it so that telescopes on Earth can see it.

Gemini + Re-
Act + CEFR
Tool

First, there’s DART. It’s a test to change an asteroid’s path. We will test DART on Didymoon, a moon
of an asteroid named Didymos. Didymoon is 150 meters wide. It moves around its parent asteroid.
We hope DART will hit Didymoon and change its orbit a little. Then, telescopes on Earth can see this
change.

Gemini + Re-
Act + 2 Tools

The first thing is DART (Double Asteroid Redirection Test). People want to test DART on a moon of
an asteroid called Didymos. This small moon is called ’Didymoon’. It is 150 meters wide. It goes
around its mother asteroid, which is 800 meters. We hope DART’s hit will move Didymoon a little. Then
telescopes on Earth can see it.

Reference

The first project is DART- the Double Asteroid Redirection Test. It will be tested on the moon of an
asteroid called Didymos. This moon is called "Didymoon." It is 150 metres wide and goes around its
bigger "mother" asteroid, which is 800 metres wide. Scientists hope that when DART hits Didymoon, it
will change its path enough for telescopes on Earth to see.

Table 2: Example outputs across different systems for Textid:60-A2)

Original

Cape Town can be a dangerous place for baboons. Some have been injured or killed in car accidents and
others have been electrocuted as they played with electric cables. Baboons are an endangered species
and to save them and minimise conflicts between humans and baboons, the city council has employed
a team of Baboon Monitors. The monitors’ job is to chase baboons out of urban areas or catch them
and release them in the countryside. This policy has had some success, though it is proving hard to stop
baboons from coming back to the city once they see it as a source of easy food.

Plain Gemma3-
A2

Baboons can be in danger in Cape Town. Sometimes they get hurt or die in car accidents. Sometimes
they get hurt by electricity. Baboons are rare, so we need to protect them. The city has people called
Baboon Monitors. Their job is to move baboons away from the city. They take them to the countryside.
This helps, but it’s hard to stop baboons from coming back because they find food easily in the city.

Plain Gemma3-
Bl

Baboons can face dangers in Cape Town. Sometimes they are hurt or die in car accidents, or get hurt
by electricity when they play near wires. Baboons are rare, and we need to protect them. To help the
baboons and avoid problems with people, the city has a team of Baboon Monitors. These monitors try to
move baboons away from towns or catch them and take them to the countryside. This has helped a little,
but it’s difficult to stop baboons from returning to the city if they think they can easily find food there.

Reference

Cape Town can be dangerous for baboons. Some are hurt or die in car accidents. Some die from playing
with electric wires. Baboons are animals that are in danger of disappearing. To help them, the city now
has a team called Baboon Monitors. These people try to move baboons out of the city and take them
back to the countryside. This plan works a little, but the baboons often come back because they find food
in the city.

Table 3: Textid:25 in the A2 and B1 versions generated by the 4-bit quantized Gemma3:12B model, just using a

simple prompt

language models may hold potential in generating
simplifications and perhaps as writing support tools
for creating simplified versions of text. Looking
at multiple model generations may also be more
informative for human writers.

4 Conclusions

Overall, our experiments lead us to three main con-
clusions:

1. Small language models are capable of doing
some readability controlled text simplification

even in a zero-shot setting.

2. Supplying appropriate tool calls is useful, es-
pecially for the larger models.

3. There appears to be a tradeoff between achiev-
ing the right CEFR level and preserving the
meaning.

Evaluation: Evaluation in this shared task pri-
marily relied on automated models, and what ap-
pears like an ad-hoc weighting scheme. While
a smaller scale human evaluation may be needed
to understand the generated texts better, explana-
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tory measures using LLLM-as-a-Judge approaches
or checklist based evaluation approaches (Cook
et al.; Mohammadkhani and Beigy, 2025) may pro-
vide more informative evaluation for text simplifi-
cation. Small language models may hold a poten-
tial as judges too, providing low-cost, low-carbon
footprint options. Finally, manual analysis revealed
the possibility of hallucination even in these con-
strained generation scenarios. As the use of LLMs
for text simplification increases, the evaluation mea-
sures need to also account for hallucination as a
potential dimension.

Future Work: While a laptop environment is
not conducive to conduct experiments on a larger
scale, we believe future work should focus on ex-
ploring the power of smaller models in few-shot set-
tings or fine-tuning using synthetic data generation.
Dspy’s automatic prompt optimization capabilities
in few shot settings should be better explored for
this task, to understand the true potential of smaller
models for text simplification. The current shared
task focused only on English, but these experiments
lead us to hypothesize that there may be some pos-
sibilities to replicate these results for at least some
of the high resource languages, which needs to be
explored. Finally, using language models as sup-
port tools to aid the authors of simplified texts also
seems to be a useful direction to pursue.

Limitations

We did not venture into few-shot prompting or any
other in-context learning strategies in this paper.
Further, since everything was ran on a laptop, we
only used 4-bit quantized versions of several small
models, and their unquantized versions are poten-
tially more powerful. This can be explored further
in future, and the current results should be consid-
ered under these limitations.

Lay Summary

Automatic Text Simplification (ATS) is the task of
translating a text written in a more advanced lan-
guage into more accessible language. A common
approach to solve this problem is to collect large
number of examples of sentences and their manu-
ally simplified variants (e.g., from some form of
sentence level alignment of Wikipedia and Simple
Wikipedia articles) and use them as inputs to com-
putational algorithms that are capable of learning
patterns from such large amounts of data. The out-
put of this process creates a simplification "model",

which can be used to simplify any given new text.
One way to add more nuance to this process is to
instruct the whole process to do graded simplifica-
tion, based on some scale such as the CEFR scale,
which is used to describe language proficiency at
various levels. However, that would also mean col-
lecting large amounts of examples for each level.
Hence, this kind of research was largely restricted
to languages where such data is already available
or can be collected easily.

The arrival of general purpose Artificial Intel-
ligence based models like ChatGPT gave some
flexibility to this approach. We can now describe
our problem, potentially give a few examples, and
prompt a large language model to simplify a given
text, targeting a specific CEFR level. This shared
task (where different groups of researchers work
on solving a given problem under the same data/e-
valuation conditions) focuses on CEFR targeted
text simplification for English. The approach de-
scribed in this paper explores whether we really
need very large models for this task, asking the
question: what can small language models that can
run on laptops achieve, if they are given some sup-
port in the form of tools that can verify their output
and tools that can automatically adapt the human
written prompts to suit the language model’s re-
quirements. It turns out, they can put up a strong
competition to larger ones, sometimes.
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simplification with the help of inter-model interactions
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Abstract

In this contribution to the CEFR level simpli-
fication TSAR 2025 Shared Task, we propose
two systems, EZ-SCALAR and SAGA, that im-
plement two differing approaches to prompting
LLMs for proficiency-adapted simplification.
Our results place us in the middle of the partici-
pating teams, and reveal that using external lex-
ical resources to guide simplification improves
overall results.

1 Introduction

This paper presents the details of the GRIPF team
in the TSAR 2025 Shared Task on CEFR level
simplification (Alva-Manchego et al., 2025). The
workshop website describes the task as follows:
“The task targets English-language paragraphs writ-
ten at upper-intermediate or advanced levels and
requires participants to simplify them according to
a specified target readability level, defined using
the Common European Framework of Reference
for Languages (CEFR). Specifically, participants
will be asked to simplify texts originally at B2 level
or above to target levels of A1, A2, or B1” (TSAR
Workshop).!

2 Related Work

As Babhrainian et al. (2024) put it, "[t]ext simpli-
fication is the process of rewriting a piece of text
using simpler vocabulary and grammatical struc-
ture in order to make the text more accessible and
understandable for a larger audience".

Text simplification has evolved from rule-based
approaches that rely on predefined linguistic trans-
formations to neural methods that learn simplifi-
cation patterns from data. Early work focused on
lexical substitution and syntactic restructuring us-
ing hand-crafted rules, while recent advances have

'While the webpage specifies the target level A1, the actual
task only targets A2 and B1.

Sebastian Gombert
Educational Technologies
Information Centre for Education
DIPF, Germany
s.gombert@dipf.de

leveraged transformer-based models for end-to-end
simplification. Zetsu et al. (2024) demonstrate that
lexically constrained decoding with edit operations
can effectively guide neural simplification models,
addressing the challenge of loose constraints in
previous approaches.

Controllable text generation has emerged as
a particularly relevant area, where models are
guided to produce outputs meeting specific crite-
ria such as reading level or target audience. Crip-
well et al. (2023) propose document-level plan-
ning approaches that decompose simplification
into discrete operations (copy, rephrase, split, or
delete), showing that structured planning can guide
generation more effectively than end-to-end ap-
proaches. Recent work by Maddela and Alva-
Manchego (2025) addresses the challenge of eval-
uating document-level simplification, proposing
methods to adapt sentence-level metrics for longer
texts. Within this landscape, CEFR-level simpli-
fication represents a specialized challenge, as it
requires not only reducing complexity but doing
so in alignment with established language profi-
ciency standards. Ryan et al. (2023) highlight the
particular challenges of multilingual simplification,
while Horiguchi et al. (2025) extend this work by
developing parallel corpora for the simplification of
medical texts in nine languages, demonstrating that
multilingual training can improve the performance
of simplification.

Ensemble methods in natural language process-
ing have demonstrated consistent improvements
over single-model approaches across various tasks.
The principle of combining multiple models to
leverage their complementary strengths has been
successfully applied to machine translation, text
generation, and classification tasks. Recent work
by Valiev and Tutubalina (2024) shows that in-
prompt ensemble methods, where multiple model
predictions are integrated as separate expert so-
lutions with trust scores, can achieve strong per-
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formance in specialized domains. Parfenova and
Pfeffer (2025) demonstrate that smaller ensemble
models with refined outputs can consistently out-
perform individual models and even large-scale
LLMs, suggesting that ensemble approaches may
be more effective than relying solely on large stan-
dalone models. Niess and Kern (2025) extend
ensemble methods to watermarking applications,
showing that multi-feature ensemble approaches
achieve 98% detection rates and maintain robust-
ness against paraphrasing attacks.

Our work extends this concept to controllable
simplification, where inter-model critique and re-
finement can potentially address the limitations
of individual models. This approach aligns with
recent trends in self-correction and iterative im-
provement in language models, where systems re-
fine their output through multiple generation cy-
cles. Pan et al. (2024) provide a comprehensive
survey of automated correction strategies, catego-
rizing approaches into training-time, generation-
time, and post-hoc methods, while Ferraz et al.
(2024) demonstrate that decompose-critique-refine
pipelines can significantly improve constraint fol-
lowing in language models. However, recent crit-
ical surveys suggest that the effectiveness of self-
correction varies significantly across tasks and
model types (Kamoi et al., 2024), highlighting the
importance of ensemble approaches that can lever-
age external critique mechanisms rather than rely-
ing solely on self-evaluation.

3 Methodology

We use two similar approaches to tackle the prob-
lem of lexical simplification. The first system is
called EZ-SCALAR (Ensemble Zero-shot Simplify,
Criticize, Adapt with Lexical Assessment, and Ref-
eree). The second system is called SAGA (Self-
Assessed Guided Adaptation). Both systems es-
timate complex vocabulary, either using external
resources or by prompting the model. Both mod-
els adjust the simplification based on the identified
complex vocabulary.

3.1 EZ-SCALAR

EZ-SCALAR uses two state-of-the-art LLMs:
GPT-5 and Claude Opus 4.1. In the first step, both
models are prompted to simplify the text to the
target level. In the second step, each model re-
ceives the simplified text of the other model and is
asked to critique the simplification given the target

level. The first stage generates independent simpli-
fications, allowing each model to apply its learned
patterns without bias from the other. The critique
stage is crucial for identifying potential issues that
individual models might miss, as different architec-
tures often exhibit distinct biases. In the third step,
each model receives the other model’s critiqueand
is asked to refine its text based on the critique; the
refinement stage incorporates these insights, poten-
tially producing outputs superior to either model
alone. In the last step, each model receives the
original text, the two simplifications, and the target
level, and is asked to choose the text that best fits
the target level in terms of meaning preservation,
readability and clarity. In case the models dis-
agree, a third model — Llama-3.2-3B-Instruct — is
used as judge.

3.2 EZ-SCALAR Lex

As an extension of the base system, we also exper-
iment with using external lexical resources. The
system is identical to EZ-SCALAR, but between
the second and third step, a lexical assessment mod-
ule is implemented. Figure 1 in the Appendix
illustrates both architectures. This module uses
the EFLLex vocabulary list (Diirlich and Frangois,
2018) to estimate the complexity of vocabulary
and addresses a key limitation of purely neural
approaches: the lack of explicit control over vo-
cabulary complexity. By integrating the EFLLex
vocabulary list, the system bridges rule-based and
neural methods, providing concrete guidance about
problematic words. Since the EFLLex list con-
tains words with their part-of-speech and frequency
distributions over CEFR levels, we use the first-
occurrence approach to map each (word, pos) tuple
to its target level. This means that each word is
linked to a distribution of frequencies over levels
(how often was this word used at A1, A2, etc.), and
the level at which the frequency first becomes non-
zero is taken as target level. Since this method
of level assignment is brittle when it comes to
low frequencies, all levels above A1l are shifted
downwards one level. The decision to shift CEFR
levels downward reflects practical considerations
about the reliability of frequency-based level as-
signments, acknowledging that conservative esti-
mates are preferable to overly optimistic ones in
educational contexts. The module uses stanza to
lemmatize and pos-tag. Since the pos-tags are dif-
ferent, we map the lexical tags nouns, verbs, ad-
Jectives and adverbs to a common tag set (the tag
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set used by EFLLex).”> The module takes as in-
put the simplified text and target level and identi-
fies words which are above the target level. These
words are then added to the prompt for the third
step, along with a prompt to pay special attention
to these words.

3.3 SAGA

SAGA uses two components, which we refer to as
the proposer and the reviewer. Given a text and
a desired CEFR level, the proposer generates an
adjusted version of the text that supposedly satis-
fies that CEFR level. The reviewer then classifies
whether the proposed version of the text actually
meets the required level. In case the reviewer pre-
dicts that the text is indeed satisfying the level, we
accept. Otherwise, the proposer needs to regener-
ate a text based on the previously generated version,
which is then again judged by the reviewer. This
process is repeated until an agreement is reached or
a maximum number of iterations is reached. Figure
2 in the Appendix illustrates the SAGA architec-
ture.

For our submission, the proposer is implemented
with GPT-4o via the conversational API. Given, a
custom system prompt (see appendix), the model is
first prompted to identify words and phrases within
the given input text that are not appropriate for the
desired CEFR level and also to provide more appro-
priate alternatives along with the identified words
and phrases. In the second step, the model is then
prompted to reformulate the input text by chang-
ing the respective phrases and using the proposed
alternatives instead.

The resulting text is then given to the reviewer,
which, in our case is implemented in the form of a
ModernBERT-large (Warner et al., 2025) classifica-
tion model fine-tuned on a corpus of English texts
labelled for their CEFR level® (1x5 cross-validation
resulted in a weighted F1 of 0.689). If the reviewer
detects a different CEFR level than expected, the
proposer is prompted to identify additional words
and phrases that could have brought the reviewer
to this judgement, again with suitable alternatives.
Following this, it is again prompted to reformulate
the text accordingly. For the shared task submis-
sion, we set the maximum iterations to 5.

2We surmise that marking interjections and other closed-
class part-of-speech may be unnecessary and introduce unnec-
essary noise in the process.

3https://www.kaggle.com/datasets/amontgomerie/cefr-
levelled-english-texts
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4 Evaluation

4.1 Pre-Evaluation

For pre-evaluating our systems, we used the pro-
vided trial data set and the official evaluation script.
The evaluation script outputs different measures,
organized into three overarching parts, each with
sub-measures:

1. CEFR Compliance: how well does the text
adhere to the specified CEFR level; this com-
pliance is checked by running the simplified
text through a model trained on sentence-label
CEFR data

» Weighted F1: This is a combination of
precision and recall, averaged by class
and weighted by the number of actual
occurrences of each class in the dataset
(weighted_f1 in Table 1). It was dropped
in the final evaluation because it does not
capture the severity of misclassification.

* Adjacent accuracy: This measure is simi-
lar to accuracy, but it counts a prediction
as correct if it corresponds either directly
to the gold label or is either one above
or below the gold label (e.g., if the gold
label is B1, and the prediction is A2, it
is counted as correct; adj_accuracy in
Table 1). It was dropped in the final eval-
uation because it is less informative than
RMSE.

Root Mean Squared Error (RMSE):
RMSE is the quadratic mean of the differ-
ences between the observed values and
predicted ones (rmse in Table 1)

2. Meaning Preservation: how well does the sim-
plification preserve the meaning of the origi-
nal unsimplified text

* MeaningBERT-Orig: measures seman-
tic similarity between the original text
and the simplified version using a model
specifically trained on human annota-
tions for meaning preservation in sim-
plification

BERTScore-Orig: measures semantic
similarity between the original text and
the simplified version. However, as this
model tends to “overestimate similarity
when there is lexical overlap with no true
meaning preservation” (Alva-Manchego



Metric Sub-Metric EZ-SCALAR EZ-SCALAR Lex SAGA
weighted_f1 1 0.533 0.567  0.530

CEFR Compliance adj_accuracy 1 0.975 0.975 0.975
rmse | 0.758 0.742  0.742

Meanine Preservation MeaningBERT-Orig 1 0.852 0.860  0.790
& v BERTScore-Orig 1 0.948 0951  0.951
Similarity to References MeaningBERT-Ref 1 0.803 0.794  0.738
Y BERTScore-Ref 1 0.926 0.925  0.920

Table 1: Results on trial data. 1 means that a higher score (maximum 1) is better. | means that a lower score is

better (minimum 0)

System RMSE | M-BERT-Orig? M-BERT-Ref{ AvgScore? AUTORANK |
EZ-SCALAR 0.721 0.856 0.824 0.060 8.270
EZ-SCALAR Lex 0.689 0.857 0.820 0.070 8.130
SAGA 0.831 0.827 0.796 -0.140 10.780

Table 2: Results on test data. Best results per test measure in bold.

et al., 2025), it was dropped for the final
evaluation

3. Similarity to References:

* MeaningBERT-Ref: same as above, ex-
cept between a human reference annota-
tion and the system simplification

e BERTScore-Ref: same as above

Our results are summarized in Table 1. However,
as the number of data points in the trial data set
was limited (n = 40), the results are merely hints
at what methods might work better.

As can be gathered from the Table, all systems
perform similarly well, with no system clearly dom-
inating. Note that adjacent accuracy is meaning-
less since there were only two target classes.

4.2 Post-Evaluation

Table 2 shows our results on the test data. In gen-
eral, of 20 participating teams, we placed 10. As
can be gathered from the table, the lexically guided
variant of EZ-SCALAR outperforms the other two
methods in almost all cases and is only outdone
by EZ-SCALAR in the MeaningBERT-Ref score,
albeit not by much.

5 Discussion

The superior performance of EZ-SCALAR Lex
(AvgScore: 0.070) over regular EZ-SCALAR

(0.060) demonstrates the value of explicit lexical
guidance in controlled simplification tasks. This
improvement appears primarily in the RMSE met-
ric (0.689 vs 0.721), suggesting that the lexical
assessment helps achieve a more accurate CEFR
level targeting. The marginal difference in mean-
ing preservation scores (M-BERT-Orig: 0.857 vs.
0.856) indicates that lexical guidance improves
level compliance without significantly compromis-
ing semantic fidelity.

SAGA’s performance profile reveals interesting
trade-offs in the system design space. Although
it achieves the highest BERTScore-Orig (0.951),
indicating a strong preservation of surface-level
similarity to the original text, it shows a weaker
performance in CEFR compliance (RMSE: 0.831)
and reference similarity. This suggests that the
iterative proposer-reviewer approach may priori-
tize conservative modifications that maintain orig-
inal phrasing over more substantial restructuring
needed for effective simplification.

The ranking across metrics illuminates the inher-
ent tensions in text simplification. Systems that ag-
gressively modify text to achieve target readability
levels may sacrifice meaning preservation, while
those that prioritize semantic fidelity may fail to
achieve sufficient simplification. The ensemble ap-
proaches appear to navigate these trade-offs more
successfully than the single iterative method, pos-
sibly because of their ability to consider multiple
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perspectives during the simplification process.

6 Conclusion

We presented two systems for proficiency-targeted
simplification of texts and show that lexical re-
sources can help guide simplification systems to
achieve simplifications that better adhere to target
levels.

The comparative analysis of our three system
variants reveals important insights about the archi-
tecture of controlled text simplification systems.
The superior performance of EZ-SCALAR Lex
demonstrates that hybrid approaches combining
neural language models with established linguis-
tic resources can outperform purely neural meth-
ods. This finding aligns with broader trends in
natural language processing, where the integration
of explicit knowledge representations with statis-
tical learning has proven valuable across multi-
ple tasks. The ensemble architecture employed
in EZ-SCALAR, which leverages multiple mod-
els through critique and refinement cycles, ap-
pears more robust than the iterative single-model
approach of SAGA, suggesting that diversity in
simplification strategies contributes more to qual-
ity than repeated self-correction. However, the
modest performance gains and our mid-table rank-
ing among participating teams indicate substan-
tial room for improvement. Future work should
explore more sophisticated integration of lexical
resources, potentially incorporating syntactic com-
plexity measures alongside vocabulary targeting,
and investigate whether larger-scale ensemble ap-
proaches or fine-tuned models specifically trained
on CEFR-leveled data could further enhance perfor-
mance while maintaining the interpretability and
controllability that explicit lexical guidance pro-
vides.

Limitations

The current approach faces several methodolog-
ical limitations that constrain its generalizability
and practical deployment. The reliance on propri-
etary large language models introduces both cost
and availability concerns, while the dependence
on external vocabulary lists like EFLLex assumes
the availability of domain-appropriate complex-
ity assessments. The evaluation framework itself
presents challenges, as CEFR level assessment re-
mains somewhat subjective even with established
guidelines. The limited scale of evaluation data

(n = 40 for trial data) restricts the statistical power
of our comparisons and may not capture the full
range of simplification challenges across different
text types and domains. Educational texts, news ar-
ticles, and technical documents each present unique
simplification requirements that may not be ade-
quately represented in small-scale evaluations. Fur-
thermore, the automatic evaluation metrics, while
useful for comparison, may not fully capture the
pedagogical effectiveness of simplified texts for
language learners.

Lay Summary

When learning a new language, students benefit
from reading texts that match their skill level. The
Common European Framework of Reference for
Languages (CEFR) defines six levels of language
proficiency, from A1l (beginner) to C2 (mastery).
However, most of the written content is too com-
plex for students at lower levels. Text simplification
involves rewriting passages using simpler words
and sentence structures while keeping the original
meaning intact.

Can artificial intelligence systems automatically
simplify texts to specific CEFR levels? We par-
ticipated in a competition where we were asked
to simplify English paragraphs written at upper
intermediate levels (B2 or above) to beginner or
elementary levels (A2 or B1). We developed two
different systems, called EZ-SCALAR and SAGA.
Both systems use large language models (advanced
Al programs trained on vast amounts of text) to
identify complex vocabulary and rewrite passages
more simply.

EZ-SCALAR works by having two different Al
models independently simplify the same text, cri-
tique each other’s work, and refine their versions
based on the feedback. The enhanced version, EZ-
SCALAR Lex, adds an extra step that uses a spe-
cialized vocabulary list (EFLLex) to identify words
that are too advanced for the target level.

SAGA uses a different approach with two com-
ponents: a proposer that creates simplified versions
and a reviewer that checks whether the text meets
the target level. If not, the proposer tries again,
repeating this cycle until the reviewer approves or
a maximum number of attempts is reached.

Our tests showed that EZ-SCALAR Lex per-
formed best among the three systems, demonstrat-
ing that the use of specialized vocabulary resources
to guide the simplification process produces better
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results. The system that relied solely on Al mod-
els without external vocabulary guidance (SAGA)
showed the weakest performance.

These findings could help language teachers, ed-
ucational publishers, and online learning platforms
automatically adapt reading materials for students
at different proficiency levels. The research sug-
gests that combining Al capabilities with structured
vocabulary resources produces more reliable sim-
plifications than Al alone. However, further de-
velopment would be needed before these systems
could replace human editors in creating learning
materials, as the evaluation was limited in scope
and automatic quality measures may not fully cap-
ture how helpful simplified texts are for actual
learners.
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A Schematics
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Figure 2: Visual representation of SAGA

B EZ-SCALAR Prompts

Note that all prompts come in pairs of X system prompt and X prompt. Note further that there are two
sets of judge prompts. The first set is used with GPT-5 and Claude Opus 4.1, while the second set is a
simplified version used with Llama-3.2-3B-Instruct.

B.1 Simplification system prompt

You are an expert lexical simplification and text summarization Al. Your task is to rewrite a given text to
make it more accessible and easier to understand for a specific target audience.
Core Rules:

1. Preserve Meaning: Your primary objective is to maintain the original meaning, intent, and tone of
the text. Do not introduce new information or omit crucial details.

2. Target Audience: The output must be tailored for an audience with a proficiency level of PROFI-
CIENCY LEVEL. This means simplifying vocabulary and sentence structure while avoiding jargon,
idioms, or overly complex syntax.

3. Simplify, Don’t Trivialise: The goal is to make the text simpler, not to make it childish or unprofes-
sional. Maintain a natural, adult-appropriate tone.

4. Sentence and Paragraph Structure: Feel free to rephrase and restructure sentences. You may break
down long sentences into shorter ones or combine simple sentences for better flow, as long as the
overall meaning is preserved.

5. Direct Output: Provide the simplified text directly. Do not include any preambles, explanations, or
conversational filler.
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B.2 Simplification prompt

Original Text: ORIGINAL TEXT

Target Proficiency Level: PROFICIENCY LEVEL

Proficiency Guide: PROFICIENCY GUIDE

Simplify the text above according to the proficiency level and the provided guide.

B.3 Critique system prompt

You are an expert editor specialized in simplifying complex texts for a specific audience. Your sole
purpose is to critique a simplified text by comparing it to the original. You are not to rewrite or provide a
new version. Your job is to act as a highly critical reviewer.

Your critique must focus on three key areas:

1. Accuracy and Meaning Preservation: Has the simplification changed or distorted the original
meaning? Identify any instances where information was lost, added, or twisted.

2. Readability and Target Audience Suitability: Is the text truly accessible for a PROFICIENCY
LEVEL audience? Point out any remaining complex vocabulary, convoluted sentences, or awkward
phrasing that still requires simplification.

3. Flow and Grammar: Did the simplification introduce any grammatical errors or make the text less
coherent? Highlight any parts that feel unnatural or don’t flow well.

Your output must be a concise, bulleted list of specific issues. For each point, quote the problematic part
of the simplified text and briefly explain why it’s an issue. Be direct and avoid conversational filler.

B.4 Critique prompt

Original Text: ORIGINAL TEXT

Simplified Text to Critique: SIMPLIFIED TEXT

Target Proficiency Level: PROFICIENCY LEVEL

Critique the “Simplified Text to Critique” by comparing it to the “Original Text.” Focus on identifying
specific issues related to accuracy, readability, and grammar. Do not rewrite the text.

B.5 Revision system prompt

You are an expert editor. Your task is to perform targeted revisions on a simplified text based on a provided
critique. You must only make changes that directly address the issues listed.
Your Instructions:

1. Reference the Critique: Use the specific issues from the provided critique as your sole guide for
revision.

2. Make Minimal Changes: Do not rewrite or rephrase sentences that are not flagged as problematic.
Focus your edits narrowly on the identified errors or areas for improvement.

3. Preserve the Core: The revised text must maintain the core simplification work that has already
been done. Your goal is to fix flaws, not to start over.

4. Provide the Full, Revised Text: After making the necessary changes, provide the complete, revised
version of the text. Do not provide a list of changes or an explanation of your edits.

Input Format:

You will be given the original text, the simplified version, and a critique in the following format:
Original Text: [The full original text]

Simplified Text: [The full simplified text]

Critique:

* Issue 1, with a quote and explanation

* Issue 2, with a quote and explanation
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B.6 Revision prompt

Original Text: ORIGINAL TEXT

Simplified Text to Revise: SIMPLIFIED TEXT

Critique: CRITIQUE

Pay special attention to these words that were flagged as potentially being of a too high level: WORDS
FLAGGED AS TOO HIGH LEVEL

Based on the provided critique, make only the necessary revisions to the “Simplified Text to Revise.’
Provide the full revised text as your final output.

>

B.7 Judge system prompt

You are an expert judge for text simplification. Your task is to objectively evaluate two simplified versions
of a text and select the superior one. You must make your decision based on a rigorous comparison to the
original text and a set of explicit criteria.

Your Goal:

Choose the single best version between Simplified Version A and Simplified Version B.

Evaluation Criteria:

1. Meaning Preservation: Which version more accurately and completely preserves the meaning, tone,
and intent of the original text?

2. Readability: Which version is more accessible and easier to read for the audience? This includes
considering vocabulary, sentence complexity, and overall flow.

3. Clarity: Which version is clearer and less ambiguous? Does either version introduce any new errors
or awkward phrasing not present in the original?

Your Output:

First, provide a brief, one-paragraph explanation of your decision. Explain which version you chose
and why it is better, referencing the criteria above.

Second, state your final choice clearly.

Example Output Format:

Decision: [A one-paragraph explanation of your choice, mentioning which version you chose and how
it excelled based on the criteria.]

Final Choice: [A or B.]

B.8 Judge system prompt 2

You are an expert judge for text simplification. Your task is to objectively evaluate two simplified versions
of a text and select the superior one. You must make your decision based on a rigorous comparison to the
original text and a set of explicit criteria.

Your Goal:

Choose the single best version between Simplified Version A and Simplified Version B.

Evaluation Criteria:

1. Meaning Preservation: Which version more accurately and completely preserves the meaning, tone,
and intent of the original text?

2. Readability: Which version is more accessible and easier to read for the audience? This includes
considering vocabulary, sentence complexity, and overall flow.

3. Clarity: Which version is clearer and less ambiguous? Does either version introduce any new errors
or awkward phrasing not present in the original?

Your Output:
Output ONLY the winning version letter: A or B.
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B.9 Judge prompt

Original Text: ORIGINAL TEXT

Simplified Version A: SIMPLIFIED TEXT A

Simplified Version B: SIMPLIFIED TEXT B

Target Proficiency Level: PROFICIENCY LEVEL

Evaluate and choose the superior version between “Simplified Version A” and “Simplified Version B”
based on meaning preservation, readability, and clarity for the target proficiency level. Provide a brief
explanation for your choice and then state your final selection clearly.

B.10 Judge prompt 2

Original Text: ORIGINAL TEXT

Simplified Version A: SIMPLIFIED TEXT A

Simplified Version B: SIMPLIFIED TEXT B

Target Proficiency Level: PROFICIENCY LEVEL

Evaluate and choose the superior version between “Simplified Version A” and “Simplified Version B” for
the target proficiency level. Return only your final selection clearly.

C SAGA Prompting
C.1 System Prompt

You are an expert on language learning, language simplification and the CEFR framework. Given a text
and a desired CEFR level, you are very proficient in identifying which parts of the text do not match the
expected CEFR level.

C.2 Word and Passage Identification

User: Identify and list all words or passages in the given text that do not match the expected CEFR
level and provide alternatives on the desired CEFR level that convey the same meaning. Don’t provide a
rewritten version yet, but just the list of problematic words and passages. Exclude names (people, cities,
organisations, ...) from this list. Never state that a text is already at an appropriate level.

Assistant: List of words and passages that do not match the expected CEFR level with suggested
changes:

C.3 Text Rewriting

User: Now that you identified the problematic words and passages, provide a rewritten version of the text
where you changed all occurences of all listed words and passages with the suggested replacemets, while
keeping sure that the text remains grammatically correct. Also make sure that each replacement conveys
the same core semantic meaning.

Assistant: Rewritten Text:

C.4 Reviewer Critique

User: I have consulted another expert on the topic. The expert determined the CEFR level of the rewritten
to be the following: {pred_level}. Please list all words and passages that likely have brought the expert to
this judgement of the rewritten text and provide alternatives on the desired CEFR level. Exclude names
(people, cities, organisations, ...) from this list. Never state that a text is already at an appropriate level.

Assistant: List of words and passages in the rewritten (not the original) text that could have brought
the expert to his judgement with suggested changes:
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Abstract

Automatic Text Simplification (TS) makes com-
plex texts more accessible but often lacks con-
trol over target readability levels. We propose a
lightweight, prompt-based approach to English
TS that explicitly aligns outputs with CEFR
proficiency standards. Our method employs a
three-stage pipeline, guided by rule-informed
prompts inspired by expert strategies. In the
TSAR 2025 Shared Task, our system achieved
competitive performance, with stronger results
at B1 level and challenges at A2 level due to
over-simplification. These findings highlight
the promise of prompt-based CEFR-oriented
simplification and the need for more flexible
constraint design.

1 Introduction

Automatic Text Simplification (TS) is an important
NLP task that aims to rewrite complex texts into
simpler forms while preserving meaning. TS ben-
efits many groups, including non-native speakers,
children, and individuals with reading or cognitive
difficulties. However, current systems often sim-
plify texts without controlling the target readability
level, limiting their usefulness in education and
accessibility, where alignment with standardized
frameworks such as the Common European Frame-
work of Reference for Languages (CEFR) (Council
of Europe, 2001) is essential.

We propose a CEFR-oriented method for En-
glish text simplification that leverages Large Lan-
guage Models (LLMs) through prompt engineering
rather than model training, making it lightweight,
accessible, and practical. Our method is inspired by
the TS strategies introduced in Ozmen and Kiran
(2022). It applies a three-stage process: syntac-
tic simplification, lexical simplification, and elab-
oration. This method addresses a key gap in cur-
rent NLP research by combining accessibility with
level-appropriate simplification.

Istanbul, Tiirkiye
bektas18@itu.edu.tr

Istanbul, Tiirkiye
gulsenc@itu.edu.tr

2 Related Work

CEFR is widely used to define language proficiency
and guide text simplification. Most CEFR-based
TS research targets lexical or sentence-level sim-
plification, creating datasets for word substitutions
or training models to generate CEFR-aligned sen-
tences (Arase et al., 2022; Uchida et al., 2018; Li
et al., 2025; Barayan et al., 2024). However, simpli-
fication at the document or paragraph level under
CEFR control remains relatively underexplored and
challenging.

Early text simplification research largely focused
on sentence-level approaches. However, applying
these methods iteratively across entire documents
often fails to maintain discourse coherence and
overall text integrity (Alva-Manchego et al., 2020).
This limitation has encouraged research to shift
towards document-level simplification, which de-
mands broader contextual understanding and spe-
cialized evaluation methods (Sun et al., 2021).

LLMs have recently become prominent tools for
document-level text simplification, addressing co-
herence and context issues. Approaches such as
ProgDS (Fang et al., 2025) decompose the simplifi-
cation process into hierarchical stages (discourse-
level, topic-level, and lexical-level), guiding LLMs
to progressively simplify documents while preserv-
ing logical structure and readability. Building on
this line of work, our study also adopts a hierarchi-
cal paradigm, though the definition and scope of the
stages differ from ProgDS. In parallel, fine-tuning
of LLMs has been shown to yield significant im-
provements in document-level text simplification
tasks, effectively improving model accuracy and
output relevance (Nozza and Attanasio, 2023; Al-
kaldi and Inkpen, 2023; Anschiitz et al., 2023). Un-
fortunately, none of these approaches are explicitly
oriented toward CEFR-based simplification.
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3 Method

Our method of simplification consists of three
stages that are carried out in a progressive order:
syntactic simplification, lexical simplification, and
elaboration.

Syntactic simplification involves restructuring
complex grammatical constructions to align with
the requirements of the target CEFR level. Lexi-
cal simplification focuses on replacing difficult vo-
cabulary with simpler alternatives appropriate for
the target proficiency level. Elaboration involves
adding explanatory words or clarifying information
to make the text more comprehensible and suited to
the intended CEFR level. In Ozmen (2019), case-
by-case rules were provided for all three types of
simplifications at different proficiency levels, along
with examples demonstrating how to execute these
different simplification cases. Although the ex-
amples were presented in Turkish, the underlying
simplification principles are not language-specific
and reflect patterns observed across multiple lan-
guages (Ozmen and Kiran, 2022). Building on
this foundation, Bektas et al. (2024) incorporated
these case-specific rules into Turkish prompts and
reported promising results. Informed by both stud-
ies, we follow these rules when designing prompts
and apply them sequentially in three stages', in a
manner inspired by Fang et al. (2025).

All stages utilize GPT-40 with the following
parameters:

¢ Model version: gpt-40-2024-11-20
* Temperature: 0.5
* Top-p sampling: .95

3.1 Syntactic Simplification

The first stage addresses the grammatical complex-
ity by aligning the syntactic structures with the
requirements of the target CEFR level. To imple-
ment this stage, we first compiled a comprehensive
set of grammatical structures from the Cambridge
English Grammar Profile (Cambridge University
Press, 2024), which documents grammatical con-
structions across levels Al to C2.

Then, the syntactic simplification rules from Oz-
men (2019) were translated to English, along with
illustrative examples showing how complex struc-
tures should be simplified for each target level.

'The full workflow, including all prompts used at each

stage, is available at https://github.com/kutayardadinc/
itunlp_tsar.

The syntactic simplification process employs a
structured prompt that includes:

i) A system instruction defining the model’s role
as a syntactic simplification expert,

ii) The complete set of permissible grammatical
structures for the target CEFR level,

iii) Specific syntactic simplification rules with ex-
amples.

The core prompt structure follows this pattern:

A text at the [LEVEL] level should not contain
any grammatical structures that are not provided to
you below. If the given text contains any structure
other than these grammatical structures, simplify
the given text to the [LEVEL] level using syntactic
simplification rules. [GRAMMAR_STRUCTURES].
[SIMPLIFICATION_RULES]. Do not perform any
action other than syntactic simplification. Preserve
the content and details of the text. Do not delete
sentences from the text.

3.2 Lexical Simplification

For lexical simplification, we first established vo-
cabulary inventories for each CEFR level to be
able to identify words that exceed the target profi-
ciency level. We utilized two primary vocabulary
resources: Oxford 3000 (Oxford University Press,
a) and Oxford 5000 (Oxford University Press, b)
word lists. These two combined create a vocabulary
list of 5000 words from levels A1l to C1.

Our system automatically identifies lexically
complex words within the syntactically simplified
text by tokenizing it using spaCy (Honnibal et al.,
2020) and checking both surface forms and lemmas
against our compiled word-to-CEFR-level map-
ping database. Words that exceed the target CEFR
level are explicitly included in the prompt, with in-
structions to replace them with simpler alternatives.
These are followed by level-specific lexical simpli-
fication rules, accompanied by translated examples
adapted from Ozmen (2019).

The lexical simplification prompt structure in-
cludes:

i) A system instruction defining the model’s role
as a lexical simplification expert,

ii) Level-specific lexical simplification rules,

iii) Identified words that exceed the target level.
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The core prompt structure follows this pattern:

Simplify the given text to the [LEVEL] level
using lexical simplification rules. [SIMPLIFICA-
TION_RULES]. In the following text, the word(s)
[IDENTIFIED_WORDS] are above the [LEVEL]
level. Without changing the meaning of the text, re-
place these words with simpler words appropriate
for the [LEVEL] level. Do not change any words
that have no simpler equivalent or are important
for the meaning of the text.

3.3 Elaboration

The final elaboration stage enhances the compre-
hensibility of the text by adding explanatory infor-
mation and clarifying potentially ambiguous con-
tent for the target level. This stage applies elabora-
tion rules, translated from Ozmen (2019), specific
to each CEFR level. At this stage, the model is
instructed to expand rare or complex concepts with
explanatory phrases, clarify implicit meanings by
adding context, and highlight key ideas through
selective repetition when appropriate.

The elaboration employs the prompt below:

Using elaboration rules, make the given text
more understandable for a student at the [LEVEL]
level. [ELABORATION_RULES] Do not perform
any action other than elaboration. Preserve the
content and details of the text. Do not delete sen-
tences from the text.

The elaboration stage ensures that the simplified
text not only uses appropriate grammar and vocab-
ulary for the target level but also provides sufficient
contextual information to support comprehension
for the target proficiency level.

4 Results and Discussion

Our three-stage progressive simplification pipeline
yielded mixed results on the test data provided by
the TSAR 2025 Shared Task (Alva-Manchego et al.,
2025), with overall MeaningBERT scores of 0.797
for both original-output (MeaningBERT Original)
and reference-output (MeaningBERT Reference)
comparisons, and a CEFR compliance RMSE of
0.632.

Analysis of the highest and lowest scoring texts
revealed that our top-performing cases were pre-
dominantly B1-targeted, while most of the under-
performing examples were A2-level simplifications.
The five lowest MeaningBERT scores for both met-
rics came from our A2-level productions, whereas
the top five scores for MeaningBERT Original were

all from B1-targeted simplifications. This perfor-
mance gap stems largely from over-simplification
induced by the strict A2-level linguistic constraints
in the prompts, such as limited grammatical struc-
tures and restrictions on vocabulary exceeding A2
proficiency.

As detailed in the methodology, our syntac-
tic simplification step constrains GPT-40 to avoid
grammatical structures outside the target CEFR
level, and the lexical simplification stage involves
prompting GPT-40 to replace vocabulary that ex-
ceeds the target level. However, this approach can
cause over-simplification in some cases.

During the syntactic simplification process, the
system output can sometimes distort the original
meaning by avoiding grammatical structures that
are not included in the target level’s grammar list.
An example of this can be seen in the A2-level
simplification of text 73:

Text ID: 73-A2
MeaningBERT Reference Score: 0.5836

Reference:

The two men looked at the north side of
the land. It was so big that they could
hardly see the fences...

Simplified:

The two men looked at the far end of
the land. The land was very big, and it
stretched very far. The walls around the
land were hard to see because the men
were standing far away...

The reference employs the “so...that” construc-
tion with the modal “could” which, while arguably
appropriate for the A2 level, is a structure our sys-
tem is forced to avoid. Because the prompt strictly
limits the output to the provided A2 grammar list,
which does not include the “so...that” construction
for clauses of result, the system fragments the sen-
tence into simpler, explicitly permitted coordinate
clauses, resulting in reduced cohesion.

The lexical simplification stage shows a
tendency to make unnecessary substitutions in A2
texts, as shown in the following example with text
ID 96-A2:

Text ID: 96-A2
MeaningBERT Reference Score: 0.5954

Original:
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No matter what kind of house it is, the

basement is a scary place in horror
films...

Reference:

In horror films, the basement is always a
scary place...

Simplified:

The lower floor is a scary place in scary
films...

Here “basement”, which is listed at the B2 level
in our vocabulary list, is replaced with “lower floor”
and “horror films” is changed to “scary films” be-
cause “horror” is listed at the B1 level. In the B1-
targeted simplification, however, “horror” is cor-
rectly preserved, while “basement” is still replaced.
Although this version also does not fully match the
reference at B1, it achieves a higher MeaningBERT
Reference score of 0.7328 compared to 0.5954 at
A2 production, as making fewer lexical substitu-
tions in the entirety of the text allows the output to
maintain a higher semantic similarity to the refer-
ence.

Beyond systematic over-simplification, some
failures result from meaning shift rather than
linguistic constraints. Since our pipeline utilizes
an LLM three times in sequence, each stage
introduces the risk of semantic drift, which can
hinder meaning preservation. As the simplification
with text ID 120-A2 illustrates:

Text ID: 120-A2
MeaningBERT Original Score: -0.0006
Original:
...Ensure there are times when positive
feedback is given for its own sake and

resist the temptation to offer constructive
criticism.

Reference:

...Sometimes, give good feedback only,
and try not to add any criticism.

Simplified:

...Sometimes, give only good comments.
Do not always give advice to help.

B2 MeaningBERT Reference ‘

40 MeaningBERT Original |

w
=}

Frequency
N
o

NANANNNNNNNNNNNNNNNNNNNNNNN

=
o

ANIIIIIIIIERRERERRNNANNNRRRRRRRNY

[ NNNNNNNN

oo
of
o
=
o
N
o
w
o
'S
o
w
=}

Figure 1: MeaningBERT score distributions of system
outputs.

While not all poor simplifications stem from
A2-level constraints, our analysis shows that B1-
targeted simplifications performed significantly bet-
ter. When only B1 outputs are evaluated, perfor-
mance improved across all metrics: MeaningBERT
Original and MeaningBERT Reference scores rose
from 0.797 to 0.829 and 0.816, respectively, and
RMSE decreased from 0.632 to 0.556.

Another issue about the performance of our
method is its variance. As illustrated in Figure 1,
the variance analysis reveals performance inconsis-
tencies. For instance, the MeaningBERT Original
score ranges from a high of 0.9424 down to an ex-
tremely low -0.0006, with a standard deviation of
0.1031. Similarly, the MeaningBERT Reference
score varies widely from 0.9453 to 0.5826. This
indicates that while our method can achieve very
good results, it suffers from a lack of reliability in
all cases.

Overall, the three-stage progressive simplifica-
tion pipeline shows potential to achieve strong re-
sults, especially in B1-level targeted simplifica-
tions, without the need for costly model training
and with a total cost of only $1.75. However, it
can also lead to unsatisfactory outcomes due to the
strict constraints imposed in the prompts.

5 Conclusion

This paper introduced a three-stage, CEFR-
oriented text simplification method using syntactic
simplification, lexical simplification, and elabora-
tion through prompt engineering with GPT-40. The
approach avoids costly model training while pro-
ducing controlled simplifications aligned with lan-
guage proficiency levels. The results indicate a
more promising performance at B1, where the out-
put preserved meaning and coherence, but also re-
veal limitations at A2, where rigid grammar and vo-
cabulary constraints often led to over-simplification
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or unnecessary substitutions. These findings sug-
gest that future work should have greater flexibility
in constraint design to balance accessibility with
fidelity.

6 Limitations

Despite its potential, our approach has several limi-
tations:

The most significant is its reliability. As dis-
cussed earlier, the system’s performance exhibits
high variance across inputs, indicating a lack of
robustness.

Another practical limitation is the strict linguistic
constraints imposed by the prompts, which often
lead to over-simplification and meaning distortion.
Additionally, the three-stage pipeline introduces a
cumulative risk of semantic drift, which can further
compromise meaning preservation.

7 Lay Summary

Text simplification helps make complex texts eas-
ier to read, which is especially useful for language
learners and people with reading difficulties. Tradi-
tionally, this process is done manually by experts,
which takes a lot of time and effort. While some au-
tomatic systems exist, they often do not adjust the
output based on the reader’s language level and are
not designed around well-known frameworks like
the Common European Framework of Reference
for Languages (CEFR).

Training advanced systems for text simplifica-
tion requires large datasets and expensive resources.
This makes it difficult to build effective tools for
many languages, especially those with limited data.
Even when these systems work well, they often fail
to match texts to specific learning levels, which is
important in education and accessibility.

To address these challenges, we propose a three-
stage simplification pipeline that directs a language
model with carefully designed instructions instead
of training it from scratch. Our approach simplifies
grammar, replaces difficult words, and adds helpful
explanations. This lightweight and flexible method
can make reading materials more accessible and
suitable for different language levels without the
need for costly training or large datasets.
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Abstract

Readability adjustment is crucial in text sim-
plification, as it allows to provide generations
appropriate to the needs of a particular group
of readers. Here we present a method for sim-
plifying a text fragment that aims for a given
CEFR level, e.g. A2 or B1. The proposed ap-
proach consists of two stages, executed for each
sentence: (1) obtaining several candidate sim-
plification through prompting a large language
model and (2) choosing a candidate that max-
imises the compliance with the desired readabil-
ity level. Several variants of our approach are
evaluated within the framework of TSAR 2025
shared task, showing a trade-off between pre-
cise readability adjustment and faithful mean-
ing preservation.

1 Background

Text simplification (TS) promises to make language
content accessible to various vulnerable groups
that might find typical text difficult, such as people
with age-related impairments, learning difficulties,
dyslexia, autism etc., but also non-native speak-
ers (Shardlow, 2014; Paetzold and Specia, 2017).
This causes an obvious challenge: it is impossible
to satisfy the needs of all these groups with the
same simplification. Some aspects of text might
be difficult for one reader, but not for another one
(Tamor, 1981). For example, even quite long and
complicated words might appear straightforward
for a non-native speaker, as long as they know sim-
ilar lexemes from their mother tongue.

Therefore, text simplification can never be suc-
cessful as a generic task and it needs to be anchored
in a specific target audience. However, approaching
the challenge for each group separately is impeded
when taking a classic machine-learning approach.
The datasets with simplifications prepared by hu-
man experts for specific readers are scarce (Cistola
etal., 2021; Alarcon et al., 2023), so many TS solu-
tions rely on generic data anyway. This limitation

remains true for large language models (LLMs) —
since they are unlikely to have been provided with
examples of such tailored simplifications in their
pretraining, they shouldn’t be expected to generate
them when prompted.

Here we present an approach to the problem of
providing text simplifications for readers with a
given language proficiency, expressed as a CEFR
level. While there are some resources for the non-
native speakers according to their level (Scarton
et al., 2018), these are not sufficient for model
training from scratch.

Therefore, our approach is a hybrid one. Firstly,
we generate simplifications using generic LLM ca-
pabilities, but we ask the model to produce several
variants of the output. Then, we use CEFR la-
bellers to find the rephrasing that best corresponds
to the desired level. This process is repeated for
all sentences in a given text, and the final output
is a concatenation of the simplified variants of all
sentences.

2 Task

Our solution was prepared within the framework
of the TSAR 2025 Shared Task on Readability-
Controlled Text Simplification (Alva-Manchego
et al., 2025). The task participants were provided
with a series of pairs, each including a text fragment
in English (paragraph-length) and a CEFR level,
and their goal was to provide simplifications that
maintain the meaning of the original fragment, but
at the same time possess the provided difficulty
level (A2 or B1).

The submitted fragments were evaluated using
the following measures:

e Difference between the CEFR levels (re-
quested and observed in text) according to
three fine-tuned language models (Imperial
et al., 2025), quantified as weighted F1, ad-
justed accuracy and RMSE.
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* Meaning preservation measured as text simi-
larity (original and provided simplification)
according to MeaningBERT (Beauchemin
et al., 2023) and BERTScore (Zhang et al.,
2020,

* Closeness to reference simplification, also ac-
cording to MeaningBERT and BERTScore.

Of these, the RMSE CEFR and both Meaning-
BERT similarities were used to establish the final
ranking.

For details regarding the previous work in the
domain, evaluation details and results of all partic-
ipants, see the overview article (Alva-Manchego
et al., 2025).

3 Methods

The submitted solution was prepared using ele-
ments of STARLING (Simplifying Text Across
Languages Using Generative Models): a TS sys-
tem under construction, which uses LLM prompt-
ing for obtaining robust simplifications across sev-
eral languages, including some with low NLP sup-
port. The multilingual capabilities were however
not used here, since the task is performed in En-
glish, a language with sufficient monolingual re-
sources.

Broadly, the solution involves the following
steps:

1. Splitting the input (complex) text into sen-
tences,

2. For each sentence:

* Producing variants of simplification us-
ing a prompted language model,

* Selecting the variant that is the closest to
the desired CEFR level,

3. Concatenating the obtained sentences.

3.1 Splitting

We split the given paragraph into individual sen-
tences with LAMBO (Przybyta, 2022) 2.3 seg-
menter’, using the LAMBO-UD_Eng1ish-EWT model
trained on English dependency parsing corpus” in
Universal Dependencies (de Marneffe et al., 2021),
version 2.13. The sentence splitting is motivated by

"https://gitlab.clarin-pl.eu/syntactic-tools/
lambo

2https://universaldependencies.org/treebanks/
en_ewt/index.html

(1) preliminary experiments showing that LLMs,
when tasked with rephrasing a longer paragraph, of-
ten omit some of the details, and (2) the intention to
obtain a wide range of candidates by reformulating
sentences independently.

3.2 Simplifying

For simplification, we use the following prompt:

Please rewrite the following complex
sentence in order to make it easier to un-
derstand by non-native speakers of the
language. You can do so by replacing
complex words with simpler synonyms
(i.e. paraphrasing), deleting unimportant
information (i.e. compression), and/or
splitting a long complex sentence into
several simpler ones. The final simpli-
fied sentence needs to be grammatical,
fluent, and retain the main ideas of its
original counterpart without altering its
meaning. Make sure the output is in the
same language as the original.

Return five different rephrasings, sepa-
rated by newline. Do not generate any
text except the reformulations.

INPUT: (input sentence)

This prompt is inspired by a formulation obtain-
ing good results in BLESS benchmark (Kew et al.,
2023) — prompt 2°. However, it was modified to
include a request of five different rephrasings. Note
how it does not include any mention of the desired
CEFR level — our preliminary experiments showed
it not to be useful for a general-purpose model pre-
trained without such specialised data.

Our baseline model was Gemma 3 (Gemma
Team et al., 2025) 27 B, implemented on Hug-
gingFace Transformers 4.38.1 (Wolf et al., 2020)
(model google/gemma-3-27b-it). The computa-
tions were performed on double-GPU configuration
with NVIDIA A100.

3.3 Choosing a variant

We create the list of variants by splitting the model
output into individual options, removing anomalies
(outputs shorter than 1/3 of the input*) and adding
the original complex sentence. Each variant on the

*Note that BLESS experiments were performed in a few-
shot setting, but in the shared task no training data were avail-
able, so we use the same prompt in a zero-shot setting.

*These usually come from the LLM adding extra text to
the output: enumeration markers, comments, etc.

156


https://gitlab.clarin-pl.eu/syntactic-tools/lambo
https://gitlab.clarin-pl.eu/syntactic-tools/lambo
https://universaldependencies.org/treebanks/en_ewt/index.html
https://universaldependencies.org/treebanks/en_ewt/index.html

CEFR compliance Original similarity | Reference similarity

method F1 Acc. RMSE | M-BERT BERT-S | M-BERT BERT-S
Gemma-5Sv-best | 0.5107 0.9500 0.8216 0.8075 0.9281 0.7584 0.9124
Gemma-5v-random | 0.4895 0.8500 1.0000 0.8204  0.9335 0.7567 0.9109
Gemma-10v-best | 0.6921 0.9750 0.6325 0.7675 0.9190 0.7458 0.9062
Gemma-10v-random | 0.3888 0.9500 0.8803 0.7780  0.9194 0.7441 0.9038
original | 0.1288 0.5250 1.6125 1.0000 1.0000 0.7901 0.9265

Table 1: Evaluation results on the trial dataset, showing CEFR compliance results, similarity to the original text
and reference simplification, both measured using MeaningBERT (M-BERT) and BERTScore (BERT-S). The best
values are in boldface; the submitted solutions are underlined.

list is then assessed with respect to readability level.
Specifically, we apply the three CEFR labellers’
provided by the organisers (section 2). We then
check which of the variants (including the complex
original) has been assigned the desired CEFR level
with the highest probability, according to any for
the labellers. In case of ties, the order on the vari-
ant list decides. Therefore, for uncertain ratings,
the original complex sentence is used (to maintain
meaning preservation).

3.4 Concatenation

After the CEFR-optimised variant is chosen for
each sentence, they are all concatenated together to
create continuous text. Note that this risks breaking
some discourse links, which is a weakness of our
approach (section 5).

4 Evaluation

The solution described above is our baseline ap-
proach to the problem. However, in order to better
understand its strengths and weaknesses, we check
the result of modifying some aspects:

* using a higher number of requested variants:
10 instead of 5.

* using a simpler heuristic for selecting a vari-
ant: random choice or keeping the original
sentence.

All the solutions are tested using the evaluation
code provided by the organisers (see section 2) on
the 40 instances of the trial set. The full results
on the test dataset, including our submission, can

5https://huggingface.co/AbdullahBarayan/
ModernBERT-base-doc_en-Cefr, https://huggingface.
co/AbdullahBarayan/ModernBERT-base-doc_
sent_en-Cefr and https://huggingface.co/
AbdullahBarayan/ModernBERT-base-reference_
AllLang2-Cefr2

be found in the shared task overview article (Alva-
Manchego et al., 2025).

Table 1 illustrates the results of the evaluation.
We can see that the best CEFR compliance is
achieved by generating 10 variants and choosing
the one that corresponds to the desired level. This
proves that the variant selection mechanism ful-
fils its purpose. However, the same approach is
performing the poorest in content preservation. In-
stead, generating 5 variants and randomly selecting
one of them delivers the best similarity to the orig-
inal text (except returning the original itself). We
can therefore see a clear trade-off between deliv-
ering the expected CEFR level and preserving the
original content. Finally, our basic approach (5
variants, guided selection) achieves the best per-
formance in terms of similarity to the reference
simplification, indicating it overall usefulness. It
is interesting to note that the original text is more
similar to the reference simplifications than any
of our approaches, indicating that the LLM is too
aggressive in its rewriting. This mirrors a similar
phenomenon in text rewriting for the purpose of a
different task, namely adversarial example genera-
tion (Przybyta et al., 2025).

5 Discussion

Judging by the evaluation performed in the previ-
ous section, our approach performs well: it allows
to adjust for the desired readability level without
sacrificing too much of the original meaning. How-
ever, this is clearly a prototype solution and several
limitations remain.

Firstly, a more intensive adjustment to readabil-
ity level is possible. Since generating 10 variants
allows better compliance than 5, one could also try
20 or 100 — though in case of most sentences it
would be unrealistic to expect that many different
reformulations. It is therefore an open question on

157


https://huggingface.co/AbdullahBarayan/ModernBERT-base-doc_en-Cefr
https://huggingface.co/AbdullahBarayan/ModernBERT-base-doc_en-Cefr
https://huggingface.co/AbdullahBarayan/ModernBERT-base-doc_sent_en-Cefr
https://huggingface.co/AbdullahBarayan/ModernBERT-base-doc_sent_en-Cefr
https://huggingface.co/AbdullahBarayan/ModernBERT-base-doc_sent_en-Cefr
https://huggingface.co/AbdullahBarayan/ModernBERT-base-reference_AllLang2-Cefr2
https://huggingface.co/AbdullahBarayan/ModernBERT-base-reference_AllLang2-Cefr2
https://huggingface.co/AbdullahBarayan/ModernBERT-base-reference_AllLang2-Cefr2

whether this wouldn’t cause a loss of meaning or
general decrease in quality of further generations.
We leave this for future work.

Secondly, we limited our prompting experiment
to adapting a formulation that has been found to
work well in previous research, but that usecase did
not include readability adjustment. Therefore, we
expect that experimenting with the prompt can help
to guide the model towards producing reformula-
tions with more utility for the current setup, e.g. by
encouraging diveristy in the variants. Recent re-
search in TS indicates great room for improvement
in tuning the prompt (Guidroz et al., 2025).

Thirdly, we performed the simplification on the
sentence level to obtain fine-grained control over
the variants chosen and avoid the loss of details
that we observe in full paragraph rewriting. How-
ever, this introduces a limitation: when each sen-
tence is reformulated independently, we risk break-
ing discourse links between them, resulting in less
coherent text. This is a known problem in text
simplification, but it requires further research to
deliver satisfactory solutions (Vasquez-Rodriguez
et al., 2023). One bypass could be to provide whole
paragraphs as input text and look for other ways
to avoid information loss, e.g. through various
prompts.

Finally, we have to emphasise that our evaluation
is based solely on automatic measures, which for
some time have been known to poorly reflect hu-
man judgement of simplified text (Alva-Manchego
etal., 2021). This final step of TS evaluation should
involve human evaluators, especially when a solu-
tion is claimed to be adjusted to specific user group.

6 Conclusions

To sum up, the proposed approach to readability-
adjusted text simplification achieves positive re-
sults, delivering output that is in agreement with the
desired CEFR level (95% accuracy) and maintains
the overall meaning (93% BERTScore). Depend-
ing on which configuration we choose, a trade-off
between simplicity and similarity to the original
can be struck differently, but overall the results in-
dicate this to be a promising direction for future
investigation.
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Lay Summary

When a text is changed to make it simpler for some
readers, it is important to take into account who
these readers are. For example, if the text is in
English, but the readers are not native speakers, we
should take into account their level of knowledge
of the language. In this article we show how we
simplify text in English so that learners at some
level (for example A2 or B1) can understand it.
First, we divide the text into separate sentences.
Second, a language model changes each sentence,
producing several possible modifications. We then
choose the modification that is closest to the needed
difficulty level. Finally, all the changed sentences
are connected back together. Our approach is tested
at the TSAR 2025 workshop. The results show that
sometimes you have to choose between keeping the
meaning unchanged and arriving at the difficulty
level you want.
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Abstract

TaskGen ranked as 6th best team in the TSAR
2025 shared task for English text adaptation
to a target CEFR level. Our experiments con-
sisted of prompting a Llama-3.1-8B-Instruct
model with linguistic descriptors of the target
level, examples of adaptations and multi-step
approaches. Our best run, 13th in the overall
ranking, applied an ensemble strategy using a
voting mechanism to find the most adequate
among 10 texts, each produced by a different
prompting strategy.

1 Introduction

Text simplification (TS) aims to reduce the linguis-
tic complexity of texts while preserving their mean-
ing and coherence. This facilitates accessibility for
readers with low literacy and individuals with cog-
nitive challenges (Siddharthan, 2014), but it is also
very useful to adapt texts for language learners. In
that context, TS presents the additional requirement
to target the learners’ proficiency levels.

The TSAR 2025 shared task on Readability-
Controlled Text Simplification (RCTS) (Alva-
Manchego et al., 2025) directly addresses this need
by requiring participants to simplify English texts
at B2 level or higher to specified target CEFR levels
(A2, B1). This setup not only evaluates systems on
their ability to reduce complexity, but also on their
capacity to produce texts adequate for language
learners at different stages of proficiency.

2 Related work

Automatic Readability Assessment (ARA) “refers
to the task of modeling the reading and comprehen-
sion difficulty of a given piece of text, for a given
target audience” (Vajjala, 2022). It has been widely
studied across NLP, education and psychology, and
is often applied to support tasks such as selecting
suitable materials for L2 learners (Heilman et al.,
2007; Vajjala and Meurers, 2012).
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Traditional es to ARA relied on readability for-
mulae, such as Flesch-Kincaid Grade level (Kin-
caid et al., 1975), SMOG Grading (McLaughlin,
1969) and Coleman-Liau Index (Coleman and Liau,
1975), among others.

More recent work has explored feature-based
machine learning and neural models (Hancke et al.,
2012; Vajjala and Meurers, 2012; Chen and Meur-
ers, 2018; Deutsch et al., 2020; Lee et al., 2021;
Lee and Vajjala, 2022).

Although central to understanding textual com-
plexity, ARA also serves as a foundation for down-
stream tasks such as text simplification (TS). Early
es to TS were rule-based or statistical, but recent
progress has been driven by neural models (Martin
et al., 2022; Maddela et al., 2021; Sheang and Sag-
gion, 2021). With the emergence of large language
models (LLMs), TS research has increasingly swift
to fine-tuning and prompt engineering (Kew et al.,
2023; Nozza and Attanasio, 2023; Martinez et al.,
2024).

Building on TS, Readability-Controlled Text
Simplification (RCTS) introduces explicit control
over the target readability level, making it particu-
larly valuable in educational contexts where texts
must be aligned with learners’ proficiency (Scarton
and Specia, 2018). Most work on this area has fol-
lowed supervised training es (Nishihara et al., 2019;
Spring et al., 2021; Rios et al., 2021; Yanamoto
et al., 2022; Agrawal and Carpuat, 2023); however,
the drawback to these es is the limited number of
datasets available.

Recent advances in LLMs and in their capac-
ity for text generation have opened new directions
for RCTS, with studies exploring sentence-level
(Barayan et al., 2025; Chi et al., 2023) and passage-
level simplification (Farajidizaji et al., 2024; Impe-
rial and Tayyar Madabushi, 2023) in zero-shot and
few-shot settings.
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3 System Description

We explored a prompt-based approach to text
adaptation, assessing the performance of different
prompt variants:

* Few-shot learning. Including examples of
pairs of original and adapted texts in the
prompt and adding linguistic information,
such as overall reading comprehension de-
scriptors of the target proficiency level (Coun-
cil of Europe, 2020), curated vocabulary lists,
and examples of appropriate grammatical con-
structions. Also, explicit instructions were
used to obtain only the adapted text. That is,
requiring the model to avoid references to the
adaptation task or to the output CEFR level.

* Multi-step procedures. An initial adaptation
was followed by additional instructions for
iterative refinement.

* Ensemble-based strategy. Multiple adapta-
tions generated by ten distinct prompts were
compared, and the most suitable version was
selected through a voting mechanism.

All prompt different strategies used Llama-3.1-
8B-Instruct model (Meta, 2024) with precision
bfloat16 and decoding default parameters (nucleus
sampling with top-p = 0.9, temperature = 0.6, and
stochastic decoding enabled). We opted for Llama-
3.1-8B-Instruct model because it is open-source,
cost-effective and had performed well in CEFR-
based text classification (Comelles et al., 2025).
Also, a previous version of the Llama 3 8B family
had proved successful for a similar task (Barayan
et al., 2025).

3.1 Methodology and lessons learned

After systematically evaluating eleven different ex-
periments with the metrics and trial data provided
by the organizers, and with qualitative, manual
inspection of the produced texts, we selected the
three experiments described below for submission.

We wanted to compare approaches that required
increasing levels of effort, so that the evaluation of
the task served to assess the impact of more com-
plex approaches in the resulting performance. Our
first and second approaches were based on a prompt
with extensive linguistic descriptors, guidelines and
examples describing the target CEFR level (Fig-
ure 4). After analyzing the performance of this
approach on trial data, we found that such lengthy
instructions on the linguistic characterization of the

level damaged the preservation of the content of
the original text. To address this issue, for run 1 we
added a follow-up prompt (Figure 5) that focused
on the preservation of the content of the original
text. Alternatively, for run 2 we applied a follow-up
prompt (Figure 6) that removed all text where the
language model described the task it was perform-
ing, with the aim of leaving only the adapted text,
without meta information. Finally, for run 3, we ob-
tained adaptations from 10 different prompts (see
Appendix D). Then, each text was assessed with
criteria that had been found useful in the analysis
of performance on trial data.

3.2 Run 1: Complementary prompts with
CEFR descriptors and content
preservation

The first run consisted of a prompt (see Figure 4)
with extensive linguistic information on the char-
acteristics of CEFR levels, and a follow-up prompt
(see Figure 5) to emphasize content adequacy.

The linguistic information in the first prompt
was:

* CEFR overall reading comprehension descrip-
tors for A2 and B1 (Council of Europe, 2020).

e A list of 1681 words taken from Oxford Uni-
versity Press (n.d.), which lists the most fre-
quent and relevant words from Al to B2.
From this list, the words classified as A2 and
B1 were used, totaling 872 words for A2 and
809 words for B1.

* A list of 5 examples of each morphosyn-
tactic construction listed as characteristic
of the target level in (North et al., 2010).
A total of 190 sentences were included
(105 A2 sentences, and 85 B1 sentences).
They can be found at https://github.com/
juan-oviedo/Recursos-Linguisticos.

The output of this prompt was taken as input for
a subsequent prompt (see Figure 5) that aimed to
preserve the content of the original text, prioritizing
content over adequacy to the target CEFR level.

The first prompt in this strategy resulted quite
lengthy, with slightly over 3,800 tokens in aver-
age. Excessive length is believed to impair the
performance of language models. With this two-
step approach we tried to address this limitation of
LLMs by focusing the task first on CEFR adequacy
and then on content preservation.
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3.3 Run 2: Corrections on meta-information

TaskGen second run relied on the same first prompt
as run 1 (Figure 4), that is, the lengthy prompt
with linguistic information andto CEFR level de-
scriptors. Then a second prompt was applied to re-
move meta information on simplification or CEFR
level (Figure 6). Such meta-information appeared
frequently in the LLM’s outputs, despite having
included explicit instructions to provide the simpli-
fied text only.

3.4 Run 3: Prompt output ensemble

For the third run we implemented an ensemble
strategy. We prompted the same language model,
Llama-3.1-8B-Instruct, with 10 different prompts.
Then, the 10 output texts were ranked by a voting
mechanism.

Prompts, shown in Appendix C, ranged from
very simple instructions to adapt the text to a given
target level, to instructions with extensive linguis-
tic information, and to multi-step strategies with
follow-up prompts, including few-shot approaches
with examples of pairs of original - adapted texts.

The voting mechanism was manually con-
structed by inspecting errors in the trial data and as-
sessing their impact on performance. The final sub-
mission consisted of the following simple heuristic,
applied to each of the 10 adaptations, starting from
0 points:

* Avoid Keyword [0, -10]: ten points were sub-
tracted if the output text contained one or more
predefined sequences belonging to an explana-
tion of the task, in addition to the adapted text
itself (e.g., "CEFR", “This text is a simplifica-
tion”, “Here you have a simplified version”,
“Here is the simplified text”).

¢ CEFR level adequacy [0, -1, -2, -3, -4]: clas-
sification in CEFR levels was computed using
the three classifiers provided by the organizers
in the evaluation script. A penalty was applied
when a classifier identified a proficiency level
in the generated text that differed from the tar-
get level: one point was subtracted if a single
classifier indicated a mismatch, two points if
two classifiers disagreed, and three points if
all three disagreed. An additional penalty was
applied proportional to the distance between
the predicted and target levels, with one point
subtracted for each level of discrepancy, so
that the penalty for each classifier could sub-
stract up to 4 points. As will be discussed in

the following section, this item may have been
weighted more heavily to emphasize compli-
ance with the target CEFR level.

* Text length [0, -1]: one point was subtracted
if the adapted text exceeded 1.3 times the
length of the original. This threshold was es-
tablished after manual inspection of errors in
trial data, which showed that lengthier adap-
tations included content that was not in the
original text.

* Semantic similarity[0, -5]: semantic simi-
larity was measured using the MeaningBERT
script provided by the organizers to calculate
Bert-based similarity to the original text. If
the resulting similarity score fell below 0.6,
a penalty of five points was applied. This
threshold was established as a rule of thumb,
aiming for the adaptation to preserve at least
two thirds of the meaning of the original text.

After voting, the text with the highest score for
each level was selected. In cases of ties, the text
with the higher MeaningBERT score was preferred.
If ties persisted, final selection was based on the per-
formance of the prompts in the trial data: prompts
8,4,6,3,2.

As will be discussed in the following Section,
this ensemble strategy achieved the best results
of all 7askGen submitted runs, but there is still
room for improvement in this line of work. The
voting mechanism could likely be improved by
assigning weights empirically, for example through
regression on a larger dataset. Instead, for this
shared task, the strengths of votes was assigned
based on our analysis of performance on the trial
partition of the dataset. Also, we expect that an
approach based on agents can be more flexible
than this heuristic, especially in ranking previously
unseen cases.

4 Results and Discussion

As reported in Alva-Manchego et al. (2025), our
third run, the ensemble with a voting strategy,
ranked best among all the runs submitted by
TaskGen, making for the 13th best submission and
making TaskGen the 6th best team in the shared
task. Although the RMSE with respect to the CEFR
level was acceptable, with an average of 0.628, this
run excelled in meaning preservation with respect
to the original and the reference, with 0.856 and
0.826 respectively.
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‘RMSE meaning-orig meaning-ref

Runl | 0.592 0.791 0.786
Run2 | 0.561 0.752 0.773
Run3 | 0.628 0.856 0.826

Table 1: TaskGen results in the TSAR shared task.

As can be seen in Table 1, our first run, con-
sisting of a single prompt with linguistic informa-
tion about the target CEFR level and a follow-up
prompt addressing content adequacy, scored quite
well in adequacy to the target level, with an RMSE
of 0.592. However, it scored lower than other ap-
proaches in preservation of the meaning of the orig-
inal text and similarity to the reference, with 0.791
and 0.786 respectively. As a result, this run ended
up ranking in the lower half of the participating
systems.

Our second run, aiming to remove meta-
information generated by the LLLM about the task
itself, obtained lower scores for meaning preserva-
tion with respect to run 1. Despite this drawback,
it was our best run with respect to adequacy to the
target CEFR level, with an RMSE of 0.561. This
shows that the follow-up prompt for content ade-
quacy of run 1 harmed compliance to the target
CEFR level.

The ensemble strategy, our third run, produced
a significant improvement on preservation of the
meaning with respect to the original and the refer-
ence, although at the expense of worse accuracy
with respect to the target CEFR level, with the
worst RMSE for our three runs, at 0.628. Neverthe-
less, high meaning preservation made this our best
overall ranked submission.

Since adequacy to the target CEFR level was the
main weakness of our approaches, we conducted
a more detailed analysis of this aspect. As shown
in Figure 1, all three runs —particularly the third—
struggled to adapt texts to the B1 level, while sys-
tematically succeeding at the A2 level. Still, the er-
rors were relatively minor, typically corresponding
to a one-level difference, that is, texts that should
have been adapted to B1 were adapted to A2 in-
stead. We will examine these cases further to im-
prove the system.

In contrast, meaning preservation was signifi-
cantly better for B1 than for A2, as illustrated in
Figure 2, showing the probability density function
(a smoothed version of a histogram) of the score
for meaning preservation with respect to the origi-
nal. Thus, adaptation to lower levels seems to make
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Figure 1: RMSE with target CEFR level for each of our
three runs, for target level A2 (left) and B1 (right).

meaning preservation more difficult.

We found that run 3 was especially capable to
adapt to different typologies of texts. For example,
Figure 3 shows how runs 1 and 2 could not produce
an adequate result for a text that was particularly
challenging, because it could easily be interpreted
as an instruction in itself by the language model.
However, run 3 produced a better adaptation than
the others, even if there is still room for improve-
ment.

We believe that it is precisely the flexibility of the
ensemble strategy to adapt to different typologies
of texts that makes it our best ranked submission,
ranking 13th best run and positioning TaskGen as
the 6th best team in the shared task.

Finally, we find it useful to analyze how complex
strategies improve performance upon simpler ones.
In particular, we analyzed in trial data how differ-
ent follow-up prompts improved performance on a
base prompt. Table 2 displays the results obtained
on the shared task evaluation data, applying the
official evaluation scripts provided by Tsar organiz-
ers, for each of the individual prompts used in run
3. In particular, prompt 4, marked with an asterisk,
was the base prompt for runs 1 and 2. As shown in
Table 2, run 1 makes an important improvement on
meaning preservation when compared to prompt
4 (from 0.75 to 0.79 on meaningbert-orig). As for
run 2, it did not yield any improvement in meaning
preservation but did improve in adequacy to the
target CEFR level, achieving the best overall ade-
quacy. Thus, it seems that both follow-up prompts
did yield improvements, each in a different aspect.
As future work, we plan to combine these com-
plementary approaches to obtain texts that both
preserve meaning and comply with the target level.
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Figure 2: Density estimation of bert meaning preservation score to the original per target level (A2 left, B1 right).

exp. prompt weight_F1 rmse meaningbert-orig bertscore-orig meaningbert-ref bertscore-ref
01 1 0.6024  0.6403 0.7639 0.9274 0.7778 0.9330
02 2 0.5837 0.6633 0.7622 0.9264 0.7897 0.9321
03 3 0.6507  0.5958 0.7719 0.9261 0.7860 0.9308
04 4 0.6692  0.5745 0.7542 0.9267 0.7738 0.9314
05 5 0.6230  0.6708 0.7867 0.9248 0.7908 0.9269
06 6 0.6389  0.6364 0.7850 0.9283 0.7892 0.9292
07 7 0.6591 0.5874 0.7824 0.9318 0.7932 0.9362
08 8 0.6727  0.5958 0.7767 0.9283 0.7885 0.9325
09-runl 449 0.6633  0.5916 0.7906 0.9354 0.7863 0.9330
10-run2 4+10 0.6826 0.5612 0.7525 0.9262 0.7727 0.9311
11-run3 all 0.6353  0.6285 0.8556 0.9378 0.8256 0.9371

Table 2: TaskGen results of the experiments for the TSAR shared task on the final evaluation data.

5 Conclusions & future work

TaskGen submissions were the result of iterating
on different prompting strategies, increasing their
complexity based on the qualitative and quantita-
tive analysis of performance on the trial dataset.
Results show that the ensemble with a voting
strategy has proved effective. However, further re-
search is required to improve adaptations to the B1
level, which were far worse than those for the A2
level. Also the proposed methods rely on manual
prompt engineering and ensembling of different
prompts results which may limit the applicability
of the proposed solution to other problems or scale.
As future work, we aim to explore the specific
contribution of the linguistic information used in
the prompts, by analysing the individual effects of
CEFR descriptors, CEFR-levelled wordlists and
CEFR-levelled morphosyntactic structures on the
LLM performance. We also plan to improve the
voting heuristic by inferring the weight of each
vote from empirical data, instead of manual inspec-
tion. To do that, we will work to obtain or build a
bigger labelled corpus, so that empirically inferred
votes are reliable. We also plan to examine more
advanced prompting strategies, such as agentic and
parallel prompting —where separate branches fo-
cus on CEFR adequacy and semantic semantic fi-

delity before combining. Finally, we intend to con-
duct fine-tuning experiments guided by automatic
evaluation metrics, including CEFR-level classi-
fiers and meaning preservation measures.
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6 Lay Summary

This paper presents the taskGen submission to the
TSAR 2025 Shared Task on Controlled-Readability
Text Simplification. Text simplification (TS) is a
process that makes texts easier to read and under-
stand, while keeping their original meaning. It can
help people readers with low literacy level and in-
dividuals with cognitive challenges (Siddharthan,
2014), but it is also very useful to adapt texts for
language learners who need materials suited to their
level of proficiency. The TSAR 2025 shared task on
Readability-Controlled Text Simplification (RCTS)
(Alva-Manchego et al., 2025) focuses on this idea:
it asks participants to simplify English texts at an
advanced level (B2 or higher) so that they match
pre-intermediate and intermediate levels —CEFR
A2 and B1 (the Common European Framework of
Reference for Languages, or CEFR, is a widely
used scale that describes language ability, where
Al is beginner and C2 is expert). The goal of the
task was to see whether systems could not only
make texts simpler, but also produce adapted ver-
sions that matched the right level for language
learners. The taskGen submission includs three
different methods, all based on Large Language
Models (LLMs), that is Al systems trained to under-
stand and generate text. Our first method uses two
prompts (instructions to the Al): the first prompt
describes in detail the language features typical of
each CEFR level, and the second prompt empha-
sizes keeping the meaning of the original text. The
second method also uses two prompts, but in the
second one the Al is asked not to include explana-
tions about why the text fits a certain level. Finally,
our third method uses 10 different prompts and then
a ranking system chooses the best simplified text.
Our third method performed best. It ranked 13th
overall among all the submitted methods and made
our team the 6th best team overall in the shared
task. This approach was particularly strong at keep-
ing the meaning of the original text, but there is
still room for improvement regarding compliance
with target CEFR level.
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A Description of linguistic resources

* CEFR overall reading comprehension descriptors for A2 and B1 (Council of Europe, 2020).
* List of A2 and B1 most relevant and frequent words, extracted from Oxford University Press (n.d.).

* A list 5 examples of each morphosyntactic construction listed as characteristic of A2 and B1,
adapted from (North et al., 2010). The list of examples can be found in https://github.com/
juan-oviedo/Recursos-Linguisticos.

B Example of the outputs using the different prompts

Original text:

Don’t always follow positive feedback with negative feedback. When positive and negative feedback
always appear to go hand in hand, the positives can become devalued and ignored. Ensure there are times
when positive feedback is given for its own sake and resist the temptation to offer constructive criticism.
result of run 1 for level A2: You give good feedback. You say nice things to your students.

result of run 2 for level A2: You are a good teacher. You are kind to your students. Your students like
you.

result of run 3 for level A2: Don’t always say something is wrong. When we say something is wrong
and then something is right, people start to ignore the good things. We should say something is good just
because it is good.

For example, a student does a good job on a test. We should just say, "Well done!" and not add "But you
could have done it faster." Or a friend helps us with something. We should say, "Thank you!" and not say
"You could have done it better next time."

This way, people will appreciate the good things and feel happy when we give them positive feedback.

Figure 3: Results of our three runs for text 120 in the TSAR test dataset.

C Prompts for the submitted runs

Prompts for the submitted runs. The linguistic knowledge used in prompts is the following
* [DESCRIPTORS] Descriptors of the target CEFR level as provided by (Council of Europe, 2020).
* [LIST] Vocabulary list for each level as provided by Oxford University Press (n.d.).

* [GRAMMAR] 5 examples illustrating the morphosyntactic constructions of each level specified in
(North et al., 2010), found at https://github.com/juan-oviedo/Recursos-Linguisticos.

e [LEVEL] and [CEFR LEVEL] The target level, that is, A2 or B1.

[INPUT] The input text to be adapted. For TSAR 2025 shared task, each of the texts provided by the
organizers.

* |[ORIGINAL TEXT] The original in a pair of <original, adapted>> texts.

* | [SIMPLIFIED TEXT] The text adapted to the target level in a pair of <original, adapted> texts.
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I’'m a teacher of English as a Foreign Language (EFL) and I’'m preparing a reading task.
Please, simplify this text so that it can be understood by [LEVEL] CEFR EFL learners.

To simplify you may use the CEFR [LEVEL] [DESCRIPTORS] , the [CEFR LEVEL] vocabulary in [LIST] and

the [CEFR LEVEL] grammar structures in [GRAMMAR] .

Make sure you keep the core content of the source text. Keep all the factual information, proper names (the names of
people, places, etc.), times and dates.

Keep the order of the events.

Please avoid adding extra information to the text.

Omit any introduction or conclusion.

Only provide the simplified version of the text.

Make sure you simplify the text until the end.

Figure 4: Base prompt for runs 1 and 2.

You are given two texts:
Original Text — contains the full meaning, details, and factual information.
Adapted Text — written at the [LEVEL] CEFR EFL level, but it loses important meaning from the original.

Your task is to rewrite the Original Text so that:

The meaning, facts, and order of events from the Original Text are fully preserved.

The grammatical structures and vocabulary complexity should match those in the Adapted Text. Use the Adapted Text
as the reference for CEFR level.

Do not add new information or remove important details from the Original Text.

Do not copy sentences directly from the Adapted Text if they distort the meaning of the Original.

Keep proper names, places, times, and dates unchanged.

Omit any introductions, conclusions, or justifications. Provide only the simplified text.

Input:

Original Text: | [ORIGINAL TEXT]

Adapted Text: | [SIMPLIFIED TEXT]

Output:

Simplified version of the Original Text that preserves its meaning but matches the [LEVEL] CEFR EFL grammar and
vocabulary style shown in the Adapted Text.

Figure 5: Follow-up prompt for run 1, which takes as input the output of the base prompt.

Please, make sure you remove all the introductions, conclusions and justifications related to the CEFR level and/or the
task of text simplification from the following text, and do not introduce any new justifications or explanations regarding

this instruction, but just reproduce the core text of the original: | [SIMPLIFIED TEXT]

Figure 6: Follow-up prompt for run 2, which takes as input the output of the base prompt.

169



D Prompts for the ensemble strategy

I’m a teacher of English as a Foreign Language (EFL) and I’'m preparing a reading task. Please, simplify this text so
that it can be understood by [LEVEL] CEFR EFL learners. Please avoid adding extra information to the text. Omit any
introduction or conclusion. Only provide the simplified version of the text.

Figure 7: Prompt 1 for run 3.

I’m a teacher of English as a Foreign Language (EFL) and I'm preparing a reading task. Please, simplify this text so that
it can be understood by [LEVEL] CEFR EFL learners. To simplify you may substitute difficult words for simpler ones.

You may break down long complex sentences into shorter ones. Make sure you keep the core content of the source text.
Keep all the factual information, proper names (the names of people, places, etc.), times and dates. Keep the order of
the events. Please avoid adding extra information to the text. Omit any introduction or conclusion. Only provide the
simplified version of the text. Make sure you simplify the text until the end.

Figure 8: Prompt 2 for run 3.

I’'m a teacher of English as a Foreign Language (EFL) and I'm preparing a reading task. Please, simplify
this text so that it can be understood by [LEVEL] CEFR EFL learners. To simplify you may use the CEFR

[LEVEL] [DESCRIPTORS] and the [CEFR LEVEL] grammar structures in [GRAMMAR] . Make sure you keep

the core content of the source text. Keep all the factual information, proper names (the names of people, places, etc.),
times and dates. Keep the order of the events. Please avoid adding extra information to the text. Omit any introduction
or conclusion. Only provide the simplified version of the text. Make sure you simplify the text until the end.

Figure 9: Prompt 3 for run 3.
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I’'m a teacher of English as a Foreign Language (EFL) and I’'m preparing a reading task. Please, simplify
this text so that it can be understood by [LEVEL] CEFR EFL learners. To simplify you may use the CEFR

[LEVEL] [DESCRIPTORS] , the [CEFR LEVEL] vocabulary in [LIST] and the [CEFR LEVEL] grammar struc-

tures in [GRAMMAR] . Make sure you keep the core content of the source text. Keep all the factual information,

proper names (the names of people, places, etc.), times and dates. Keep the order of the events. Please avoid adding
extra information to the text. Omit any introduction or conclusion. Only provide the simplified version of the text. Make
sure you simplify the text until the end.

Figure 10: Prompt 4 for run 3.

I’m a teacher of English as a Foreign Language (EFL) and I’m preparing a reading task. Please, simplify this text
so that it can be understood by [LEVEL] CEFR EFL learners. To simplify you may substitute difficult words

for simpler ones. You may break down long complex sentences into shorter ones. Make sure you keep the core
content of the source text. Keep all the factual information, proper names (the names of people, places, etc.),
times and dates. Keep the order of the events. Please avoid adding extra information to the text. Omit any in-
troduction or conclusion. Only provide the simplified version of the text. Make sure you simplify the text until

the end. Here are examples of two complex texts and their [CEFR LEVEL] simplified adaptations. Examples:
[ORIGINAL TEXT 1] and its simplified [CEFR LEVEL] | [SIMPLIFIED TEXT 1] ; [ORIGINAL TEXT 2] and its
simplified [CEFR LEVEL] [[SIMPLIFIED TEXT 2]

Figure 11: Prompt 5 for run 3.

I’'m a teacher of English as a Foreign Language (EFL) and I’'m preparing a reading task. Please, sim-
plify this text so that it can be understood by [LEVEL] CEFR EFL learners. To simplify you may use the

CEFR [LEVEL] [DESCRIPTORS] ,the [CEFR LEVEL] vocabulary in [LIST] and the [CEFR LEVEL] grammar

structures in [GRAMMAR]. Make sure you keep the core content of the source text. Keep all the

factual information, proper names (the names of people, places, etc.), times and dates. Keep the or-
der of the events. Please avoid adding extra information to the text. Omit any introduction or con-
clusion. Only provide the simplified version of the text. ~Make sure you simplify the text until the

end. Here are examples of two complex texts and their [CEFR LEVEL] simplified adaptations. Examples:
[ORIGINAL TEXT 1] and its simplified [CEFR LEVEL]  [SIMPLIFIED TEXT 1] [ORIGINAL TEXT 2] |and its
simplified [CEFR LEVEL] | [SIMPLIFIED TEXT 2]

Figure 12: Prompt 6 for run 3.

I’'m a teacher of English as a Foreign Language (EFL) and I’'m preparing a reading task. Please, simplify this text
so that it can be understood by [LEVEL] CEFR EFL learners. To simplify you may substitute difficult words

for simpler ones. You may break down long complex sentences into shorter ones. Make sure you keep the core
content of the source text. Keep all the factual information, proper names (the names of people, places, etc.),
times and dates. Keep the order of the events. Please avoid adding extra information to the text. Omit any in-
troduction or conclusion. Only provide the simplified version of the text. Make sure you simplify the text until

the end. Here are examples of two complex texts and their [CEFR LEVEL] simplified adaptations. Examples:
[ORIGINAL TEXT 1] |and its simplified [CEFR LEVEL] [[SIMPLIFIED TEXT 1] ; ' [ORIGINAL TEXT 2] and its
simplified [CEFR LEVEL] | [SIMPLIFIED TEXT 2]

Figure 13: Prompt 7 for run 3.
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I’'m a teacher of English as a Foreign Language (EFL) and I'm preparing a reading task. Please, simplify
this text so that it can be understood by [LEVEL] CEFR EFL learners. To simplify you may use the CEFR

[LEVEL] [DESCRIPTORS] , the [CEFR LEVEL] vocabulary in n

d the [CEFR LEVEL] grammar structures in [GRAMMAR] . Make sure you keep the core content of

the source text. Keep all the factual information, proper names (the names of people, places, etc.), times
and dates. Keep the order of the events. Please avoid adding extra information to the text. Omit any
introduction or conclusion. Only provide the simplified version of the text. Make sure you simplify the

text until the end. Here are examples of two complex texts and their [CEFR LEVEL] simplified adap-
tations. Examples: |[[ORIGINAL TEXT 1] and its simplified [CEFR LEVEL] | [SIMPLIFIED TEXT 1] ;
[ORIGINAL TEXT 2] and its simplified [CEFR LEVEL] | [SIMPLIFIED TEXT 2]

Figure 14: Prompt 8 for run 3.

follow-up prompt for PROMPT 4.

You are given two texts:

Original Text — contains the full meaning, details, and factual information.

Adapted Text — written at the [LEVEL] CEFR EFL level, but it loses important meaning from the original.
Your task is to rewrite the Original Text so that:

The meaning, facts, and order of events from the Original Text are fully preserved.

The grammatical structures and vocabulary complexity should match those in the Adapted Text. Use the Adapted Text
as the reference for CEFR level.

Do not add new information or remove important details from the Original Text.

Do not copy sentences directly from the Adapted Text if they distort the meaning of the Original.

Keep proper names, places, times, and dates unchanged.

Omit any introductions, conclusions, or justifications. Provide only the simplified text.

Input:

Original Text: | [ORIGINAL TEXT]
Adapted Text: | [SIMPLIFIED TEXT]
Output:

Simplified version of the Original Text that preserves its meaning but matches the [LEVEL] CEFR EFL grammar and
vocabulary style shown in the Adapted Text.

Figure 15: Prompt 9 for run 3.

follow-up prompt for PROMPT 4.
Please, make sure you remove all the introductions, conclusions and justifications related to the CEFR level and/or the
task of text simplification from the following text, and do not introduce any new justifications or explanations regarding

this instruction, but just reproduce the core text of the original: | [SIMPLIFIED TEXT]

Figure 16: Prompt 10 for run 3.
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Abstract

This paper presents an approach to automated
text simplification for CEFR A2 and Bl
levels using large language models and prompt
engineering. We evaluate seven models
across three prompting strategies: short,
descriptive, and descriptive with examples.
A two-round evaluation system using LLM-
as-a-Judge and traditional metrics for text
simplification determines optimal model-
prompt combinations for final submissions.
Results demonstrate that descriptive prompts
consistently outperform other strategies across
all models, achieving 46-65% of first-place
rankings. Qwen3 shows superior performance
for A2-level simplification, while B1-level
results are more balanced across models. The
LLM-as-a-Judge evaluation method shows
strong alignment with traditional metrics while
providing enhanced explainability.

1 Introduction

A crucial component of inclusion lies in language
accessibility, where barriers to text readability
and comprehension remain significant (Saggion,
2017; Rennes, 2022). Enhancing technological
inclusion requires improving text readability,
which shapes how easily diverse audiences can
process, understand, and engage with written
material (Vajjala and Meurers, 2014; Schriver,
1990; Saggion, 2017). Text simplification, whether
achieved through manual strategies (e.g., via
trained editors) or automated approaches (e.g.,
large language models), is a key method for
enhancing readability and comprehension by
adjusting content to the target audience (Saggion,
2017). Within this context, automated, readability-
controlled text simplification using large language
models (LLMs) and refined prompt engineering
represents an innovative approach. It offers a
scalable, cost-efficient, and adaptive solution that
can be tailored to specific readability levels and
target audiences (Chen, 2025; Kew et al., 2023).

The central challenge in automated, readability-
controlled text simplification lies in balancing
reduced linguistic complexity with the preservation
of meaning and fluency (Agrawal and Carpuat,
2024). Achieving this often requires supervision
mechanisms and nuanced adjustments rather
than straightforward simplification (Agrawal and
Carpuat, 2024). LLMs, particularly when
guided by adequate prompt engineering strategies,
offer a promising avenue by adapting text to
specific proficiency levels while retaining semantic
accuracy and naturalness (Agrawal and Carpuat,
2024; Paulson and Hernandez, 2025; Chen et al.,
2025; Barayan et al., 2025). The evaluation of the
quality of the output poses similar challenges and
requires similar finesse (Vajjala, 2022).

We employ a LLM-as-a-Judge (Zheng et al.,
2023) approach to evaluate the simplifications
alongside the metrics provided by the TSAR Team
(Alva-Manchego et al., 2025).

Our approach builds upon the simplification tool
EasyJon by (Barbu, 2024) which employs a LLM-
as-a-Judge approach to find the best performing
model and prompt technique for simplifying text
into German plain language Leichte Sprache.

The aim of this study was to create the
most target-level appropriate text simplification
with the use of LLMs and non-complex prompt
engineering as well as compare two different
evaluation approaches of LLM-based automated
text simplifications.

2 Methodology

The task was completed in two distinct phases:
the simplification process, which involved multiple
prompts and LLMs, and the subsequent evaluation
of the appropriate simplifications for the final
submission. For the simplification, we tested three
prompts and seven models. For the evaluation,
we employed an LL.M-as-a-Judge system (Zheng
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et al., 2023). The dataset was provided by the
TSAR 2025 shared task team (Alva-Manchego
et al., 2025).

2.1 LLM Models

We simplified the texts with seven models of
which five were open-weight models. Qwen3
235B A22B (Yang et al., 2025), Llama 3.3 70B
Instruct' — which is based on its predecessor
Llama 3.1 (Grattafiori et al., 2024), DeepSeek R1
Distill Llama 70B (DeepSeek-Al et al., 2025),
Gemma 3 27B (Team et al., 2025), GPT OSS
120B (OpenAl et al., 2025) and two closed source
models Claude Sonnet 4 (by Anthropic?) and
Mistral Medium 3.1 (by Mistral®). For inference
we used OpenRouter*.

2.2 The simplification prompts

Our simplification approach built upon the
work of Barayan et al. (2025), adopting their
prompting strategies: short, descriptive, and
descriptive + example. We employed more recent
LLMs and adapted the prompt content to address
limitations in the original study. Finally, we
implemented a novel evaluation framework to
provide more comprehensive assessment.

We developed six prompts following a
consistent structure (See A.1): three for A2-level
simplification and three for B1-level simplification.
The complete prompt instructions were detailed in
the appendices (for A2 in Appendix A.2 and for
B1 in A.3). All models were configured with a
conservative temperature setting of 0.3 to ensure
consistent output.

2.3 Evaluating text simplifications with an
LLM-as-a-Judge system and traditional
metrics

To determine the best simplification for each
text, we employed an LLM-as-a-Judge system
with a two-round tournament. In the first round,
the three prompts competed within each model.
The simplification generated by each prompt
was then assessed for quality using LLM-as-a-
Judge and placed to compete in round two. In
the second round, the winning simplifications

"https://huggingface.co/meta-1lama/Llama-3.
3-70B-Instruct
2https://docs.anthropic.com/en/docs/
about-claude/models/overview
3https://docs.mistral.ai/getting—started/
models/models_overview/
*https://openrouter.ai/

competed across models. The winners from round
two formed our final submission dataset, resulting
in a heterogeneous combination of simplifications
from different models and prompts.

2.4 The judgement prompt

Claude Sonnet-4 was chosen to take on the role
of the judge based on the strong performance
of its predecessor (Sonnet 3.5) demonstrated by
(Barbu, 2024) for assessing readability consistency
on the CLEAR Dataset (Crossley et al., 2022).
The judgment prompt was manually adjusted
specifically for this evaluation task. (Detailed in
A4)

The LLM-as-a-Judge was employed identically
in both rounds. For each round the judge was used
to evaluate the strengths and weaknesses of each
simplification and rank them from best to worst.
The evaluation prompt consisted of the task, the
original text and the simplifications. (Example in
Appendix A.5)

To mitigate potential bias that the LLM-as-a-
Judge might have exhibited toward specific models,
we implemented pseudo-anonymization. Model
names were abbreviated to only their first two
letters before being presented to the judge (e.g.,
"Model LL" for Llama 3.3 80B Instruct).

2.5 Scoring strategy

To enable quantitative analysis, we converted the
LLM-as-a-Judge’s rankings into numerical scores
using a Borda count approach. The best-ranked
simplification received 6 points, the second-best
received 5 points, and so on down to 0 points for the
worst-ranked simplification. This conversion from
ordinal rankings to numerical scores allowed us
to calculate means and standard deviations across
multiple evaluation rounds.

3 Results

3.1 Results of round one

The assessment of the prompt strategy involved
aggregating the first-place rankings assigned by
the LLM-as-a-Judge across all 100 texts at each
target level (A2 and B1). For each of the 200
original texts to be simplified, three different
prompting strategies were applied, and the LLM-
as-a-Judge evaluated which strategy produced the
best simplification.

Figures 1 and 2 present the frequency with
which each prompting strategy achieved first place
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B Short

en3 235B Llama 3.3 70B a3 27B Claude Sonnet 4

[ Descriptive B Descriptive + Example

Mistral Medium 3 GPT OSS 120B DeepSeek R1 70B

Figure 1: First-place rankings of prompting strategies
across seven models for A2

across the 100 texts at each simplification level,
evaluated across seven different models. The
results demonstrate that the descriptive prompt
achieved the highest number of first-place rankings,
consistently outperforming other prompts across
all tested models for both A2 and B1 simplification
levels. Specifically, the descriptive prompt secured
between 46 and 65 first-place rankings out of
100 texts depending on the model, representing
the most successful simplification strategy. The
descriptive with example emerged as the second-
best performing prompt (22 to 46 first-place
rankings out of 100), while the short prompt
consistently yielded the fewest top rankings across
all models. This pattern remained remarkably
consistent across diverse model architectures, from
smaller models like Gemma 3 27B to larger
systems such as Claude Sonnet 4, suggesting that
detailed task descriptions provided more effective
guidance for text simplification regardless of model
capacity or design. However, the inclusion of just
one example may have proven more restrictive than
beneficial.

3.2 Results of round two

While in round one the task was evaluating the
prompts for a model, round two examined the
overall performance patterns across models by
calculating the mean and standard deviation of the
Borda score for each model. The results revealed
distinct performance patterns between the A2 and
B1 simplification levels as presented in Table 1. For
A2 simplifications, Qwen3 demonstrated superior
performance with a mean Borda score of 5.07,
establishing a substantial gap ahead of the second-
ranked model, Mistral Medium 3, which achieved
a mean score of 3.39. This considerable margin

B Short

en3 235B Llama 3.3 70B a 3 27B Claude Sonnet 4

[ Descriptive B Descriptive + Example

Mistral Medium 3 GPT OSS 120B DeepSeek R1 70B

Figure 2: First-place rankings of prompting strategies
across seven models for B1

suggested Qwen3’s particular effectiveness in A2-
level text simplification tasks. In contrast, the
B1 simplification results exhibited greater balance
across models. It is possible that B1 simplifications
present less complexity, potentially allowing each
model to achieve competitive performance.

3.3 Qualitative Analysis of simplifications

This section presents two example simplifications.
We selected the shortest A2 text along with two
of its simplifications produced by Qwen 3 and
Gemma 3. The two models that advanced to the
second round of competition. To demonstrate the
spectrum of performance, we chose the highest-
ranked and lowest-ranked simplifications according
to the LL.M-as-a-Judge evaluation for this exact
comparison.

Original: Now NASA is working towards
logging some of the smaller asteroids, those
measuring 140 metres wide or more. Of the 25,000
estimated asteroids of this size, so far about 8,000
have been logged, leaving 17,000 unaccounted for.
Considering that a 19-metre asteroid that exploded
above the city of Chelyabinsk in Russia in 2013
injured 1,200 people, these middle-sized asteroids
would be a serious danger if they enter Earth’s
orbit.

Qwen 3: NASA is now trying to record smaller
asteroids, especially those 140 meters wide or
bigger. Scientists think there are about 25,000 of
these asteroids, but so far they have only found
around 8,000. That means about 17,000 are still
missing. In 2013, a much smaller asteroid—only
19 meters wide—exploded above Chelyabinsk,
Russia, and hurt 1,200 people. So, if one of these
larger asteroids came near Earth, it could be very
dangerous.
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Model A2 B1 A2 & B1
Qwen3 235B 5.07£1.62 3.37+1.80 4.22+1.71
Mistral Medium 3 3.39+1.50 3.58+2.01 3.49+1.75
Llama 3.3 70B 3.38+1.47 3.19£1.56 3.29+1.51
GPT OSS 120B 2.90+1.76 3.11£2.14 3.00+£1.95
Claude Sonnet 4 2.75£1.97 3.17£2.13 2.96+2.05
DeepSeek R1 70B  2.71£1.73  2.54+2.04 2.62+1.89
Gemma 3 27B 0.80+1.27 2.04+x1.91 1.42+1.59

Table 1: Mean and standard deviation of the Borda scores based on the ranking by the LLM-as-a-Judge system.
Higher Borda scores indicate a better text simplification performance. Bold values indicate the best performance for

the category (sorted by A2 & B2)

Gemma 3: Now NASA is trying to find and
record smaller asteroids. Asteroids are big rocks
in space. They are looking for asteroids that are
140 metres wide or bigger. Scientists think there
are about 25,000 asteroids of this size. So far, they
have found about 8,000. That means there are still
17,000 asteroids they haven’t found yet. In 2013, a
smaller asteroid — about 19 metres wide — exploded
over a city in Russia called Chelyabinsk. More than
1,200 people were hurt by the explosion. So, these
middle-sized asteroids could be very dangerous if
they come close to Earth.

LLM-as-a-Judge evaluation for Qwen 3:
Strengths: Maintains appropriate A2 vocabulary
while preserving technical accuracy. Uses "record"
as a good simplification of "logging." Includes
all key information including the specific location
"Chelyabinsk, Russia." Clear logical flow between
sentences.

Weaknesses: Uses "missing" which might be
slightly confusing since the asteroids aren’t lost,
just untracked.

LLM-as-a-Judge evaluation for Gemma 3:
Strengths: Provides clear definition "Asteroids are
big rocks in space" which is very helpful for A2
learners. Uses simple vocabulary and sentence
structures consistently. Includes specific location
details.

Weaknesses: The definition placement creates
awkward sentence flow. Some sentences are
choppy. Uses "More than 1,200" instead of the
exact figure.

3.4 Comparing LL.M-as-a-Judge with
traditional metrics

The LLM-as-a-Judge system demonstrated the
strongest alignment with the MeaningBERT-to-
Reference (mb-ref) metric when examining model
rankings, as can be seen in table 2. This becomes

Model RMSE mb-org mb-ref
Reference 0.612  0.808 -
Qwen3 235B 0.825 0.845 0.842
Mistral Medium 3 0.725  0.819  0.839
DeepSeek R1 70B  0.857  0.845  0.835
GPT OSS 120B 0.803  0.838  0.830
Claude Sonnet 4 0.735 0.812  0.822
Llama 3.3 70B 0.667 0.802  0.821
Gemma 3 27B 0.725 0.789  0.811

Table 2: Models evaluated by the metrics provided
by (Alva-Manchego et al., 2025) ordered by
MeaningBERT-Reference.

evident when models are ordered from best to
worst performance according to their mb-ref scores.
The ranking produced by the LLM-as-a-Judge
system closely mirrors the ordering derived from
mb-ref values. However, the observed alignment
may not have represented a significant relationship,
given that similarity scores fall within a relatively
narrow range. The observed span from 0.811 to
0.842 represented a modest variation of only 0.031
points, suggesting that while the ordering appeared
consistent, the practical differences between model
performances is minimal.

4 Conclusion

In this study, we aimed to create the most
appropriate simplifications for CEFR A2 and
B1 target levels, as well as compare two
evaluation approaches for LLM-based automated
text simplification. We conclude that the
descriptive prompting strategy is optimal for
obtaining CEFR target level text simplifications.
We also conclude that the evaluation strategy of
using an LL.M-as-a-Judge proves to be equally
proficient as the traditional evaluation metrics for
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text simplification.Qwen3 demonstrated superior
performance for A2-level tasks, whereas Mistral
Medium emerged as the top-performing model
for B1 simplifications. Notably, the performance
distribution across models was more balanced for
Bl-level tasks compared to A2-level tasks. The
primary advantage of employing an LL.M-as-a-
Judge approach lies in its explainability. Unlike
traditional metrics, an LLM can identify, penalize,
and provide detailed explanations for problematic
simplifications. For instance, it can detect awkward
phrasing, identify idioms requiring advanced
comprehension despite simple vocabulary, and flag
complex terms that are immediately clarified by
an explanation. This approach offers significant
utility for dataset creation, fine-tuning smaller
models, and diagnosing model performance issues
in an interpretable manner. The explainable
feedback enables researchers to pinpoint specific
simplification shortcomings, whether they stem
from inappropriate phrasing, word choice, sentence
structure, or other linguistic factors.  Such
granular insights are crucial for iterative model
improvement and understanding the nuanced
challenges in text simplification. An example
evaluation demonstrating this approach can be
found in Section A.5 in the Appendix. The
complete dataset is available on GitHub".

Examining additional automated readability and
simplification assessment strategies could be a
valuable area for research. Comparing our prompt
refinement strategy to the findings of further studies
would also provide useful insights. Furthermore,
assessing text readability not only for target
proficiency levels but also for specific audiences,
such as individuals with cognitive impairments,
neurodivergent individuals, or non-native speakers,
may yield important insights.

Limitations

Models may be susceptible to the specific prompts
provided. Tailoring a prompt for each model,
rather than employing a one-prompt-fits-all-models
approach, might yield overall better results.
Furthermore, we employed the Borda count method
to establish a ranking system for comparative
model evaluation. While this approach provided
a straightforward solution, alternative ranking
methods may offer different perspectives on model
and prompt performance.

Shttps://github.com/PaulGBarbu/TSAR2025

Lay Summary

Our research explores how artificial intelligence
(AI) can simplify complex texts to make them
easier to understand for people at different reading
levels. We focused on creating simplified versions
of texts suitable for learners at two specific
English proficiency levels: A2 (elementary) and
B1 (intermediate).

How did we do it? We tested seven different
Al’s, giving each one three types of instructions:
short and simple instructions, detailed instructions,
or detailed instructions with examples. Each Al
model then simplified 200 texts (100 for each
reading level). To find the best simplifications, we
used an innovative two-stage evaluation process.
First, we compared the three different instruction
types within each Al model. Then, we compared
the winning simplifications across all seven models.
For evaluation, we used another Al system called
"LLM-as-a-Judge" (like having an Al referee)
alongside traditional measurement methods.

What did we find? The results showed
that detailed instructions worked best -
consistently producing 46-65% of the top-
ranked simplifications across all models. Short
instructions performed poorly, and surprisingly,
adding examples to the instructions didn’t
help as much as expected and may have even
limited the AI’s flexibility. For elementary-level
(A2) simplifications, one model called Qwen3
performed significantly better than others. For
intermediate-level (B1) texts, the results were more
balanced across different models, suggesting that
B1 simplification may be an easier task.

Why does this matter? This research
has important implications for accessibility and
inclusion. Many people struggle with complex
text, including non-native speakers, people with
cognitive difficulties, and those with lower literacy
levels. Al-powered text simplification offers a
cost-effective, scalable way to make information
more accessible to everyone. The study also
demonstrates that the Al evaluation method (LLM-
as-a-Judge) can be as effective as traditional
metrics while providing better explanations. Unlike
traditional measurements, Al judges can explain
why a simplification is good or bad - for example,
identifying awkward phrasing or unnecessarily
complex vocabulary. This feedback is valuable for
improving Al systems and creating better training
data.
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A Appendix

A.1 Prompt structure for A2 and B1
simplification

[Instruction]
<Input>
[Original Text]
</Input>

Answer just with the simplification
and nothing else. Keep the original
tone.

A.2 Instructions for A2

These are the instructions for simplifying to CEFR
Level A2.

Short: Simplify the following input to A2 CEFR
Level.

Descriptive: You are a text simplification Al
Your task is to simplify the following input to A2
CEFR level. Use only common, everyday words
that are appropriate for the context. Choose words
that native speakers would naturally use. Explain
essential terms if those can’t be simplified and
maintain the content as in the original.

Descriptive with one example: You are a text
simplification Al. Your task is to simplify the
following input to A2 CEFR level. Use only
common, everyday words that are appropriate for
the context. Choose words that native speakers
would naturally use. Explain essential terms if

those can’t be simplified and maintain the content
as in the original. Here is a example:
Original

The Villa des Arts (Villa of the Arts) is a complex of
artists’ studios in the 18th arrondissement of Paris,
built at the end of the 19th century. The entrance is
located at 15 Rue Hégésippe-Moreau. The nearest
metro stations are La Fourche on line 13 and Place
de Clichy on line 2. The apartments and studios,
grouped around several courtyards with gardens,
were listed as a Monument historique in 1994. A2
The Villa des Arts is a place where artists work
in Paris. It is in the 18th district of Paris. People
built it at the end of the 19th century. The entrance
is at Rue Hégésippe-Moreau number 15. If you
want to go there by metro, you can use station La
Fourche (line 13) or station Place de Clichy (line
2) because they are close. The building has many
apartments and studios where artists work. There
are also gardens around the buildings. In 1994,
the government made this building a historical
monument. This means it is on a special list to
protect it.

A.3 Instructions for B1

The instruction for simplifying to CEFR Level B1.

Short: Simplify the following input to B1 CEFR
Level.

Descriptive: You are a text simplification tool
for B1 level. Your task is to simplify the following
input to B1 CEFR level. Use clear, straightforward
language that intermediate learners can understand.
Choose commonly used words and expressions
that sound natural. When you must use more
complex terms that are important to the topic,
provide brief explanations. Keep all the main ideas
and information from the original text.

Descriptive with one example: You are a
text simplification tool for B1 level. Your task
is to simplify the following input to B1 CEFR
level. Use clear, straightforward language that
intermediate learners can understand. Choose
commonly used words and expressions that sound
natural. When you must use more complex
terms that are important to the topic, provide
brief explanations. Keep all the main ideas and
information from the original text. Here is a
example:

Original
The benefits of remote work are undeniable.
Employees save considerable time and money
by eliminating their daily commute, while
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companies can reduce overhead costs associated
with maintaining large office spaces. Many
workers report higher productivity levels
when working from their home environment,
free from office distractions and unnecessary
meetings. The flexibility to manage personal
responsibilities alongside professional duties
has proven particularly valuable for parents and
caregivers. B1

The good things about working from home are
clear. Workers save a lot of time and money
because they don’t need to travel to the office every
day. Companies also spend less money because
they don’t need big offices. Many people say they
work better at home because there are fewer things
that stop them from focusing, and they don’t have
so many meetings they don’t need. Being able to
take care of family things while also doing their
job has been very helpful, especially for parents
and people who look after family members.

A.4 Prompt for LLM-as-a-Judge

The following text was translated to the CEFR
[A2IB1] Level by different models. Give feedback
to all of, stay factual and dont use words like
“excellent’ or similar words, just state the strengths
and weaknesses of the different tranlations. Then
rank them from best to worst translation. Format
the ranking as ["model_i, "model_j","model_k"] at
the end of your answer.

A.5 Example Evaluation in Round Two

Text_ID: 24-a

Prompt: The  following  text was
translated to the CEFR A2 Level by
different models. Give feedback to
all of, stay factual and dont use
words like ’excellent’ or similar
words, just state the strengths and
weaknesses of the different tranlations.
Then rank them from best to worst
translation. Format the ranking as
["model_i, "model_j","model_k"] at the
end of your answer.

Original

Chloe has two pet rats, Zena and Roxy. Chloe
knows they’re not typical pets and she has lost
count of the times she’s patiently tried to explain to
people that rats aren’t dirty and they make fantastic
pets if you look after them correctly. But she
understands why people react badly. She didn’t like
rats either until her friend Martin showed her his pet
rats and she saw how affectionate and intelligent
they were. Last year, when one of Martin’s rats
had babies, Chloe decided she’d like to have two
of them.

llama-3.3-70b-instruct

Chloe has two pet rats, Zena and Roxy. She
knows that most people don’t keep rats as pets,
and she’s often explained to them that rats are
clean and nice pets if you take good care of them.
But she understands why people don’t like them.
Chloe didn’t like rats either, until her friend Martin
showed her his rats. She saw that they were friendly
and smart. When Martin’s rats had babies, Chloe
wanted two of them as pets.

qwen3-235b-a22b-2507

Chloe has two pet rats named Zena and Roxy. She
knows rats are not common pets, and she’s lost
count of how many times she’s had to explain to
people that rats aren’t dirty. She tells them that rats
can be great pets if you take good care of them. But
she also understands why some people don’t like
rats — she didn’t like them either, at first. Then
her friend Martin showed her his pet rats. She saw
how smart and loving they were, and that changed
her mind. Last year, when one of Martin’s rats had
babies, Chloe decided she wanted two of them for
herself.
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Model rmse mb-org mb-ref

llama-3.3-70b-instruct_descriptive_w_example 0.5874 0.8028 0.8171
gemma-3-27b-it_descriptive_w_example 0.6205 0.7963  0.8219
mistral-medium-3_descriptive_w_example 0.6595 0.7955 0.8322
mistral-medium-3_short 0.7246 0.8260 0.8403
mistral-medium-3_winner 0.7246 0.8191 0.8388
qwen3-235b-a22b-2507_descriptive_w_example 0.7517 0.8337  0.8389
llama-3.3-70b-instruct_winner 0.6671 0.8015  0.8208
mistral-medium-3_descriptiv 0.7517 0.8118  0.8353
gwen3-235b-a22b-2507_winner 0.8246 0.8452  0.8422
qwen3-235b-a22b-2507_descriptiv 0.8246 0.8428  0.8420
llama-3.3-70b-instruct_descriptiv 0.6782 0.7886  0.8128
claude-sonnet-4_short 0.6856 0.7875 0.8150
claude-sonnet-4_winner 0.7348 0.8123  0.8220
gpt-0ss-120b_short 0.800 0.8399  0.8315
deepseek-r1-distill-llama-70b_descriptive_w_example 0.8185 0.8499  0.8336
deepseek-r1-distill-llama-70b_short 0.8155 0.8433 0.8338
claude-sonnet-4_descriptive_w_example 0.7071 0.8013  0.8138
gwen3-235b-a22b-2507_short 0.8602 0.8602 0.8414
submitted dataset 0.8216 0.8383  0.8357
gpt-o0ss-120b_winner 0.8031 0.8378  0.8304
claude-sonnet-4_descriptiv 0.7649 0.8182  0.8206
deepseek-r1-distill-llama-70b_descriptiv 0.8367 0.8420  0.8325
gemma-3-27b-it_short 0.7036 0.7754  0.8109
deepseek-r1-distill-llama-70b_winner 0.8573 0.8447 0.8347
gemma-3-27b-it_winner 0.7246 0.7894  0.8107
gpt-oss-120b_descriptiv 0.8246 0.8265 0.8212
llama-3.3-70b-instruct_short 0.7416 0.7840  0.7990
gemma-3-27b-it_descriptiv 0.7616 0.7818  0.8048
gpt-0ss-120b_descriptive_w_example 0.8093 0.8042  0.8082

Table 3: These are the metrics calculated on all the simplifications done by all models and prompts. The underlined
entries show the dataset of the best simplifications on a model basis, evaluated by the LLM-as-a-Judge.
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gpt-oss-120b

Chloe has two pet rats. Their names are Zena and
Roxy. She knows rats are not usual pets. She has
tried many times to tell people that rats are not

dirty and can be great pets if you care for them.
She understands why some people do not like rats.

Chloe did not like rats at first. Then her friend
Martin showed her his rats. She saw that they are
friendly and smart. Last year, Martin’s rat had
babies. After that, Chloe decided she wanted two
rats of her own.

deepseek-r1-distill-llama-70b

Chloe has two pet rats named Zena and Roxy. She
knows they are not usual pets. She can’t remember
how many times she has tried to explain to people
that rats are not dirty and are great pets if you
take good care of them. She knows why people
don’t like them. She didn’t like rats either until her
friend Martin showed her his pet rats. She saw how
loving and smart they were. Last year, when one
of Martin’s rats had a litter, Chloe decided to take
two.

mistral-medium-3

Chloe has two pet rats named Zena and Roxy. She
knows rats aren’t common pets, and she’s often
tried to tell people that rats aren’t dirty. They can
be great pets if you take good care of them. But she
gets why some people don’t like them. She didn’t
like rats either until her friend Martin showed her
his pet rats. She saw how loving and smart they
were. Last year, when one of Martin’s rats had
babies, Chloe decided she wanted two of them.

claude-sonnet-4

Chloe has two pet rats, Zena and Roxy. Chloe
knows they are not normal pets. Many times,
people say rats are dirty. Chloe tells them that
rats are not dirty and they are very good pets if you
take care of them well. But she understands why
people don’t like rats. Chloe didn’t like rats before
too. Then her friend Martin showed her his pet

rats. She saw that rats are loving and smart animals.

Last year, one of Martin’s rats had babies. Chloe
wanted to have two of them.

gemma-3-27b-it

Chloe has two pet rats called Zena and Roxy. She
knows rats aren’t usual pets, and she’s explained
to many people that rats are clean and can be great
pets if you care for them well. But she understands
why some people don’t like them. She didn’t like

rats at first either. Then her friend Martin showed
her his pet rats, and she saw they were loving and
clever. Last year, Martin’s rat had babies, and
Chloe decided she wanted two of them.

LLM-as-a-Judge Assessment

I'll analyze each translation for A2 level
appropriateness, accuracy, and clarity.

Model LL: Uses simple vocabulary and
sentence structures appropriate for A2. Maintains
accuracy while simplifying complex phrases like
"lost count” to "often explained." The flow is
natural and all key information is preserved.

Model QW: Retains more complex elements
like "lost count" which may be challenging
for A2 learners. Uses longer sentences and
more sophisticated vocabulary ("common pets,"
"changed her mind"). Accurate but potentially
above A2 level in complexity.

Model GP: Uses very simple sentence structures
with clear, short sentences. Vocabulary is basic
and appropriate for A2. However, some awkward
phrasing appears ("After that, Chloe decided") and
the flow feels choppy due to overly simplified
sentence structure.

Model DE: Contains vocabulary that may be too
advanced for A2 ("litter" instead of "babies," "can’t
remember"). The sentence "She can’t remember
how many times" is more complex than needed.
Otherwise maintains good accuracy.

Model CL: Uses simple vocabulary and
sentence structures. However, contains some
awkward phrasing ("Chloe didn’t like rats before
too") and unnatural expressions ("Many times,
people say rats are dirty"). The meaning remains
clear despite these issues.

Model GE: Balances simplicity with natural
flow effectively. Uses appropriate A2 vocabulary
while maintaining readability. Minor issue with
"clever" which could be "smart" for consistency,
but overall well-adapted.

Model MI: Uses appropriate vocabulary and
sentence length for A2. Natural flow and accurate
content. The phrase "she gets why" is slightly
informal but understandable. Good balance of
simplification and clarity.

["Model_LL", "Model_MI", "Model GE",
"Model_GP", "Model_CL", "Model_DE",
"Model_QW"]
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Abstract

This paper describes the participation of the
HULAT-UC3M team in the TSAR 2025 Shared
Task on Readability-Controlled Text Simplifi-
cation. Our approach uses open and lightweight
Large Language Models (LLMs) with different
sizes, together with two strategies for prompt
engineering. The proposed system has been
tested on the trial data provided, and evaluated
using the official metrics: CEFR Compliance,
Meaning Preservation, and Similarity to Ref-
erences. LLaMA 3 8B model with reinforced
prompts was selected as our final proposal for
submission, and ranking fourteenth according
to the overall metric. Finally, we discuss the
main challenges that we identified in develop-
ing our approach for this task.

1 Introduction

Automatic text simplification aims to generate texts
that are easier to read and understand while pre-
serving their original meaning (Saggion and Hirst,
2017). Large Language Models (LLMs) are in-
creasingly being explored for this purpose adapting
generated content to match users’ specific language
proficiency levels.

The Common European Framework of Refer-
ence for Languages (CEFR) grades language mas-
tery on a six-level scale, ranging from Basic User
(A1, A2), through Independent User (B1, B2), to
Proficient User (C1, C2). Despite the promise of
LLMs for generating simplified texts, accurately
classifying these outputs into specific CEFR levels
remains a significant challenge. Current works indi-
cate that LLMs often produce unsatisfactory results
in CEFR-related educational tasks, frequently over-
predicting intermediate levels like B1 or B2 and
struggling to consistently encode or apply intrin-
sic CEFR knowledge without explicit prompting
(Benedetto et al., 2025). This highlights the need
for improved automatic evaluation metrics specifi-
cally tailored for Readability-Controlled Text Sim-

plification (RCTS), as standard metrics often mis-
interpret simplification operations and inaccurately
assess readability and meaning preservation.
HULAT-UC3M participation in TSAR 2025
Shared Task (Alva-Manchego et al., 2025) inte-
grates generative LLMs through prompt engineer-
ing by testing open lightweight LLMs of different
sizes using prompts with different levels of detail.

2 Related Work

The challenge of Readability-Controlled Text Sim-
plification involves rewriting text to match spe-
cific audience proficiency levels, most commonly
guided by the CEFR. Recent research has evi-
denced a concentrated effort to leverage the power
of LLMs to achieve this fine-grained control
(Agrawal and Carpuat, 2023). For instance, studies
have investigated the performance of pre-trained
instruction-tuned LLMs in aligning their generated
output with standardized readability criteria, find-
ing that models vary widely in their inherent abil-
ity accurately to encode and apply CEFR require-
ments when performing generative tasks (Impe-
rial and Madabushi, 2023; Benedetto et al., 2025).
In addition, methods have been developed to inte-
grate readability control directly into the generation
process itself, including techniques that use rein-
forcement learning and decoding approaches with
anticipation mechanisms to minimize the gap be-
tween the requested and observed readability levels
(Ribeiro et al., 2023).

A key methodological advancement in RCTS has
been the transition towards controlling complex-
ity via prompt-based strategies. Many recent ap-
proaches focus on the zero-shot or few-shot prompt-
ing, where pre-trained models are guided entirely
by explicit or a small number of in-context exam-
ples to a target complexity level (Farajidizaji et al.,
2024; Chi et al., 2023). These strategies allow mod-
ifying any source text to an absolute target read-
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ability level, often making the generated output
less dependent on the complexity of the original
source. The effectiveness of these techniques high-
lights the role of prompt richness, the degree of
descriptive guidance provided, in controlling read-
ability. This aspect is directly connected to our
approach, which compares reinforced and slightly
reinforced prompts as two levels of guidance for
readability-controlled simplification.

We conclude that, given the strong performance
observed in recent literature, our approach will
focus exclusively on zero-shot strategies for pre-
trained LLMs, leveraging only advanced prompt
engineering to control text simplification. This
methodology avoids the need for exhaustive fine-
tuning on domain-specific corpora, allowing a
highly flexible and efficient solution.

3 Proposed Architecture

Two families of LLMs have been considered: Ettin
suite (Weller et al., 2025b) and Meta LLaMA 3
(Grattafiori et al., 2024). As for prompt engineer-
ing, the reinforced prompts have consisted of the
description of each CEFR level in order to achieve
the simplification of the original text to the required
target CEFR level. Figure 1 shows the architec-
ture of our approach. After reviewing the latest
advances on recent, open, lightweight, and task-
suitable LLMs, LLaMA 3 and Ettin Decoder are
selected as generation modules. The prompt engi-
neering techniques are developed for being applied
with the adapted and CEFR-aligned datasets. This
key step involves the use of reinforced prompt and
slightly reinforced prompt to guide the models’ text
generation. Afterwards, the approach is assessed
in the automatic evaluation metrics module, evalu-
ated using the official set of evaluation metrics and
our complementary ones. A manual review is also
carried out in the form of a qualitative inspection.
Finally, after quantitative and qualitative analy-
sis, a decision is made to select the final configura-
tion for presentation. The final configuration was
selected prioritizing CEFR Compliance and Align-
Score, supported by manual qualitative inspection.

3.1 Large Language Models used

On the one hand, LLaMA 3 herd of models
(Grattafiori et al., 2024) includes two versions of
pre-trained and instruction-tuned generative text
models with sizes of 8B and 70B Al@Meta (2024).
For the purpose of using lightweight models, the

version with 8B parameters has been chosen for
our proposal.

On the other hand, Ettin Suite of models (Weller
et al., 2025b) is a novel collection of state-of-the-
art paired encoder-only and decoder-only language
models, ranging from 17M to 1B parameters pub-
licly available in Weller et al. (2025a). Considering
the results obtained by these models in the different
tasks, Ettin Decoder version with a size of 400M pa-
rameters has been chosen for our approach, which
will allow us to make comparisons between very
lightweight open-source models and small public
models.

As for the hyperparameters used, we adopted
slightly different configurations for each model. In
the case of LLaMA 3, we used: temperature = 0.3,
top-p = 0.9, and no. of tokens = 256. For Ettin
Decoder, we followed the official guidelines, and
used temperature = 0.7, top-p = 0.9, and limiting
the no. of tokens between 100 and 256.

3.2 Prompt Design

The prompt engineering technique consisted of de-
veloping reinforced prompts based on those used
in Benedetto et al. (2025) for classification into
CEFR levels. First, a reinforced prompt that in-
cludes detailed CEFR descriptions, in addition to
examples for each of the six levels (from Al to
C2) in a few-shot approach. And second, a slightly
reinforced prompt, which has consisted of shorter
CEFR descriptions, with a more concise style, spec-
ifying only the simplest levels (A1, A2, and B1).
These prompts are included in Appendix A, and are
publicly available in the HULAT-UC3M GitHub'
repository (Human Language and Accessibility
Technologies (HULAT) group, 2025).

4 Experimental Setup and Evaluation

4.1 Dataset

The trial data provided contained 20 original texts,
and for each of them, both their simplification to
CEFR level A2 and level B1 have been included.
The texts cover a diverse range of general knowl-
edge and real-world topics, making this dataset
suitable for a broad evaluation of a model’s ability
to simplify different types of content. Regarding
the test data provided, it has consisted of 100 origi-
nal texts about similar topics, and simplifications to
both CEFR level A2 and level B1 have been asked.

1https: //github.com/hulat-group/tsar_2025_
workshop/blob/main/README . md
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Figure 1: Flowchart of the architecture of the proposed approach.

4.2 Evaluation Metrics

We used the official evaluation metrics of the shared
task: CEFR Compliance, Meaning Preservation,
and Similarity to References. CEFR Compliance
evaluates how well the generated text matches the
requested CEFR level, using models fine-tuned on
subsets of the Universal CEFR dataset (Imperial
et al., 2025) and assessed through Weighted F1, Ad-
jacent Accuracy, and RMSE (Barayan et al., 2025).
Meaning Preservation is computed with Meaning-
BERT (Beauchemin et al., 2023), a BERT-based
metric trained to correlate strongly with human
judgments of semantic similarity. Similarity to
References is evaluated with BERTScore (Zhang
et al., 2020), which leverages contextual embed-
dings to estimate token-level similarity between
candidate and reference texts, although it may over-
estimate lexical overlap without ensuring true se-
mantic preservation.

In addition, we incorporated AlignScore (Zha
et al., 2023) to assess factual consistency between
the original and simplified texts. This complemen-
tary metric addresses the tendency of reference-
based measures to overvalue surface similarity even
when outputs include factual errors or hallucina-
tions. AlignScore proved particularly valuable in
revealing limitations of the Ettin Decoder model,
whose results appeared adequate under official met-
rics but showed inconsistencies when factual align-
ment was evaluated.

5 Results and Discussion

5.1 Internal Evaluation on Trial Data

We conducted an internal evaluation using the trial
data provided to compare our configurations be-
fore the final submission. Table 1 presents the
results obtained in these experiments. Overall, the
configurations using slightly reinforced prompts
(SRP) yielded a better trade-off between readabil-

ity control and meaning preservation, whereas fully
reinforced prompts (RP) led to higher variance and
reduced factual consistency.

LLaMA 3 8B models. Among all systems tested,
the LLaMA 3 8B model with a slightly rein-
forced prompt was the top performer, achieving the
highest scores in CEFR Compliance and Similar-
ity to References. This suggests that overly detailed
prompts may hinder instruction-tuned models such
as LLaMA 3, reducing their ability to generalize.

Ettin Decoder 400M models. For the Ettin De-
coder 400M model, the RP version achieved com-
petitive results in CEFR Compliance and strong
BERTScore values for Meaning Preservation, but
underperformed in the remaining metrics. The SRP
version showed very high scores in Meaning Preser-
vation but weak performance in CEFR Compliance.
In terms of the complementary AlignScore metric,
Ettin Decoder 400M obtained the lowest factual
consistency (0.5576), despite its strong semantic
similarity metrics, revealing inconsistent and unre-
liable outputs.

A qualitative inspection of the texts produced
by Ettin Decoder 400M revealed frequent hallu-
cinations and repetitions, making its outputs less
usable despite high similarity scores. In contrast,
the LLaMA 3 8B model achieved the highest Align-
Score (0.6038), confirming it as the most balanced
configuration between Meaning Preservation and
factual fidelity. Therefore, for the final submission,
we selected the LLaMA 3 8B model guided by a
slightly reinforced prompt.

5.2 Error Analysis

This section provides an in-depth qualitative anal-
ysis of errors observed in the texts generated with
the trial data by LLaMA 3 and Ettin Decoder mod-
els. Errors were classified into the following cat-
egories: hallucination; little or no simplification;
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Metric LLaMA 3 8B (RP) LLaMA 3 8B (SRP) Ettin Decoder 400M (RP) Ettin Decoder 400M (SRP)
CEFR Compliance - Weighted F1 0.3000 0.5200 0.4800 0.2800
CEFR Compliance - RMSE 1.1100 0.7746 0.8900 1.1619
Meaning Preservation - MeaningBERT 0.6532 0.7170 0.6901 0.8176
Meaning Preservation - BERTScore 0.8837 0.8999 0.9025 0.8807
Similarity to References - MeaningBERT 0.6384 0.7075 0.6243 0.6199
Similarity to References - BERTScore 0.8764 0.8921 0.8789 0.8470
AlignScore 0.5600 0.6038 0.4300 0.5576

Table 1: Results of experiments with trial data (RP means reinforced prompt, and SRP slightly reinforced prompt).

repetitions; incoherent or low-fluency output; over-
simplification and loss of nuance; rigid, artificial,
or robotic output; and overloaded output with un-
necessary details. Tables 3 and 4 in Appendix B
include at least one example for each category.

Ettin Decoder models. The Ettin Decoder model
(both RP and SRP) exhibited a higher frequency
of severe output quality issues, with hallucination
being the most critical error type (Table 3). In ex-
ample #1, the RP version completely diverges from
the original text about NASA tracking asteroids,
generating content about a “new space telescope.”
A similar hallucination occurs in the SRP version
for the business etiquette example #5, where the
model produces a list of fabricated, generic points
with no semantic link to the source.

Another recurrent error type was low-fluency
or repetitive output. In the RP examples #3 and
#4, the model tends to loop, as in the supermarket
chains example, where it repeats the same sentence
multiple times, reducing readability. This behavior
likely stems from issues with stopping criteria or
reinforcement signals.

In the SRP example #7, based on The Life of Pi,
the model adds a redundant and factually inaccurate
detail about the boy being a vegetarian who must
feed the tigerinformation absent from the original
textagain resulting in incoherent output. The “little
or no simplification” error was also common across
both versions, as illustrated by examples #2 and #6
on earthquake-proof bridges and asteroids. This
suggests that, at higher input complexity levels, the
model tends to reproduce the source text almost
verbatim.

Finally, a recurring issue in the SRP version is
that its outputs, while fluent and grammatically cor-
rect, are often overly simplified and lack nuance.
As illustrated in example #8 concerning potential
causes of bridge collapses, the model compresses
the content into a generic summary, losing the ex-
planatory richness of the original and particularly
the nuances regarding design limitations and inves-

tigation processes.

LLaMA 3 models. As for the LLaMA 3 model
(Table 4), although it generally produces more con-
sistent outputs than Ettin Decoder, it is often af-
fected by unnecessary meta-commentary, leading
to rigid or overly formulaic text. The examples #9
and #11, related to The Hunger Games, illustrate
this problem: the simplified text is followed by a
generic note unrelated to the simplification task,
likely a remnant of instruction-tuning data.

The error of over-simplification and loss of nu-
ance is evident in example #10 for RP version about
the five-day work week. Although the essential
information is preserved, the simplification dimin-
ishes the narrators emotional tone and reduces the
subjective depth of the original text. Regarding
the SRP version, it also exhibited issues with un-
necessary details. In example #12 about Wasfia
Nazreen, the model simplifies the text but includes
the explicit reason for the hula-hooping in a way
disconnected from the narrative flow. Furthermore,
it often breaks simple ideas into short, choppy sen-
tences (e.g., “Wasfia just watched”), making the
output redundant and stylistically uneven.

A common pattern observed across models was
overshooting. The outputs displayed a consistent
tendency to exceed the target CEFR levelthat is,
when an A2 level was requested, the simplification
was frequently evaluated as B1. This discrepancy
aligns with the findings of Benedetto et al. (2025),
who identified a bias of LLMs toward intermedi-
ate levels (B1/B2). Despite sharing this bias, the
SRP versions outperformed the RP ones, reducing
RMSE and improving both Meaning Preservation
and AlignScore.

In summary, the errors in LLaMA 3 are primar-
ily stylistic and structural, largely stemming from
residual artifacts of instruction alignment, whereas
Ettin Decoder exhibits more fundamental problems
involving consistency, repetition, and factual in-
tegrity.
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5.3 Evaluation on Test Blind

To generate the simplified texts from these test data,
we have followed the same procedure as in the ex-
periments with trial data. Following the release of
the task ranking (Alva-Manchego et al., 2025), we
have been able to analyze the performance achieved
by our proposals in the test data. In addition to the
set evaluation metrics used in the task, the AU-
TORANK score (Kocmi et al., 2025) has been used
as an overall metric for the final classification.

Table 2 shows the official results of our ap-
proach in TSAR 2025 (the position is indicated
over 48 submitted runs). Based on these results,
the LLaMA 3 8B model with slightly reinforced
prompt consistently outperforms the version with
reinforced prompt. It achieves a significantly lower
RMSE and a higher AvgScore, indicating more ac-
curate predictions on average. The MeaningBERT-
orig and MeaningBERT-ref scores are also higher,
confirming its superior ability to preserve the orig-
inal meaning while producing text that is more
similar to human-written references. As for the
final ranking position, SRP version ranked 24,
while RP version ranked 31%. Overall, the use of a
slightly reinforced prompt appears to be a key fac-
tor in improving the model’s performance in this
task.

5.4 Discussion

Our experiments highlight several key challenges
in readability-controlled text simplification. The
primary difficulty lies in generating outputs that
accurately match specific CEFR levels: although
LLMs encode information about the framework,
they still struggle to apply it consistently in genera-
tive tasks. Another major challenge concerns man-
aging the well-known trade-off between improving
readability and preserving the original meaning.

In our internal evaluation with trial data, we com-
pared recent and lightweight LLMsLLaMA 3 and
the Ettin suitefocusing on decoder models given
the generative nature of the task. Despite the sim-
plicity of our setup, the goal was to test whether
a minimal prompt design could perform compara-
bly to a reinforced one. Contrary to expectations,
lighter prompts produced better results than more
detailed ones, contrasting with previous findings
such as Benedetto et al. (2025), who reported that
instruction-tuned models required explicit CEFR
descriptors for optimal performance.

With LLaMA 3 8B, the slightly reinforced

prompt consistently outperformed the reinforced
variant. We attribute this to the models strong
instruction-tuning and the high quality of the TSAR
dataset, which reduce the need for extensive prompt
engineering. This finding refines our understand-
ing of level control in LLMs: in instruction-tuned
architectures, concise and well-structured prompts
can be more effective than exhaustive descriptions.

Regarding the Ettin Decoder, the qualitative anal-
ysis revealed substantial issuesoutputs were often
incoherent or nonsensical despite claims of com-
petitive performance in other benchmarks. Con-
sequently, no test submission was made for this
model. This outcome underscores the importance
of manual inspection, which remains crucial to
identify alignment and factuality problems that au-
tomated metrics may overlook.

In the blind test evaluation, our best system
ranked 14™ out of 20 teams by AUTORANK,
achieving moderate scores in CEFR Compliance
and Meaning Preservation (MeaningBERT-orig
and -ref). These results reflect the inherent tension
between the two dimensions of the task: controlling
readability while maintaining semantic fidelity.

Looking ahead, improving CEFR-level con-
trol will likely require larger, dedicated CEFR-
annotated corpora for fine-tuning. From an evalua-
tion perspective, future tasks could benefit from ro-
bust factuality-oriented metrics such as AlignScore,
trained on millions of cross-domain examples. Fi-
nally, a hybrid architecturecombining an encoder
specialized in CEFR assessment with a decoder
optimized for controlled text generationcould bet-
ter satisfy the objectives of readability-controlled
simplification.
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Lay Summary

People often read things that are too complicated to
understand quickly. This frequently happens with
news articles, legal documents, or scientific papers.
To solve this problem, researchers use computer
programs called Large Language Models (LLMs)
to automatically simplify text. LLMs are programs
that can create human-like language. The main goal
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Model Position RMSE MeaningBERT-orig MeaningBERT-ref AvgScore AUTORANK
LLaMA 3 8B (RP) 31 0.682 0.790 0.791 -0.122 10.560
LLaMA 3 8B (SRP) 24 0.608 0.793 0.806 -0.028 9.370

Table 2: Results obtained in TSAR 2025 (RP means reinforced prompt, and SRP slightly reinforced prompt).

is to make a text much easier to read without chang-
ing its main message. One way to measure whether
a text is simpler is by using readability levels, such
as the CEFR (Common European Framework of
Reference). CEFR uses levels like Al (beginner) to
C2 (expert) to rate language skills. Our goal was to
train these programs to simplify the text precisely
to these specific reading levels.

We wanted to know how well language models
could simplify text to specific reading levels. In
particular, could we use simple instructions to get
these models to generate simplified text that (1)
keeps the original meaning, (2) achieve the desired
reading level, and (3) avoid errors? Answering this
question is important to make text more accessible
to everyone.

We tested several small and open-source LLMs,
including the LLaMA 3 and Ettin Decoder, on
text simplification tasks. We found that giving the
models detailed instructions, known as the prompt-
based approach, helped them keep the text mean-
ing of the text very well. However, this approach
failed to produce text that was easy to read. The
models often made mistakes, such as creating rigid
and robotic text, or including not required details.
LLaMA 3 was the best, but current tools still fail
to decide if a simplified text is natural and clear.

At last, this research can help many people who
have difficulty reading complex texts. This in-
cludes students who are learning a new language,
people with cognitive impairments, or citizens who
need to understand legal or medical documents.
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A Prompts used

The full prompts used for the lightweight LLMs
(see Subsection 3.1), reinforced and a slightly rein-
forced, are detailed below.

A.1 Reinforced Prompt

### PROMPT FOR CEFR LEVEL A1l (REIN-
FORCED) ###

Below are CEFR descriptions:
* Al: Beginner Simple sentences. No passive.
Top 1000 words. Familiar names, cognates.

* A2: Elementary Short, simple texts with pre-
dictable info. 1000-2000 words.

* Bl: Intermediate Everyday or job-related lan-
guage. Includes descriptions of events, feel-
ings and wishes.

* B2: Upper Intermediate Contemporary arti-
cles, styles, viewpoints. 5000-10,000 words.

* Cl: Proficient Long, complex factual/literary
texts. 10,000-20,000 words.

* C2: Advanced Proficient All forms of written
language including abstract and highly
complex.

Example Al:
Original: Some asteroids are very small.
Simplified: Some space rocks are very small.

Target CEFR level: Al
Now simplify this one:
Original: {INPUT}

### PROMPT FOR CEFR LEVEL A2 (REIN-
FORCED) ###

Below are CEFR descriptions:

* Al: Beginner Simple sentences. No passive.
Top 1000 words. Familiar names, cognates.

* A2: Elementary Short, simple texts with pre-
dictable info. 1000-2000 words.

* B1: Intermediate Everyday or job-related lan-
guage. Includes descriptions of events, feel-
ings and wishes.

* B2: Upper Intermediate Contemporary arti-
cles, styles, viewpoints. 5000—-10,000 words.

* Cl: Proficient Long, complex factual/literary
texts. 10,000-20,000 words.

* C2: Advanced Proficient All forms of written
language including abstract and highly
complex.

Example A2:

Original: Earthquakes damage buildings and
bridges.

Simplified: Earthquakes can break buildings and
bridges.

Target CEFR level: A2
Now simplify this one:
Original: {INPUT}

### PROMPT FOR CEFR LEVEL B1 (REIN-
FORCED) ###
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Below are CEFR descriptions:

* Al: Beginner Simple sentences. No passive.
Top 1000 words. Familiar names, cognates.

* A2: Elementary Short, simple texts with pre-
dictable info. 1000-2000 words.

* B1: Intermediate Everyday or job-related lan-
guage. Includes descriptions of events, feel-
ings and wishes.

* B2: Upper Intermediate Contemporary arti-
cles, styles, viewpoints. 5000-10,000 words.

* CI: Proficient Long, complex factual/literary
texts. 10,000-20,000 words.

* (C2: Advanced Proficient All forms of written
language including abstract and highly
complex.

Example B1:

Original: Many wild animals are starting to enter
cities.

Simplified: Some wild animals are visiting cities
now.

Target CEFR level: B1
Now simplify this one:
Original: {INPUT}

A.2 Slightly Reinforced Prompt

### PROMPT FOR CEFR LEVEL A1 ###
Rewrite the following text at CEFR level Al.

Use very short and simple sentences. Only basic
vocabulary. Avoid complex grammar.

Original: {INPUT}
Simplified:

### PROMPT FOR CEFR LEVEL A2 #i##
Rewrite the following text at CEFR level A2.

Use short, simple sentences and clear, everyday
words.

Original: {INPUT}
Simplified:

### PROMPT FOR CEFR LEVEL B1 ###
Rewrite the following text at CEFR level B1.

Use clear, connected sentences with some detail.
Everyday vocabulary is fine, but avoid very
advanced or abstract terms.

Original: {INPUT}
Simplified:

B Examples for Error Analysis

Tables 3 and 4 show the analysis of several exam-
ples of errors obtained in the generation of simpli-
fied text from trial data by Ettin Decoder and by
LLaMA 3 models, respectively. These errors have
been used and explained in Subsection 5.2.
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Observed

Model Id. Original text Simplified text .
issue
Now NASA is working towards logging some of the smaller
asteroids, those measuring 140 metres wide or more. Of the
25,000 estimated asteroids of this size, so far about 8,000
have been logged, leaving 17,000 unaccounted for. The US has been working on a new space telescope to study L
#1 S . . Hallucination
Considering that a 19-metre asteroid that exploded above the  the universe.
city of Chelyabinsk in Russia in 2013 injured 1,200 people,
these middle-sized asteroids would be a serious danger if
they enter Earth’s orbit.
Earthquakes damage all structures, including bridges. Earthquakes damage all structures, including bridges.
Luckily, this kind of collapse is relatively infrequent, Luckily, this kind of collapse is relatively infrequent, .
. . X . . . X . Little or no
#2  especially with modern bridges. Engineers have learned to especially with modern bridges. Engineers have learned to T
. . . . . . simplification
design bridges in earthquake zones on areas that are much design bridges in earthquake zones on areas that are much
more resistant to movement. more resistant to movement.
Target CEFR level: A2
Now simplify this one:
Original: The Hunger Games are an annual event, which the
Capitol uses to remind the districts that they are being
punished for rebelling. Every year one boy and one girl aged
12 to 18 are chosen from each district by lottery to compete
The Hunger Games are an annual event, which the Capitol in a battle in which only one person can survive. The chosen
Ettin Decoder uses to remind the districts that they are being punished for teenagers are called “tributes”. The whole nation is forced to
400M (RP) rebelling. Every year one boy and one girl aged 12 to 18 are watch the event on television.
#3  chosen from each district by lottery to compete in a battle in Repetition
which only one person can survive. The chosen teenagers are ~ Target CEFR level: A2
called “tributes”. The whole nation is forced to watch the Now simplify this one:
event on television. Original: The Hunger Games are an annual event, which the
Capitol uses to remind the districts that they are being
punished for rebelling. Every year one boy and one girl aged
12 to 18 are chosen from each district by lottery to compete
in a battle in which only one person can survive. The chosen
teenagers are called “tributes”. The whole nation is forced to
watch the event on television.
Many of the major supermarket chains have come under fire The supermarket chain Tesco has signed up to a pact
with accusations of various unethical acts over the past promising to transform packaging and cut plastic waste. The
decade. They’ve wasted tonnes of food, they’ve underpaid supermarket chain has signed up to a pact promising to
their suppliers and they’ve contributed to excessive plastic transform packaging and cut plastic waste. Tesco has signed
waste in their packaging, which has had its impact on our up to a pact promising to transform packaging and cut plastic ~ Incoherent or
#4  environment. But supermarkets and grocers are starting to sit ~ waste. Tesco has signed up to a pact promising to transform low-fluency
up and take notice. In response to growing consumer packaging and cut plastic waste. Tesco has signed up to a output
backlash against the huge amounts of plastic waste pact promising to transform packaging and cut plastic waste.
generated by plastic packaging, some of the largest UK Tesco has signed up to a pact promising to transform
supermarkets have signed up to a pact promising to packaging and cut plastic waste. Tesco has signed up to a
transform packaging and cut plastic wastage. pact promising to transform packaging and cut plastic waste...
Much of today’s business is conducted across international
borders, and while the majority of the global business
community might share the use of English as a common
language, the nuances and expectations of business . .
S . . 1. The importance of politeness
communication might differ greatly from culture to culture. A .
N . 2. The importance of respect
lack of understanding of the cultural norms and practices of . . —
#5 . . . L. 3. The importance of etiquette Hallucination
our business acquaintances can result in unfair judgements, . . .
. R R . 4. The importance of etiquette in the workplace
misunderstandings and breakdowns in communication. Here . . .
. . . . . 5. The importance of etiquette in the home
are three basic areas of differences in the business etiquette
around the world that could help stand you in good stead
when you next find yourself working with someone from a
different culture.
Now NASA is working towards logging some of the smaller ~ Now NASA is working towards logging some of the smaller
asteroids, those measuring 140 metres wide or more. Of the asteroids, those measuring 140 metres wide or more. Of the
25,000 estimated asteroids of this size, so far about 8,000 25,000 estimated asteroids of this size, so far about 8,000
#6 have been logged, leaving 17,000 unaccounted for. have been logged, leaving 17,000 unaccounted for. Little or no
Considering that a 19-metre asteroid that exploded above the ~ Considering that a 19-metre asteroid that exploded above the  simplification
Ettin Decoder city of Chelyabinsk in Russia in 2013 injured 1,200 people, city of Chelyabinsk in Russia in 2013 injured 1,200 people,
400M (SRP) these middle-sized asteroids would be a serious danger if these middle-sized asteroids would be a serious danger if
they enter Earth’s orbit. they enter Earth’s orbit.
The Life of Pi is a story about a young boy who is
The Life of Pi tells the extraordinary story of Pi, a teenage shipwrecked in the Pacific Ocean and finds himself trapped
boy from India, who is shipwrecked and finds himself trapped in a lifeboat with a tiger. The tiger is a wild animal and the
in a lifeboat in the Pacific Ocean with a ferocious tiger. It is boy has to survive in the lifeboat. The boy has to survive Incoherent or
w7 the third book by the Canadian author Yann Martel, and was because he is a vegetarian and he has to feed the tiger with low-fluenc
published in 2001. Since then, it has sold over seven million fish and vegetables. The boy has to survive because he is a output 4
copies worldwide, won several prizes and been translated vegetarian and he has to feed the tiger with fish and P
into 41 languages. Martel is the son of a diplomat and as a vegetables. The boy has to survive because he is a
child lived in Costa Rica, Canada, France and Mexico. vegetarian and he has to feed the tiger with fish and
vegetables...
Some bridge collapses are mysteries, and engineers only
realise why after they conduct a complete investigation. In
. S . Over
some cases, this could happen because inferior-quality . . L .
. . . N Some bridges collapse because of poor construction or simplification
#8  material was used in the construction, or because of a defect . K .
. . . . because of a defect in the bridge itself. and lack
in a key piece of the bridge. In other cases, the bridge was of nuance

designed only to support a certain amount of weight and no
more.

Table 3: Qualitative analysis of errors produced by Ettin Decoder model simplifying trial data.
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Observed

Model Id. Original text Simplified text .
issue
One night, Suzanne Collins was watching TV. She saw
One night in 2003, Suzanne Collins was flipping between reality shows where people competed to win money
channels on TV. It was at the time of the US invasion of Iraq. and news about the war. She says it was strange how .
> Tig? . . . . Rigid,
The only programmes she could find on TV were ’reality these two things mixed together in a scary way. This e
. . o . artificial,
#9  programmes of young people competing to win a million made her think of The Hunger Games. or robotic
dollars and news programmes about the war. Suzanne says output
that the two things start to merge together in a disturbing Note: I've kept the main ideas and events of the original P
way and the idea for The Hunger Games came to her. text, but simplified the language and sentence structure
LLaMA 3 to match the A2 CEFR level.
8B (RP) T used to do a typical five-day week, but after I came out of
my parental leave, I decided that I wanted to spend more T used to work five days a week. After taking time off to
time with my children before they start school. After be with my children before they start school, I wanted
L . . . . . Over
negotiating with my boss, we decided to cut my working to spend more time with them. I talked to my boss and L .
. . simplification
#10  week down to a three-day work week. This of course meant a we agreed to reduce my working hours to three days a and lack
significant cut in my pay too, as I'm paid on a pro-rata basis. week. This means I earn less money because I'm paid of nuance
I’ve since noticed, though, that my workload hasn’t decreased based on the number of days I work. But surprisingly,
in the slightest! I’'m now doing five days’ worth of work in three my workload hasn’t changed!
days, but getting paid much less for it!
Here’s the rewritten text at CEFR level B1:
The Hunger Games happen every year as a reminder of
what happens when the districts rebel against the
The Hunger Games are an annual event, which the Capitol Capitol. As punishment, one boy and one girl between
. . . . N 12 and 18 years old are randomly selected from each
uses to remind the districts that they are being punished for s . o ..
. . district to take part in a deadly competition where only Rigid,
rebelling. Every year one boy and one girl aged 12 to 18 are . Tn e
. . . one person can win. These teenagers are called artificial,
#11 chosen from each district by lottery to compete in a battle in o . . . K
. . tributes”. The whole country is forced to watch this or robotic
which only one person can survive. The chosen teenagers are event on TV. output
called “tributes”. The whole nation is forced to watch the ’ P!
event on television. Note: I've used simpler vocabulary and sentence
LLaMA 3 structures to make the text more accessible at CEFR
8B (SRP) level B1. I've also added some detail, such as
mentioning that it’s a punishment for rebellion, to help
readers understand the context better.
Here is th i EFR level A2:
Wasfia Nazreen first came across a hula hoop as a young ere s the rewritten text at C eve
girl, when she saw a f(?relgn child vsfho was visiting her native Wasfia Nazreen saw a hula hoop when she was little.
Bangladesh playing with one. Wasfia reluctantly stood by . . . N
. . . . She saw a foreign child playing with it in Bangladesh,
and watched, as in her country it was believed that girls . Overloaded
. . . . where she grew up. In her country, people thought girls .
should not play with hula hoops or ride bikes. Now Wasfia i s . . . 7 output, with
#12 N R . shouldn’t play with hula hoops or ride bikes. Wasfia just
s one of the few people in the world to have climbed the Seven . unnecessary
L . . . watched. Now, Wasfia is one of the few people who X
Summits, including Everest and Kilimanjaro, and the first to details

have hula-hooped on each peak. Her reason for doing so: to
empower women and girls in a country which discourages
them from doing sport.

climbed all seven big mountains, including Everest and
Kilimanjaro. She’s the first person to hula-hoop on each
mountain! She did this to help women and girls in her
country do sports.

Table 4: Qualitative analysis of errors produced by LLaMA 3 model simplifying trial data.
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Abstract

The TSAR 2025 Shared Task on Readability-
Controlled Text Simplification focuses on sim-
plifying English paragraphs written at an ad-
vanced level (B2 or higher) and rewriting them
to target CEFR levels (A2 or B1). The chal-
lenge is to reduce linguistic complexity without
sacrificing coherence or meaning. We devel-
oped three complementary approaches based
on large language models (LLMs). The first
approach (Run 1) generates a diverse set of
paragraph-level simplifications. It then applies
filters to enforce CEFR alignment, preserve
meaning, and encourage diversity, and finally
selects the candidates with the lowest perceived
risk. The second (Run 2) performs simplifi-
cation at the sentence level, combining struc-
tured prompting, coreference resolution, and
explainable Al techniques to highlight influen-
tial phrases, with candidate selection guided
by automatic and LLM-based judges. The
third hybrid approach (Run 3) integrates both
strategies by pooling paragraph- and sentence-
level simplifications, and subsequently apply-
ing the identical filtering and selection archi-
tecture used in Run 1. In the official TSAR
evaluation, the hybrid system ranked 2nd over-
all, while its component systems also achieved
competitive results.

1 Introduction

Text Simplification aims to make complex texts
more accessible to a broad audience, including lan-
guage learners and individuals with reading difficul-
ties (Saggion, 2017; Al-Thanyyan and Azmi, 2021).
However, many traditional approaches fail to meet
the diverse needs of readers at different proficiency
levels. To address this, the field has moved towards
targeted simplification, which aims to adapt the
complexity of a text to a specific reader’s needs,
rather than just simplifying it for a general audience
(Barayan et al., 2025; Séuberli et al., 2024). This
requires defining specific proficiency targets, and

the Common European Framework of Reference
for Languages (CEFR) has been widely used for
this purpose (Imperial et al., 2025). Also, the ma-
jority of text simplification research has focused on
sentence-level, while largely overlooking the more
practical scenario of paragraph-level simplifica-
tion. The TSAR 2025 Shared Task on Readability-
Controlled Text Simplification is situated within
this context, challenging participants to simplify
paragraphs originally at B2 level or above to target
levels of A2 and B1 (Alva-Manchego et al., 2025).

In this paper, we propose and validate a
Generate-and-Select approach that does not rely on
a single best prompt, model, or simplification strat-
egy. Our primary goal was to achieve a high score
on a key evaluation metric: similarity to the refer-
ence text. The official evaluation, conducted only
automatically, was based on three metrics: CEFR
compliance, output-to-original similarity (Mean-
ing Preservation), and output-to-reference similar-
ity. While the first two could be calculated by
participants themselves, the reference texts were
not provided. Our system therefore aimed for a
high output-to-reference similarity.

To achieve this, we developed a powerful
generate-and-select pipeline based on paragraph-
level simplification (Run 1) as our core approach.
This system first generates a diverse set of can-
didates and then filtered to create a high-quality
candidate pool for Minimum Bayes Risk (MBR)
decoding (Bickel and Doksum, 1977) to select the
optimal output. As demonstrated by Heineman
et al. (2024), the diversity of candidates is crucial
for enhancing the quality of MBR decoding. To
further improve its performance, we introduced a
sentence-level system (Run 2). While weaker on its
own, this secondary system successfully injected
structural diversity into our candidate pool. Our fi-
nal, hybrid system (Run 3) combines the candidate
pool from both Run 1 and Run 2. It then processes
this combined pool using the same pipeline as Run
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1 to select the optimal output.

Our approach proved highly effective in the
shared task. Among 48 submissions from 20 in-
ternational teams, our hybrid system (Run 3) and
core system (Run 1) placed 2nd and 3rd overall.
Notably, Run 3 and 1 ranked 1st and 2nd on the
reference text similarity respectively, confirming
the success of our primary objective.

However, our success also revealed an inherent
limitation of the evaluation metric we focused on
optimizing. Our case study highlights that while
the metric is designed to capture deep semantic sim-
ilarity, its scores can still be influenced by surface-
level features. This can be misleading, as lexical
overlap can sometimes outweigh semantic factual-
ity in the score.

The main contributions of this paper are:

* We present a Generate-and-Select pipeline that
successfully maximizes reference similarity.

* We demonstrate that even a weak system can
contribute the diversity needed for a powerful
selection pipeline.

* We analyse the limitations of the evaluation met-
ric we focused on optimizing.

The experimental setup is available on GitHub.!
2 Our pipeline

Our submission consists of three systems (Runs
1-3). Our core approach, which achieved 3rd place
overall, is presented as Run 1. While our primary
objective is to achieve a high output-to-reference
similarity, we also aim to attain satisfactory scores
in other metrics, namely CEFR compliance and
meaning preservation.

2.1 Run 1: Paragraph-Level MBR System

Run 1 is our primary system, designed to maxi-
mize the similarity between system outputs and
reference texts, through a multi-stage pipeline. As
shown in Figure 1, the core approach is a three-
stage process. We first generate a diverse set of
candidates, and then select a high-quality subset
by applying CEFR and Meaning Preservation fil-
tering. Finally, we apply MBR decoding to select
the output with the lowest risk.

2.1.1 Diverse Candidate Generation
The process starts with generating a large set of ini-
tial simplification candidates for each source para-

1https ://github.com/ahaya3776/
tsar2025sharedtask-uol-upf
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Figure 1: System Architecture of Run 1 and 3.

graph and its corresponding target CEFR level. To
ensure a rich and varied candidate pool, this gener-
ation process employs two key diversity strategies:
multi-prompting and multi-model.

e Multi-Prompting: We prepare four types of
prompts, with three of them automatically gener-
ated by an LLM. Our prompts include two induc-
tive prompts derived from trial data, a deductive
prompt based on CEFR-adapted simplification
rules, and a standard few-shot prompt. (See Ap-
pendix A for the details.)

e Multi-Model: The prompts above are run
across four auto-regressive large language mod-
els (LLMs), GPT-4.1-mini,> gpt-0ss-20b (Ope-
nAl, 2025), Gemma-3-4b-it (Gemma, 2025), and
Qwen-2.5-14b-it (Qwen, 2025), to capture the
unique simplification tendencies of each model.

For each combination of prompt and LLM, we
performed five simplification trials, using five sepa-
rate API calls or five different seeds. As a result, we
generated 80 candidates per simplification instance
(4 LLMs x 4 prompts x 5 trials). See Appendix C
for the hyperparameter settings.

2.1.2 Candidate Pool Construction

After the generation stage, we filter, rank, and se-
lect from the initial set of candidates. This process
creates an optimized candidate pool of up to 20
simplifications for MBR decoding.

2https: //openai.com/index/gpt-4-1/
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1. CEFR Filtering: First, we label the CEFR level
(Al, A2, B1, B2, C1, and C2) for all candidates
and obtain the minimum difference from the
target CEFR level. Given the large number of
candidates, this minimum difference is almost
always zero (i.e., at least one candidate matches
the target CEFR level). We then retain only
the candidates that have this minimum differ-
ence. CEFR levels are labeled using classifi-
cation models used in the official shared task
evaluation.

2. Meaning Preservation Ranking: The remain-
ing CEFR-compliant candidates are ranked in
their semantic similarity to the original source
paragraph. We use MeaningBERT (Beauchemin
et al., 2023) following the official evaluation.

3. Diversity-Aware Selection: From this ranked
list, we build the final pool with a maximum
size of 20. We select candidates primarily based
on the previous ranking. However, to maximize
the benefits of MBR decoding, which requires a
diverse candidate pool (Heineman et al., 2024),
we apply a filter to ensure structural diversity. A
candidate is added to the pool only if its BLEU
(Papineni et al., 2002) against every candidate
already in the pool is below a threshold of 0.5.

2.1.3 MBR Decoding

Finally, we apply MBR decoding to the constructed
pool. MBR selects the single candidate that maxi-
mizes the expected utility function against all other
candidates in the set. For the utility function, we
again use MeaningBERT, measuring the pairwise
similarity between candidates. The candidate with
the highest average similarity score against its other
candidates is selected as the final output. The final
output 4 g can be expressed as:

gvBr = argmax (Ey[Eyepylu(y,y)]]), (1)
yeH

where H is a candidate pool and u(y, y') is a utility
function, defined as MeaningBERT (y, 3/).

2.2 Run 2: Sentence-level Simplification

Our second system approaches the task at the sen-
tence level. Prior work has shown that long, coref-
erential sentences with dense terminology are a
key source of difficulty for readers and are best
addressed through targeted edits rather than global
rewrites (Siddharthan, 2006; Shardlow, 2014; Sta-
jner and Popovié, 2016; Barayan et al., 2025). Run
2 therefore investigates whether explicit linguistic

control that applied locally at the sentence level,
can better align outputs with CEFR levels while
preserving meaning (for system architecture see
Appendix E). By simplifying sentences indepen-
dently, while still highlighting the most important
phrases, we aim to produce outputs that are both
controlled and interpretable. Run 2 consists of the
following steps.

Preprocessing. Each paragraph is first seg-
mented into sentences and normalised for coref-
erence. We replace ambiguous pronominal refer-
ences (e.g., he, she, they, it) with their antecedents
using AllenNLP’s coreference system (Lee et al.,
2017) and the spaCy-compatible coref module
(Honnibal et al., 2020). This produces a list of
self-contained sentences that can be simplified in-
dependently.

Highlighting influential phrases. To identify
which parts of a sentence contribute most to lin-
guistic complexity, we apply Integrated Gradi-
ents (IG) (Sundararajan et al., 2017). We apply
Captum’s LayerIntegratedGradients (Miglani
et al., 2023) over the embedding layer of a sentence-
based CEFR classifier (Barayan et al., 2025), using
a padded baseline sequence and integrating gradi-
ents with respect to the “complexity” logit. Token-
level attribution scores are aggregated into multi-
word phrases (NP, VP, ADJP, PP) using spaCy
chunks. The top- K phrases (default K'=6) are re-
tained by absolute score. These influential phrases
are exported as (type, phrase, score) triples and
injected into the simplification prompt (see Ap-
pendix B.1). This allows the LLM to focus on
which terms to simplify or gloss.

The same influential phrases have another role
in the evaluator step, in which the metric verifies
whether these spans are preserved in the simpli-
fied output. In this way, IG attributions serve a
dual purpose: guiding generation and informing
evaluation.

Simplification strategies. We guide the mod-
els with strategies inspired by intralingual trans-
lation and Easy-to-Read (E2R) English (Khallaf
et al., 2025). These include explanation (adding
glosses), modulation (one idea per sentence), syn-
onymy (simpler words), syntactic changes (split-
ting clauses), and omission (dropping non-essential
details).

Prompting and candidate generation. We
prompt three LLMs, LLaMA-3-8B (Dubey et al.,
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2024), GPT-40 (OpenAl, 2023), and Mistral-7B
(Jiang et al., 2023), to generate simplifications for
CEFR levels Al, A2, and B1 in a single response.
Prompts enforce constraints on meaning preserva-
tion, correctness of entities and numbers, readabil-
ity (shorter sentences, simpler words), and strict for-
matting with explicit level tags (see Appendix B.1).

Automatic and hybrid judging. Candidate out-
puts are scored by an automatic judge that inte-
grates eight complementary signals (see Table 7
in Appendix F). These include semantic similar-
ity based on sentence embeddings and entailment
(Williams et al., 2018), key-phrase coverage from
IG attributions, entity and number fidelity using
spaCy (Honnibal et al., 2020), readability targets
derived from average sentence length (ASL) and
Flesch Reading Ease (Flesch, 1948), lexical simpli-
fication (syllable reduction), fluency via language
model perplexity (Jurafsky and Martin, 2023), com-
pression ratio, and sentence/format control.

We combine heterogeneous metrics with a
weighted geometric mean, which is widely used
in multi-criteria evaluation (Mohapatra and Kumar,
2015; Dodd et al., 2021). When two candidates
score within a small margin, we invoke a Hybrid
Auto+LLM (HAI) judge, which queries a sec-
ond LLM (GPT-40 or LLaMA) to make a pairwise
choice with justification. We pass the original, tar-
get level, and top- K candidates (prefiltered by the
auto judge) to a second LLM (GPT-40 or LLaMA)
that returns a winner index and reason (see Ap-
pendix B.2). After simplification, sentences are
re-stitched into the level-tagged block (<B1>, <A2>,
<AT>)

2.3 Run 3: Hybrid MBR System

Our best-performing system, Run 3, uses the same
pipeline as Run 1 but starts with a more diverse
set of initial candidates from Run 2. In addition to
80 candidates generated in Run 1, we incorporate
candidates based on sentence-level simplification
in Run 2. As shown in Figure 1, we generate can-
didates based on Run 2 by concatenating sentence-
level simplifications. For each sentence in an origi-
nal paragraph, three simplified sentences are gener-
ated by three different LLMs. The combination of
simplified sentences result in 3"-5¢t¢<¢s potential
paragraph variants, from which we randomly sam-
ple up to 80 candidates. Among this combined set
of up to 160 candidates, the final output is selected
through the identical process described for Run 1.

CEFR Sim Sim Total
Team RMSE Orig Ref Rank
EhiMeNLP 0.000 .902 845 1
UoL-UPF (3) 0.000 .856 .857 2
UoL-UPF (1) 0.000 .849 .856 3
HIT-YOU 0.158 .852 835 4
Archaeology 0.122 779 .804 11
ounlp 0.755 .855 .849 14
SQUREL 1.153 979 819 23
UoL-UPF (2) 0.693 .808 .827 -

Table 1: Representative results from 44 runs from 20
teams. The best performance for each metric is shown
in red. Run 2 is an unofficial result due to parsing error,
and its estimated rank is around 20th.

A2 B1
Model Num. Sim Num. Sim
GPT-4.1-mini 24 841 13 .865
gpt-o0ss-20b 31 831 17 .902
Gemma-3-4b 16 .840 12 .862
Qwen-2.5-14b 26 .862 36 .877
Sentence-1v 3 730 22 .860

A2 B1
Prompt Num. Sim Num. Sim
Prompt 1 19 .839 20 872
Prompt 2 30 .838 15 .908
Prompt 3 24 831 23 .867
Prompt 4 24 866 20 .874
Sentence-1v 3 730 22 .860

Table 2: Distribution of models and prompts selected
as a final candidate in Run 3 with output-to-reference
similarity scores by MeaningBERT.

3 Results and Discussions

Table 1 shows the official results of the shared task.
The hybrid system (Run 3) is ranked 2nd, while the
core system (Run 1) is 3rd overall. Furthermore,
our systems placed 1st (tied, full marks) on CEFR
alignment, and 1st and 2nd on output-to-reference
similarity. This result confirms the success of our
pipeline combining filtering and MBR decoding,
thereby achieving the high output-to-reference sim-
ilarity while maintaining other metrics.

Table 2 demonstrates the distribution of se-
lected candidates for Run 3, categorized by their
source. The selections were generally distributed
evenly across target levels and our various prompts,
models, and granularities. The only exception is
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A2 B1

Ablation Orig Ref Orig Ref
Run 3 .836 .840 .876 .874
w/o Sent. Iv (= Run 1) .824 837 .874 .875
w/o MPR, DAS, MBR 756 779 817 822
w/o MPR, DAS .815 830 .850 .858
w/o DAS .849 834 .891 .869
w/o MBR (Random) 789 793 841 .832

w/o MBR (Highest MP) 896 .814 919 .858
w/ smaller MBR (size=10) .853 .838 .888 .873

Table 3: MeaningBERT scores between outputs and
original (Orig) and reference (Ref), as an ablation study
for processes after the CEFR filtering. MPR and DAS
refers to Meaning Preservation Ranking and Diversity-
Aware Selection, respectively.

sentence-level approach for the A2 target. This
implies that adding explanations, often observed
in the simplification to lower proficiency levels, is
hard to achieve via sentence-level approach. This
overall diversity was the key to the success of our
MBR-based selection pipeline.

Furthermore, we conducted ablation study
shown in Table 3. As we described, final outputs
are selected through Meaning Preservation Rank-
ing, Diversity-Aware Selection, and MBR decod-
ing after the CEFR filtering. The study shows that
each of these steps contributed to improve output-
to-reference similarity. Notably, MBR decoding
boosted it up, while increasing the candidate pool
size produced only a negligible gain.

This success also highlights an important char-
acteristic of our method. Figure 2 illustrates
the MeaningBERT scores distribution of CEFR-
aligning candidates for one example instance.
While the final output shows the highest output-to-
original similarity, several candidates show higher
output-to-reference similarity. This observation
confirms that MBR decoding is designed to mini-
mize the risk of selecting a low-scoring candidate,
not to select one with the maximum expected score.
As a result, final outputs are often conservative.

Despite prioritizing output-to-reference similar-
ity, we acknowledge that over-reliance on this met-
ric can be problematic. Our qualitative analysis
shows limited agreement between scores and hu-
man judgments. Specifically, instances containing
semantic errors or complex vocabulary (yellow in
the scatter plot) are often over-evaluated by the
metric when they are structurally similar to the
reference. On the other hand, structure changes,
such as sentence splitting, are penalized even if
beneficial.
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Figure 2: Scatter plot for CEFR-aligned candidates of
a single instance. Axes represent similarity scores be-
tween output and original/reference. Circles are ones
selected as candidate pool, and the diamond is the fi-
nal output through MBR decoding. Colors align with
Table 5, Table 6 in which we manually judged simplifi-
cation quality.

Our case study supports that MeaningBERT of-
ten fail to capture the value of features such as sen-
tence splitting, synonym choice, and moral or prag-
matic clarity, rewarding surface overlap instead of
genuine accessibility (Barayan et al., 2025). We
provide full analysis in Appendix D.

4 Conclusion

In this paper, we presented our Generate-and-Select
framework for the TSAR 2025 shared task, which
achieved 2nd and 3rd place overall. Our core ap-
proach utilized a diverse candidate pool from mul-
tiple LLMs and prompts, with MBR decoding for
robust selection.

Our primary contribution is demonstrating that
our Generate-and-Select framework is highly effec-
tive. We showed that its strength lies in prioritizing
the diversity of candidates, which allowed even a
weaker system (our sentence-level Run 2) to make
a contribution to the final performance by injecting
variety.

Finally, our analysis shows that while our
pipeline is robust, its limitation in a single-
reference context highlights the need for selection
methods that can better handle unpredictable sim-
plifications.
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Lay Summary

UoL-UPF team participated in the TSAR 2025
Shared Task. The goal of this shared task was
to rewrite difficult English texts into simple texts
at a specific level.

We tried an idea we call Generate-and-Select
approach. In this approach, first, we used LLMs to
generate many versions of simple texts. We used
different LLMs and prompts, so there were a lot
of options to choose from. This variety was a key
part of our idea. Next, we selected the best option
from these simple texts. We built a system to check
all the simple texts. This system had some filtering
processes. For example, one filter only selected
texts that were similar to original difficult texts.
After these filtering processes, we only had high-
quality options. Finally, from these high-quality
options, we selected the lowest-risk option as a
final result.

Our system performed very well, and was ranked
2nd place out of 48 systems. This great result
showed that our idea was a good one. Through this
project, we learned some very important things. It
is true that our generate-and-select approach works
well, especially when the quality of generated texts
is judged by computer. However, we cannot always
trust computer judge. In our study, some simple
texts were good by computer judge, but not by
human judge.

Limitations

The primary limitation of this work is its reliance
on diverse set of generation. While the LLMs
we employed are relatively small-scaled and thus
do not require excessive computational resources,
the time and cost associated with obtaining the fi-
nal outputs cannot be disregarded. Therefore, our
generate-and-select framework would be unsuit-
able for real-time text simplification.

Also, this shared task relies on automatic eval-
uation metrics. While our system achieved high
scores, we did not conduct a manual evaluation
with human participants to confirm whether the out-
puts are genuinely more readable and understand-
able for the target readers. Such manual evaluation,
with Likert scoring or reading comprehension ques-
tions, would be necessary to validate the real-world
effectiveness of our simplifications.
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A Run 1: Prompts for Paragraph-level
Simplification

We used four simplification prompts for LLMs.
Two of these were based on inductive approach,
which involved extracting simplification features
from trial data to create instructions as a prompt.
To do this, the following prompt was given to GPT-
4.1-mini.

You will be given several pairs of paragraphs. Each pair is
composed of an original paragraph and a simplified version
for CEFR {lv} readers. Your task is to analyze these pairs to
find the general patterns of simplification and write an
instruction for LLMs to simplify paragraphs similarly.
Include observations on information or phrasing that
remains unchanged. Do not include examples that contain
text parts in given paragraphs. Only output your final prompt

Original: {Original Paragraph 1 of the target CEFR level }
Reference: {Reference Paragraph 1 of the target CEFR level
}

Original: {Original Paragraph 2 of the target CEFR level }
Reference: {Reference Paragraph 2 of the target CEFR level
}

After several trials, we picked up following two
types of prompts for each level with some minor
arrangements.

Prompt1: A2

Simplify paragraphs for CEFR A2 readers by following
these guidelines:

1. Use short, clear sentences with simple grammar structures
(mostly present and past simple).

2. Replace complex or abstract vocabulary with common,
concrete words; explain any necessary technical terms
briefly and clearly.

3. Remove or reduce detailed numerical data, statistics, or
nuanced concepts unless essential; when included, present
numbers simply and round if appropriate.

4. Avoid idiomatic expressions, figurative language, and
complex sentence forms like passive voice or embedded
clauses.

5. Focus on main ideas and essential facts; omit detailed
background information, speculation, or subtle distinctions
unless they support comprehension.

6. Use explicit cause—effect and temporal connectors (e.g.,
because, so, but, then, now) to clarify relationships.

7. Maintain logical and coherent flow with clear topic
introductions and simple sequencing.

8. Preserve proper names, key terms, and notable facts that
are central to understanding.

9. When appropriate, add brief, straightforward definitions
or explanations of less familiar concepts.

10. Use active voice predominantly and ensure the subject of
sentences is clear.

11. Replace pronouns that may confuse with explicit nouns
where needed.

12. Retain the overall meaning and important details but
adapt phrasing to be direct and concrete.

13. Introduce examples to illustrate points simply, using
familiar or relatable contexts.

14. Do not assume prior knowledge; present background
information in simple terms if required.

15. Where opinion or interpretation appears, present it

clearly and simply, often using direct statements like "

people say" or "some think."

16. Use simple punctuation and avoid complex structures
such as long lists or parenthetical asides.

By following these patterns, produce an accessible, easy—to—

read version of a paragraph that preserves the core message
and key details for A2—level readers. Provide only the
simplified paragraph without any explanation or justification.

{Original Paragraph}

Prompt 1: Bl

Simplify paragraphs for CEFR B1 readers by following
these guidelines:

1. Use simpler vocabulary and expressions: Replace
complex or formal words and phrases with more common,
everyday alternatives, while keeping the meaning intact.

2. Shorten and clarify sentences: Break long, complex
sentences into shorter, clearer ones. Use straightforward
sentence structures, avoiding passive voice or complicated
clauses.

3. Explain or define less familiar terms: When necessary,
introduce brief explanations or definitions of technical,
cultural, or less common concepts within the text to aid
understanding.

4. Retain key information and facts: Keep all essential data,
figures, names, and core ideas from the original text,
ensuring the main message is preserved.

5. Rephrase for explicitness and clarity: Make implied
meanings more explicit, and clarify references to pronouns
or abstract concepts.

6. Maintain original factual content and sequence: Do not
omit major details or reorder information in ways that
change the logical flow or significance.

7. Use familiar synonyms and phrases: Prefer words and
expressions that are frequently used at intermediate English
level rather than academic or highly technical language.

8. Simplify complex concepts without oversimplifying:
Present difficult ideas in more accessible language but avoid
losing the nuance or accuracy of the original content.

9. Use concrete examples or context where helpful: When
abstract concepts might confuse, add brief relatable
examples or contextual cues to aid comprehension.

10. Preserve unchanged proper nouns and names: Keep
names of people, places, events, titles, and specific terms as
in the original to maintain accuracy and recognition.

11. Avoid idiomatic or culture—specific expressions unless
explained: Replace or explain idioms and culturally specific
references that might not be understood by B1 learners.

12. Retain the original tone and intent as much as possible
:x% The simplification should respect the author's purpose,
tone, and the overall style, aiming for clarity rather than
casualness.
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In summary, simplify language and sentence structure,
clarify meaning, explain or define unfamiliar terms, keep all
important facts and details, and ensure the text remains
coherent and faithful to the original. Provide only the

simplified paragraph without any explanation or justification.

{Original Paragraph}

Prompt 2 : A2

Simplify paragraphs for CEFR A2 readers by following
these guidelines:
1. **Vocabulary and Grammar:s:

— Use very common, everyday words and simple sentence
structures.

— Avoid idioms, metaphors, or abstract expressions.

— Prefer present tense or simple past tense; avoid complex
verb forms.

— Use short sentences, often one idea per sentence.

2. #xSentence Structure:s:

— Break long, complex sentences into multiple shorter
sentences.

— Use basic conjunctions (and, but, so, because) to connect

ideas simply.

— Avoid passive voice where possible; use active voice
instead.

3. xxInformation Selection and Clarity:s:

— Retain all key factual information from the original
paragraph.

— Remove or rephrase any statistics or figures only if they
might confuse the reader, but generally keep numbers with
simple explanations.

— Explain or define any technical terms or names using
simple language or familiar examples.

— Avoid unnecessary detail or background information
unless it helps understanding.

4. xxRephrasing and Simplification:

— Replace complex nouns or phrases with simpler
equivalents or brief explanations.

— Make implicit information explicit if needed.

— Use examples or explanations to clarify concepts that
might be unfamiliar.

— Use repetition and restatement to reinforce understanding

without changing meaning.
5. xxTone and Style:s

— Use a neutral, clear, and straightforward tone.

— Address the reader more directly and simply when
appropriate.

— Keep the original meaning, emphasis, and main points
intact.

6. x:Preserving Key Proper Nouns and Data:

— Keep proper names (people, places, organizations, titles)
unchanged but briefly explain their significance if needed.

— Maintain important dates, measurements, and specific
figures, simplifying explanations around them.

7. #+Avoid Removing Content Entirely:

— Instead of deleting difficult or nuanced content, re—
express it in accessible language.

— Questions or rhetorical devices in the original can be
kept but simplified and clarified.

By applying these principles, transform original paragraphs
into clear, accessible text suitable for A2—level readers
while preserving essential information and intent. Provide
only the simplified paragraph without any explanation or
justification.

{Original Paragraph}

Prompt 2 : B1

Simplify paragraphs for CEFR B1 readers by following
these guidelines:
1. #*Vocabulary and Sentence Structure:::

— Use common, everyday words instead of specialized or
complex vocabulary.

— Prefer simple sentence structures; break longer or
compound sentences into shorter ones.

— Replace abstract or complex terms with concrete, clearer
expressions or brief explanations.

— Use active voice where possible and avoid idiomatic
expressions or cultural references that may be unclear.

2. #xInformation Presentation:::

— Keep all key factual information and core ideas intact to
preserve the original meaning.

— Present numbers, dates, and statistics clearly, often
repeating or rephrasing for clarity.

— When technical or unfamiliar terms appear, define or
explain them briefly but simply.

— Remove less essential details only if they do not affect
overall comprehension; otherwise, retain the main content
fully.

3. xxClarification and Explicitness:s:

— Make implicit information explicit where needed.

— Where the original contains pronouns or references that
may be unclear, replace or clarify them.

— Use clear cause—and—effect or chronological connectors
(e.g., "because," "so," "however," "since then") to improve
coherence.

4. #xTone and Style:*x

— Maintain a neutral, informative, and accessible tone
appropriate for learners.

— Avoid complex or figurative language; use
straightforward, literal expressions.

— When original tone includes subtle nuance, simplify but
try to retain the intended emphasis or attitude if important.
5. =xPhrasing and Repetition:s

— Some proper nouns, dates, and well-known names
remain unchanged to preserve identity and context.

— Common phrases and definitions that clarify the subject
often get added or slightly expanded to aid understanding.

— Sentences may be reworded but often echo the original
information closely, sometimes repeating key ideas with
slight reformulation for clarity.

In summary, simplify vocabulary and grammar, clarify
potentially difficult concepts, maintain all essential facts,
and ensure readability and coherence for intermediate
English learners without omitting important content.
Provide only the simplified paragraph without any
explanation or justification.

{Original Paragraph}

One of our four prompts was also generated by
an LLM, based on a deductive approach without
providing trial data. We made GPT-4.1-mini gener-
ate such prompts with the following prompt.

You are an expert in language education and have a deep
understanding of CEFR. Your task is to generate a list of

rules that an LLM can use to simplify a given English text to
each of the CEFR A2 and B1 level. The simplification must
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preserve the original meaning and core information of the
paragraph. The rules should be specific enough to guide the
simplification process effectively, covering vocabulary,
grammar, and sentence structure.

As a result, we obtained the following simplifi-
cation prompts.

Prompt 3 : A2

Simplify paragraphs for CEFR A2 readers by following
these guidelines:

1. Use only high—frequency, common words and phrases (e.
g., "big" instead of "enormous," "buy" instead of "purchase"
).

2. Replace idiomatic expressions and phrasal verbs with
their literal or simpler equivalents.

3. Avoid technical or abstract vocabulary; if necessary,
define it simply within the sentence.

4. Use concrete nouns and familiar verbs; avoid abstract
nouns and complex verbs.

5. Use simple present and past tenses; avoid complex tenses
(e.g., present perfect, future perfect).

6. Favor active voice over passive voice.

7. Use short sentences (ideally 8—12 words per sentence).
8. Use simple sentence structures: one main clause per
sentence.

9. Avoid subordinate clauses or replace them with separate
sentences.

10. Use coordinating conjunctions (and, but, or) rather than
subordinating conjunctions (because, although).

11. Limit use of pronouns; repeat nouns when clarity may
be lost.

12. Use clear and explicit referents; avoid ambiguous
references.

13. Use basic discourse markers (first, then, next, finally) to
link ideas.

14. Present information in a clear, logical order; avoid
complex or backward references.

15. Avoid negations where possible; use positive forms or
simpler negative constructions.

16. Do not include idioms, humor, or cultural references that
might confuse A2 learners.

Provide only the simplified paragraph without any
explanation or justification.

{Original Paragraph}

Prompt 3 : Bl

Simplify paragraphs for CEFR B1 readers by following
these guidelines:

1. Use mostly common vocabulary with some intermediate
words.

2. Replace very rare or highly technical words with simpler
or more familiar synonyms.

3. Allow some idiomatic expressions or phrasal verbs but
only if they are common and clearly understandable.

4. Use concrete and abstract nouns where necessary but
explain abstract concepts in simple terms.

5. Use simple present, past, and present perfect tenses; allow
future tenses like "will" and "going to."

6. Use both active and passive voice but keep passive
structures simple.

7. Use mostly simple sentences and some compound
sentences.

8. Allow basic complex sentences with one subordinate
clause (e.g., using because, when, if).

9. Avoid very complex sentence structures (e.g., multiple
subordinate clauses or embedded clauses).

10. Use modal verbs (can, should, must) appropriately for
expressing ability, advice, or obligation.

11. Use pronouns more freely than at A2 but ensure clarity
is maintained.

12. Use demonstratives (this, that) appropriately for
reference.

13. Use a wider range of discourse markers (however,
although, because, so, therefore) for linking ideas.

14. Present ideas in a logical, well-organized manner with
clear paragraphing.

15. Include some figurative language if it can be easily
explained or inferred.

16. Allow simple conditional sentences (first conditional).
17. Use negations confidently but keep them straightforward
(avoid double negatives).

Provide only the simplified paragraph without any
explanation or justification.

{Original Paragraph}

Finally, we prepared one prompt based on basic
few-shot (3-shot) prompting. Few-shot examples
were extracted from the trial data.

Prompt 4

You are an expert in simplifying complex English texts for
language learners. Your task is to adapt the following text to
make it accessible and readable for a CEFR {1v} level
learner. Provide only the simplified paragraph without any
explanation or justification.

{Original paragraph of the few—shot example 1}

{Reference paragraph of the few—shot example 1}

{Original paragraph of the few—shot example 2}

{Reference paragraph of the few—shot example 2}

{Original paragraph of the few—shot example 3}

{Reference paragraph of the few—shot example 3}

{Original Paragraph}
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B Run 2: Prompts for Sentence-level
Simplification

B.1 Dynamic Prompt for Sentence-level
Simplification (Pseudocode)

PROC BUILD_PROMPT (original_sentence,

influential_phrases,
levels={B1,A2,A1},
add_guardrails=TRUE):

# 1) Strategy guide (fixed text shown to the
LLM)

STRATEGY_GUIDE := [
"Synonymy (prefer): simpler common words”,
"Modulation: rephrase while preserving
meaning”,
"Omission: remove non-essential parts”,
"Compression: shorten without losing meaning
"Syntactic Changes: simpler structure”,
"Transposition: change word form if clearer”,

"Explanation: only if term appears in
sentence”,
"Transcription: keep if already simple”,
"Illocutionary Change: make implied meaning
explicit”,
"DO NOT explain the edits you made”

]

# 2) Level-specific style rules

RULES.A1 := "1-2 very short sentences; very
common words only; define technical terms
briefly if they appear; limited [brackets].”

RULES.A2 := "1-2 short sentences with simple
connectors; synonyms for hard words; one
brief definition at start if needed; at most

one [bracketed] note.”

RULES.B1 := "Up to two sentences; faithful
meaning with clearer phrasing; short
clarifications for technical terms if
present.”

# 3) Guardrails (optional but recommended)
IF add_guardrails THEN
GUARDS := [
"Only define concepts if the exact word
appears in the original”,
"Do not add unrelated facts or examples”,
"Preserve names, numbers, and dates
exactly”,
"Output EXACTLY in the required tag format
; no extra commentary”
]
ELSE
GUARDS := []
END

# 4) Select/inject top-K influential phrases

K :=6

TOP := TAKE_TOP_BY_ABS_SCORE (
influential_phrases, K)

# format for display inside the prompt (one
per line)

IF TOP is empty THEN
INFL_BLOCK := "- (none provided)"”

ELSE

INFL_BLOCK := CONCAT_LINES(
FOR EACH (type, phrase, score) IN TOP:
"= " + type + + phrase + " : " +
FORMAT (score, 4 decimals)

)
END

uln

# 5) Assemble prompt text (final structure)
PROMPT :=
"You are a CEFR simplification assistant.\n\

D o
"Task:\n" +

"1) Simplify the original text into these
CEFR levels: " + JOIN(levels, ", ") + ".\n"
+

"2) Focus on these influential/complex
phrases (apply strategies when needed):\n" +
INFL_BLOCK + "\n" +

"3) Keep the meaning accurate but simpler.\n

"y
"4) Do not explain what changes you made.\n\
D o

"Strategies:\n" + BULLETIZE(STRATEGY_GUIDE)
+ "\n\n" +

"Style constraints:\n" +

"= Al: " + RULES.A1 + "\n" +

"~ A2: " + RULES.A2 + "\n" +

"- B1: " + RULES.B1 + "\n\n" +

(IF GUARDS is empty THEN "" ELSE "
Constraints:\n"” + BULLETIZE(GUARDS) + "\n\n"
) +

"Output format (exactly):\n” +

"<Original> " + original_sentence + "\n" +
"<B1> ...\n" +

"<A2> ...\n" +

neAT> "

RETURN PROMPT
END

B.2 LLM-as-Judge for CEFR Simplification
(Pseudocode)

PROC BUILD_JUDGE_PROMPT(original_text,
target_level, candidates, add_guardrails=
TRUE) :

# 1) Purpose & role
ROLE := "You are a CEFR simplification judge."

# 2) Task framing (fixed)

TASK := [
"Given: the ORIGINAL sentence, the TARGET
CEFR level, and several CANDIDATE
simplifications.”,
"Pick the single BEST candidate that:",
"1) preserves the meaning of the original,”,
"2) matches the target level (A1 easiest <
A2 < B1),",
"3) is fluent and clear,”,
"4) keeps names, numbers, and units correct.

n

\begin{verbatim}
# 3) CEFR decision rubric (concise)
RUBRIC := [
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"A1: very common words; 1-2 very short
sentences; concrete, no idioms.",
"A2: simple frequent words; short sentences;
simple connectors (and, but); avoid abstract
terms."”,
"B1: more range; still short clear sentences;
simple, accurate paraphrase.”
]
\end{verbatim}

# 4) Guardrails (optional)
IF add_guardrails THEN
GUARDS := [
"Return STRICT JSON only (no prose).”,
"Do NOT invent facts; preserve named
entities, numbers, dates.”,
"Prefer transparent, high-frequency words
at lower levels.”,
"Minor reordering is fine if meaning is
preserved."”,
"If ties, choose the clearer and more
level-appropriate one."
]
ELSE
GUARDS := []
END

# 5) Output contract (exact)

CONTRACT := [
"Reply in JSON with:",
"{ \"winner_index\": <@-based index>, \"
reason\"”: \"<one short line>\" }"

]

# 6) Render candidate list
# CANDS_STR becomes:

# [el ...

# [

#

CANDS_STR := CONCAT_LINES(
FOR EACH (i, c) IN ENUMERATE(candidates):
"I+ STR(E) + "1 " + ¢
)

# 7) Assemble prompt

PROMPT :=
ROLE + "\n\n" +
JOIN_LINES(TASK) + "\n\n” +
"CEFR RUBRIC (summary):\n" + BULLETIZE(
RUBRIC) + "\n\n” +
(IF GUARDS is empty THEN "" ELSE "
Constraints:\n"” + BULLETIZE(GUARDS) + "\n\n"
)+
JOIN_LINES(CONTRACT) + "\n\n" +
"ORIGINAL:\n" + original_text + "\n\n" +
"TARGET LEVEL: " + target_level + "\n\n" +
"CANDIDATES:\n" + CANDS_STR

RETURN PROMPT
END

C Hyperparameters

In Run 1 (and Run 3), we used HuggingFace Trans-
formers library® for open-weight models, namely
gpt-0ss-40b, Gemma-3-4b, and Qwen-2.5-14b. For

Shttps://huggingface.co/docs/transformers/

Parameter Value
temperature 1.0
top_p 0.95
number of beams 1
number of generation 1

max number of new tokens 512

Table 4: Hyperparameters for decoding.

GPT-4.1-mini, we used OpenAl API library.* Ta-
ble 4 shows the hyperparameters settings we used
for decoding. For other hyperparameters, default
values were used.

D Case Study

In this case study, we analysed one selected ex-
ample (109-a2) with 51 CEFR-aligned candidates.
We carried out a linguistic evaluation of the 19 out-
puts selected by the filtering process and compared
them with the final MBR-selected output. We also
examined a set of candidates undervalued by the au-
tomatic metrics, some of which provided stronger
simplifications than selected outputs.

4https://platform.openai.com/docs/

api-reference/chat/create
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Case Model Candidate Sim. Sim.
(Prompt) Orig. Ref.

Orig. B2 Best-selling author Terrie Sharp knows how to tell a good story or two, having twice
won the Olive Crime Writer Award. Born on the housing estate with the highest crime
rate in Glasgow, she learned to keep quiet, stay out of trouble and how to open car doors
with a knife. Luckily, she only used her knowledge to write her novels and she’s not so
quiet these days, appearing on popular daytime shows like Police Today and at writing
conferences throughout the UK.

Ref. A2 Terrie Sharp is a very popular writer, and her books sell well. She has won the Olive
Crime Writer Award two times. She was born in Glasgow, a place with a lot of crime. As
a child, she learned to be quiet, stay safe, and even how to open car doors with a knife.
Luckily, she only used this for her stories. Now she is not quiet, she goes on TV shows
like Police Today and gives talks at writing conferences in the UK.

MBR  Qwen-2.5-14b  Terrie Sharp is a writer who won the Olive Crime Writer Award two  0.897 0.847
(Prompt 1) times. She was born in a part of Glasgow with lots of crime. She
learned to be quiet and avoid trouble. She also learned how to open
car doors with a knife, but she only used that for her stories. Now,
Terrie speaks a lot on TV shows like Police Today and at events about
writing.
Linguist’s note (CEFR A2): This version keeps the meaning of the original while using clear, short sentences.
The phrase avoid trouble is a simple, transparent way to express the idiom stay out of trouble.
Using that instead of an abstract noun like knowledge makes the text easier for A2 readers.
The phrase events about writing is a little vague compared to conferences, but it is easier to understand for learners.
Automatic metrics give it a high score mainly because of word overlap, but they do not recognise how the text reduces
confusion around the violent detail.
Overall, this is a strong fit for A2 learners.

S1 Gemma Terrie Sharp is a very popular writer. She has won the ’Olive Crime  0.866 0.845
(Prompt 4) Writer Award’ twice! She grew up in an area of Glasgow where there

were many problems. She learned to be quiet and not get into trouble.

She also learned how to open car doors with a knife. But now, she only

uses this knowledge to write her books. She is very busy, and you can

see her on TV shows and at writing events in the UK.
Linguist’s note (CEFR A2): Short sentences help; “problems” is transparent. However, knowledge and appearing/very
busy are abstract for A2; the exclamation skews register. Metrics overestimate due to overlap, not learner appropriateness.

S2 Gemma Terrie Sharp is a very famous writer. She can write good stories! She  0.860 0.843
(Prompt 4) has won the Olive Crime Writer Award twice. She grew up in a part of

Glasgow where there was a lot of crime. She learned to be quiet and not

get into problems. She also learned how to open car doors with a knife.

But now, she doesn’t use this knowledge anymore. She writes her stories

instead. She is on TV shows and talks at writing events in the UK.
Linguist’s note (CEFR A2): Famous is A1/A2 and clearer than popular; clause-level simplicity is good. Retains abstract
knowledge; enthusiastic register (“!””) mismatched to neutral bio. Metrics ignore register and reward lexical reuse.

S3 Gemma Terrie Sharp is a popular writer. She can tell good stories. She won the ~ 0.862 0.861
(Prompt 2) Olive Crime Writer Award twice. She was born in a part of Glasgow with

many crimes. She learned to be quiet and not have problems. She also

learned how to open car doors with a knife. She only uses this skill to

write her books now. She is not quiet anymore. She appears on TV shows

like Police Today. She also goes to writing events in the UK.
Linguist’s note (CEFR A2): Strong clause splitting; not have problems concretizes stay out of trouble. But appears, skill
raise lexical load. Metrics laud similarity, not vocabulary transparency.

S4 Gemma Best-selling writer Terrie Sharp can tell good stories. She won the Olive  0.860 0.862
(Prompt 3) Crime Writer Award twice. She was born in a part of Glasgow with

many crimes. She learned to be quiet and not get into problems. She also

learned to open car doors with a knife. She only used this knowledge to

write her books. Now, she is not so quiet. She appears on TV shows like

Police Today. She also goes to writing events in the UK.
Linguist’s note (CEFR A2): Best-selling, knowledge are above A2 transparency; syntax is simple but words remains
complex. Metrics overrate due to phrasal reuse.

S5 Gemma Terrie Sharp is a famous writer. She can tell good stories. She has won  0.859 0.839
(Prompt 3) the Olive Crime Writer Award twice. She was born in a part of Glasgow

with many crimes. She learned to be quiet and not have problems. She

also learned how to open car doors with a knife. Now, she doesn’t need

to use this skill. She is busy. She appears on TV shows like Police Today.

She also goes to writing events in the UK.
Linguist’s note (CEFR A2): This version is clear and easy to follow. Words like famous and busy are common and simple.
The phrase doesn’t need to use gently reduces the focus on violence, which helps learners. There is a small meaning gap
(busy is not exactly the same as not quiet), but it is acceptable at A2. Automatic metrics reduce the score when the wording
changes, even if the change makes the text easier to read.

Continued on next page
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Table 5 — continued from previous page

Case Model Candidate Sim. Sim.
(Prompt) Orig. Ref.

S6 Gemma Terrie Sharp is a popular writer. She can tell good stories. She won the  0.859 0.840
(Prompt 3) Olive Crime Writer Award twice. She grew up in a part of Glasgow with

many crimes. She learned to be quiet and not have problems. She also

learned how to open car doors with a knife. She uses this knowledge only

to write her books. Now, she is not quiet. She appears on TV shows like

Police Today. She also goes to writing events in the United Kingdom.
Linguist’s note (CEFR A2): This version is easy to follow, with a helpful time marker in grew up. However, the word
knowledge is still too abstract for A2 learners, who would benefit more from concrete wording like what she learned.
Automatic metrics give it credit for overlap, but they do not notice that the vocabulary is still too advanced.

S7 Gemma Terrie Sharp is a popular writer. She can tell good stories. She won the  0.860 0.849
(Prompt 3) Olive Crime Writer Award twice. She was born in a part of Glasgow with
many crimes. She learned to be quiet and not have problems. She also
learned to open car doors with a knife. She only uses this knowledge to
write her books. Now, she is not quiet. She appears on TV shows like
Police Today. She also goes to writing events in the UK.
Note: Similar to S6: sentence-level clarity, but persistent abstract nouns (knowledge, appears). Metrics overvalue overlap.

S8 GPT-4.1-mini Terrie Sharp is a famous writer who knows how to tell good stories. She ~ 0.856 0.768
(Prompt 4) won the Olive Crime Writer Award two times. She grew up in a poor area

of Glasgow where there was a lot of crime. There, she learned to be quiet,

avoid trouble, and how to open car doors with a knife. But she only used

these skills for her books. Now, she talks on TV shows like Police Today

and visits writing events in the UK.
Linguist’s note (CEFR A2): Poor area is an easy-to-understand paraphrase of housing estate with the highest crime rate (it
adds a slight suggestion of poverty). The phrases avoid trouble and talks/visits are clear and simple. Automatic metrics
often mark down synonymy even when the result is a better fit for A2 learners.

S9 GPT-4.1-mini Terrie Sharp is a famous writer who knows how to tell stories. She has  0.854 0.782
(Prompt 2) won the Olive Crime Writer Award two times. She was born in a part of

Glasgow with a lot of crime. There, she learned to be quiet and avoid

trouble. She also learned how to open car doors with a knife. She used

this knowledge only to write her books. Now, she talks a lot on TV shows

like Police Today. She also goes to writing events in the UK.
Linguist’s note (CEFR A2): Clear, concrete phrasing; talks a lot makes the contrast explicit. Knowledge remains abstract.
Automatic metrics often do not give enough credit for phrasal simplification.

S10 GPT-4.1-mini Terrie Sharp is a writer who writes good stories. She won the Olive Crime ~ 0.863 0.866
(Prompt 3) Writer Award two times. She was born in a part of Glasgow with many

crimes. She learned to be quiet and safe. She also learned how to open

car doors with a knife. She only used this skill for her books. Now, she

talks on TV shows like Police Today. She also goes to writing meetings

in the UK.
Linguist’s note (CEFR A2): The phrase writer who writes is repetitive. On the positive side, safe is a good simplification.
Automatic metrics reward word overlap, but they ignore problems of fluency and style.

S11 GPT-4.1-mini Terrie Sharp is a very good writer. She won the Olive Crime Writer  0.855 0.850
(Prompt 3) Award two times. She was born in a part of Glasgow where many crimes

happen. She learned to be quiet and to avoid trouble. She also learned

how to open car doors with a knife. She did not use this skill for bad

things. She uses it to write books. Now, she talks on TV shows like

Police Today. She also goes to writing meetings in the UK.
Linguist’s note (CEFR A2): The line not for bad things adds a clear moral point, which reduces ambiguity and helps A2
readers. The wording is concrete throughout. Automatic metrics usually don’t give enough credit for these helpful additions.

S12 GPT-4.1-mini Terrie Sharp is a writer. She won the Olive Crime Writer Award two  0.855 0.812
(Prompt 3) times. She was born in a part of Glasgow with a lot of crime. She learned

to be quiet and stay safe. She also learned how to open car doors with a

knife. She only used this skill to write her books. Now, she talks on TV

shows like Police Today. She also goes to writing meetings in the UK.
Linguist’s note (CEFR A2): This version is concise and easy to read. Some details may be lost, but it still matches A2
aims (short clauses, simple connectors). Automatic metrics often mark down compression even when the result remains
adequate for learners.

S13 Qwen-2.5-14b  Terrie Sharp is a writer who sells lots of books. She has won an award ~ 0.868 0.865
(Prompt 4) two times for writing stories about crimes. She was born in a part of
Glasgow with many crimes. She learned to be quiet and not get in trouble.
She even learned how to open car doors with a knife! But she never used
that skill in real life. Instead, she writes stories about them. Now, she
talks on TV shows like Police Today and at big writer meetings all over
the UK.

Continued on next page
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Table 5 — continued from previous page
Case Model Candidate Sim. Sim.
(Prompt) Orig. Ref.
Linguist’s note (CEFR A2): Easy words, but some facts are not correct (award for writing about crimes) and the tone is
too dramatic by adding(“!”).
S14 Qwen-2.5-14b  Terrie Sharp, a famous writer, knows how to tell stories really well. She  0.859 0.874
(Prompt 4) has won an award twice for writing about crimes. She grew up in a place
in Glasgow with a lot of crime. She learned to be quiet and not get in
trouble, and even how to open car doors with a knife. But now she uses
those stories to write her books instead. Today, Terrie is not so quiet
anymore. She goes on TV shows like Police Today and speaks at many
writing events in the UK.
Linguist’s note (CEFR A2): The text is simple and easy to read, but it adds details that are not in the original (award for
writing about crimes; uses those stories). These changes make the text less accurate. Automatic metrics give a high score
for word overlap, but they fail to notice the meaning errors.
S15 Qwen-2.5-14b  Terrie Sharp is a popular writer who won an award twice. She was born ~ 0.856 0.857
(Prompt 4) in a place in Glasgow where there were many crimes. She learned to stay
quiet and not get in trouble. She even learned how to open car doors with
a knife! But she didn’t use those skills for bad things. Instead, she wrote
stories about them. Now, she talks a lot and appears on TV shows like
Police Today and at writing events all over the UK.
Linguist’s note (CEFR A2): Clear explanation of right and wrong; small loss of detail (award name) and a small added
idea (“wrote stories about them”). Scores accept these changes but do not notice omissions.
S16 Qwen-2.5-14b  Terrie Sharp is a best-selling author who writes crime stories. She has  0.858 0.820
(Prompt 2) won the Olive Crime Writer Award twice. She was born in a part of
Glasgow with a high crime rate. There, she learned to be quiet and not
get in trouble. She used to know how to open car doors with a knife but
only used that for her books. Now, Terrie is more outgoing. She appears
on TV shows like Police Today and goes to writing events across the UK.
Linguist’s note (CEFR A2): Adds extra detail (crime stories) and keeps a hard phrase (“high crime rate”). “Outgoing”
changes the meaning of “quiet.” Scores go down a bit for these changes, not for word difficulty.
S17 Qwen-2.5-14b  Terrie Sharp is a writer who won the Olive Crime Writer Award twice. 0.856 0.846
(Prompt 3) She was born in a neighborhood in Glasgow with a lot of crime. She
learned to be quiet and avoid trouble. She also learned how to open car
doors with a knife. But she only used this for her stories. Now, Terrie
talks a lot on TV shows like Police Today. She also goes to writing
meetings all over the UK.
Linguist’s note (CEFR A2): The word neighborhood is an easy and familiar synonym that works well for A2 learners.
Using this instead of an abstract noun makes the meaning clearer. The phrase falks a lot shows the contrast directly. This is
a strong A2 version.
S18 Qwen-2.5-14b  Terrie Sharp writes good stories. She won the Olive Crime Writer Award ~ 0.866 0.842
(Prompt 3) twice. She was born in a dangerous part of Glasgow. There, she learned
to stay quiet and avoid trouble. She even learned to open car doors with
a knife. But she never used this skill for bad things. Now, she uses her
stories to appear on popular TV shows like Police Today. She also speaks
at writing events across the UK.
Linguist’s note (CEFR A2):Dangerous part is an excellent simplification. But causal inversion (uses her stories to appear)
is a semantic error. Metrics miss meaning coherence.
S19 Sentence-lv Terrie Sharp is a good storyteller. She won the Olive Crime Writer Award ~ 0.875 0.723
twice. She was born in a place in Glasgow with a lot of crime. She
learned to be silent, avoid problems, and open car doors with a knife. She
writes novels using her knowledge. Now, she talks on quiet TV programs
in the UK, like Police Today and writing seminars.
Linguist’s note (CEFR A2): Silent is a over-literal change for quiet; quiet TV programs is a meaning error; seminars and
knowledge are hard words for A2. The low score shows meaning changes, but metrics cannot pinpoint error type.

Table 5: Example 109-a2 from the test data. The table presents the original B2 paragraph, the human reference
simplification at A2, the final MBR-selected output from Run 3, and 19 candidates selected by the filtering system.
Rows shaded red are judged (very good), rows shaded green are judged (excellent) and rows shaded yellow are
poor/problematic and need revision. Among all candidates, S8 (GPT-4.1-mini, Prompt 4) is the best candidate for
CEFR A2 pedagogical, balancing lexical simplicity, syntactic ease, semantic fidelity, and learner support through
explicit moral clarification.
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Case Model/Prompt  Selection (Non-Selected) Orig. Ref.
Sim. Sim.

NS1 Gemma-3-4b Terrie Sharp is a very popular writer of stories. She has won the Olive  0.828 0.802
(Prompt 4) Crime Writer Award two times. She grew up in a place in Glasgow with

many crimes. She learned to be quiet and not get into trouble. She also

learned how to open car doors with a knife. But she used this only to

write her books. Now she is not quiet. She goes on TV shows like Police

Today and to writing events in the UK.
Linguist’s note: This version uses short, clear sentences. The phrase “writer of stories” avoids the business-like idea of
“books sell well.” It keeps the violent detail but explains it as only used for writing. Automatic metrics mark it down because
the wording differs from the reference, but it is still very suitable for A2.

NS2 Gemma-3-4b Terrie Sharp is a famous writer who can write many stories. She won the  0.848 0.797
(Prompt 4) Olive Crime Writer Award two times. She was born in a part of Glasgow

with many crimes. She learned to be quiet and not have problems. She

also learned how to open car doors with a knife. But now she uses it only

for her books. Today she talks a lot on TV shows like Police Today and

at writing events in the UK.
Linguist’s note : The word “famous” is clearer than “popular,” and “not have problems” is a good replacement for the
idiom “stay out of trouble.” The sentences are simple and easy to follow. The only weakness is a small redundancy (“can
write many stories”). Metrics lower the score because of different words, not because of difficulty.

NS3 Gemma-3-4b Terrie Sharp is a popular writer. She has won the Olive Crime Writer  0.830 0.830
(Prompt 1) Award twice. She was born in a part of Glasgow with many crimes. She
learned to be quiet and not have problems. She also learned how to open
car doors with a knife. Now she only uses this for her stories. Today she
talks on TV shows like Police Today and at writing events in the UK.
Linguist’s note: The sentences are clear and short. The idiom “stay out of trouble” is replaced with the simpler “not have
problems.” All key facts are kept. Metrics give only average credit, even though this is strong A2 material.

NS4 Gemma-3-4b Terrie Sharp is a popular writer. She has won the Olive Crime Writer  0.848 0.762
(Prompt 1) Award twice. She was born in a part of Glasgow with many crimes. She
learned to be quiet and not have problems. She also learned how to open
car doors with a knife. Now she only uses this for her stories. She talks
on TV shows like Police Today and goes to writing events in the UK.
Linguist’s note: This version has the same strengths as NS3. The similarity score is low because it says “events” instead of
“conferences,” but “events” is actually easier for A2 learners.

NS5 Gemma-3-4b Terrie Sharp is a famous writer. She writes good stories. She has won the ~ 0.853 0.816
(Protmp 1) Olive Crime Writer Award two times. She was born in a part of Glasgow

with many crimes. She learned to be quiet and not have problems. She

also learned how to open car doors with a knife. She now uses this only to

write her books. She goes on TV shows like Police Today and to writing

events in the UK.
Linguist’s note: The words “famous” and “writes good stories” are simple and transparent. The sentences are split clearly.
The meaning is faithful to the original. Metrics reduce the score only because the wording does not match the reference.

NS6 Gemma-3-4b Terrie Sharp is a popular writer. She can tell good stories. She won the  0.854 0.804
(Prompt 2) Olive Crime Writer Award twice. She was born in a part of Glasgow with

many crimes. She learned to be quiet and not have problems. She also

learned how to open car doors with a knife. She only uses this for her

books now. She is not quiet anymore. She talks on TV shows like Police

Today and goes to writing events in the UK.
Linguist’s note: The time marker “now” makes the story easier to follow. The contrast “not quiet anymore” is clear. The
only issue is the abstract noun “knowledge,” which remains a bit hard for A2. Metrics again don’t give full credit for these
improvements.

NS7 Gemma-3-4b Terrie Sharp is a popular writer. She can tell good stories. She won the  0.849 0.780
(Prompt 2) Olive Crime Writer Award twice. She was born in a part of Glasgow with

many crimes. She learned to be quiet and not have problems. She also

learned how to open car doors with a knife. She uses this only to write

her books now. She is not quiet anymore. She talks on TV shows like

Police Today and goes to writing events in the UK.
Linguist’s note: Very similar to NS6: short sentences, easy connectors, clear contrast. The similarity score is lower because
of harmless word changes.

NS8 Gemma-3-4b Terrie Sharp is a famous writer. She can tell good stories. She has won  0.852 0.786
(Prompt 3) the Olive Crime Writer Award twice. She was born in a part of Glasgow

with many crimes. She learned to be quiet and not have problems. She

also learned how to open car doors with a knife. She only uses this to

write her books now. She goes on TV shows like Police Today and to

writing events in the UK.
Linguist’s note: The verbs “goes on” and “uses” are clear and concrete. Sequencing is simple and effective. Metrics score
it lower because the words differ from the reference.

Continued on next page
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Table 6 — continued from previous page

Case Model Candidate (Non-Selected) Sim. Sim.
(Prompt) Orig. Ref.

NS9 GPT-4.1-mini Terrie Sharp is a famous writer. She has won the Olive Crime Writer  0.828 0.834
(Prompt 4) Award two times. She was born in Glasgow, a place with a lot of crime.

She learned to be quiet and not get into trouble. She also learned to open

car doors with a knife. She only used this to write her books. Now, she

talks on TV shows like Police Today and goes to writing meetings in the

UK.
Linguist’s note: This version is very clear and accurate. Words like famous and meetings are easy for A2 learners. The
sequencing is simple and the contrast is clear. Automatic metrics give it a lower score because of different wording, but it is
an excellent A2 simplification.
NS10  GPT-4.1-mini Terrie Sharp is a famous writer who has won the Olive Crime Writer  0.842 0.770

(Prompt 1) Award two times. She was born in a part of Glasgow with a lot of crime.

She learned to be quiet and avoid trouble. She also learned how to open

car doors with a knife. She used this only to write her books. Now, she

talks on TV shows like Police Today and goes to writing meetings in the

UK.
Linguist’s note: This version handles the idiom well (avoid trouble), and the word “meetings” is culturally simple at A2.
The content is faithful and the style is easy to read. The lower similarity score only reflects useful word changes, not quality
loss.

Table 6: Case study analysis of non-selected outputs that were linguistically strong but scored lower on automatic
metrics. Rows shaded red are judged (very good) and rows shaded green are judged (excellent). These examples
show that metrics often mark down simplifications that use common words (e.g., famous vs. popular, meetings
vs. conferences) and concrete phrasing, even though they better match CEFR A2 descriptors.
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E Sentence Simplification architecture: Run2

Prompting & Generation Scoring & Selection Stitch & Analysis

Input paragraph Structured prompt (A1/A2/B1) Automatic per-candidate scoring
Constraints: meaning, entities/numbers, readability,
optional bracketed glosses, strict format

Write winners per sentence

Sentence segmentation 8 signals Stitch by level — paragraphs
(regex sent_split or spaCy) n l:/'nj;;mng (emb cosine + <B1> <A2> <A1> blocks
Integrated Gradiens (IG) on CEFR cIf 2) Key-info coverage (IG
Captum LIG, m=100 steps phrases)
Coreference resolution Top-K influential phraseé: (type, phrase, score) 3) Entity/numberfunit fi- Compare judge types & backends
(AllenNLP + spaCy-compatible) delity agreement, drift, distribution shifts

4) Readability vs CEFR
Decoding: 7' < 0.3, p=0.9, < 180 tok/sent, (ASL+FRE)

Self-contained sentences stop at next tag 5) Lexical simplification Final Output
€ gain
6) Fluency (PPL — [0, 1])

7) Compression control
Generate with three LLMs 8) Sentence control & for-
LLaMA-3-8B, GPT-40 (API), Mistral-7B mat gate

Weighted geometric mean
core  control, clamp [0, 1]

Rank candidates / top- K

LLM Judge?

Auto top-1 Send top-K with cix-+level
(GPT-40 or LLaMA)

‘Winner index + reason

Policy

Dverride with LLM Blend (weighted)

Per-sentence winner (A1/A2/B1)

Figure 3: Run 2 preprocessing (segmentation, coreference) and IG attribution; CEFR-controlled prompting/decoding

across three LLMs; automatic judge (8 signals) with weighted geometric mean; optional LLM-as-Judge with policy;
stitching and comparative analysis.

F Evaluation-Metrics-Sentence simplification: Run2

Metric Description

Meaning preservation Embedding cosine similarity plus bidirectional entailment probabilities (MNLI) to assess whether the simplified
sentence preserves the meaning of the source.

Key information coverage Checks whether the top- K influential phrases identified by IG are present in the simplified output (case-insensitive
matching).

Entity, number, and unit fidelity Compares named entities with spaCy (set F1). Numbers are greedily matched one-to-one if units agree, allowing an
absolute error within max (1%, 10~°).

Readability vs. CEFR Combines average sentence length (ASL) and Flesch Reading Ease (FRE) (Flesch, 1948), normalised to CEFR
targets: Al (ASL =~ 10, FRE > 0.80), A2 (15, 0.70), B1 (20, 0.60).

Lexical simplification gain Reduction in average syllables per word compared to the source. A small bonus is given for inline glosses (e.g., “[a
simple meaning]”).

Fluency Language model perplexity mapped to [0, 1] (Jurafsky and Martin, 2023); lower perplexity means higher fluency. If
no LM is provided, a neutral score of 0.75 is assigned.

Compression control Ratio of simplified to original word counts, normalised to the target range 0.6—1.0. Penalises outputs that are too
short or too verbose.

Sentence/format control Encourages keeping sentence count close to the source (ratio 0.7-1.1). Rejects empty outputs or those exceeding
1200 characters.

Table 7: Evaluation signals used by the automatic judge. Each metric is normalised to [0, 1] and combined by a
weighted geometric mean.
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Abstract

We present an agent-based system for the
TSAR 2025 Shared Task on Readability-
Controlled Text Simplification, which requires
simplifying English paragraphs from B2+ lev-
els to target A2 or Bl levels while preserv-
ing meaning. Our approach employs special-
ized agents for keyword extraction, text gen-
eration, and evaluation, coordinated through
an iterative refinement loop. The system inte-
grates a CEFR vocabulary classifier, pretrained
evaluation models, and few-shot learning from
trial data. Through iterative feedback between
the evaluator and writer agents, our system
automatically refines outputs until they meet
both readability and semantic preservation con-
straints. This architecture achieved 4th position
among participating teams, showing the effec-
tiveness of combining specialized LLMs with
automated quality control strategies for text
simplification.

1 Introduction

Text simplification is a central task in natural lan-
guage processing (NLP), aiming to make written
content more accessible by reducing linguistic com-
plexity while preserving meaning and fluency. In
recent years, readability-controlled simplification
has gained relevance, where the simplified output
must conform to explicit proficiency levels defined
by the Common European Framework of Refer-
ence for Languages (CEFR). Such control is impor-
tant for applications in education, second-language
learning, and inclusive communication, with re-
cent work showing that instruction-tuned models
can follow explicit readability targets (Tran et al.,
2024).

The TSAR 2025 Shared Task on Readability-
Controlled Text Simplification (Alva-Manchego
et al., 2025), organized as part of the EMNLP con-
ference, challenges participants to simplify English
paragraphs originally written at the B2 level or
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above into target levels A2 or B1. Official evalua-
tion metrics include (i) compliance with the target
CEFR level, (ii) preservation of the original mean-
ing, and (iii) similarity to human-written reference
simplifications. While no training data is provided,
organizers released 20 trial examples per target
level for format familiarization, making this essen-
tially a few-shot learning challenge that encourages
creative combinations of linguistic resources, pre-
trained models, and novel system architectures.

For this shared task, we developed an agent-
based pipeline that leverages the modular nature
of the simplification task. Our approach integrates
specialized agents for keyword extraction, text
generation, and evaluation, orchestrated through
an iterative refinement loop. The system incor-
porates diverse tools including a CEFR vocabulary
classifier that maps words to proficiency levels (A1-
C1), pretrained evaluation models (CEFR classi-
fiers, MeaningBERT, BERTScore), and few-shot
examples from the trial data. This iterative feed-
back mechanism reduces the need for human anno-
tation while ensuring outputs meet both readabil-
ity and meaning preservation requirements. Our
system achieved competitive performance, rank-
ing among the top-5 teams in the shared task. All
system components, prompts, and implementation
details are publicly available.!

In this paper, we describe our system for the
TSAR 2025 shared task. Section 2 reviews related
work, Section 3 presents our pipeline in detail, Sec-
tion 4 reports results and analysis, and Section 5
concludes with key insights and directions for fu-
ture work.

2 Related Work

Readability-controlled generation has recently ad-
vanced through instruction tuning that targets fine-

1https: //github.com/feliperussi/team-uniandes-
tsar-2025-shared-task
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grained complexity levels, showing strong adher-
ence to requested readability and competitive qual-
ity (Tran et al., 2024). For longer inputs, multi-
agent frameworks coordinate specialized roles to
improve document-level coherence and thorough-
ness, offering an alternative to single-pass sim-
plification (Fang et al., 2025; Lyu and Pergola,
2024). Still, preserving meaning is a key chal-
lenge. Paragraph-level human evaluation with
reading-comprehension questions shows that even
strong systems leave some questions unanswered,
highlighting the need for direct meaning checks
(Agrawal and Carpuat, 2024).

3 Methodology

3.1 Task Formulation

Given a source paragraph ¢y (B2+ English) and a
target CEFR level /* € {A2,B1}, the goal is to pro-
duce a final simplification t* that: (i) complies with
¢* as verified by CEFR classifiers, (ii) preserves
semantic content through high similarity scores
with ¢y, and (iii) maintains fluent, coherent para-
graph structure. We enforce meaning preservation
through automatic metrics and iterative refinement,
using ¢,, to denote intermediate candidates.

3.2 System Overview

Our system employs an agent-based pipeline with
iterative refinement to balance readability and
meaning preservation (Figure 1). The pipeline
processes B2+ source paragraphs through key-
word extraction, vocabulary classification, and it-
erative refinement between Writer and Evaluator
agents—whose prompts we co-developed via a hy-
brid process combining human prompt engineering
with LL.M-assisted drafting using Gemini 2.5 Pro
and GPT-5—until CEFR compliance and semantic
similarity thresholds are met. This design ensures
outputs meet strict quality requirements through
automated validation at each step (detailed com-
ponents below, thresholds and hyperparameters in
Section 4.1).

3.2.1 Keyword Extractor

This agent identifies topic-specific terms that are
too complex for the target level £* and require ex-
plicit definition. Given source t( and target level
¢ € {A2,Bl}, it outputs a set K (tp,{*) = K of
keywords that must be defined (not replaced) to pre-
serve meaning. We introduced this separate com-
ponent because: (i) trial data analysis revealed that

certain domain terms must be defined rather than
substituted to maintain accuracy, and (ii) LLMs
performing end-to-end simplification tend to either
over-define common words or miss crucial techni-
cal terms.

The agent applies a two-step test to each noun
identified by the agent n: (i) can it be replaced
by a simple phrase without meaning loss? (ii)
would replacement cause awkward repetition (e.g.,
“gravity” — “the force that pulls things down”)?
Terms failing either test are marked for definition.
The agent returns at most two keywords to avoid
over-constraining generation, outputting them as
JSON: {“keywords”: [“wordl1”, “word2”]}.
The set may be empty if all terms suit level £*.

3.2.2 Vocabulary Classification

Using the vocabulary lists from Cambridge Uni-
versity Press and Assessment (2025c,a,b) and ESL
Lounge (2025), we built a CEFR vocabulary clas-
sifier. Given an input text, it returns a dictionary
D(text) mapping each word to its CEFR level (A1,
A2, B1, B2, C1). We introduced this component
because early experiments showed that LLMs with-
out explicit vocabulary guidance tend to either over-
simplify text or miss higher-CEFR terms that re-
quire replacement. Table 1 reports the size of each
CEFR-specific list used during conditioning and
evaluation. Regarding words that are out of the
scope of D(text), the proposed prompts leave some
margin to the models for adding vocabulary.

CEFR Level Vocabulary Count
Al 1,282
A2 1,228
Bl 1,618
B2 595
Cl 1,239
Total 5,962

Table 1: Vocabulary distribution across CEFR levels

3.2.3 Writer Agent

The writer takes the original B2+ paragraph ¢,
target level £*, keywords K (to, £*), vocabulary dic-
tionary D,, style examples Sy~ (that consist in
a set of texts in ¢*, specifically those known as
"reference" in the task trial data), and (for refine-
ment) previous output ¢, with feedback f,. Let
0 = (to, ", K, Sp<) denote the fixed inputs and
D(t,) the dictionary for each candidate text t,.
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A1: {her, an, you, ...}
A A2: {researcher, highly, ...}
—_— > —»{B1: {leading, international, ...}
B2: {extensively, gene, ...}

C1: {prestigious, ...}

b -
—'wmBE—[E

B2
Paragraph

Keywords
Extraction

Vocabulary
Classification

Target Level
Paragraph

If meets
requirements OR
reaches max iterations

CEFR Classification and

Writer A . "
riter Agent Metrics Computation

If doesn't meet all

requirements

A1: {her, an, you, ...}

A2: {researcher, highly, ...}

G

? E' <« B1: {written, ...}
8 - B2: {}
(o o o] o1 9
Evaluator Vocabulary
Agent Classification

Figure 1: Agent-based pipeline architecture. The system processes B2+ source paragraphs through keyword
extraction and vocabulary classification, followed by iterative refinement between the Writer and Evaluator agents.
The loop continues until CEFR compliance and semantic similarity thresholds are met or maximum iterations are

reached.

Then:

t1 = Writer(6, D(ty))
tn1 = Writer(0, D(ty,), tn, fn)

(1
forn>1 (2)

In initial generation, the agent: (i) analyzes Sy«
to internalize target style from trial data examples,
leveraging this data to match expected output pat-
terns while limiting samples to avoid confusion,
(ii) extracts core message from tg, (iii) defines key-
words k € K and uses D to identify vocabulary
above target £*, (iv) restructures sentences to match
£*’s complexity, and (v) returns the simplified para-
graph. During refinement iterations, it minimally
edits ¢,, to address issues in f;,. Table 2 summarizes
the level-specific constraints.

3.2.4 Automatic Metrics

For each source-hypothesis pair (¢, t,,) with target
level * € {A2,B1}, we compute three values:

CEFR label (@). We use three ModernBERT clas-
sifiers fine-tuned on different subsets of the Uni-
versal CEFR dataset (Imperial et al., 2025): (i)
document-level English, (ii) sentence-level English,
and (iii) multilingual texts. Each model m € £ out-
puts a predicted level with confidence score. We
select the prediction from the model with highest
confidence:

0(t,,) = label <arg max scorem(tn))
meE

Following Barayan et al. (2025), we evaluate CEFR
compliance using adjacent accuracy (accepting pre-
dictions within one level of target) and RMSE be-
tween predicted and target level indices.

BERTScore (semantic similarity). We report
mean F1 BERTScore (Zhang et al., 2020) between
prediction and source:

BS(tn, to) € [0, 1],

interpreted as embedding-based semantic similar-
ity.

MeaningBERT (meaning preservation). We
use MeaningBERT (Beauchemin et al., 2023) to
assess meaning preservation between t, and ty.
The metric outputs a percentage score which we
normalize to [0,1]:

MeaningBERT (,,, to)
100

MB(tn, to) = € [0,1]

3.2.5 Evaluator Agent

Given (0, t,,, D,,) where D,, = D(t,,) is the CEFR
vocabulary for the text ¢,, and automatic metrics
(CEFR label 4(t,) = 4,, BS, = BS(tn,to),

MB,, = MB(ty, to)), the evaluator produces feed-
back:

fa= Eval(gytmDmgmBSmMBn) 3)

The evaluator assesses outputs through a priority-
ordered evaluation pipeline:

1. Factual integrity: Verifies numbers, names,
dates, locations, and core relations match g

2. Meaning preservation: Enforces thresholds
specified in Section 4.1

3. CEFR compliance: Ensures predicted level
by =0*
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A2 (elementary)

B1 (intermediate)

Sentence length <12 words, one idea
Connectors and, but, because, so, ...
Keyword handling define before first use
Grammar simple tenses only
Content scope essential facts only

15-25 words, combined ideas
A2 + moreover, although, however, . ..
inline definition
simple + controlled B1 forms
preserve key details

Table 2: Level-specific writer constraints controlled by (K (to,¢*), D(to), Se=). Aligned with CEFR reading
comprehension descriptors (Companion Volume, Ch. 3.1.1.3) (Council of Europe, 2020).

4. Qualitative audit: Checks level-specific con-
straints (see Table 2)

Failure at any priority triggers targeted feedback.
The evaluator outputs f,, as JSON containing ap-
proval status (PASS/FAIL), grade (1-10), and ex-
planation of issues with suggested changes. Cru-
cially, the evaluator interprets the automatic metrics
(BS,,, MB,,, £,,) and explains their implications to
the writer, enabling targeted corrections—a design
choice motivated by early experiments where texts
had incorrect CEFR classifications or low semantic
similarity. If f,, indicates failure, the writer pro-
duces t,,+1 addressing the feedback; if f,, indicates
pass, the loop terminates with t* = ¢,,.

3.2.6 Refinement Loop Rules

We run a Writer—Evaluator loop capped at /N max-
imum iterations. At each iteration n, the candi-
date ¢, is evaluated against the thresholds in Sec-
tion 4.1; if it passes, the loop terminates and we
output ¢,,. Every iteration logs the candidate and
metrics (t,, ¢,, MB,, BS,, f,). If no candidate
passes within /V iterations, we select the candidate
with the highest MB among those correctly clas-
sified at the target CEFR level, or if none exist,
the candidate with the highest MB overall. Algo-
rithm 1 formalizes this process.

Our repository includes the complete prompts
for the Writer, Evaluator, and Keyword Extractor
agents; the n8n workflow JSON configurations for
agent orchestration; the API implementation with
CEFR vocabulary tools; and the trial data prepro-
cessing scripts.

4 Evaluation and Results

4.1 System Configuration

Our system uses |Sy«| = 10 style examples per
level from TSAR trial data, evaluation thresholds
of MB > 0.75 and BS > 0.90, maximum itera-
tions N € {5, 10} to avoid longer loops, keyword
limit | K| < 2 irreplaceable terms per paragraph,

Algorithm 1 Writer-Evaluator Iterative Refinement

Require: Source text to (B2+), target CEFR level £* €
{A2,B1}, max iterations N

Ensure: Simplified text ¢*

1: K := K(to,é*),S:: Spx, Do := D(to)

2: 0:= (to, 0", K, S)

3: t; := Writer(6, Do)

4: forn =1to N do

5: Ly = L(tn)

6:  MB, := MB(tn, to)

7: BSp :=BS(tn,to)

8: Dy :=D(tn)

9: n = Eval(0, tn, Dn, €n, BS,, MB,,)
10:  if f,, indicates PASS then

11: return t* := ¢,

12: end if

13: if n < N then

14: tnt1 := Writer(0, Dp, tn, fn)
15: end if

16: end for

17: I":={ie{l,...,N}: £; = "}
18: if I™ # () then

19:  returnt”™ := t; where j := arg max;cr= MB;
20: else

21:  returnt” := ¢; where j := arg max;=1,....n MB;
22: end if

and temperature O for all models to ensure deter-
ministic outputs. These values were selected based
on trial data analysis to balance quality and effi-
ciency. Check Table 3 for the summary of each
run.

Run Writer Evaluator N

Run1l Gemini 2.5 Pro Gemini 2.5 Pro 5
Run2 Gemini 2.5 Flash  Gemini 2.5 Flash 10
Run3 GPT-OSS-120B Gemini 2.5 Pro 10

Table 3: System configurations evaluated. Run 1 uses
Gemini 2.5 Pro (Google Al for Developers, 2025), Run
3 uses GPT-OSS-120B (Together Al 2025; OpenAl,
2025).

We orchestrate the agents with n8n (2025) and
a REST API serving level-specific control inputs.
The trial data provided style examples and vocabu-
lary guidance.
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4.2 Results

Our team Uniandes achieved 4th place in the
TSAR 2025 Shared Task, with the resulting met-
rics shown in Table 4. The Gemini 2.5 Flash
configuration provided the best balance between
CEFR compliance and efficiency, while the hybrid
GPT-OSS-120B/Gemini 2.5 Pro configuration ex-
celled at meaning preservation, as seen in Table 5.
All systems maintained high semantic similarity
(BS > 0.92) while successfully adapting texts to
target CEFR levels.

Run F1 Adj. Ace. RMSE
Runl 0.972 1.00 0.212
Run2 0.985 1.00 0.200
Run3 0.851 0.97 0.510

Table 4: CEFR Compliance metrics on TSAR 2025 test
set. Best scores in bold and worst in underline.

Run MB-Orig MB-Ref BS-Orig BS-Ref
Run 1 0.817 0.814 0.936 0.934
Run 2 0.823 0.803 0.934 0.930
Run 3 0.847 0.813 0.933 0.928

Table 5: Comparison between meaning preservation
metrics on TSAR 2025 test set. Best scores in bold and
worst in underline. MB and BS stand for MeaningBERT
and BERTScore respectively.

5 Discussion

Our experiments showed distinct trade-offs across
model configurations. While Run 2 achieved the
best CEFR compliance and Run 1 demonstrated
high precision and provided the most reliable bal-
ance between CEFR compliance and meaning
preservation. The hybrid Run 3 struggled with
level targeting. For meaning preservation, Run 1
is more stable and shows less overfitting; Run 3,
despite having a higher MB-Orig, has a lower MB-
Ref, indicating overfitting to the source text.

After analyzing simpler agent configurations
on trial data, several design improvements signif-
icantly increased performance. We found that us-
ing all 20 trial examples was counterproductive
and wasteful of tokens, so limiting to 10 sam-
ples optimized both performance and efficiency.
Style examples enhanced output consistency, key-
word extraction preserved domain-specific mean-
ing through definitions, and CEFR vocabulary clas-
sification prevented inconsistent term replacements.

However, some configurations required many iter-
ations to achieve correct CEFR levels, suggesting
convergence problems. Our MeaningBERT thresh-
old of 0.75 may have been conservative—higher
thresholds could enforce stronger semantic preser-
vation.

Furthermore, Run 3 demonstrated that hybrid
architectures with open models as writers can ex-
cel at semantic preservation despite weaker level
control. This suggests that open models could be
valuable as writer agents when paired with strong
closed-model evaluators like Gemini 2.5 Pro, po-
tentially offering cost-effective alternatives to fully
proprietary systems.

6 Limitations

Key limitations include expensive and unpre-
dictable token generation from iterative refinement,
with some texts requiring many iterations and ex-
tended processing times. The CEFR vocabulary
coverage could be potentially missing some terms.
The token consumption was highly variable across
different texts, making cost prediction difficult.

Our CEFR and semantic-similarity thresholds
were intentionally conservative to favor coverage
and reduce non-convergence. More ambitious
(stricter) thresholds might yield higher precision
in meaning preservation and level control, but at
the cost of lower acceptance rates and longer re-
finement. Exploring adaptive or curriculum-style
thresholds is left for future work.

7 Lay Summary

This work builds a system that turns hard-to-read
English paragraphs into easier ones for learners,
at two target levels: A2 (elementary) and B1 (in-
termediate). The main goal is to make the text
simpler without changing its meaning. To do this,
the system uses three “agents” that work together
in a loop: one finds important, difficult words that
should be defined (not replaced), another writes a
simpler version, and a third checks the result. If
the check finds problems—Iike lost meaning or the
level being too hard—the writer tries again. This
repeat-and-improve cycle continues until the text
is both simple enough and faithful to the original.
To guide the writing, the system uses word lists
tied to the CEFR levels (A1-C1) and short example
texts that show the expected style. To check quality
automatically, it uses tools that (1) estimate the
reading level, and (2) measure how closely the new
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text matches the original meaning. Several model
setups were tested and set clear passing rules before
accepting any output.

In a public competition on readability-controlled
simplification, this approach ranked among the top
teams (4th place). The results show that combining
specialized roles with automatic checks can reli-
ably simplify text while keeping its meaning. As
limitations, some paragraphs need many rounds
(which can be costly), and the vocabulary lists may
not cover every word.

References

Sweta Agrawal and Marine Carpuat. 2024. Do text sim-
plification systems preserve meaning? a human evalu-
ation via reading comprehension. Transactions of the
Association for Computational Linguistics, 12:432—
448.

Fernando  Alva-Manchego, Regina  Stodden,
Joseph Marvin Imperial, Abdullah Barayan, Kai
North, and Harish Tayyar Madabushi. 2025. Findings
of the TSAR 2025 Shared Task on Readability-
Controlled Text Simplification. In Proceedings
of the Fourth Workshop on Text Simplification,
Accessibility, and Readability (TSAR 2025), Suzhou,
China. Association for Computational Linguistics.
Latest update: September 2025; archived at https:
//web.archive.org/web/20250914180215/https:
//tsar-workshop.github.io/shared-task/.

Abdullah Barayan, Jose Camacho-Collados, and Fer-
nando Alva-Manchego. 2025. Analysing zero-shot
readability-controlled sentence simplification. In
Proceedings of the 31st International Conference on
Computational Linguistics, pages 6762—6781, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

David Beauchemin, Horacio Saggion, and Richard
Khoury. 2023. MeaningBERT: assessing meaning
preservation between sentences. Frontiers in Artifi-
cial Intelligence, 6. Publisher: Frontiers.

Cambridge University Press and Assessment. 2025a.
Vocabulary List for A2 level.

Cambridge University Press and Assessment. 2025b.
Vocabulary List for B1 level.

Cambridge University Press and Assessment. 2025c.
Vocabulary List for Pre Al Starters, A1 Movers and
A2 Flyers.

Council of Europe. 2020. Common European Frame-
work of Reference for Languages: Learning, teach-
ing, assessment — Companion volume. Council of
Europe Publishing, Strasbourg. Reading comprehen-
sion descriptors (see Chapter 3.1.1.3).

ESL Lounge. 2025. ESL Lounge: Learn English with
ESL Lounge.

Dengzhao Fang, Jipeng Qiang, Xiaoye Ouyang, Yi Zhu,
Yunhao Yuan, and Yun Li. 2025. Collaborative docu-
ment simplification using multi-agent systems. In
Proceedings of the 31st International Conference
on Computational Linguistics, pages 897-912, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Google Al for Developers. 2025. Gemini models:
Gemini API | Google AI for Developers. Lat-
est update: August 2025; archived at https:
//web.archive.org/web/20250825013047/
https://ai.google.dev/gemini-api/docs/
models#previous-experimental-models.

Joseph Marvin Imperial, Abdullah Barayan, Regina
Stodden, Rodrigo Wilkens, Ricardo Munoz Sanchez,
Lingyun Gao, Melissa Torgbi, Dawn Knight, Gail
Forey, Reka R. Jablonkai, Ekaterina Kochmar, Robert
Reynolds, Eugenio Ribeiro, Horacio Saggion, Elena
Volodina, Sowmya Vajjala, Thomas Francois, Fer-
nando Alva-Manchego, and Harish Tayyar Mad-
abushi. 2025. Universalcefr: Enabling open multi-
lingual research on language proficiency assessment.
Preprint, arXiv:2506.01419.

Chen Lyu and Gabriele Pergola. 2024. Society of Med-
ical Simplifiers. In Proceedings of the Third Work-
shop on Text Simplification, Accessibility and Read-
ability (TSAR 2024), pages 61-68, Miami, Florida,
USA. Association for Computational Linguistics.

n8n. 2025. n8n: Workflow automation platform
(v1.109.0). https://github.com/n8n-io0/n8n/
releases/tag/n8n@1.108.0. Version 1.109.0, re-
leased August 25, 2025.

OpenAl 2025. gpt-oss-120b & gpt-0ss-20b model card.
Preprint, arXiv:2508.10925.

Together AL 2025. gpt-oss-120B  APL
Archived at https://web.archive.org/web/
20250821140846/https://www.together.ai/
models/gpt-oss-120b.

Hieu Tran, Zonghai Yao, Lingxi Li, and Hong Yu.
2024. Readctrl: Personalizing text generation with
readability-controlled instruction learning. Preprint,
arXiv:2406.09205.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating Text Generation with BERT. In Inter-
national Conference on Learning Representations.

216


https://doi.org/10.1162/tacl_a_00653
https://doi.org/10.1162/tacl_a_00653
https://doi.org/10.1162/tacl_a_00653
https://tsar-workshop.github.io/shared-task/
https://tsar-workshop.github.io/shared-task/
https://tsar-workshop.github.io/shared-task/
https://web.archive.org/web/20250914180215/https://tsar-workshop.github.io/shared-task/
https://web.archive.org/web/20250914180215/https://tsar-workshop.github.io/shared-task/
https://web.archive.org/web/20250914180215/https://tsar-workshop.github.io/shared-task/
https://aclanthology.org/2025.coling-main.452/
https://aclanthology.org/2025.coling-main.452/
https://doi.org/10.3389/frai.2023.1223924
https://doi.org/10.3389/frai.2023.1223924
https://www.cambridgeenglish.org/images/506886-a2-key-2020-vocabulary-list.pdf
https://www.cambridgeenglish.org/images/506887-b1-preliminary-2020-vocabulary-list.pdf
https://www.cambridgeenglish.org/images/149681-yle-flyers-word-list.pdf
https://www.cambridgeenglish.org/images/149681-yle-flyers-word-list.pdf
https://www.esl-lounge.com/student/reference.php
https://www.esl-lounge.com/student/reference.php
https://aclanthology.org/2025.coling-main.60/
https://aclanthology.org/2025.coling-main.60/
https://ai.google.dev/gemini-api/docs/models#previous-experimental-models
https://ai.google.dev/gemini-api/docs/models#previous-experimental-models
https://web.archive.org/web/20250825013047/https://ai.google.dev/gemini-api/docs/models#previous-experimental-models
https://web.archive.org/web/20250825013047/https://ai.google.dev/gemini-api/docs/models#previous-experimental-models
https://web.archive.org/web/20250825013047/https://ai.google.dev/gemini-api/docs/models#previous-experimental-models
https://web.archive.org/web/20250825013047/https://ai.google.dev/gemini-api/docs/models#previous-experimental-models
https://arxiv.org/abs/2506.01419
https://arxiv.org/abs/2506.01419
https://doi.org/10.18653/v1/2024.tsar-1.7
https://doi.org/10.18653/v1/2024.tsar-1.7
https://github.com/n8n-io/n8n/releases/tag/n8n@1.108.0
https://github.com/n8n-io/n8n/releases/tag/n8n@1.108.0
https://arxiv.org/abs/2508.10925
https://www.together.ai/models/gpt-oss-120b
https://web.archive.org/web/20250821140846/https://www.together.ai/models/gpt-oss-120b
https://web.archive.org/web/20250821140846/https://www.together.ai/models/gpt-oss-120b
https://web.archive.org/web/20250821140846/https://www.together.ai/models/gpt-oss-120b
https://arxiv.org/abs/2406.09205
https://arxiv.org/abs/2406.09205
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

EhiMeNLP at TSAR 2025 Shared Task: Candidate Generation via Iterative
Simplification and Reranking by Readability and Semantic Similarity

Rina Miyata’ Koki Horiguchi'

Risa Kondo'

Yuki Fujiwara! Tomoyuki Kajiwara'

 Graduate School of Science and Engineering, Ehime University, Japan
! Faculty of Engineering, Ehime University, Japan
* D3 Center, The University of Osaka, Japan
{miyata@ai., horiguchi@ai., kondo@ai., fujiwara@ai., kajiwara@} cs.ehime-u.ac.jp

Abstract

We introduce the EhiMeNLP submission,
which won the TSAR 2025 Shared Task
on Readability-Controlled Text Simplification.
Our system employed a two-step strategy of
candidate generation and reranking. For candi-
date generation, we simplified the given text
into more readable versions by combining
multiple large language models with prompts.
Then, for reranking, we selected the best candi-
date by readability-based filtering and ranking
based on semantic similarity to the original text.

1 Introduction

Text simplification (Alva-Manchego et al., 2020b)
is a task of paraphrasing complex expressions into
simpler ones while preserving the core meaning
of a given text. This technology is utilized to sup-
port reading comprehension for diverse readers,
including children (De Belder and Moens, 2010),
language learners (Petersen and Ostendorf, 2007),
and individuals with language impairments (Evans
et al., 2014). Since reading ability varies signif-
icantly among individuals, recent studies on text
simplification have focused on controlling read-
ability (Scarton and Specia, 2018; Nishihara et al.,
2019; Yanamoto et al., 2022; Agrawal and Carpuat,
2023; Barayan et al., 2025).

This paper describes our system submitted to
TSAR 2025 shared task on readability-controlled
text simplification (Alva-Manchego et al., 2025).
Our system employs a two-step approach: first,
generating candidates for simplified text with large
language models (LLMs), and then reranking the
candidates with embeddings. Our team was ranked
first out of 20 teams in the official evaluation (AU-
TORANK). Our code is available on GitHub.!

"https://github.com/EhimeNLP/TSAR2025

2 TSAR 2025 Shared Task

In this competition (Alva-Manchego et al., 2025),
participants are asked to simplify English para-
graphs written at the Common European Frame-
work of Reference for Languages (CEFR)? read-
ability level of B2 or more complex into simpler
versions at levels B1 and A2, respectively. The
CEFR is the most widely used international stan-
dard for describing the language ability of English
learners, consisting of six levels ranging from basic
(A1) to proficient (C2).

The dataset provided consists of trial data, con-
taining 40 paragraphs, and test data, containing 200
paragraphs. The output texts are automatically eval-
uated for both RMSE of readability and semantic
similarity. Note that while both BERTScore (Zhang
et al., 2020) and MeaningBERT (Beauchemin et al.,
2023) are included in the official evaluation script
for semantic similarity, only the latter is used in the
official final ranking.

3 EhiMeNLP System

Figure 1 shows an overview of our system. Our sys-
tem employs a two-step strategy of candidate gen-
eration and reranking; we describe these proposed
methods in Sections 3.1 and 3.2. We then provide
implementation details in Section 3.3. Finally, we
report the results of preliminary experiments on the
trial dataset in Section 3.4.

3.1 Step 1: Candidate Generation

We iteratively apply the proposed prompts shown
in Figure 2 to multiple LLMs to generate simplifi-
cation candidates. To diversify the candidates, we
propose four types of prompts.

P1: fine-grained simplification To include sim-
plified texts with various readability levels in our

2https://www.coe.int/en/web/
common-european-framework-reference-languages
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candidate set, we iteratively generate paraphrases
that are slightly simpler than the input text. Specif-
ically, we define the readability level of the input
text as ¢ and instruct the LLMs to generate para-
phrases at readability level ¢ — 1. Note that this
prompt does not provide any other explanation,
such as a detailed description of the readability.

P2: controlling CEFR levels We employ the
existing prompts (Barayan et al., 2025) that explic-
itly describe the reading comprehension abilities of
learners at each CEFR level. Note that to adapt for
this task, we modify the text unit from sentences
to paragraphs. In addition, the target CEFR level
changes incrementally from B2 to A1.

P3: controlling grade levels Instead of CEFR
levels, we employ US grade levels, which are com-
monly used in previous studies on text simplifi-
cation. In this prompt, we instruct the LLMs to
simplify the input text to make it easier to under-
stand for students in the target grade level. The
grade level changes incrementally from 10 to 1.

P4: Clarifying edit operations A previous
study (Kew et al., 2023) has reported the effec-
tiveness of prompts that explicitly instruct edit-
ing operations (Alva-Manchego et al., 2020a) for
LLM-based text simplification. We also utilize this
prompt (Alva-Manchego et al., 2020a; Kew et al.,
2023) to instruct LLMs to perform editing opera-
tions for text simplification, including paraphrasing,
sentence compression, and sentence splitting.

3.2 Step 2: Reranking

In this step, we select the candidate with the highest
semantic similarity to the input text while matching
the target readability level.

of EhiMeNLP system.

Readability-based Filtering: First, we estimate
the CEFR-based readability level for each can-
didate using the official evaluation script (Alva-
Manchego et al., 2025). Then, we extract the set of
candidates with the minimum difference from the
target CEFR-based readability level.

Similarity-based Ranking: First, we estimate
the semantic similarity between each candidate and
the original text using the official evaluation script,
based on both BERTScore? (Zhang et al., 2020) and
MeaningBERT4 (Beauchemin et al., 2023). Then,
we select the candidate with the highest average
score. In case multiple candidates achieve the high-
est average score, we select the candidate with the
higher MeaningBERT score.

3.3 Implementation Details

As shown in Table 1, we employed six
LLMs: GPT-5° GPT-4.1,° 03, gpt-oss-20b,}
Llama-3. 3—708—Instruc’c,9 and Qwen3—328.10
For gpt-oss-20b, we employed two configura-
tions: one with reasoning_effort set to “low”
and another with it set to “medium” to control the
depth of thought. Regarding Qwen3-32B, we con-
figured enable_thinking, which controls whether
thinking occurs, to “False” from the perspective of
inference speed.

3https://huggingface.co/spaces/
evaluate-metric/bertscore
4https://huggingface.co/davebulaval/
MeaningBERT
Shttps://platform.openai.com/docs/models/
gpt-5
6https://platform.openai.com/docs/models/
gpt-4.1
"https://platform.openai.com/docs/models/03
8https://huggingface.co/openai/gpt-oss-20b
9https://huggingface.co/meta—llama/Llama—3.
3-70B-Instruct

Ohttps://huggingface.co/Qwen/Qwen3-328
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{"role": "system", "content":

Prompt 1 Prompt 2

You are an expert in
fine-grained text
simplification. Given
that Complex Paragraph
has a readability level
of {i}, simplify Complex
Paragraph to a
readability level of
{i-1}.

Please simplify the
following Complex
Paragraph to make it
easier to read and
understand by {TARGET}
CEFR level English
learners. {TARGET} level
English learner
{DESCRIPTION[TARGET]}.
To simplify, you may
replace difficult words
with simpler ones,
elaborate, or remove
them when possible. You
may also break down a
lengthy sentence into

Ensure the revised
sentence is
grammatically correct,
fluent, and maintains
the core message of the
original without
changing its meaning.

}, VAN

shorter, clear sentences.

Prompt 3

You are an expert
educational material
developer in US. Please
simplify the following
Complex Paragraph to
make it easier to read
and understand by a US
student at the {TARGET}
grade level. To simplify,
you may replace
difficult words with
age-appropriate ones,
elaborate, or remove
them when possible. You
may also break down a
lengthy sentence into
shorter, clear sentences.
Ensure the revised
sentence is
grammatically correct,
fluent, and maintains
the core message of the
original without
changing its meaning.

Prompt 4

Please rewrite the
following complex
paragraph in order to
make it easier to
understand by non-native
speakers of English. You
can do so by replacing
complex words with
simpler synonyms (i.e.
paraphrasing), deleting
unimportant information
(i.e. compression),
and/or splitting a long
complex sentence into
several simpler ones.
The final simplified
paragraphs needs to be
grammatical, fluent, and
retain the main ideas of
its original counterpart
without altering its
meaning.

DESCRIPTION = {

“B2": "can read with a large degree of independence, adapting style and speed of reading to
different texts and purposes, and using appropriate reference sources selectively. Has a broad
active reading vocabulary, but may experience some difficulty with low-frequency idioms."

"B1": "can read straightforward factual texts on subjects related to their field of interest with
a satisfactory level of comprehension",

"A2": "can understand short, simple texts containing the highest frequency vocabulary,
including a proportion of shared international vocabulary items",

"A1": "can understand very short, simple texts a single phrase at a time, picking up familiar names,
words and basic phrases and rereading as required",

}

{"role": "user", "content": "Complex Paragraph: {COMPLEX_PARAGRAPH}\nSimplified Paragraph: "}

Figure 2: Prompts to generate simplification candidates.

All experiments were conducted using four RTX
A6000 GPUs. For each LLM model, each prompt
was run 20 times. Note that for prompt P2, there
are 5 runs each for the 4 target CEFR levels, and for
prompt P3, there are 2 runs each for the 10 target
grade levels, totaling 20 runs in each case.

3.4 Preliminary Experiments

The left side of Table 2 shows the results of our
preliminary experiments on the trial dataset. In
this preliminary experiment, we applied four types
of proposed prompts to seven types of LLMs to
generate candidates using a total of 28 models, and
counted how frequently each model was selected
by our reranking. Experimental results reveal that
the GPT-5 model is notably powerful and that the
P1 prompt is remarkably useful.

Based on the results of the preliminary ex-
periments, we have decided the three sys-
tems to be submitted as follows. Since the
Llama-3.3-7@0B-Instruct model has only lim-
ited contributions, we decided not to employ it

in our final system. In addition to the ensemble
method for all LLMs and prompts, we decided to
submit base models applying either the P1 prompt
or the P3 prompt to the GPT-5 model.

4 Evaluation

Our EhiMeNLP system achieved first place in the
official ranking (Alva-Manchego et al., 2025). As
shown in Table 3, our system achieved a perfect
score in the RMSE evaluation for readability. This
demonstrates that our diverse set of candidates con-
sistently generated text suitable for the target read-
ability level. Regarding semantic similarity, our
system achieved the fourth-highest score in both
similarity to the source and reference texts, respec-
tively. These results reveal that our system achieves
readability control that balances both appropriate
readability and high semantic similarity.

4.1 Ablation Analysis

Table 3 shows the performance of the base mod-
els, which apply the proposed prompts individually
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Model Reference Inference Token limit
GPT-5 gpt-5-2025-08-07 OpenAl API with greedy decoding 128,000
GPT-4.1 gpt-4.1-2025-04-14  OpenAl API with greedy decoding 32,768
03 03-2025-04-16 OpenAl API with greedy decoding 100, 000
gpt-0ss-20b (OpenAl, 2025) vLLM (Kwon et al., 2023) 40,000
Llama-3.3-70B-Instruct (Llama Team, 2024) vLLM (Kwon et al., 2023) 400
Qwen3-32B (Qwen Team, 2025) Transformers (Wolf et al., 2020) 32,768
Table 1: The LLM models used in this study.
Trial Test
P1 P2 P3 P4 Total P1 P2 P3 P4 Total
GPT-5 6 2 4 2 14 30 19 12 6 67
Qwen3-32B 3 1 0 2 6 16 8 4 6 34
gpt-0ss-20b (medium) 1 1 2 2 6 16 5 5 4 30
gpt-0ss-20b (low) 3 0 1 1 5 22 3 5 2 32
GPT-4.1 30 1 0 4 12 8 2 1 23
03 2 1 0 1 4 7 3 4 0 14
Llama-3.3-70B-Instruct 0O O 1 0 1 - - - - -
Total 18 5 9 8 40 103 46 32 19 200

Table 2: The frequency with which candidates generated by each model were finally selected.

Submission Name Model RMSE MeaningBERT-orig MeaningBERT-ref Rank

EhiMeNLP /runl Ensemble 0.000 0.902 0.845 1/48

EhiMeNLP /run2 GPT-5 with P1  0.200 0.838 0.816 7/48
- GPT-5with P2 0.265 0.850 0.836 -

EhiMeNLP /run3 GPT-5 with P3  0.234 0.847 0.840 6/48
- GPT-5 with P4 0.394 0.844 0.836 -

Table 3: Results of the EniMeNLP systems on the test dataset.

to the GPT-5 model. The ensemble model outper-
formed the base models across all evaluation met-
rics. This highlights the importance of having a
diverse set of candidates.

The P1 prompt we submitted as our run2 re-
ceived relatively high scores for readability, but
scored lower than other proposed prompts in terms
of semantic similarity. The P3 prompt we submit-
ted as our run3 outperformed run2 in the official
ranking due to its better balance between readabil-
ity and semantic similarity.

4.2 Contributions of Each Model and Prompt

The right side of Table 2 shows how many times
each combination of model and prompt was se-
lected in the test dataset. Although prompt P1

accounts for the majority, the other prompts also
account for about half in total, indicating that com-
binations of multiple prompts are useful. In terms
of LLM models, while GPT-5 is the most frequently
selected, Qwen3-32B and gpt-o0ss-20b also often
appear, suggesting that combining multiple models
contributes to improving the performance of the
ensemble model.

5 Conclusion

We described the EhiMeNLP submission for the
TSAR 2025 shared task. Our system employed a
two-step strategy in which LLMs generated diverse
candidates, followed by re-ranking based on read-
ability and semantic similarity, achieving first place
among 20 teams in the official ranking.
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Lay Summary

This paper describes a text simplification system
that paraphrases a given English text to a specific
readability level. The TSAR 2025 workshop held
a shared task on readability-controlled text simpli-
fication, with 20 teams competing to demonstrate
the performance of their systems. Our EhiMeNLP
system achieved the top performance among them.

Our system employed a two-step strategy: first,
we leveraged large language models (LLMs) to
generate diverse simplification candidates, and then
selected the final output text through re-ranking
based on readability and similarity. While LLMs
are good at paraphrasing, they are not necessarily
good at controlling readability levels. Therefore,
we decided to generate a variety of paraphrases
with different readability levels as candidates for
simplification. To generate diverse candidates for
simplification, we provided four types of prompts
to six LLMs and performed repeated simplification.
Our re-ranking step consists of two components:
filtering based on readability and re-ranking based
on similarity. This process enables our system to
achieve high synonymity with the input text while
respecting the target readability level.

According to official evaluations, our system
perfectly satisfies the target readability while also
achieving a high level of semantic similarity with
both input and reference texts. Our detailed anal-
ysis revealed that while GPT-5 is powerful, its en-
semble with other LLMs is proving effective.
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Text Simplifier via Code Generation
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Abstract

This paper describes the system submission
of our team OUNLP to the TSAR-2025
shared task (Alva-Manchego et al., 2025)
on readability-controlled text simplification.
Based on the analysis of prompt-based text sim-
plification methods, we discovered an interest-
ing finding that text simplification performance
is highly related to the gap between the source
CEFR (Arase et al., 2022) level and the target
CEFR level. Inspired by this finding, we pro-
pose two multi-round simplification methods
and generate them via GPT-40: rule-based sim-
plification (MRS-Rule) and jointly rule-based
LLM simplification (MRS-Joint). Our submit-
ted systems ranked 7 out of 20 teams. Later
improvements with MRS-Joint show that tak-
ing the LLM simplified candidates as the start-

ing point could further boost the multi-round

simplification performance '.

1 Introduction

Complex text makes it difficult for language learn-
ers and people with limited literacy to read. Text
simplification improves learning, accessibility, and
information sharing with a wider audience. With
the advent of deep learning and large language
models (LLMs), simplification performance has
improved significantly, supported by the release of
important datasets (Imperial et al., 2025). Mod-
ern approaches have explored zero-shot prompting
(Chi et al., 2023; Barayan et al., 2025; Farajidizaji
et al., 2024), instruction tuning (Imperial and Tay-
yar Madabushi, 2023), and related strategies.
From our baseline analysis of trial data, we ob-
served that a larger gap between the CEFR level of
the original sentence and the target level (CEFR-
Gap) substantially increases the likelihood of sim-
plification failure. This finding highlights the im-
portance of addressing complexity not in a sin-
gle step but through a structured, iterative process.

"https://github.com/ounlp/Multi- Round- Text-Simplifier

Jie Cao
School of Computer Science
University of Oklahoma
jie.cao@ou.edu

Building on this insight, we introduced two novel
models generated by GPT-40 for multi-round text
simplification: MRS-Rule, a rule-based framework
that progressively adjusts sentence structures and
vocabulary, and MRS-Joint, which integrates rules
with prompting techniques to leverage the strengths
of both symbolic and generative approaches.

The primary contribution of this work is to show
that multi-round small rule-based simplification are
more effective at handling large CEFR gaps than
conventional single-step approaches. Our proposed
method MRS-Joint outperforms the MRS-Rule and
baseline models, as validated through extensive
experiments and qualitative analyses. Addition-
ally, we explored the potential of automatic code
generation for text simplification, although further
refinement remains necessary.

2 Task Setup

The goal of the shared task is to simplify a given
source text into a target text with a desired CEFR
proficiency level (A1<A2<B1<B2<C1<C2).
For the datasets, we use the same trial (40 exam-
ples) and test (200 examples) datasets provided by
the TSAR workshop to build and evaluate our meth-
ods. For the evaluation metrics, we follow the same
metrics from the official TSAR-2025 shared-task
metrics, which covers both readability-level con-
trol (CEFR Compliance, we focus on RMSE, the
distance between predicted and target CEFR levels,
the lower the better) and meaning preservation(via
evaluating semantic fidelity between the simplified
sentence and the original sentence, or the simplified
sentence and a human-written reference via Mean-
ingBERT (Beauchemin et al., 2023), denoted as
MB-Orig and MB-Ref respectively 2.

Please refer to the shared task paper (Alva-Manchego
et al.,, 2025) for more details of other metrics such as
BERTScore (Zhang et al., 2019) etc.
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3 Motivation for Multi-Round

In this section, we present our baseline model, the
Naive Prompt model, and show that simplification
becomes increasingly challenging as the gap be-
tween the source and target levels widens.

3.1 Baseline: Naive Prompt-based (Run 1)

We use GPT-40 to generate the code first (denoted
as Baseline or "Program 1"), which will call the
OpenAl APIs (GPT-40-mini) with the following
prompt from (Barayan et al., 2025). This generated
our Run-1 submission on the test data. Please refer
to Appendix A.1 for more details.

Baseline Prompt

Please simplify the following Complex Sentence to make it easier to read and
understand by { CEFR-LEVEL} CEFR level English learners. { CEFR-LEVEL}
level English learner { CEFR-Description}. To simplify, you may replace difficult
words with simpler ones, elaborate, or remove them when possible. You may also
break down a lengthy sentence into shorter, clear sentences. Ensure the revised
sentence is grammatically correct, fluent, and maintains the core message of the
original without changing its meaning. Complex Sentence: {Source} Simplified
Sentence:

CEFR Level Prediction Since the trial data only
gives the CEFR level for target text, not for the
source text and the simplified texts, we estimate
a text proficiency level using three ModernBERT
classifiers with the voting mechanism 3. Each
model independently predicts a CEFR label (A1-
C2) with a confidence score. We combine predic-
tions via majority voting: the label with the most
votes is selected. Ties are broken by the largest
sum of confidences, then by the highest single-
model confidence; if still tied, we prefer the simpler
(lower) level to remain conservative. The resulting
CEFR level also determines whether a simplifica-
tion is still needed for a text.

CEFR-Gap We assign an integral value from
0 to 5 for each CEFR level according to the or-
der of (A1<A2<B1<B2<C1<C2). The CEFR
Gap for each example is defined as the numeri-
cal difference between source level and the targe
level (e.g., the CEFR-Gap between C1 and A2 is
4-1=4). We run the generated program on the 40
trial examples in the trial data, and then we study
the performance of baseline models for each clus-
ter of examples with the same CEFR Gap as Ta-
ble 1. We found that RMSE rises from 0.624 with
a one-level gap, to 1.027 with two levels, and then
further go to 1.581 with three levels, indicating

3 AbdullahBarayan/ModernBERT-base-doc_en-Cefr,
ModernBERT-base-doc_sent_en-Cefr, and ModernBERT-
base-reference_AllLang2-Cefr2

that larger downward steps are harder to control.
Meaning preservation also weakens: MB-Orig de-
clines from 0.859 to 0.841 and then to 0.761, while
MB-Ref falls from 0.832 to 0.758 and stays near
0.762 for the widest gap, though that last figure
is based on only four samples. These patterns re-
veal a trade-off: stronger simplification with larger
CEFR-Gap makes it more difficult to match the
target level and to keep the original meaning intact.
In short, bigger CEFR gaps demand more radical
linguistic changes, which inevitably reduce both
level accuracy and semantic fidelity.

CEFR-Gap | RMSE | MB-Orig | MB-Ref

1 (18) 0.624 0.859 0.832
2 (18) 1.027 0.841 0.758
3(4) 1.581 0.761 0.762
Table 1: CEFR-Gap Analysis on CEFR accu-

racy (RMSE) and meaning preservation. The bracket
shows the total number of examples we found in the trial
data with that CEFR gap. It shows the larger the gap,
the higher the RMSE, the lower the other MB scores.

4 Proposed Multi-Round Methods

Based on the findings in §3, smaller gap between
the source and the target CEFR level will be rel-
atively easy to simplify. Hence, we propose to
simplify texts with multiple rounds by taking previ-
ous simplification results as inputs with two multi-
round methods: rule-based simplification (MRS-
Rule §4.1) and jointly rule-based and LLM Prompt-
ing (MRS-Joint §4.2). For each program, we first
demonstrate the prompts and operations to gener-
ate and fix, and then briefly analyze the detailed
workflow of the generated program. The orange
box shows the operations and prompts we used to
generate the MRS-Rule Code, while the blue box
at the bottom shows the further steps we used to fix
the generated code to make it work.

4.1 MRS-Rule: Rule-based (Run 2)

The generated code (see more details in Appendix
§A.2) for MRS-Rule does not call any large lan-
guage model API for simplification, but only rule-
based rewriting combined with automatic CEFR
level verification and semantic checks.
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Prompts for Generating MRS-Rule Code

<Operations:> Upload the Program 1 (Baseline) file into GPT-40; Upload 2
images (one image is the three models and the other is the method to predict the
level in the evaluation).

Prompt 2.1 T want you to write a program for me that simplifies the original
sentence. In the program, the first step is to simplify the original sentence. The
next step is to identify the CEFR_Level by using three models and the method
in the image. If the generated Cefr level does not match the target level, it will
call the simplify sentence method to simplify that simplified sentence until it
reaches the target level. If the generated level matches the target level, it will
be written down in the output file. Write down the program based on the file
(program used only naive prompt) and 2 images (1 is three model and the other
is the method to predict the level) I give you.

Prompt 2.2 The program keeps the original meaning by checking semantic sim-
ilarity (SBERT cosine similarity) at every step and only accepts a simplification
if: (1) the CEFR level hits the target, and (2) similarity to the original is above a
threshold you control (default > 0.8).

Prompt 2.3 I want you to update this code by after the summary step, I want the
program to simplify the remaining original sentence near to the target cefr_level.
After that, would you mind arranging all the JSON objects in the output file
according to dataset_id alphabetically (for instance, 01-b1 comes after 01-al,
02-a2 comes after 01-bl).

Instruction used to fix the code

<Operations:> Upload the Program 1 (Baseline) file into GPT-40
Fix 2.1 Fix the program so that the output file contain only the text_id column
and simplified_sentence

Fix 2.2 Because in the output file, there are still some JSON objects missing. So
I ask GPT-40: Can you try to update the code above so that it can simplify the
original sentence of each JSON object to the target level?

Fix 2.3 At the end of the program, would you mind adding some code that
checks the number of JSON objects in the input file with the number of the
JSON objects in the output file. If they are equal, you don’t need to check. If not,
you need to check what the dataset_id is missing and then simplify that original
sentence belonging to that dataset_id until all the dataset_ids are in the output
file?

4.1.1 Code Generation

Prompts 2.1, 2.2 and 2.3 are the three main prompts
that we used to generate the code for MRS-rule
method step by step. When using Prompt 2.2 to in-
struct GPT-40 for further simplification by jointly
checking CEFR level and semantic similarity, it
suggests the following rules and used in a sophisti-
cated candidate generation pipeline (§A.2.1).

* replace_words: substitute complex words
with simpler synonyms (e.g., “utilize” —

“use”, “approximately” — “about”).

simplify_numbers_units: standardize nu-
merical expressions and units (e.g., remove
separators, normalize “metres/meters”).

e strip_relative_clauses: remove non-
essential subordinate clauses (e.g., clauses be-
ginning with which/that/who/where/when or
discourse markers like however/although) to
reduce syntactic complexity.

* keep_shortest_clause: select the simplest
clause from a multi-clause sentence by choos-
ing the shortest well-formed segment.

e trim_to_limit: shorten the text to a step-
dependent word budget while preserving a
grammatical ending.

* sentence_split: break long sentences into
shorter, more readable parts at punctuation
boundaries, then simplify each part.

More importantly, it also smartly suggested to
sacrifice semantic preservation for higher CEFR-
level accuracy, which demonstrates improved per-
formance over prompting baseline (Table 2).

4.1.2 Workflow

Figure 1 shows the workflow of MRS-Rule, which
includes an iterative retries with dynamic condi-
tions such as the similarity floor, maximum editing
steps to reach the best-effort CEFR-levels.

Reconciliation Retries In each retry, the system
first generates multiple candidate sentences from
the original text. It then selects the best candidate
using cosine similarity and predicted CEFR level.
This candidate becomes the seed for the next round,
based on the assumption that easier sentences can
be further simplified toward the target CEFR level.
Candidates are created using one or more rules (de-
tails in §A.2.1). After each round, all candidates
are scored for meaning preservation (cosine similar-
ity) and difficulty (CEFR level). The best-scoring
candidate is carried forward as the seed for the next
round. If it still doesn’t meet the target level, addi-
tional rule-based refinements are applied (§4.1.1).
Subsequent retries follow the same process but use
more relaxed thresholds. The CEFR level is vali-
dated by majority voting from three ModernBERT
classifiers. Sentences that remain unsimplified go
through further retries with gradually looser sim-
ilarity thresholds and larger edit budgets. Finally,
the system picks the candidate closest to the target
level, reorders text IDs, and outputs the results. If
any sentences are still not simplified, the system
slightly lowers the similarity threshold (to 0.88),
increases the maximum edit steps (to 8), and re-
processes only the remaining sentences—up to six
rounds. All the hyperparameters for our program
is summarized in Appendix Table 4.

Nearest-level Fill The simplification will keep
running for multiple rounds of the above simplifi-
cation rules until all the sentences are simplified
to the target level or a retry cap is reached. For
sentences that failed to be simplified to the target
level, we will use the nearest-level fill, selecting
the candidate whose predicted CEFR level is clos-
est to the target while keeping the original meaning,
before reorganizing and saving the final output.
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a target-level simplifica-

‘ Step 1: Try to produce ‘
tion for each text_id

!

Step 2: Relax thresholds and
retry on the missing set only
(lower similarity floor,
allow stronger edits)

Any items missing?

Step 4: Sort outputs (e.g.,
CEFR order within group)

Step 5: Save to the output
file {text_id, simplified} with nearest-level or

conservative option

Step 3: Fill remaining ‘

Figure 1: Workflow of MRS-Rule (Run 2)

4.2 MRS-Joint: Rule-based + Prompting

Building upon the Baseline model (§3), we com-
bine LLM prompts (Barayan et al., 2025) and multi-
round rule-based simplifications with automatic
verification steps (§4.1). As shown in the work-
flow (§2), the LLM generates simplified sentences
only in the first step. After each retry, the system
selects the best candidate based on cosine similar-
ity and predicted CEFR level. This loop continues
until the predicted CEFR level matches the target
level. In each new retry, the system lowers the
cosine similarity threshold (allowing more mean-
ing change) and increases the maximum number
of simplification steps. This process ensures the
final sentence fits the target proficiency level while
preserving the original meaning.

4.2.1 Code Generation

For MRS-Joint program (§A.3), we use the Prompt
3.1 to integrate the LLM prompting from Base-
line (Program 1) into the MRS-Rule (Program
2) by uploading the two program files first then
prompting. Then we use the Prompt 3.2 to gen-
erate the code for over-generation-then-rank. The
program, generated when we combine those two
files, worked well so there was nothing to fix.

Prompt for Generating MRS-Joint

<Operations:> Upload the Program 2(MRS-Rule) and the Program 1(Baseline)
to ChatGPT.

Prompt 3.1 Update this file(the file contains the program 2). Before simplifying
the sentence, the program uses the naive prompt to generate one candidate. Other
candidates will be generated based on the built-in rules.

Prompt 3.2 After generating many candidates, the program selects the best
candidate based on the cosine similarity and predicted level. If that best candidate
does not meet the target level, the program continue generates more candidates
based on that best candidate.

4.2.2 Workflow

Figure 2 illustrates the generated program MRS-
Joint by combining LLM prompting (§3.1) and

Inputs
original, target_cefr (+ optional
reference)

State 1 — Prompt-based

build_prompt — call_llm —
clean_response

Checks: cosine_sim > floor; predict_cefr

< target
(if ref) cosine_sim(reference,cand) high

{

Accept LLM Yes ( Output }

LAccepled simplified sentence

nearest_level_fill() (closest CEFR while
meaning preserved)
else trimmed fallback of original

State 2 — Built-in Rules

Generate: basic_candidates() (re-
place_words, simplify_numbers_units,
strip_relative_clauses, Yds
keep_shortest_clause, trim_to_limit, sen-
tence_split)

Score: predict_cefr (3-head vote), co-

If neither succeeds after retries

sine_sim to source (+ref), Select: best
valid (hit bonus if CEFR < target)

!

Accept rules candidate?

Figure 2: Workflow of MRS-Joint

multi-round rule-based simplification (§4.1). The
generated program simply prompts the LLM at
the first round, and then all subsequent round are
purely rule-based as described in §4.1.2.

5 Result
Model | RMSE | MB-Orig | MB-Ref
Trial
Baseline (Run 1) 0.8944 0.8453 0.7958
MRS-Rule (Run 2) | 0.8515 0.7961 0.7967
MRS-Joint 0.4472 0.8023 0.7574
Test
Baseline (Run 1) 0.755 0.855 0.849
MRS-Rule (Run2) | 0.714 0.865 0.701
MRS-Joint 0.552 0.866 0.837

Table 2: CEFR accuracy (RMSE) and meaning preser-
vation on trial and test datasets.

Table 2 summarize the performance of our mod-
els on both trial and test datasets. Baseline (§3) an
MRS-Rule (§4.1) are the two models correspond-
ing to the two runs of our submission in the fi-
nal evaluation period. After the evaluation, we
found that simply merging two methods into MRS-
Joint (§4.2) is more efficient, which is the most
accurate model to match the target CEFR level
(the best RMSE) while still maintaining the mean-
ing. Prompt-only baseline model (§3) preserves
the original meaning best (highest MeaningBERT-
Orig) but shows the weakest control of CEFR level
(highest RMSE). Furthermore, comparing MRS-
Joint with the Baseline, the difference mainly ex-
ists in the multi-round rule-based simplification.
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Figure 3: # Simplified sentences that reach
the target level across retries for MRS-Rule vs.
MRS-Joint.

Target| /Pred — A2 Bl B2

A2 66 32 2
B1 20 79 1
B2 o 0 O

Table 3: Confusion matrix on the test data

It shows that our multi-round rules significantly
improve the performance with a little sacrifice on
the meaning preservation. Figure 3 further shows
that single round simplification performs poorly,
while multi-round simplification could increasingly
simplify more sentences to the target CEFR level.
Furthermore, MRS-Joint, starting the simplifica-
tion from LLM-simplified candidates, could boost
the performance of multi-round simplification.

6 Qualitative Analysis

6.1 Opverall Findings

As shown in Table 3, the program excels in simpli-
fying complex C1-C2 sentences down to the Bl
level. Out of 100 source sentences, 79 were suc-
cessfully simplified to B1, with only 20 dropping
further to A2 and 1 rising to B2. For sentences
targeted at the A2 level, the results were mixed:
only 66 reached the intended A2 level, while 32
overshot to B1 and 2 even remained at B2.

Therefore, we recognize that simplifying high-
complexity C1-C2 input to lower CEFR levels is
inherently more challenging. The program is more
prone to “overshooting,” producing text that re-
mains more complex than the intended target. In
other words, the lower the target CEFR level, the
higher the likelihood of program’s not meeting the
constraints of that level.

6.2 Case Study

To understand the model’s behaviour beyond over-
all accuracy scores, we conducted a qualitative er-
ror analysis on three representative C1-C2 source
texts that were simplified by the system but mis-
classified by the CEFR predictor. These examples
illustrate three distinct types of misclassification.

Case 1 — Overshoot (A2 — B1) (§B.1) The
model simplified vocabulary and shortened clauses
but kept abstract ideas along with a relative clause
typical of B1 syntax. The CEFR predictor therefore
rated the output B1, which is one level higher than
target level, showing that preserving key ideas may
force more complex structures than intended level.

Case 2 - Lexical Imitation (§B.2) Although
shortened from the source text, the output kept
formal phrases like “a large number of bridge ac-
cidents... of the bridge itself,” instead of simpler
A2 wording such as “Many accidents happen while
bridges are being built.” The CEFR model there-
fore rated it B1, showing that better simplification
needs lexical adaptation, not just shorter text.

Case 3 — Under-generation (B1 — A2) (§B.3)
The system produced only a fragment, dropping
the telescope’s purpose and the planetary-defense
discussion. With much of the conceptual content
missing, the predictor judged the text A2 despite
technical terms. This highlights that incomplete
outputs can seem easier to cheat the CEFR predic-
tor as the intended CEFR level.

These examples reveal three failure modes —
overshoot, and undergeneration — demonstrating
that successful CEFR simplification requires not
only simpler words but also balanced control of
meaning, style, and completeness.

7 Conclusion

We found that a larger gap between the CEFR level
of the original and target sentences (CEFR-Gap)
increases the likelihood of simplification failure.
Based on this finding, we proposed two multi-
round simplification methods generated by GPT-4o:
MRS-Rule, which applies rule-based simplifica-
tion, and MRS-Joint, which combines rules with
prompting. Extensive experiments and case studies
show that MRS-Joint outperforms both the prompt-
ing baseline and MRS-Rule, confirming the effec-
tiveness of multi-round simplification and the fea-
sibility of text simplifier via code generation.
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Limitation

We note a few limitations of our work. The models
we used are closed-source models such as using
GPT-4o for code generation while using GPT-4o-
mini for API, which are not explicitly finetuned
on the text simplification datasets by us. Our
work is also limited to one dataset and one lan-
guage (English), and two types of GPT-40 gen-
erated model. Furthermore, focusing on coding
generation, we could also extend the study to self-
evolve algorithm discovery (Novikov et al., 2025),
and compare it with other prompts and more coding
agents. Besides those, we believe explicitly involv-
ing curriculum-based domain knowledge in a struc-
tured multi-round simplification will be promising
methods in the era of artificial intelligence.

Lay Summary

This project aims to make complex English sen-
tences easier to understand, especially for language
learners. Our team participated in TSAR 2025 com-
petition where the goal was to rewrite sentences
to match specific English proficiency levels, like
beginner (A1) or intermediate (B1), based on the
Common European Framework of Reference
(CEFR). Our team’s insight was that the bigger the
difference between a sentence’s original difficulty
and the target level (called the “CEFR Gap”), the
harder it is to simplify the sentence successfully.
For example, turning a very advanced sentence
(C1) into a basic one (A2) is much more difficult
than making small adjustments. This inspired us to
develop a multi-step approach for the simplifica-
tion.

Our team created two systems, and the code are
generated with Al with our instructions:

MRS-Rule: Uses rules to gradually simplify text
in multiple rounds (e.g., replace difficult words,
break long sentences).

MRS-Joint: Combines a model (GPT-40i-mini)
to generate an initial simplified text, and then re-
fines it through multiple rule-based steps.

Both systems repeatedly check whether the new
sentence meets the desired CEFR level and still re-
tains the original meaning. If not, they retry those
sentences with adjustments. This multi-round pro-
cess continues until the system either succeeds or
picks the closest acceptable version.

In testing, the MRS-Joint method performs best.
It reaches the target reading level more often than
the baseline approach, though sometimes at the

cost of slightly reducing the original meaning. Still,
it shows strong overall results: it handles com-
plex sentences better and produced more accurate
simplifications. Our team also analyzed mistakes.
Sometimes the program “oversimplified” or re-
tained too many complex words. Other times, it
shortened the sentence too much and left out impor-
tant information. These findings will help improve
future systems.

In short, this work shows that a multi-step pro-
cess can make content more accessible to learners
while maintaining its original intent.
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A Details for 3 Generated Program

In general, all three program are generated with
GPT-40 model, which covers the following python
libraries and models.

Libraries In the AI generated code of MRS-
Rule and MRS-Joint, the following Python li-
braries are used: argparse, os, sys, json, re,
math, pathlib, collections, typing, numpy,
requests. Besides those regular pythong libraries,
we noticed that libraries like transformers (Hug-
ging Face), SentenceTransformers, NumPy are
used for natural language processing and machine
learning parts.

Models CEFR level is predicted by three Mod-
ernBERT from huggingface, ModernBERT-base-
doc_en-Cefr, ModernBERT-base-doc_sent_en-
Cefr, ModernBERT-base-reference_AllLang?2-
Cefr; while semantic similarity is using the library
of sentence-transformers/all-MinilLM-L6-v2),
and LLM for generating the code is GPT-40%.
The LLM API used for text simplification is
gpt-40-mini.

A.1 Program 1: Baseline Naive Prompt

The generated Program 1 is in the file of
"First_Version_Sentence_Simplification.py"” in the
code repo. It is built with OpenAI’s Chat Comple-
tions API. The script is lightweight and designed
for large-scale, reproducible simplification runs,

“https://chatgpt.com/?model=gpt-40,  accessible at

09/23/2025

while maintaining a clean JSONL output compati-
ble with downstream CEFR or readability evalua-
tions. This baseline Program 1 is used as Run 1 in
our submission, and it is also used in our CEFR-
Gap analysis.

A.2 Program 2: MRS-Rule

The generated Program 2 is in the file of "Sec-
ond_Version_Sentence_Simplification.py". Specif-
ically, ChatGPT suggests useful rules to gen-
erate cadidate simplications with function of
basic_candidates(). It generates multiple
simplified variants of an input sentence using
lightweight, rule-based transformations-without re-
lying on an LLM. The details of the code is shown
in the code listing 1. The corresponding hyperpa-
rameters used in the code are summarized in the
Table 4.

Parameter Value
similarity_floor 0.88
max_steps 8
max_retries 6
floor_step 0.03
steps_step 6
sim_floor (internal) 0.88 |
w_hit 10

w_ref 2.5
w_orig 0.5
11lm_timeout 60 seconds
use_11lm true
sim_threshold 0.72-0.75

Table 4: Hyperparameters in MRS-Rule and MRS-Joint

A.2.1 Generated Code to Apply Rules

Listing 1: Rule-based Simplification to Generate Candi-
dates

base = text.strip()
lim = max(8, 28 - 2*step_idx)
cands = [

replace_words(base),
simplify_numbers_units(base),
keep_shortest_clause (base),
strip_relative_clauses(base),
trim_to_limit(replace_words(base),
lim),
trim_to_limit(simplify_numbers_units
(base), 1lim),
trim_to_limit(strip_relative_clauses
(base), 1lim),
trim_to_limit(keep_shortest_clause(
replace_words(base)), lim),
for s in sentence_split(
strip_relative_clauses(base)):
cands.append(trim_to_limit(
replace_words(s), max (10,

))

lim-4)
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A.3 Program 3: MRS-Joint

Program 3 is in the file
"Third_Version_Sentence_Simplification.py".

It simply combines the previous rule-based
program A.2 with LLM prompting-based program
in A.1. This program shares the same rules used
in A.2.1, and uses the same set of multi-round
hyper parameters as Table 4.

B Case Studies

To understand the model’s behaviour beyond over-
all accuracy scores, we conducted a qualitative er-
ror analysis on three representative C1-C2 source
texts that were simplified by the system but mis-
classified by the CEFR predictor. These examples
illustrate three distinct types of misclassification.

B.1 Case 1 - Overshoot: A2 Target —
Predicted B1

Source (C1-C2)
I'm a member of the Campaign to Stop Killer
Robots ... We need to be very cautious indeed
about what we ask machines to do.

System Output (intended A2)
I am part of the Campaign to Stop Killer Robots.
Forget the scary robots from movies. Right now,
military machines like drones and robots are al-
ready used to kill with little help from people. The
next step is robots that can decide who to kill by
themselves. I believe this is very wrong and danger-
ous for people. We need to be very careful about
what we let machines do.

Analysis
The model successfully shortened the multi-clause
source and replaced high-level terms (autonomous
‘murderbots’, completely unethical) with simpler
wording. However, it retained abstract concepts
(robots that can decide who to kill) and an embed-
ded relative clause, both typical of B1 syntax. The
CEFR predictor therefore judged the output one
level higher than the A2 target.
Insight: Even when sentences are lexically simpli-
fied, preserving key ideas may require structures
that naturally push the text above the intended level.

B.2 Case 2 - Lexical Imitation: A2 Target —
Predicted B1

Source (C1-C2)

A large number of bridge accidents occur during
the construction of the bridge itself ... this can be
deadly for the workers on it at the time.

System Output (intended A2)
A large number of bridge accidents occur during
the construction of the bridge itself. These acci-
dents are often due to.

Analysis
Although truncated, the output copied formal
phrases from the source (a large number of bridge
accidents occur, during the construction of the
bridge itself). It failed to rephrase these into sim-
pler, high-frequency A2 forms such as Many ac-
cidents with bridges happen while they are being
built. The CEFR model therefore still rated it B1,
despite the missing ending.
Insight: True simplification requires lexical adap-
tation, not only shortening. Retaining formal aca-
demic expressions—even in a shorter text—can
maintain a higher perceived level.

B.3 Case 3 — Under-generation: B1 Target —
Predicted A2

Source (C1-C2)
Whether NASA can find the remaining middle-sized
NEO:s depends on getting the money to build NEO-
Cam ... the PHAs.

System Output (intended B1)
NASA’s ability to find the remaining middle-sized
near-Earth objects (NEOs) depends on getting
funding to build NEOCam, a 0.5-meter space tele-
scope that.

Analysis
The system produced only a partial sentence, omit-
ting the telescope’s function and the entire discus-
sion of planetary defence. With the conceptual
load drastically reduced, the CEFR predictor as-
signed an A2 level, even though the fragment still
contains technical terms (NEOs, NEOCam).
Insight: Incomplete outputs can appear easier than
intended, causing the CEFR assessment to underes-
timate the level. Quality checks for completeness
are essential alongside automatic scoring.
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Abstract

We describe our submissions to the TSAR 2025
shared task on readability-controlled text sim-
plification, which evaluates systems on their
ability to adjust linguistic complexity to spec-
ified CEFR levels while preserving meaning
and coherence. We explore two complemen-
tary frameworks that both build on LLMs
and incorporate feedback from the shared-task
CEFR classifiers. The first is an ensemble ap-
proach, which uses multiple LLMs to generate
diverse candidates through zero-shot prompt-
ing, similarity-based few-shot prompting, and
round-trip translation. The generated candi-
dates are filtered by predicted CEFR level, and
the final output is selected by an LLLM judge.
The second is a self-refinement loop, which
uses a single LLM that begins with one can-
didate and iteratively revises it based on clas-
sifier feedback until it meets the target level
or reaches a maximum iteration limit. Both
approaches achieved competitive performance
in the shared task. To our knowledge, this is
among the first studies to apply round-trip trans-
lation and iterative self-refinement to controlled
simplification, expanding the toolkit for reli-
able readability control.

1 Introduction

Text simplification aims to reduce the complexity
of text while preserving meaning, thereby improv-
ing accessibility for language learners and read-
ers with limited proficiency. The TSAR 2025
Shared Task (Alva-Manchego et al., 2025) focuses
on readability-controlled simplification, where En-
glish passages at CEFR level B2 or above must be
rewritten to a specified target level (A1, A2, or B1).
Systems are evaluated on CEFR compliance, se-
mantic similarity to the original text and references,
with the challenge that no parallel training data is
provided.

*These authors contributed equally to this work.
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Figure 1: Illustration of the two frameworks used in
our system. (1) The Ensemble Framework aggre-
gates diverse model—prompt candidates through clas-
sifier filtering and LLM-based selection, while (2) the
Self-Refinement Framework iteratively adjusts a sin-
gle model’s output using classifier feedback.

Over the past years, research has evolved from
traditional rule-based methods (Shardlow, 2014) to
neural sequence-to-sequence and pretrained Trans-
former models (Sheang and Saggion, 2021; Li
et al., 2024). More recently, large language mod-
els (LLMs) with controllable and instruction-based
generation have become the dominant trend in text
simplification. However, ensuring precise readabil-
ity control remains a core challenge (Barayan et al.,
2025; Tran et al., 2025).

Previous research has explored generation mech-
anisms that encourage structural and lexical re-
formulation that might facilitate controllable sim-
plification. Cross-lingual and translation-based
pipelines, for example, have been shown to in-
duce diverse edits such as synonym substitutions
and word reorderings (Stahlberg et al., 2022; Vlan-
tis et al., 2024), effects that can be leveraged to
achieve finer readability control. In another line
of work, iterative refinement frameworks such as

Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025), pages 231-241
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SELF-REFINE (Madaan et al., 2023) improve LLM
outputs through self-feedback guided by external
evaluators, offering a general way of enforcing gen-
eration constraints such as readability control.

Building on these insights, we explore two
frameworks for readability-controlled simplifica-
tion, both guided by the shared-task CEFR classi-
fier (Figure 1).

* The ensemble framework integrates multi-
ple prompting strategies to generate diverse
candidates, including a novel similarity-based
few-shot prompting and round-trip transla-
tion. Candidates are filtered by the shared-
task CEFR classifier, and the final output is
selected by an LLM judge. We submitted
two ensemble runs that differ in the choice of
judge model.

The self-refinement framework employs iter-
ative simplification, where a single candidate
is repeatedly revised under classifier feedback
until the target CEFR level is reached.

2 System Description

2.1 Ensemble Models

Our first two submissions use a multi-stage ensem-
ble pipeline to produce a single simplification from
a diverse pool of candidates. The pipeline is de-
signed to combine the strengths of different LLMs
and prompting strategies. It proceeds in two stages:
(i) candidate generation, and (ii) candidate selec-
tion through filtering and final judgment.

2.1.1 Candidate Generation

To encourage diversity, we generate candidate sim-
plifications using four proprietary LLMs: GPT-
5, Gemini 2.5 Flash, Claude Sonnet 4, and ol.!
Each model is prompted under three strategies de-
scribed below (see Appendix A for full prompt
texts). For each model—prompt configuration, we
draw four samples at temperature 1, yielding a total
of 4 x 3 x 4 = 48 candidates for each test input.

Zero-shot We designed zero-shot prompts
through observation of the trial data and iterative
prompt engineering, adapting instructions to each
target CEFR level. All prompts specified both the
source and target CEFR levels. For A2, the prompt

"Model
gemini-2.5-flash,
01-2024-12-17.

versions: gpt-5-2025-08-07,
claude-sonnet-4-20250514, and

additionally required the model to simplify the para-
graph into a direct subject—verb—object structure.
For B1, we first annotated each word in the orig-
inal paragraph with CEFR levels using CEFRpy?,
and then instructed the model to only replace words
above B2 with simpler alternatives by including the
corresponding wordlist in the prompt. We further
constrained the output by limiting each sentence to
a maximum of 29 words.

Similarity-based Few-shot We extended the
zero-shot prompts by inserting in-context demon-
strations selected from the trial data based on
source similarity. 3 For each test input, co-
sine similarity was computed between its sentence
embedding and those of 20 trial sources using
Alibaba-NLP/gte-large-en-v1.5 (Zhang et al.,
2024; Li et al., 2023). The k most similar sources
and their paired references at the target level were
then added to the prompt as demonstrations, so a k-
shot setup corresponds to including the top-k most
similar source-reference sets. In this work, we set
k =1, yielding a one-shot setup.

Round-trip We employ a round-trip translation
approach, using different intermediate languages
depending on the target CEFR level. For A2, the
original English paragraph is first translated into
Chinese while being simplified to the target level.
For B1, it is translated into German without explicit
simplification at this stage. In both cases, only
the translated paragraph is then used as input to
translate it back into English, during which the
model is instructed to simplify it to the target level.

2.1.2 Candidate Selection

After candidate generation, we apply a two-step
selection process consisting of a rule-based filter
and an LLM judge.

Filtering Candidates are first scored by the of-
ficial CEFR classifier ensemble (Alva-Manchego
et al., 2025), with the final label taken from the
classifier with the highest confidence, exactly as
provided in the shared task evaluation script. We
retain those predicted to match the target level ex-
actly; if none remain, we fall back to candidates
that are one level above or below the target. This

2CEFRpy is a Python module built on spaCy that tokenizes
text and maps words to CEFR levels based on wordlist re-
sources. Documentation available at https://maximax67.
github.io/cefrpy/.

3We include a comparison with random sampling in Ap-
pendix D
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step ensures that the judge compares only plausibly
compliant outputs, reducing the risk of selecting a
fluent but level-mismatched candidate and stream-
lining the decision to a more competitive set.

LLM-as-a-judge The surviving candidates are
then presented to an LLM judge, which is in-
structed to select the simplification closest in mean-
ing to the original paragraph. To explore how dif-
ferent LLM architectures perform as judges, we
experiment with two variants, corresponding to our
first two submissions:

* Gemini ensemble (runl_gemini_ensemble).
On the trial datasets, Gemini 2.5 Flash demon-
strates good performance in both the candi-
date generation and selection stages, and is
therefore incorporated into our set of official
submissions.

* GPT-5 ensemble (run2_gpt_ensemble_4).
GPT-5, used as the judging model, demon-
strated reliable and consistent candidate selec-
tion on the trial data, performing comparably
to other high-performing models while being
more efficient to deploy. It is thus adopted as
one of our official submissions.

2.2 Self-refinement (run3_self_refine)

In addition to the ensemble pipelines, we submit-
ted a self-refinement system that relies on a single
model, GPT-5. Unlike the ensemble approach, this
system iteratively adjusts one candidate under feed-
back guidance. While in principle the feedback
signal could be derived from various metrics, we
chose to use the CEFR classifier, since readability
control is one of the two core evaluation criteria
and, in our experience, the aspect more frequently
failed by baseline outputs.

Initialization The process begins with a zero-
shot simplification produced by the model (as de-
scribed in § 2.1.1), which serves as the initial can-
didate for refinement.

Iteration At each step, the CEFR classifier pre-
dicts the level of the current candidate. If the pre-
dicted level is above the target, the feedback in-
structs the model to simplify vocabulary and sen-
tence structure; if it is below, it encourages the use
of slightly more complex constructions. In both
cases, the feedback explicitly requires the model
to preserve the original meaning and maintain nat-
ural, coherent text. The exact prompt template

and feedback generation rules are provided in Ap-
pendix A. This feedback, together with the original
document and the candidate text, is then provided
to the model, which generates a revised simplifica-
tion. The loop continues for up to five iterations.

Stopping criterion The loop terminates early if
the classifier predicts that the target level has been
reached. Otherwise, the final candidate after the
fifth iteration is returned. We adopt this policy
based on the assumption that the last iteration rep-
resents the most refined version.

3 Results

Table 1 shows the performance of our three
submitted runs. We report results on the of-
ficial TSAR-2025 shared task metrics: RMSE
for CEFR compliance, and MeaningBERT (Beau-
chemin et al., 2023) for semantic similarity to the
original (mBERT-Orig) and reference (mBERT-
Ref) texts, respectively, as defined by the organiz-
ers (Alva-Manchego et al., 2025).

When considering only the best run per team,
our team ranks third out of 20 teams overall.
Our GPT-5 and Gemini ensemble runs achieve
AUTORANK *# values of 3.61 and 3.67, respec-
tively, among 48 submitted runs, demonstrating
competitive performance across all official metrics.
The Self-Refinement run ranks at AUTORANK
= 5.46, showing slightly weaker CEFR control
and meaning preservation, but operates with much
lower computational cost, relying on a single model
rather than multi-model ensembling and repeated
generations.

4 Discussion

Effectiveness of Ensemble We demonstrate the
contribution of the ensemble process by compar-
ing its performance against the strongest single-
model baselines, shown in the upper part of Ta-
ble 1, which represent an empirical upper bound
of individual model overall performance across the
prompting configurations. The ensemble outper-
forms these baselines across all dimensions. Al-
though the substantial improvement in level con-
trol is partly enforced by design through classifier-
based filtering, these results indicate that incorpo-
rating diverse model-prompt pairs captures com-
plementary strengths beyond any individual config-
uration.

*Linearly rescaled rank where 1 denotes the best perform-
ing system; see (Alva-Manchego et al., 2025) for details.
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System

RMSE | mBERT-Orig? mBERT-Ref {

Claude (0-shor) 0.595 0.836 0.820
GPT-5 (0-shop) 0.620 0.848 0.821
Gemini (0-ghoy) 0.497 0.812 0.811
ol &) 0.630 0.828 0.835
Gemini Ensemble  0.187 0.863 0.833
GPT-5 Ensemble  0.158 0.852 0.835
Self-Refinement ~ 0.245 0.822 0.820

Table 1: Comparison of best single-model baselines (top) and submitted runs (bottom) on the official TSAR-2025
metrics. For each model, best configurations were determined via a weighted composite of normalized scores
following median—interpercentile scaling (Alva-Manchego et al., 2025), averaged across four generations. Values in
parentheses indicate the prompting configuration in which the best overall score was achieved.

While we did not perform full ablation studies,
we examined the distribution of final candidates
chosen by the LLM judges to assess the necessity
of using multiple models and prompt variants. We
find that the selections were distributed across all
four models and three prompting strategies (Ap-
pendix B), indicating that the ensemble benefited
from the diversity of system outputs. Overall,
the gains from combining multiple model-prompt
pairs suggest that different systems may excel on
different types of inputs or aspects of simplification,
leading to complementary effects when aggregated,
a possibility we plan to explore in future work.

Effectiveness of Self-refinement Compared
to its zero-shot GPT-5 counterpart (Table 1),
the self-refinement process substantially reduces
readability-classification error through its classifier-
guided feedback loop, while maintaining compa-
rable similarity to human-written references. This
demonstrates that automatic feedback can effec-
tively steer outputs toward the intended readability
level without a major loss in fluency and coherence.

Self-refinement successfully corrected most out-
puts that initially missed the target level. Out of 200
instances, 129 (64.5%) met the target immediately,
but a further 54 (27.0%) converged only through
iterative refinement, confirming the value of the
approach in recovering difficult cases. However,
the distribution of refinement depth shows dimin-
ishing returns: 31 (15.5%), 14 (7.0%), 7 (3.5%),
and 2 (1.0%) cases requiring one to four iterations,
suggesting that classifier feedback yields most of
its benefit in early steps. However, a small fraction
of cases (8.5%) never converged, underscoring that
the current feedback signal alone is not sufficient
for all inputs.

Another limitation is reflected in the trade-off
between readability control and meaning preserva-
tion (mBERT-Orig), which decreased from 0.848
to 0.822 across all instances. For the subset that un-
derwent refinement, the drop was more pronounced
(0.85 — 0.79), suggesting that repeated simplifica-
tion can impair content preservation when guided
solely by readability feedback. Future extensions
could incorporate additional signals to balance
readability, meaning, and naturalness more holisti-
cally during refinement.

Model behavior across prompting strategies
To better understand how prompting design influ-
ences readability control and meaning preservation,
we analyze model behavior across the three setups
within the ensemble framework (zero-shot, one-
shot, and round-trip). Detailed results are provided
in Appendix C. Overall, we find that models varied
substantially in their behavior.

In the zero-shot setting, Gemini achieved the
lowest RMSE (0.50) but also exhibited the weakest
meaning preservation, while ol showed the op-
posite pattern, with high fidelity but poor compli-
ance (RMSE = 0.80). Claude and GPT-5 fell in
between. We also examined level-specific classifi-
cation results, which revealed clear level-dependent
differences: Gemini and Claude aligned more suc-
cessfully with A2 than B1, GPT-5 was relatively
balanced, and o1l performed better at B1 than A2.
These baseline differences are particularly notable
given that all models were prompted identically
(§2.1.1), indicating that they internalize and act
upon level-control instructions in distinct ways.

Adding one-shot demonstrations generally de-
creased meaning preservation across all models. In
terms of reference similarity, ol benefited the most
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from the example, showing consistent gains across
both target levels, whereas Gemini and GPT-5 re-
mained relatively stable and Claude experienced
a noticeable drop. Effects on compliance were
mixed: Claude and ol showed clear improvement
at both levels, GPT-5 improved slightly (mainly
due to gains at A2), while Gemini improved at
A2 but worsened at B1, increasing its overall er-
ror. These results indicate that one-shot examples
can enhance level control, particularly at A2. This
asymmetry may stem from the nature of the tar-
get levels: demonstrations provide clear guidance
for simplifying to A2, where shorter sentences and
simpler vocabulary reliably signal compliance. By
contrast, B1 allows for more diverse realizations,
so reliance on a single example can bias the model
toward an unrepresentative solution, reducing com-
pliance consistency.

Notably, models with stronger instruction-
following or reasoning capabilities, such as ol,
appeared to benefit more from demonstrations, as
seen in its consistent gains in both reference simi-
larity and compliance across levels. We leave the
systematic evaluation of demonstration effects on
simplification outcomes and their underlying fac-
tors to future work.

The round-trip approach proved generally ef-
fective as a way to induce simplification through
translation. However, because this setup differs
fundamentally in design, we treat its results as
descriptive rather than directly comparable to the
zero- and one-shot conditions. The choice of inter-
mediate language appears to influence both level
control and meaning preservation, likely reflecting
differences in linguistic structure and translation
bias. We include in Appendix E a brief discussion
of intermediate-language choice and the two-step
prompting design.

5 Conclusion and Future Work

We presented three systems for the TSAR 2025
shared task on readability-controlled text simpli-
fication: two ensemble pipelines that combine di-
verse generators with an LLM-as-a-judge, and a
self-refinement loop guided by classifier feedback.
In developing the ensemble system, we explored
multiple prompting strategies, including style- and
vocabulary-based instruction, similarity-based few-
shot prompting, and round-trip translation.

Our analysis highlights systematic differences
in how current LLMs interpret and operationalize

level-control instructions, as well as the effects of
incorporating demonstrations and classifier-guided
feedback. Overall, the results indicate that LLMs
under our frameworks form a strong foundation for
controllable simplification, but that the trade-off
between reliable level control and meaning preser-
vation remains unresolved.

Looking ahead, there are several directions for
strengthening our two frameworks under the cur-
rent evaluation setting. For the ensemble, future
work could focus on developing more principled
aggregation strategies and analyzing the decision
behavior of LLM-as-a-judge models, particularly
how they balance readability against meaning when
selecting outputs. For the self-refinement frame-
work, richer feedback signals beyond classifier
guidance (e.g., semantic similarity, stylistic align-
ment) could help stabilize convergence and better
preserve meaning.

At the same time, our observations during sys-
tem development hinted that the current automatic
evaluation may be brittle. Small stylistic or struc-
tural variations can produce large metric shifts,
even when readability and meaning remain com-
parable to human readers. For example, we ob-
served that formatting differences such as line
breaks could noticeably affect classifier predic-
tions (Appendix F). Revisiting evaluation design
to include human- or reader-centered assessments
would therefore provide a more reliable view of
simplification quality and practical usefulness.

Limitations

Our systems rely on proprietary LLMs whose train-
ing data and update histories are not publicly avail-
able, limiting reproducibility and interpretability.
While we examined the overall effects of prompt-
ing and classifier feedback, our analysis was not
exhaustive. Further controlled analyses would be
needed to isolate the contribution of each model
and prompt variations. We also did not conduct full
ablation studies or controlled comparisons across
intermediate languages, so some observed trends
remain descriptive. Finally, we did not conduct a
systematic analysis of the LLM-as-a-judge com-
ponent, including potential biases, decision consis-
tency, or sensitivity to prompt phrasing. As a result,
its contribution to overall system performance is
not fully understood.
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Lay Summary

This paper describes our systems for the TSAR
2025 shared task, which challenges participants to
rewrite English texts at different levels of difficulty
(A2-B1) without losing meaning, so that language
learners can better understand them.

We built two kinds of systems.

* An ensemble system combines outputs from
several models using different prompting
strategies, such as adding style and vocabulary
instructions, providing examples, or translat-
ing text through another language (“round-
trip”). It then uses another LLM as a “judge”
to select the best simplification.

* A self-refinement system gives the model
feedback on whether its output is too simple
or too complex and lets it revise itself until a
readability classifier confirms that it matches
the target level.

Both of our systems performed competitively in
the shared task. The ensemble system performed
better than any of its components alone, possibly
because different model—-prompt combinations be-
haved quite differently (some were better at con-
trolling difficulty, while others preserved meaning
more faithfully). This suggests that combining mul-
tiple models and prompts can produce more bal-
anced results, and that different combinations may
work better for different kinds of source texts.

The self-refinement system also achieved strong
results, producing texts that matched the intended
difficulty level with much less computation. This
shows that giving models simple feedback can be
an efficient way to make their writing easier or
harder when needed.

However, our experiments show that while large
language models can simplify text in a controlled
way, it is still difficult to achieve both precise level
control and full preservation of meaning.
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A Prompts and Feedback Templates

A.1 Zero-shot prompts

Zero-shot prompt at the A2 level.

Please simplify the following paragraph
into a direct SVO structure,
transforming it from {ORIGINAL_CEFR}
CEFR level to {TARGET_CEFR} CEFR level,
making it easier to read and understand
for {TARGET_CEFR} CEFR level English
learners. Return only the simplified
paragraph, without explanation or extra
text.

paragraph: {PARAGRAPH}

Zero-shot prompt at the B1 level.

Please simplify the following
paragraph, transforming it from
{ORIGINAL_CEFR} CEFR level to
{TARGET_CEFR} CEFR level, making it
easier to read and understand for
{TARGET_CEFR} CEFR level English
learners.

Only replace difficult words with
easier alternatives. Use the provided
list of difficult words for
replacements.

-Keep the overall sentence structure.
-Don’t change meaning and delete any of
the given information.

-Ensure that each sentence has no more
than 29 words.

Return only the simplified paragraph,
without explanation or extra text.
paragraph: {PARAGRAPH}

list of difficult words: {WORD_LIST}

A.2 Few-shot prompts

The placeholder {few_shot_examples} corre-
sponds to the pair of original and simplified para-
graph retrieved in the format:

Original: [paragraph retrieved]
Simplified: [corresponding reference
paragraph at target CEFR level]
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Few-shot prompt at the A2 level.

Please simplify the following paragraph
into a direct SVO structure,
transforming it from {ORIGINAL_CEFR}
CEFR level to {TARGET_CEFR} CEFR level,
making it easier to read and understand
for {TARGET_CEFR} CEFR level English
learners.

Here are some examples of how to
simplify text for this level:
{few_shot_examples}.

Return only the simplified paragraph,
without explanation or extra text.
paragraph: {PARAGRAPH}

Few-shot prompt at the B1 level.

Please simplify the following
paragraph, transforming it from
{ORIGINAL_CEFR} CEFR level to
{TARGET_CEFR} CEFR level, making it
easier to read and understand for
{TARGET_CEFR} CEFR level English
learners.

Here are some examples of how to
simplify text for this level:
{few_shot_examples}.

Only replace difficult words with
easier alternatives. Use the provided
list of difficult words for
replacements.

-Keep the overall sentence structure.
-Don’t change meaning and delete any of
the given information.

-Ensure that each sentence has no more
than 29 words.

Return only the simplified paragraph,
without explanation or extra text.
paragraph: {PARAGRAPH}

list of difficult words: {WORD_LIST}

A.3 Round-trip prompts
Round-trip prompt at the A2 level.

* English — Chinese + simplify

Please translate the following English
paragraph into Chinese and simplify it
for {TARGET_CEFR} CEFR level learners
of Chinese. Return only the Chinese
paragraph, without explanation or extra
text.

English paragraph: {PARAGRAPH}

Chinese — Englsih + simplify

Please translate the following Chinese
paragraph into English and simplify it
for {TARGET_CEFR} CEFR level learners
of English. Return only the translated
and simplified paragraph, without
explanation or extra text.

Chinese paragraph: {PARAGRAPH}


https://doi.org/10.18653/v1/2025.in2writing-1.3
https://doi.org/10.18653/v1/2025.in2writing-1.3
https://aclanthology.org/2024.lrec-main.199/
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Round-trip prompt at the B1 level.

* English — German

Please translate the following paragraph
into German. Return only the German
paragraph, without explanation or extra
text.

English paragraph: {PARAGRAPH}

L]

German — Englsih + simplify

Please translate the following German
paragraph into English, making it easier
to read and understand by {TARGET_CEFR}
CEFR level English learners. Return
only the translated and simplified
paragraph, without explanation or extra
text.

German paragraph: {PARAGRAPH}

A.4 Candidate Selection prompt

YOU MUST FOLLOW OUTPUT RULES EXACTLY.
Choose the one closest to the original
paragraph. Output MUST be a single
digit 1-{len(candidates)} on its own
line. No other text.

Original paragraph: {ORIGINAL}
Simplified paragraphs:
{candidates_text}

A.5 Self-Refinement
Refinement prompt.

You are an expert in text
simplification. Your previous attempt
to simplify the document was not
successful and did not meet the quality
criteria.

Original Document: {document_text}
Your Previous Attempt that failed:
{previous_step_output?}

Feedback on Previous Attempt:
{feedback_message}

Please use this feedback to generate a
new, improved simplification from the
original document. Reply only with the
simplified text. Do not add
explanations, labels, or extra
comments.

Simplified text:

Feedback template. The classifier output is con-
verted into natural-language feedback according to
the predicted level:

Too complex (predicted above target): “The
simplified text is too complex. It was
predicted as CEFR {predicted_cefr} but
the target is {target_cefr}. Please
simplify vocabulary and sentence
structure while preserving the original
meaning and keeping the text natural
and coherent.”

Too simple (predicted below target): “The
simplified text is too simple. It was

predicted as CEFR {predicted_cefr} but
the target is {target_cefr}. Please use
slightly more complex vocabulary and
sentence structures while preserving
the original meaning and keeping the
text natural and coherent.”

B Distribution of final candidates

Table 2 shows the distribution of final candidates
chosen by the LLM judges across prompting strate-
gies and models.

Zero-shot  Few-shot Round-trip  Total
Gemini-as-judge
Claude 30 3 12 45
GPT-5 33 19 10 62
Gemini 18 7 22 47
ol 27 14 5 46
Total 108 43 49 200
GPT-as-judge
Claude 12 4 12 28
GPT-5 51 20 13 84
Gemini 15 8 21 44
ol 27 7 10 44
Total 105 39 56 200

Table 2: Distribution of final candidates selected under
Gemini- and GPT-as-judge.

C Model-prompt performance by target
level

This appendix provides detailed results across all
prompting configurations (zero-shot, one-shot, and
round-trip). Table 3 summarizes overall test perfor-
mance across the four models, averaged over five
runs. Tables 4 and 5 present level-specific results
for A2 and B1.

D Effect of Sample Selection Strategies
for Few-shot

On the trial data, we also explored sample selec-
tion strategies with GPT-5, comparing random ver-
sus similarity-based one-shot examples (Table 6).
Here, both random and similarity-based one-shot
examples reduced RMSE relative to zero-shot, but
random examples achieved the lowest RMSE with
relatively low variance, while similarity-based ex-
amples performed comparably. In both cases, the
gain in compliance came with a clear drop in mean-
ing preservation.

E Effect of Intermediate Language for
Round-trip

This appendix provides the results for the Round-
trip model on the trial datasets. Table 7 summarizes
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RMSE |

Model () shot 1-shot RT 0-shot

mBERT-Orig 1

mBERT-Ref 1

1-shot RT 0-shot 1-shot RT

Claude 0.595 (.018) 0.536 (.027) 0.606 (.020) | 0.836 (.002) 0.796 (.001) 0.809 (.000) | 0.820 (.002) 0.811 (.005) 0.825 (.010)
GPT-5 0.620 (.029) 0.597 (.009) 0.569 (.020) | 0.848 (.005) 0.803 (.001) 0.793 (.000) | 0.821 (.004) 0.821 (.002) 0.819 (.010)
Gemini 0.497 (018) 0.574 (.020) 0.539 (.020) | 0.812 (.004) 0.769 (.005) 0.793 (.000) | 0.811 (.003) 0.808 (.008) 0.819 (.000)
ol 0.797 013) 0.706 (.015) 0.630 (.030) | 0.868 (.002) 0.839 (.004) 0.828 (.000) | 0.818 (.004) 0.826 (.003) 0.835 (.000)

Table 3: Average performance under zero-shot, similarity-based one-shot, and round-trip prompting on test data
across all models (5 runs per setting). Standard deviations shown in parentheses.

Model A2 RMSE | A2 mBERT-Orig 1 A2 mBERT-Ref 1
0-shot 1-shot RT 0-shot 1-shot RT 0-shot 1-shot RT
Claude 0.444 (.040) 0.433 (.060) 0.548 (.050) | 0.754 (.000) 0.748 (.000) 0.756 (.000) | 0.810 (.000) 0.801 (.010) 0.795 (.010)

GPT-5
Gemini

0.595 .020) 0.551 (.030) 0.436 (.020) | 0.792 (.010) 0.776 (.000) 0.727 (.010) | 0.819 (.010) 0.818 (.000) 0.789 (.010)
0.359 (.040) 0.266 (.040) 0.364 (.050) | 0.730 (.000) 0.715 (.010) 0.722 (.000) | 0.788 (.010) 0.783 (.010) 0.788 (.010)

ol 0.857 (.020) 0.743 .030) 0.601 (.040) | 0.840 (.010) 0.818 (.010) 0.779 (.010) | 0.820 (.010) 0.827 .000) 0.806 (.000)

Table 4: A2-level results under zero-shot, one-shot, and round-trip prompting.

B1 RMSE |

Model 0-shot 1-shot RT 0-shot

B1 mBERT-Orig 1

B1 mBERT-Ref 1

1-shot RT 0-shot 1-shot RT

Claude
GPT-5
Gemini

0.714 (010) 0.620 (.010) 0.656 (.060) | 0.917 (.000) 0.843 (.000) 0.863 (.000) | 0.831 (.000) 0.821 (.000) 0.854 (.000)
0.644 (.040) 0.638 (.030) 0.676 (.020) | 0.904 (.000) 0.830 (.000) 0.858 (.000) | 0.823 (.000) 0.824 (.000) 0.849 (.010)
0.603 (.020) 0.767 (.020) 0.669 (.030) | 0.894 (.010) 0.824 (.000) 0.864 (.000) | 0.833 (.000) 0.834 (.010) 0.849 (.000)

ol 0.733 030) 0.666 (.030) 0.658 (.030) | 0.896 (.000) 0.859 (.010) 0.877 (.000) | 0.816 (.000) 0.824 (.000) 0.865 (.000)

Table 5: B1-level results under zero-shot, one-shot, and round-trip prompting.

Setting RMSE|  mBERT-Origt mBERT-Ref 1
Zero-shot 0.709 £ 0.056  0.853 = 0.008  0.793 + 0.006
Random 1-shot  0.532+0.024 0.801 £ 0.010 0.783 + 0.006
Similarity 1-shot 0.540 +0.097  0.799 + 0.008  0.779 + 0.007

Table 6: Average performance (% standard deviation) of GPT-5 with zero-shot, random one-shot, and similarity-
based one-shot prompting on trial data (3 runs per setting).

the performance of each intermediate language,
measured by CEFR accuracy, meaning preserva-
tion score, and similarity to the reference score,
averaged across five runs. Also, Table 8 reports
a comparison of simplified paragraphs with and
without simplification in English-to-Chinese trans-
lation, based on MeaningBERT (mBERT in short).

Round-trip and comparing with other inter-
mediate languages. We implemented round-trip
prompts with multiple intermediate languages on
the trial datasets. Besides Chinese and German
(included in the submission file), we also em-
ployed Spanish, Japanese, French, and Indonesian.
Our findings are: from Table 7 , at A2, Chinese
achieved the highest accuracy but the poorest mean-
ing preservation and similarity-to-reference scores,
whereas French and Indonesian showed the low-
est accuracy but the highest Orig-BERT score. At

B1, the highest accuracy was obtained by Chinese,
German, Spanish, and Japanese; however, Chinese
also showed the lowest accuracy, the same as In-
donesian, indicating a large variance in its perfor-
mance. Spanish achieved the highest scores for
both meaning preservation and similarity to refer-
ence and German also achieves adequately high.
These results indicate the different tendencies of in-
termediate languages in matching the target CEFR
level at A2 and B1.

Furthermore, we found a two-step simplifica-
tion approach as in A2 is also effective. From
Table 7 , Chinese achieved an accuracy of 1.0 at
A2. The reason for ineffectiveness at B1 is; the
two-step simplification did not adjust the output to-
ward the target CEFR level, but rather accumulated
the effect of simplification, resulting in an oversim-
plification beyond B1. Additionally, compared to
simple translation, the meaning preservation score
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decreases in most paragraphs, but not for similarity
to the reference: as illustrated by the example in
Table 8, in about 25% of the paragraphs the score
was actually higher, with simplified outputs also
tending to have shorter sentences, with an average
of 7.47 sentences after simplification compared to
6.76 without simplification, while original and ref-
erence paragraphs respectively contain 4.35 and
5.55 on average.

F Formatting

We observed that our self-refinement run contained
substantially more newlines than the ensemble runs.
At first we attributed this to the refinement process
itself, hypothesizing that LLLMs might exploit for-
matting as a way to adjust difficulty in the loop. Fur-
ther inspection of zero-shot baselines revealed that
only GPT-5 appeared to use newlines as a mecha-
nism for level control, producing many at the B1
level (3.0 on average per output) but almost none
at A2 (0.07), whereas other models inserted almost
none across levels (Table 9).

However, we did find that the refinement pro-
cess affects formatting. Among the instances that
underwent refinement, newlines significantly de-
creased at B1 (0.63) but increased at A2 (1.06).
This suggests that the refinement loop not only
adjusts lexical and syntactic complexity, but also
affects surface formatting.

Notably, removing newlines from the outputs
substantially altered the CEFR classifier’s predic-
tions, as seen in Table 10, indicating that the classi-
fier is also sensitive to formatting cues.
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Intermediate Chinese German Spanish Japanese | French | Indonesian
language +simplify +simplify +simplify
Target CEFR: A2
Acc-min 0.500 0.900 0.600 0.750 0.500 0.800 0.500 0.450 0.450
Acc-avg 0.620 0.950 0.625 0.815 0.550 0.900 0.590 0.600 0.530
Acc-max 0.750 1.000 0.700 0.850 0.600 0.950 0.700 0.650 0.600
mBERT-Orig | 0.776 0.713 0.797 0.715 0.806 0.716 0.777 0.803 0.805
mBERT-Ref | 0.743 0.721 0.755 0.744 0.740 0.734 0.732 0.739 0.750
Target CEFR: B1
Acc-min 0.350 0.250 0.500 0.400 0.450 0.300 0.450 0.400 0.350
Acc-avg 0.500 0.300 0.563 0.415 0.540 0.385 0.540 0.460 0.490
Acc-max 0.650 0.350 0.650 0.450 0.650 0.450 0.650 0.500 0.600
mBERT-Orig | 0.840 0.767 0.858 0.785 0.869 0.812 0.837 0.858 0.853
mBERT-Ref | 0.827 0.776 0.826 0.792 0.850 0.814 0.841 0.836 0.829

Table 7: Comparison of intermediate languages based on CEFR accuracy, meaning preservation score, and similarity
to reference score on the trial dataset

Simplified paragraph ‘ MeaningBERT

Without Small animals like birds, squirrels, mice, and insects are common in many cities and | MeaningBERT-
simplification | towns. But recently, news from all over the world talks a lot about wild animals coming | orig: 0.823

into cities. Bears have been seen in parks in Vancouver. Leopards walk on the streets of | MeaningBERT-

Mumbai. And wild boars are in gardens in Berlin. What happens when bigger animals | ref: 0.700

come into our cities? Are they welcome? Or do people see them as dangerous or a

problem?
With Small animals live in many towns and cities. For example, birds, squirrels, mice, and | MeaningBERT-
simplification| insects. But now, more wild animals are coming into cities. Newspapers write about it. | orig: 0.701

For example, there are bears in parks in Vancouver. Leopards are on streets in Mumbai. | MeaningBERT-

Wild pigs are in gardens in Berlin. What if bigger animals come to cities? Will we | ref: 0.846

welcome them? Or will we think they are dangerous or harmful?

Table 8: Comparison of simplified paragraphs with and without simplification in English-to-Chinese translation.

Model A2 B1

Claude 0.01 0.00
GPT-5 0.07 3.02
Gemini  0.00 0.00
ol 0.00 0.24

Table 9: Average number of newlines per output in zero-
shot simplifications on test data by model and target

CEFR level.
Run Formatting RMSE mBERT-Orig
Original 0.1225 0.8511
GPT-5 Ensemble "o oved  0.2550 0.8503
. Original 0.0707 0.8621
Gemini Ensemble "o\ ved  0.1871 0.8621

Table 10: Effect of removing newline characters (\n) on
automatic evaluation metrics.

241



SQUREL at TSAR 2025 Shared Task: CEFR-Controlled Text
Simplification with Prompting and Reinforcement Fine-Tuning

Daria Sokova*
University of Surrey

Anastasiia Bezobrazova*
University of Surrey

Constantin Orasan
University of Surrey

d.sokova@surrey.ac.uk a.bezobrazova@surrey.ac.uk c.orasan@surrey.ac.uk

Abstract

This paper summarises the submissions of
our team to the TSAR 2025 Shared Task
on Readability-Controlled Text Simplification,
which aims to create text simplifications that
balance reduced linguistic complexity, mean-
ing preservation, and fluency while meeting
a predefined target readability level. In this
work, we proposed two different methods for
CEFR-controlled text simplification: a setup
which employed reinforcement fine-tuning of
large language models (LLMs) and a conserva-
tive lexical pipeline which relied on prompting
LLMs to simplify sentences.

1 Introduction

Readability-controlled text simplification (RCTS)
aims to generate simplifications within specified
readability levels while preserving the original
meaning (Barayan et al., 2024). While instruction-
tuned LLMs have been shown to be useful in zero-
shot RCTS, balancing readability control and mean-
ing preservation remains challenging (Farajidizaji
et al., 2023). This paper presents our participation
in the TSAR 2025 Shared Task on Readability-
Controlled Text Simplification (Alva-Manchego
et al., 2025). The Shared Task invited participants
to simplify sentences at the B1 and A2 CEFR lev-
els. Due to the scarcity of labelled data for su-
pervised training, we explore approaches that do
not require high-quality parallel data labelled with
CEFR levels. We propose two methods for produc-
ing readability-controlled simplifications:

1. Reinforcement Fine-Tuning with Group
Relative Policy Optimization: this method
proposes a fine-tuning strategy aimed at condi-
tioning an open-weight LLM to produce sim-
plifications that balance CEFR-level accuracy
and meaning preservation.

*These authors contributed equally to this work

2. Lexical Simplification: which aims to pro-
duce simplifications corresponding to the
specified CEFR level through careful lexical
substitution with the help of LLM prompting.

The rest of the paper is structured as follows.
Section 2 describes the two methods we employed
to obtain the outputs submitted to the Shared Task,
followed by the discussion of the results in Section
3. We also describe limitations of our work and
provide concluding observations. The prompts and
examples from the outputs can be found in the
Appendix A.

2 Methods Description

2.1 Group Relative Policy Optimization
Fine-Tuning

Data annotated with CEFR labels at document level
is scarce, which makes it difficult to use a super-
vised fine-tuning approach. For this reason, we ex-
periment with reinforcement fine-tuning that does
not require labelled data, specifically, with Group
Relative Policy Optimization (Shao et al., 2024).
In an attempt to balance CEFR-level accuracy and
meaning preservation, we use two reward functions
to score candidate completions, compute rewards
and update the model’s weights. The first function
computes rewards for compliance with the target
CEEFR level, whilst the second one scores candi-
date completions for meaning preservation. We
submitted two similar systems developed using this
method. They are described in Sections 2.1.2 and
2.14.

2.1.1 Data

To obtain texts for generating predictions during
fine-tuning, we use the CEFR Levelled English
Texts dataset available on Kaggle.! Originally, the
dataset contained around 1,500 texts labeled with

1https://www.kaggle.com/datasets/amontgomerie/
cefr-levelled-english-texts
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CEFR levels. As the shared task targets simplifi-
cation of documents written at upper-intermediate
or advanced levels, we split the dataset and keep
only texts at levels B2, C1 and C2. After splitting
texts longer than 150 words into separate examples,
we obtained 1,350 unique training examples. We
prompt (see Prompt 3 in the Appendix) the model
to simplify each instance into each of the target
levels: Al, A2 and B1, obtaining a total of 4,050
texts to generate predictions during fine-tuning.

2.1.2 Setup for Run 1

We fine-tune the Llama 3.2 3B Instruct > model
using the GPRO Trainer from the Transformer Re-
inforcement Learning 3 library. This model was
chosen for its modest size and good instruction-
following capabilities. Due to computational con-
straints, we set up the model to generate 3 candi-
date simplification for each instance in the dataset.
Each of the candidate predictions is scored with the
reward functions and ranked. Then, the model’s
weights are updated to increase the probability of
generating high-reward completions and decrease
the probability of generating low-reward ones.

2.1.3 Reward Functions

The CEFR compliance reward utilises the CEFR
labelling models proposed by the Shared Task or-
ganizers in the evaluation scripts. The models are
used to produce a CEFR label for each of the 3
candidate completions. The reward formula calcu-
lates the absolute difference between the predicted
CEFR level and target CEFR level, then converts
this distance into a reward score. The reward starts
at 1.0 for perfect matches and decreases by 0.5 for
each level of deviation, with a minimum reward of
0.0 for texts that are 2+ levels away from the target.

The meaning preservation reward uses the Sen-
tenceTransformer model (all-MiniLM-L6-v2) to
generate vector embeddings of the original text
and a candidate completion. Then, cosine similar-
ity between the embeddings is computed and the
scores are cubed to create a more distinctive vari-
ance between positive and negative scores. This
way, completions that deviate from the original
meaning are penalized more strictly.

Due to resource limitations, we choose conser-
vative settings for the GRPO fine-tuning configu-
ration. We use a learning rate of 5 x 1075 and

2https://huggingface.co/meta—llama/Llama—3.
2-3B-Instruct
Shttps://huggingface.co/docs/trl/en/index

fine-tune for 1 training epoch. For each training
step, the model generates 3 candidate completions
with an effective batch size of 3. To reduce com-
putational costs, we applied Low-Rank Adaptation
(LoRA) fine-tuning.

2.1.4 Setup for Run 2

Run 2 is a variant of the system described in the
previous section with some alterations in the train-
ing configuration. We use a more lenient CEFR
reward function, which reduces penalties for larger
gaps between predicted and target CEFR levels
as during the exploratory study it showed to lead
to better scores for CEFR adjacency compliance.
We also slightly upgraded the training parameters
by setting a higher learning rate of 1 x 10~ and
increased the number of generations in each step
from 3 to 4 and the gradient accumulation steps
from 3 to 16 for more stability in updating weights.
We also train for 2 epochs instead of 1.

In addition, the system employs a revised ver-
sion of the prompt (see Prompt 4 in the Appendix)
for generating candidate predictions. Unlike the
system in Run 1, this version of the prompt does
not provide examples of texts readable at the corre-
sponding CEFR level.

2.1.5 Inference in the reinforcement
fine-tuning pipeline

We prompt the fine-tuned model to simplify doc-
uments to the target CEFR level using a zero-
shot prompt (see Prompt 5 in the Appendix). Ini-
tially, we experimented with several versions of
the prompt to generate predictions for fine-tuning,
including the prompt with examples of texts read-
able at the corresponding CEFR levels. The results
obtained on the trial data indicated that the model
performed best when prompted with a zero-shot
prompt without examples of CEFR-level appropri-
ate text.

2.2 Lexical simplification

This method employed implements a lexical simpli-
fication pipeline that combines a CEFR-annotated
lexicon, WordNet synonyms (Miller, 1992), and
controlled LLM rewrites. The system is designed to
simplify sentences to CEFR A2 and B1 levels while
preserving meaning as much as possible. Previous
work has attempted CEFR-targeted simplification
with LLMs, but the results were often inconsistent,
particularly for lower levels such as A2 and B1
(Barayan et al., 2024). To avoid issues like the ones
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run weighted-f1  cefr-adj rmse meaningbert-orig bertscore-orig
Run 1 (grpo-ft-vl)  0.590 0.995 0.633  0.779 0.928
Run 2 (grpo-ft-v2)  0.543 0.985 0.718 0.821 0.937
Run 3 (lex-simpl) 0.578 0.710 1.269 0.972 0.985

Table 1: Evaluation scores for the best runs of the proposed systems obtained on the Shared Task trial data.

run rmse meaningbert-orig meaningbert-ref  AvgScore
Run 1 (grpo-ft-vl) 0.718 0.821 0.797 -0.076
Run 2 (grpo-ft-v2) 0.632 0.779 0.778 -0.153
Run 3 (lex-simpl) ~ 1.153  0.979 0.819 -0.022

Table 2: Final scores and ranking of the submitted systems in the Shared Task obtained on the Shared Task test data.

noticed with previous approaches, this method is
deliberately conservative: it avoids uncontrolled
rewriting and enforces strict vocabulary constraints.
Each of the steps of our method is presented below.

2.2.1 Complex word identification and
candidate generation

Sentences are tokenised with spaCy, and each con-
tent word (noun, verb, adjective, adverb) is checked
for possible substitutions. For a word to be in-
cluded in the replacement table, WordNet must
provide a POS-compatible synonym whose lemma
also appears at the rarget CEFR level in our lexicon
(strict A2/B1, same-level only)*. If no such syn-
onyms exist, the word is ignored and may remain
unchanged.

2.2.2 Constrained replacement

We present the sentence to the LLM together with
a table of allowed replacements and instruct it to
select at most one option per listed token, leave
all other tokens unchanged, and not introduce new
vocabulary. For example:

assist = {help}, purchase = {buy}

An example of the full prompt 1 is provided in the
Appendix A.

2.2.3 Style polishing

A second prompt asks the LLM to polish the text
to CEFR-specific style: sentence-length limits (A2:
max 14 words; B1: max 22), preference for active
voice, and restricted connectors (and, but, or, be-
cause, so for A2; plus when, if, before, after for
B1). We generate k=4 candidates using varied
sampling (temperature € {0.2,0.3,0.35,0.45},
top — p € {0.95,0.9,0.85,0.8}).

An example of the full prompt 2 is provided in the
Appendix A.

“https://www.kaggle.com/datasets/nezahatkk/10-000-
english-words-cerf-labelled

2.2.4 Candidate selection

From the multiple polished outputs, the best candi-
date is selected using an automatic scoring function.
Each candidate is evaluated along four dimensions:
(1) CEFR compliance, measured with a Modern-
BERT classifier; (2) meaning preservation, esti-
mated with MeaningBERT when available, with
BERTScore as a fallback and lexical overlap as
a final backup; (3) copy ratio, i.e., the proportion
of words retained from the original, with penal-
ties applied if this exceeds a level-specific thresh-
old (0.60 for A2 and 0.75 for B1); and (4) sen-
tence length, with penalties applied when the target
CEFR limit is exceeded. A single selection score is
then computed as a weighted combination of these
factors: CEFR compliance (weight 1.0), meaning
preservation (+0.15), penalties for excess copy ra-
tio (-0.18 xexcess over 0.60 for A2 or 0.75 for B1),
and sentence length (-0.10xrelative excess over
the level limit). These weights are predefined hy-
perparameters rather than learned parameters and
were determined by experimenting with the devel-
opment data. The candidate with the highest score
is selected.

2.2.5 Iteration

The system repeats the pipeline until the output is
both simple enough and faithful enough to the origi-
nal. Simplicity is measured by a CEFR compliance
score that rewards predictions at or below the target
level (A2 or B1) and incorporates classifier confi-
dence; this score must reach at least 0.80. Faithful-
ness is measured by a meaning-preservation score,
which must also reach at least 0.80. If both condi-
tions are met, or if six rounds have already been run,
the process stops. Additionally, we reject any can-
didate that lowers the meaning-preservation score
by more than 0.05 compared to the previous round.
An example of the iterative process is presented in
Figure 1.
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Original: The committee endeavoured to facilitate the distribution of resources in an equitable manner.

[1] endeavoured — tried = The committee tried to facilitate the distribution of resources in an equitable manner.

[2] facilitate — help = The committee tried to help the distribution of resources in an equitable manner.

[3] equitable — just = The committee tried to help the distribution of resources in a just manner.

Final: The committee tried to help the distribution of resources in a just manner.

Figure 1: Example of iterative lexical simplification for target level A2

2.2.6 Implementation

The pipeline was implemented in Python with
spaCy for tokenisation/POS, NLTK/WordNet for
synonyms, a CEFR lexicon for strict vocabulary
control>.  We used the transformers text-
classification pipeline with AbdullahBarayan/
ModernBERT-base-reference_AllLang2-Cefr2
for CEFR compliance, evaluated for Meaning-
BERT and BERTScore, and the OpenAl API
(gpt-40-mini) for constrained rewrite and style
polishing. The performance of the method is
presented in Section 3.

2.3 Evaluation

The methods presented above were run with a num-
ber of parameters on the trial data. We used the
evaluation scripts provided by the organizers (Alva-
Manchego et al., 2025) to inform the choice of runs
to submit to the Shared Task.

For each system, we ran inference iteratively
and chose the best-performing runs. We based our
choice of the best runs on the scores achieved for
weighted F1 and CEFR-level adjacency accuracy.
The results for the chosen runs are shown in Table
1.

We observe a trade-off between the meaning
preservation capabilities and adjacency accuracy
of our systems. The reinforcement fine-tuning
method demonstrates higher CEFR adjacency ac-
curacy while having lower meaning preservation
scores. The lexical simplification approach, on
the other hand, produces outputs that preserve the
original meaning due to careful lexical substitution.
However, it does not attain high accuracy in CEFR
level adjacency.

3 Results and Discussion

Table 2 presents the official evaluation results ob-
tained by our systems on the test data. The method-
ology for the final Shared Task ranking released

Shttps://www.kaggle.com/datasets/nezahatkk/10-000-
english-words-cerf-labelled

by the organizers excludes some of the computed
metrics and produces a weighted score that relies
on RMSE and meaning preservation scores against
the original text and the references measured with
MeaningBERT.

The Lexical Simplification system (Run 3) we
submitted achieves the highest original meaning
preservation scores across all systems submitted
to the shared task. Due to careful meaning preser-
vation, the Lexical Simplification System ranks
higher than the models fine-tuned with GRPO de-
spite lower accuracy in achieving target CEFR lev-
els. The suboptimal RMSE of the reinforcement
fine-tuning method might be due to our choice to
optimize the reward functions for CEFR adjacency
accuracy, which considers outputs successful if
their CEFR level is within one level of the specified
target, leading to lower accuracy.

Our lexical simplification pipeline, does not em-
ploy a word sense disambiguation module to pre-
filter candidates based on the sense of a word to
be replaced. Instead we employ a large language
model (gpt-40-mini) to infer which word fits in
the given context. This enables the model to se-
lect morphologically and syntactically well-formed
substitutes without relying on a separate WSD com-
ponent.

3.1 Error Analysis

We manually analysed the outputs for a more de-
tailed insight into the trade-off between meaning
preservation and CEFR compliance scores.

The analysis reveals that the fine-tuned systems
overall make more transformations to arrive at a
simplification. Some of these transformations, such
as sentence splitting and changes to the syntactic
structure of the original sentence, are in line with
the general text accessibility guidelines. The output
of the fine-tuned models appears generally easier
to read in comparison with our best-performing
system. However, aside from occasional awkward
phrasing and slight information loss, it contains
multiple semantic errors that sometimes cause sig-
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nificant distortion of meaning. To demonstrate
these, we provide our systems’ outputs for the texts
from the Shared Task’s test data with text-id 113-a2
and 113-bl (see Table 3) in the Appendix.

Omission is a major cause of semantic errors in
the output. For instance, the mention that spider
venom is not mainly used to attack humans was not
retained in the following examples: run-1-113-a2,
run-2-113-a2 and run-2-113-b1. This resulted in a
significant deviation in meaning. Another example
of a critical semantic error is run-1-113-b1. The
original says ‘Spider venom ... serves the purpose
of stunning or killing their prey rather than attack-
ing humans’, but in the generated simplification
the meaning is distorted to “it helps them catch
their food by stunning or killing it, not by hurting
humans”. Not only is this change of preposition
unnecessary, it makes the wording ambiguous and
may cause confusion. Apart from that, unjustified
additions are another cause of meaning distortion
in the output of the fine-tuned systems, for example,
in run-1-113-a2.

As for run-3-113-a2, it is an exact copy of the
source, which fails the stated goal of A2 readability,
for example, low-frequency items such as “fatali-
ties,” “urticating,” and “embed” remain and there
is no simplification of syntax or lexis. As a result,
the text is unlikely to be accessible to A2 read-
ers, even though it would score highly on meaning
preservation. By contrast, run-3-113-b1 applies
principled reductions and largely preserves mean-
ing. It breaks up long sentences and replaces the
clause “serves the purpose...their prey rather than
attacking humans” with a clearer two-step formu-
lation: “Most spider species have venom that helps
them catch prey. They do not usually attack hu-
mans.”. Several lexical substitutions also improve
accessibility: “has not produced any fatalities” —
“has not caused any deaths”; “ejecting a cloud of
urticating hairs” — “releasing a cloud of irritating
hairs”;, “embed themselves” — “stick.”

In addition, several A2 outputs introduce risky
lexical changes: run-3-27-a2 shifts scope “poor
areas” — “poor countries”; run-3-22-a2 mis-
renders “wild dogs” as “frank dogs”; run-3-38-a2
“wild animals” — “violent creatures”. Notably,
these anomalies are confined to A2-level, B1 out-
puts generally retain key terms and avoid such er-
1Or1S.

Overall, manual error analysis indicates that the
GRPO fine-tuned systems often produce outputs
that deviate in meaning from the original, despite

the implemented meaning-preservation rewards.
While the generative pipeline inherently offers less
control than the more conservative rule-based one,
a more carefully tailored weighting of the reward
functions and implementation of more advanced
metrics, such as MeaningBERT (Beauchemin et al.,
2023), for computing meaning preservation re-
wards might improve performance. As for the lexi-
cal simplification system, many sentences remain
unchanged, particularly at A2-level, so meaning is
preserved but CEFR aims are often unmet. Where
A2 lexical edits are made, they are sometimes odd
or misleading, whereas B1 simplifications tend to
be more controlled and effective.

4 Conclusions

In this paper, we presented two approaches on
readability-controlled text simplification for the
TSAR 2025 Shared Task. The lexical pipeline
based on strict CEFR-constrained substitutions
with light post-editing generally preserves source
meaning but quite often fails to replace the problem-
atic words, and at times introduces critical errors,
showing that control alone does not preclude seri-
ous failures. The models fine-tuned with GRPO are
better at producing simplifications corresponding
to the specified CEFR level but this is quite often at
the expense of keeping the original meaning. These
results underline the limitations of both approaches:
the lexical pipeline achieves better meaning preser-
vation while often failing at achieving the required
readability level. At the same time, although the
fine-tuned systems produce simpler texts, the out-
put often deviates form the original meaning while
still not matching the required readability level per-
fectly.

Limitations

A key limitation of the reinforcement fine-tuning
method is the lack of experimentation with reward
function design, the weighting of the rewards and
training parameters. In addition, the dataset used
to generate predictions during reinforcement fine-
tuning contains automatically produced labels, and
the genres and content of the texts differ from those
of the Shared Task test data, which may affect per-
formance. The lexical pipeline used a CEFR word
list from Kaggle rather than the official CEFR-J Vo-
cabulary (Version 1.5) from TUFS®. This resource

%Yukio Tono, The CEFR-J Wordlist Version 1.5, retrieved
from http://www.cefrj.org/download.html on 20 Jan-
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deviates from the original CERF list, which may
have influenced our results. Finally, the lexical sim-
plifier relied on the commercial GPT-40-mini, so
results may be hard to replicate as future versions
could behave differently.

Lay Summary

Reading difficult text can be challenging for many
people, including language learners, children, and
those with reading difficulties. This research ex-
plored ways to automatically rewrite complex texts
to make them simpler while keeping the original
meaning. Our team developed automatic systems
to simplify complex texts to target levels of reading
difficulty.

For example, a text that requires advanced lan-
guage skills needs to be simplified so that speakers
with intermediate or elementary skills can under-
stand it easily. When the task says that a text should
be simplified for elementary skills, then the result
is only successful if the simplified text can be eas-
ily understood by speakers with elementary skills.
It is not considered successful if the text does not
match the required skill level, even if it is generally
simpler than the original. The simplified text also
needs to keep the meaning of the original difficult
text.

Our team developed two different approaches.
The first method works like a careful editor. It
swaps difficult words for simpler alternatives. This
system used a dictionary that labelled words by
difficulty level and only replaced complex words
with simpler synonyms that meant the same thing.
After making these swaps, the system polished the
sentences by shortening them and using simpler
grammar. The polishing was done using a large
language model — a computer program that can
generate text. This approach was good at keeping
the original meaning but sometimes struggled to
make texts simple enough.

The second method involved teaching a large
language model to learn how to simplify text to
a specific skill level. Rather than following strict
rules, the system learned through practice. It per-
formed the task repeatedly and received scores on
how well it matched the needed difficulty level
and how accurately it preserved meaning. This ap-
proach was better at simplifying texts to the target
difficulty levels, but it often changed the meaning
too much or left out important information.

uary 2020

When tested, the careful word-swapping method
performed best overall because it preserved mean-
ing more reliably, even though it did not always
achieve the target difficulty level. The taught large
language model was better at generating simpler
text and achieving the target difficulty level but per-
formed worse overall because it introduced errors
or left out important details.

This research highlights that it is challenging to
create automatic text simplification systems that
match the required difficulty level and keep the
original meaning at the same time.
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A Appendix
A.1 The Prompts Used During Simplification

Prompt 1 (Method 1)

You are a careful lexical simplifier.

Target CEFR level: {target}. Preserve meaning exactly. Keep names and numbers.
{style_extra}

{vocab_rule}

RULES:

1) You may replace a token ONLY if it appears in the list below.

2) For each listed token, choose at most one alternative from its line.
3) If none of the alternatives fit the meaning, KEEP the original token.
4) Do NOT invent alternatives or use words not in the list.

5) Keep punctuation and sentence order; light edits for grammar are OK.

ALLOWED REPLACEMENTS (source = options):
{token_1} = {option_1a, option_1b, ...}
{token_2} = {option_2a, option_2b, ...}

Original text:
{original_text}
Output ONLY the rewritten text with your chosen replacements.

Prompt 2 (Method 1)

You are a professional text editor.

Target CEFR level: {target}. Preserve meaning and chosen vocabulary.
{style_extra}

{vocab_rule}

Do NOT add definitions or extra info.
Split long sentences if needed. Prefer active voice.

Original text:
{rewritten_text}

Polished text:

Prompt 3 (Used to generate candidates during fine-tuning for Method 2, Run 1)

System Prompt:

You are an expert in text simplification. You simplify text to the CEFR level
that perfectly aligns with the target CEFR level. You only output simplified
texts. You do not include anything else in your answer.

User Prompt:

Please simplify the following Complex Text to make it easier to read and
understand by {target_cefr} CEFR English learners. To simplify, you may replace
difficult words with simpler ones, elaborate or remove them when possible. You
may also break down a lengthy sentence into shorter, clear sentences. Ensure
the revised sentence is grammatically correct, fluent, and maintains the core
message of the original, without changing its meaning.

Please simplify the following Complex Text to make it easier to read and
understand by {target_cefr} CEFR English learners. To simplify, you may replace
difficult words with simpler ones, elaborate or remove them when possible. You
may also break down a lengthy sentence into shorter, clear sentences. Ensure
the revised sentence is grammatically correct, fluent, and maintains the core
message of the original, without changing its meaning.

The following are the examples of sentences readable by {target_level} CEFR
level English learners:
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Example 1: el

Example 2: e2

Example 3: e3 Use these examples as reference, do not produce any examples.
Complex Text: {text}

Simplified Text:

Prompt 4 (Used to generate candidates during fine-tuning for Method 2, Run 2)

System Prompt:

You are an expert in text simplification. You simplify text to the CEFR level that
perfectly aligns with the target CEFR level.
You only output simplified texts. You do not include anything else in your answer.

User Prompt:

Please simplify the following Complex Text to make it easier to read and understand by
{target_cefr} CEFR English learners. To simplify, you may replace difficult words with
simpler ones, elaborate or remove them when possible. You may also break down a lengthy
sentence into shorter, clear sentences. Ensure the revised sentence is grammatically
correct, fluent, and maintains the core message of the original, without changing its
meaning.

Only produce the simplified text, do not include anything else.

Complex Text: {text}
Simplified Text:

Prompt 5 (Used during inference for Method 2)

You are an expert in text simplification.

You simplify text to the CEFR level that perfectly aligns with the target CEFR level.
You only output simplified texts. You do not include anything else in your answer.
Please simplify the following Complex Text to make it easier to read and understand by
{target_cefr} CEFR English learners. To simplify, you may replace difficult words with
simpler ones, elaborate or remove them when possible. You may also break down a lengthy
sentence into shorter, clear sentences. Ensure the revised sentence is grammatically
correct, fluent, and maintains the core message of the original, without changing its
meaning.

Only produce the simplified text, do not include anything else.

Complex Text: {text}
Simplified Text:

A.2 Examples Discussed in Error Analysis
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example-id

example-text

original-113

Spider venom is present in most species and serves the purpose of stunning or killing their
prey rather than attacking humans. In fact, only 25 of the known spider species produce
venom which can actually harm humans, and although spider bites can be painful, they
are rarely deadly. Australia’s notorious Sydney funnel-web spider has not produced any
fatalities since anti-venom was developed in 1981. However, take care not to rub hairy
spiders like tarantulas up the wrong way. When they feel in danger, they defend themselves
by ejecting a cloud of urticating hairs. These irritating hairs then embed themselves in the
skin or eyes of the attacker.

run-1-113-a2

Most spiders have venom that helps them catch their food. This venom can
hurt people, but it is not usually deadly. Only 25 out of many spider species can hurt
humans. In Australia, there is a big spider called the Sydney funnel-web spider. It is not
deadly since a medicine was made to stop its venom. However, it is still dangerous if
you touch it. Tarantulas are also hairy and can hurt you if they feel scared. If they feel
threatened, they will throw out irritating hairs to defend themselves. These hairs can get

stuck in your skin or eyes.

run-1-113-bl

Spider venom is present in most spiders. It helps them catch their food by stunning or
killing it,
can hurt humans. Their bites can be painful, but usually not deadly. Australia’s Sydney
funnel-web spider has not killed anyone since the development of anti-venom in 1981.
However, be careful when you touch hairy spiders, like tarantulas. If they feel threatened,
they can defend themselves by releasing irritating hairs into the air. These hairs can stick
to your skin or eyes if you touch them.

Most spiders do not harm humans. Only 25 species

run-2-113-a2

Many spiders have venom. They use it to catch their food. - Most spiders

can’t hurt people. Only- species can. If you get bitten by a spider, it can hurt. But
it’s not usually very bad. In Australia, there’s a very dangerous spider called the Sydney
funnel-web. It won’t kill you. But be careful. Some hairy spiders, like tarantulas, can hurt
you if you touch them. When they feel threatened, they spit out hair. These hairs can hurt
your skin or eyes.

run-2-113-bl

Most spiders have venom. They use it to catch or kill their food. Only 25

spider species can hurt humans. Spider bites can be painful. But they are
not usually deadly. Australia’s Sydney funnel-web spider is very dangerous. But it is not
deadly since medicine was invented in 1981. If you touch hairy spiders like tarantulas, be
careful. When they are scared, they can hurt you by throwing hairs. These hairs can hurt
your skin or eyes.

run-3-113-a2

Spider venom is present in most species and serves the purpose of stunning or killing their
prey rather than attacking humans. In fact, only 25 of the known spider species produce
venom which can actually harm humans, and although spider bites can be painful, they
are rarely deadly. Australia’s notorious Sydney funnel-web spider has not produced any
fatalities since anti-venom was developed in 1981. However, take care not to rub hairy
spiders like tarantulas up the wrong way. When they feel in danger, they defend themselves
by ejecting a cloud of urticating hairs. These irritating hairs then embed themselves in the
skin or eyes of the attacker.

run-3-113-bl

Most spider species have venom that helps them catch prey. They do not usually attack
humans. Only 25 spider species have venom that can harm humans. Spider bites can
be painful, but they are rarely deadly. The Sydney funnel-web spider in Australia has
not caused any deaths since anti-venom was created in 1981. However, be careful not to
handle hairy spiders like tarantulas improperly. When they feel threatened, they protect
themselves by releasing a cloud of irritating hairs. These hairs can stick to the skin or eyes
of the attacker.

Table 3: Examples discussed in the Error Analysis subsection with errors highlighted in red.
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Abstract

Large language models (LLMs) have demon-
strated strong performance in text simplifica-
tion tasks, but their high computational cost
and proprietary nature often limit practical use,
particularly in educational contexts. In this
work, we explore open-source LLMs for CEFR-
level text simplification. By reducing the size
of the model and the computational require-
ments, our approach enables greater accessi-
bility and deployment in educational environ-
ments. Our results obtain some of the lowest
error rates in producing CEFR-compliant texts
during TSAR2025, with models of 8 billion and
1 billion parameters. Such approaches have the
potential to democratize NLP technologies for
real-world applications.

1 Introduction

Text simplification (TS) aims to preserve the origi-
nal meaning while reducing linguistic complexity,
making text more accessible to a wider audience
(Alva-Manchego et al., 2020). In educational con-
texts, this is particularly valuable, as learners bene-
fit from materials adapted to their proficiency levels
(Li et al., 2025). In this paper, we explore differ-
ent prompting methods to Large Language Mod-
els (LLMs) and provide a comparative analysis
between large closed-source systems and smaller
open-weights models. While recent LLMs demon-
strate strong language understanding capabilities,
their high computational requirements and propri-
etary nature still limit broad educational deploy-
ment, particularly in resource-constrained settings
(Bai et al., 2024). One-billion parameter models
fine-tuned with synthetic data show promising re-
sults in providing accessible solutions for educa-
tional use.

While prior work has treated CEFR-level TS as
a unified task with controllable outputs (Barayan

“Both corresponding authors.
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et al., 2025; Farajidizaji et al., 2024), we propose
decomposing this problem into distinct sub-tasks,
where each CEFR level represents an independent
simplification objective.

We investigate two approaches: (1) level-specific
prompts that are very descriptive individually for
the specific target, and (2) specialized fine-tuning
where models are trained exclusively for individ-
ual CEFR levels. Additionally, we use an iterative
prompting technique inspired by Minimum Bayes
Risk decoding (Heineman et al., 2024), where mul-
tiple attempts with slight prompt variations are used
to achieve optimal simplification quality.

2 Simplification Systems

2.1 Prompting

Although prior work used more general prompting
strategies (Barayan et al., 2025), we find that highly
specific prompts can guide the model more effec-
tively in producing CEFR-aligned simplifications.
Specifically, our prompts make the target CEFR
level explicit by including detailed requirements
related to vocabulary range, sentence length, and
grammatical constructions, as well as by highlight-
ing distinctions between adjacent levels (e.g., A2
vs. B1 and B1 vs B2) while remaining a zero-shot
approach. We adopt this method because recent
studies have shown that LLMs struggle with reli-
able CEFR assessment (Barayan et al., 2025; Heine-
man et al., 2024). The reference to “most common
1500/3000 words” was not based on any external
frequency list. Instead, these constraints were com-
municated in the prompt itself, allowing the LLM
to operationalize the notion of common vocabulary
internally. The complete prompt templates for each
CEFR level are provided in Appendix C and D.
We evaluate our prompting approach across sev-
eral LLMs to assess their effectiveness in CEFR-
aligned text simplification. Specifically, we test
GPT-4 Turbo to enable direct comparison with
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Barayan et al. (2025), Claude Sonnet 4, Kimi K2,
and two LLaMA variants: LLaMA 3.1 8B Instruct
and LLaMA 3.2 1B Instruct.

Additionally, we implement an iterative simplifi-
cation approach where each model is given up to 5
attempts per text to achieve better simplifications,
retaining the final iteration as our output.

The strategy is:

1. prompt the model to generate a simplification
candidate and evaluate it using the CEFR clas-
sifier;

2. the generated text is evaluated for its
CEFR level using an ensemble of three
BERT-based classifiers (ModernBERT-
base-doc_en-CEFR, ModernBERT-base-
doc_sent_en-Cefr, and ModernBERT-base-
reference_AllLang2-Cefr2) the same way it
is evaluated in the evaluation script;

3. if the simplification matches the target CEFR
level, the process stops; otherwise, correc-
tive feedback is provided in the form of
The text is TOO COMPLEX. Simplify
more aggressively. or The text is TOO
SIMPLE. Add more complexity while
staying at target level., and the model
regenerates a new candidate;

4. the process repeats until the CEFR target is
reached or the maximum number of iterations
(5) is reached.

Submission 1 represents the iterative
prompting applied to Claude Sonnet 4!
(claude-4-sonnet-20250514). We use the

prompts described in Appendix C and D, with
decoding parameters set to top_k = 10 and
temperature = 0.1.

Submission 2 represents the iterative prompting
applied to LLaMA 3.1 8B Instruct?, using the same
prompt templates from Appendix C and D. For
decoding, we set top_p = ©.8 and temperature
=0.1.

We evaluate the simplifications using the offi-
cial TSAR 2025 test dataset and the corresponding
evaluation metrics (Alva-Manchego et al., 2025).
The test set consists of 100 independent sentences,
which are a subset of the Universal CEFR dataset,

1https://www.anthropic.com/claude
2https://huggingface.co/meta—LLaMA/LLaMA—3.
1-8B-Instruct

each paired with two human-authored simplifica-
tions: one at the A2 level and one at the B1 level.

2.2 Synthetic Data

Universal CEFR dataset (Imperial et al., 2025) is a
corpus annotated with CEFR levels without parallel
versions in simplified form. To address this issue,
we use LLaMA 3.1 8b to simplify the texts at the
target CEFR levels by prompting the model with
the iterative method presented earlier.

We select all texts annotated at B2 level or above,
both at the document and sentence level. Sentence-
level texts are used directly, while document-level
texts are parsed into smaller texts. In total, we
obtain 12,000 distinct texts, each paired with two
simplified versions: one at A2 level and one at B1
level.

2.3 Finetuning Small models

We use the synthetic dataset described in subsec-
tion 2.2 to finetune LLaMA 3.2 1B Instruct for
CEFR-based text simplification. We experiment
with two finetuning setups, in the first approach, we
train a single model on the entire dataset, such that
it learns to generate both A2 and B1 level simplifi-
cations. In the second approach, we train two sepa-
rate models, one specialized for A2 simplification
and the other for B1. We perform fine-tuning using
the Axolotl framework?, which provides training
pipelines for instruction-tuned LLaMA models.

Our training configuration uses a learning rate of
Se-5 with cosine learning rate scheduling and the
AdamW optimizer with 8-bit quantization. We set
the micro-batch size to 1 with gradient accumula-
tion steps of 32, resulting in an effective batch size
of 32. The models are trained for 2 epochs with a
maximum sequence length of 4096 tokens, using
sample packing to improve training efficiency. We
apply a weight decay of 0.001 and use automatic
mixed precision (bf16) when available. The valida-
tion set comprises 10% of the training data, and we
evaluate model performance every 50 steps using
perplexity as the primary metric. Early stopping
is not employed, and we save model checkpoints
once per epoch.

Submission 3 represents the iterative prompting
to LLaMA 3.2 1B Instruct*, fine-tuned using the
configuration mentioned in subsection 2.3. We use

3https://github.com/OpenAccess-AI-Collective/
axolotl

4https://huggingface.co/meta—LLaMA/LLaMA—3.
2-1B-Instruct
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the same iterative prompting process and prompt
templates as in previous submissions.

3 Results and Discussion

Table 1 summarizes the performance of all submis-
sions across the evaluation metrics. Overall, the
results indicate that Claude Sonnet 4 achieves the
best performance, with the lowest RMSE (0.122)
and the highest automatic ranking score (1.0). This
highlights its strong ability to reliably adjust lexical
and syntactic complexity while preserving mean-
ing, this being the reason why we chose it for syn-
thetic data.

While Kimi K2 achieves strong results across
automatic metrics, qualitative inspection suggests
that its simplifications often lack fluency and co-
hesion. In particular, the model tends to produce
excessively fragmented and repetitive sentences,
which explains the gap between metric-based per-
formance and actual readability. This pattern also
raises the possibility that Kimi K2 may be exploit-
ing weaknesses in current evaluation metrics, pro-
ducing outputs that score well numerically. A de-
tailed comparison with human references and out-
puts from Claude and LLaMA 3.1 is provided in
Appendix 2.

In contrast, the results for LLaMA 3.1 8B In-
struct illustrate a divergence between automatic
evaluation and human judgment. According to Ta-
ble 1, this model ranks below Kimi K2, with a
higher RMSE and slightly lower automatic scores.
However, our manual analysis found the outputs
of LLaMA 3.1 8B to be more coherent, fluent, and
contextually appropriate. This discrepancy under-
scores the fact that automatic metrics alone do not
fully capture aspects such as fluency and cohesion,
which are essential in CEFR-based text simplifica-
tion. Consequently, we regard LLaMA 3.1 8B as
overall stronger in practical terms, despite its lower
position in the automatic ranking.

When examining the outputs of LLaMA 3.2 1B
Instruct without fine-tuning, two issues become
evident. First, the model often fails to follow all
prompt instructions, even when these are stated
multiple times. For example, it frequently returns
additional comments or explanations such as ‘“Here
is the simplified text...” or even detailed notes about
the transformation process, despite being explicitly
instructed to output only the simplified text. Sec-
ond, the base model tends to produce excessively
short simplifications, sometimes reducing an entire

paragraph to one or two sentences. This extreme
shortening is caused partly by the iterative prompt-
ing setup: since the model has no prior knowledge
of how a CEFR-target simplification should look
(zero-shot), the repeated corrections encourage it
to strip down content aggressively rather than re-
structure it appropriately.

Moreover, the extra notes and process explana-
tions negatively bias the iterative pipeline: because
the CEFR classifier evaluates the entire response,
the added commentary shifts the predicted level
upwards or downwards in unintended ways. For
instance, in one case the model returned a step-by-
step justification of lexical changes (“I removed
‘common’ from ‘Common dreams’, changed...”),
which was treated as part of the text by the clas-
sifier and distorted the CEFR label. Examples of
both the over-shortening and adherence failures are
documented in Appendix 3, demonstrating how it-
erative prompting without prior fine-tuning leads to
unreliable outputs and noisy automatic evaluations.

By contrast, the fine-tuned 1B model overcomes
these limitations: it aligns much more closely
with the intended structure of CEFR simplifica-
tions, avoids adding unwanted commentary, and
produces outputs that are considerably richer in
content while still controlled in complexity. These
improvements are particularly noteworthy given
that the fine-tuning relied on synthetic data gener-
ated with LLaMA 3.1 8B, itself a relatively modest
model, and that the resulting dataset was not manu-
ally cleaned or verified. This suggests that the gains
observed here represent only a lower bound of what
could be achieved; with higher-quality, carefully
curated, or state-of-the-art synthetic simplification
data, fine-tuning small models would likely provide
even greater improvements.

For completeness, we also conducted a small-
scale fine-tuning experiment on LLaMA 3.1 8B,
using approximately 1000 synthetic simplifications
generated with Claude Sonnet 4 and the same fine-
tune configuration as the one used for LLaMa
3.2 1B. While the dataset was limited in size
and not manually verified, it still allowed us to
observe meaningful improvements. Due to the
small amount of data, we did not apply iterative
prompting during inference and instead evaluated
the model in a single-try setting. This setup af-
fected the results in two ways: (1) RMSE scores
were higher compared to the iterative experiments,
since the model had fewer opportunities to adjust
toward the exact CEFR level, and (2) the Mean-
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Model RMSE MeaningBERT MeaningBERT Avg Auto

(orig) (ref) Score Rank
Claude Sonnet 4 0.122 0.779 0.804 0.338  1.000
LLaMA 3.1 8B finetune non-iterative 0.324 0.807 0.822 0.195 1.710
LLaMA 3.1 8B> 0.255 0.781 0.789 0.135  2.000
Kimi K2 0.173 0.726 0.771 0.099 2.180
GPT-4 Turbo 0.274 0.730 0.776 0.000  2.670
LLaMA 3.2 1B individual finetune®  0.212 0.706 0.731 -0.104  3.180
LLaMA 3.2 1B finetune 0.300 0.721 0.738 -0.167  3.490
LLaMA 3.1 8B non-iterative 0.561 0.794 0.795 -0.192  3.610
LLaMA 3.2 1B 0.663 0.574 0.588 -1.285  9.000

Table 1: AUTORANK results for all submitted runs under custom weighting. >3 mark our official submissions.
“Individual” refers to individually fine-tuned models while "non-iterative" refers to single try simplifications. If not
mentioned, all models are iterative/nonfinetuned. The other models are included for comparison.

ingBERT scores improved, consistent with our hy-
pothesis that the first simplification attempt usually
yields the highest semantic similarity. Even under
these constrained conditions, the one-try RMSE re-
mained competitive, showing that even with a very
limited number of training examples, fine-tuning
substantially enhanced the model’s ability to per-
form CEFR simplification.

It is also important to note that our experi-
ments were primarily optimized towards minimiz-
ing RMSE, as this metric directly reflects the align-
ment of the outputs with the target CEFR level.
Consequently, aspects related to meaning preserva-
tion were not prioritized to the same extent. This ex-
plains why some systems, despite achieving lower
RMSE, occasionally sacrificed fidelity or omitted
information from the original text. A more bal-
anced approach that explicitly weights both accu-
racy of CEFR control and semantic consistency
could represent an important direction for future
work.

Furthermore, our focus on minimizing RMSE
exposed some of the limitations and biases in the
current evaluation metrics. For example, Kimi K2
achieves relatively strong scores despite producing
outputs that are qualitatively weak, highlighting
that automatic metrics can sometimes reward un-
desirable behavior. This suggests that more robust,
state-of-the-art evaluation methods are necessary
to obtain a fair ranking of systems. Under such
an evaluation framework, we hypothesize that an
approach built on well-balanced Minimum Bayes
Risk decoding could result in models that are both
reliable for CEFR control and practical enough to
be deployed.

In addition, as shown in Table 1, fine-tuning two

separate LLaMA 3.2 1B models individually for A2
and B1 simplification yields lower slightly RMSE
compared to a single model trained on both levels.
This indicates that task specialization, even at very
small model scales, can provide improvements in
controlling output complexity.

4 Ethical and Deployment Considerations

Our methods enable practical deployment of CEFR-
aware simplification, but operational use raises
concrete risks. Synthetic training data and auto-
matic simplifiers may introduce factual inaccura-
cies, level misclassification, or unequal behaviour
across learner groups. Therefore, any real-world
deployment should include human validation, con-
tinuous monitoring for meaning preservation and
fairness, clear documentation of model limitations
and licensing, and user-facing transparency about
automated processing.

Furthermore, the proposed approach contributes
to a more sustainable deployment paradigm: in-
stead of relying on repeated inference from large
proprietary LLMs, it enables the generation of syn-
thetic data to train smaller, open models. This
reduces computational and financial costs while
improving accessibility for educational institutions
with limited resources.

Another advantage of our method lies in its ap-
plicability to low-resource settings, where high-
quality labeled simplification data are scarce. Syn-
thetic data generation through LLMs can bootstrap
new CEFR-aligned datasets for such languages.

Future work could incorporate human-in-the-
loop feedback from language teachers to refine
level control and to assess pedagogical usefulness
beyond automatic metrics.
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5 Conclusions

This work demonstrates several key findings for
CEFR-based text simplification using smaller,
open-source language models.

Our iterative prompting approach provides a
computationally inexpensive method to signifi-
cantly improve simplification quality. By allow-
ing models up to 5 attempts per text, we achieved
substantial RMSE improvements across all tested
models. This technique offers a practical way to
enhance performance without additional training or
model scaling, making it particularly valuable for
resource-constrained educational environments.

Highly structured, CEFR-specific prompts im-
prove model understanding of proficiency level re-
quirements. Our detailed prompts, which explic-
itly describe vocabulary constraints, sentence com-
plexity, and grammatical structures for A2 and B1
levels, led to more accurate simplifications com-
pared to generic approaches. This finding suggests
that explicit linguistic guidance can compensate
for models’ limited understanding of CEFR frame-
works.

Training separate models for each CEFR level
yields better results than training a single model to
handle multiple target levels. This specialization
allows models to develop more focused represen-
tations of the linguistic constraints and stylistic
requirements specific to each proficiency level, re-
sulting in more appropriate simplifications.

Our fine-tuning experiments further serve as a
strong proof of concept. We observed that even
when training with synthetic data generated by
LLMs (which were not manually verified and may
inherently contain too much noise) substantial im-
provemenets can still be achieved. This effect was
visible both when using large amounts of automat-
ically generated samples (from LLaMA 3.1 8B)
and under very constrained conditions with only
1000 examples (from Claude Sonnet 4 for LLaMA
3.1 8B). These results highlight the potential of
fine-tuning: with higher-quality and carefully cu-
rated datasets, the gains observed here would likely
be amplified, suggesting a clear path forward for
building robust simplification systems on top of
smaller open models for educational use.

Our code is available at https://github.com/
roscanrares/emnlp-2025-tsar.

6 Lay Summary

This study explores how large language models
(LLMs) can be guided to produce simplified texts
that match the Common European Framework of
Reference for Languages (CEFR) levels. Our aim
is to make reading materials easier to understand
by automatically adjusting text difficulty to the
reader’s language level.

Many previous studies have used general in-
structions or relied on large datasets labeled by
hand. Our approach experiments with CEFR-aware
prompting, which gives the model more specific
instructions to generate simplified examples that
match the language characteristics of each level.
These examples can then be used to train or evalu-
ate smaller, open-access models, reducing the need
for expensive proprietary LLMs.

We are also studying how the level of detail in
these instructions affects the model’s ability to pro-
duce appropriate simplifications. Early results sug-
gest that more specific prompts can improve con-
trol over vocabulary and sentence structure, leading
to texts that are easier to read and score better in
automatic evaluations.

In addition, we observe that this method enables
a more sustainable way of developing simplifica-
tion systems. Instead of relying on repeated queries
to large commercial models, synthetic data pro-
duced once can be reused to fine-tune compact
open models. This reduces computational costs, en-
courages reproducibility, and supports educational
organizations that may not have access to high-end
infrastructure.

This work is still in progress. While our findings
are promising, more research is needed before such
methods can be turned into practical tools. Ulti-
mately, we hope this research will help teachers
and educational institutions create more accessi-
ble, level-adjusted learning materials and support
the development of CEFR-aligned datasets for lan-
guages with limited resources.
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A Things we Thought Would Work, but
didn’t

In addition to our successful experiments, we re-
port several approaches that produced suboptimal
results, providing valuable insights for future re-
search in CEFR-based text simplification.

A.1 Extended Synthetic Training Data

We initially hypothesized that including interme-
diate simplification attempts (not just the final out-
puts) would provide richer training signals. How-
ever, expanding our training dataset from 12,000
to 48,000 examples by including all intermediate
simplifications introduced excessive noise and de-
graded model performance. This indicates that
quality of training examples is more critical than
quantity in this context and that it might be difficult
to finetune for iterative simplifications.

A.2 Alternative Model Architectures

Experiments with Qwen 32B yielded considerably
weaker results compared to LLaMA 3.1 8B. Both
the base version of Qwen and its fine-tuned variant
underperformed relative to LLaMA 3.1 8B across
metrics such as RMSE and MeaningBERT, indicat-
ing that model size alone does not dictate perfor-
mance.

In addition, we also attempted fine-tuning
on several other open-source models, including
EXAONE-4.0-1.2B°, OLMo-2-0425-1B-Instruct®,
and LFM2-1.2B”. However, none of these models
produced competitive results in our setup.

A.3 Sub-1B Parameter Models

We experimented with several ultra-lightweight
models, including Gemma variants and
LFM2-350M® systems with fewer than 1
billion parameters. While these models were
able to return outputs in a one-shot setup, their
results were significantly weaker than those of
LLaMA 3.2 1B, both in terms of RMSE and
semantic preservation. The shortcomings became
even more apparent under iterative prompting,
where they showed the same type of failures
as the unfine-tuned LLaMA 3.2 1B, including
hallucinations and unstable outputs. Given that

Shttps://huggingface.co/LGAI-EXAONE/EXAONE-4.
0-1.2B

6https://huggingface.co/allenai/
OLMo-2-0425-1B-Instruct

"https://huggingface.co/LiquidAI/LFM2-1.2B

8https://huggingface.co/LiquidAI/LFM2-350M
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even their one-try simplifications were of very low
quality, we conclude that such sub-1B models are
not a viable choice for CEFR simplification in
our setup, especially when compared to the much
stronger performance achieved by LLaMA 3-series
models.

A.4 Cross-lingual Performance Variations

Models such as Kimi K2 and Qwen, which were
likely trained on larger Chinese language corpora,
showed different processing patterns and perfor-
mance characteristics compared to models with
more balanced multilingual training. This high-
lights the importance of pre-training data composi-
tion for downstream task performance.

A.5 LLaMA Models: Exceptional
Performance-to-Cost Ratio

Remarkably, our experiments reveal that LLaMA
variants, particularly LLaMA 3.1 8B and even the
compact 3.2 1B model, achieve competitive or su-
perior performance compared to much larger pro-
prietary models like GPT-4 Turbo in CEFR simpli-
fication tasks. This finding has significant implica-
tions:

* Cost-effectiveness: Smaller LLaMA mod-
els provide accessible alternatives for educa-
tional institutions with limited computational
resources

* Synthetic data generation: Larger LLaMA
variants (e.g., LLaMA 4 17B, LLaMA 3.3
70B) could serve as ideal candidates for gen-
erating high-quality synthetic training data for
even smaller specialized models

* Deployment feasibility: The strong perfor-
mance of 1B parameter models opens possibil-
ities for on-device deployment in educational
applications

A.6 CEFR Assessment Finetune

We also experimented with joint fine-tuning ap-
proaches on LLaMA 3.1 8B that combined CEFR
assessment with simplification. Our motivation
for this experiment was the observation that mod-
els generally lack the capacity to reliably perform
CEFR assessment on their own, which led us to hy-
pothesize that an explicit assessment signal could
help guide the simplification process. Specifically,
we tested two strategies: (1) sequential fine-tuning,
where we first trained the model for CEFR text
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classification and then adapted it for simplification,
and (2) multi-task fine-tuning, where we included
both simplification data and CEFR assessment data
in the same training stage.

For the assessment task, we relied on the same
Universal CEFR dataset used in our synthetic data
experiments, but instead of parsing document-level
texts into smaller segments, we used the full docu-
ments together with the sentence-level samples, re-
sulting in approximately 12,000 texts. For the sim-
plification task, we used the same synthetic simpli-
fications generated by Claude Sonnet 4. However,
neither approach produced improvements over stan-
dard fine-tuning. These results suggest that directly
combining CEFR assessment and simplification is
not straightforward, and that more advanced meth-
ods such as curriculum learning or more carefully
balanced multi-task objectives may be required.

B Models and Synthetic Dataset

All fine-tuned LLaMA models used in this work
are publicly available on Hugging Face:

e LLaMA 3.1 8B fine-tuned for A2 and B1:
https://huggingface.co/roscanrares/
1lama-3.1-8b-finetuned-a2b1

* LLaMA 3.2 1B fine-tuned for A2:
https://huggingface.co/roscanrares/
llama-3.2-1b-finetuned-a2

* LLaMA 3.2 1B fine-tuned for B1:
https://huggingface.co/roscanrares/
llama-3.2-1b-finetuned-b1

The synthetic dataset used for training and eval-
uation can be downloaded from:

* CEFR-Simplifications dataset:
https://huggingface.co/datasets/
roscanrares/CEFR-Simplifications



C A2 Prompt
Role

You are a language teacher simplifying texts to A2 CEFR level.

Objective

Transform this text to A2 level while preserving all original meaning and information. {base_feedback}
A2 Language Requirements
* Vocabulary: Most common 1500 English words only
* Sentences: 8—12 words, one clear idea per sentence
* Grammar: Simple present/past, basic future (will), basic modals (can/must/should)
» Connectors: and, but, because, so, when, if, then
» Style: Personal, concrete, everyday language
Strict Level Control
* Above Al: Include personal experiences, feelings, plans, time references
* Below B1: No present perfect, passive voice, or complex connectors (however, although, despite)
* Below B1: No abstract concepts without concrete explanation
Transformation Process
1. Identify all key information and meaning
2. Break complex sentences into simple A2 structures
3. Replace advanced vocabulary with A2 equivalents
4. Convert complex grammar to simple A2 patterns
5. Verify all original meaning is preserved

Critical

Do not omit, summarize, or change any information. Only change how it is expressed.

Instruction

Return only the simplified text. Do not include any other comments, notes, or additional information.

Text to Simplify

D B1 Prompt
Role

You are an expert CEFR B1 text simplification specialist with deep understanding of automatic language assessment
systems.

Objective

Transform this text to precise B1 level while preserving all original meaning and information. {base_feedback}
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B1 Language Requirements

* Vocabulary: 2000-3000 most common English words, avoid academic/formal terms

* Sentences: 15-22 words, can connect 2 related ideas with clear logic

e Grammar: Present perfect (have/has done), simple passive (is/was done), basic conditionals (if...will/would), modals

(should, might, could, would)

» Connectors: however, although, while, since, unless, because, so that, even though

 Style: Clear intermediate language that shows reasoning and personal opinions

St

rict Level Control

* Above A2: Include abstract concepts with simple explanation, cause-effect relationships, personal opinions with

basic justification, intermediate grammar patterns

* Below B2: No academic/formal vocabulary (facilitate — help, demonstrate — show, utilize — use)

* Below B2: No complex conditional structures, no sophisticated argumentation, no specialized terminology without

explanation

* Precise B1 Target: Intermediate complexity using everyday vocabulary — never oversimplify to A2, never undersim-

plify leaving B2+ elements

Critical B1 Differentiators

* From A2: Can handle abstract ideas but explains them simply using common words

* From B2: Uses everyday vocabulary even for complex concepts, avoids formal/academic tone

* B1 Signature: Connects ideas logically but with simple language patterns

Transformation Process

1.

2.

6

Identify all key information and meaning

Scan for B2+ vocabulary and replace with B1 common equivalents

Convert complex sentences to B1 structures (maximum 2 clauses per sentence)
Add simple explanations for any remaining complex concepts

Include 2-3 B1 grammar markers per paragraph naturally

. Verify consistent B1 complexity throughout — no A2 oversimplification, no B2+ elements remaining

Critical

Do

not omit, summarize, or change any information. Only change how it is expressed to match B1 patterns that automatic

CEFR classifiers consistently recognize as B1 level.

Instruction

Return only the simplified text. Do not include any other comments, notes, or additional information.

Text to Simplify

259



Source Text

Original Your dreams might show you all kinds of insights into things that you didn’t realise you were
thinking about. Common dreams like being able to fly or falling, your teeth falling out or having
no clothes on in a public place probably mean something similar in most people. But the key to
understanding exactly what they mean to you is to connect them to the events and feelings in
your daily life.

Kimi K2 Your dreams can show you things. They show what you think about. Many people have the
same dreams. They dream they can fly. They dream they fall. They dream their teeth fall out.
They dream they have no clothes in a public place. These dreams mean the same thing for most
people. But you must connect the dream to your life. You must connect it to your feelings. Then
you will know what it means to you.

Claude Sonnet 4 Your dreams can show you new ideas about things. You did not know you were thinking about
these things before. Many people have the same dreams. Some people dream they can fly. Some
people dream they are falling. Some people dream their teeth fall out. Some people dream they
have no clothes on when other people can see them. These dreams probably mean similar things
for most people. But you must think about your own life to understand your dreams. You must
think about what happens in your day. You must think about how you feel every day. Then you
can understand what your dreams mean for you.

LLaMA 3.1 8B Your dreams can show you things you didn’t think about before. Many people have dreams like
flying or falling. These dreams are probably the same for everyone. To understand your dreams,
you must think about what you do and feel every day.

Human Reference People have different dreams when they sleep. Some common dreams are flying, falling, losing
teeth, or being outside with no clothes. These dreams often mean the same thing for many people.
To know what your dream means, think about what is happening in your life and how you feel.

Table 2: Example simplifications produced by different models compared to the human reference.

Example 1: Oversimplification (very short output)

Original Social media, magazines and shop windows bombard people daily with things to buy, and British
consumers are buying more clothes and shoes than ever before. Online shopping means it is easy
for customers to buy without thinking, while major brands offer such cheap clothes that they can be
treated like disposable items — worn two or three times and then thrown away.

Reference (human) Every day, people see many clothes and shoes on social media, in magazines, and in shops. In the
UK, people are buying more than before. Online shopping makes it easy to buy without thinking.
Big brands sell clothes that are very cheap. Some people wear them only a few times and then throw

them away.
1B No Fine-tune People buy things on line. They do not want these things.
1B Fine-tuned People see many ads on social media and in shops every day. They want to buy things. British people

buy more clothes and shoes now than ever before. Online shopping is easy. You don’t need to think
about it. Major brands sell cheap clothes. These clothes can be used once or twice and then thrown
away.

Example 2: Added explanations despite prompt restrictions

Original A large number of bridge accidents occur during the construction of the bridge itself. These accidents
are often due to an error made by the engineers, such as a miscalculation. The bridge collapses under
its own weight, and this can be deadly for the workers on it at the time.

Reference (human) Many accidents with bridges happen while they are being built. These accidents often happen because
engineers make mistakes, like wrong numbers. The bridge can fall down from its own weight. This is
very dangerous for the workers on the bridge.

1B No Fine-tune Here is the simplified text:

"Many people get hurt when they drive over bridges. Sometimes there is a mistake in how the bridge
is built, like making a wrong calculation. This makes the bridge fall down and it can be very bad for
those who work on it."

1B Fine-tuned Many people get hurt in bridge building accidents. This happens because of a mistake made by the
builders. They make a wrong calculation, and the bridge falls down. It can be very dangerous for the
workers who are working on it.

Table 3: Outputs from LLaMA 3.2 1B base vs. fine-tuned models compared against original and human reference
simplifications. Example 1 illustrates oversimplification by the base model, while Example 2 shows unnecessary
explanations being added despite task instructions.
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Abstract

This paper describes our submissions to the
TSAR 2025 Shared Task on Readability-
Controlled Text Simplification. We present
a comparative study of three architectures:
a rule-based Baseline, a heuristic-driven
Expert system, and a zero-shot generative
TS Pipeline with a semantic guardrail. Our
analysis of the official results shows a clear
trade-off between the controllability of rule-
based systems and the fluency of generative
models. We detect that in this zero-shot in-
stance, our simpler, confined systems achieved
superior meaning preservation scores com-
pared to the powerful but less predictable gen-
erative model. We present a diagnostic failure
analysis centered in our actual system outputs,
illustrating how different architectural choices
result distinct error patterns, such as under-
simplification, information loss via heuristics,
and semantic drift.

1

The Shared Task on Readability-Controlled Text
Simplification at the Fourth Workshop on Text
Simplification, Accessibility, and Readability
(TSAR 2025) (Alva-Manchego, Fernando et al.,
2025) requires systems to simplify a given text to
a specified Common European Framework of Ref-
erence (CEFR) level while preserving meaning.
This creates a conflict between reducing linguistic
complexity and maintaining semantic fidelity.

To evaluate the trade-off between genera-
tive power and controllability, we engineered
three systems: a deterministic Baseline, a
heuristic-driven Expert system, and a zero-shot
Generative Pipeline based on T5. Our
core empirical observation is that in this zero-shot
setting, constrained and interpretable approaches
perform better than a powerful generative pipeline
on official meaning preservation metrics. We ex-
plore the specific failure modes of each system, il-
lustrating a definite trade-off between generative

Introduction
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power and semantic controllability, and propose
directions for future hybrid approaches.

2 Related Work

Text Simplification (TS) has transformed from
early rule-based systems primarily focused on lex-
ical and syntactic transformations (Siddharthan,
2014) to the current paradigm which is dominated
by neural sequence-to-sequence models (Nisioi
et al., 2017). Models like T5 (Raffel et al., 2019)
and BART (Lewis et al., 2020), pre-trained on vast
text corpora, have become the de facto standard,
achieving state-of-the-art fluency when fine-tuned
on task-specific data.

However, a key challenge in modern TS is con-
trollability (Maddela et al., 2021). While large
language models are proficient at fluent paraphras-
ing, guiding them to simplify to a precise read-
ability level without sacrificing semantic fidelity
remains an open problem. Researchers have ex-
plored techniques like explicit target-level prompt-
ing, but models can still "hallucinate" or deviate
from the underlying meaning. Our work directly
address the issue, questioning whether a power-
ful generative model utilized in a zero-shot setting
is the effective tool for a task with strict seman-
tic constraints, echoing findings in other domains
where simpler models can be more robust (Rudin,
2019).

3 System Descriptions

We implemented three systems with increasing
complexity to explore the trade-off between con-
trol and generative power.

3.1 System 1: Baseline

Our baseline is a deterministic pipeline serving as
a high-precision, low-recall benchmark. It per-
forms three operations: (1) lowercasing the in-
put text, (2) applying a curated 10-word substi-
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tution dictionary (e.g., ‘approximately’ ->
*about’), and (3) capitalizing the first letter of
the output. This system performs minimal, safe
edits designed to maximize meaning preservation.

3.2 System 2: Expert

The Expert system extends the baseline with two
key features. First, it uses a more intricate, two-
tiered substitution lexicon of approximately 100
entries, governed by resources such as the En-
glish Vocabulary Profile (EVP) to ensure CEFR-
appropriateness. For lower proficiency targets
(A1/A2), a more robust set of substitutions is used
(e.g., ‘substantial’ -> ‘big’). For
higher levels (B1+), a more conservative lexicon
is utilized to maintain nuance.

Second, it implements a heuristic for structural
simplification: for texts targeted at A1/A2 levels
exceeding 50 words, the system truncates the out-
put to the first three sentences. This rule is a direct,
interpretable method to regulate output length, a
crucial aspect of lower-level texts, though it comes
with the risk of information loss.

3.3 System 3: Generative Pipeline

This multi-stage pipeline was used in a zero-shot
setting, as the shared task provided no official
training data. The stages are:

1. Lexical/Syntactic Preprocessing: The input
text is first simplified utilizing the same non-
truncating rules as the Expert system.

2. CEFR-Aware Prompting: A T5-base model
is guided by a dynamic instructional prompt.
For example, to simplify a text for a B1 tar-
get, the prompt is: ‘Simplify this text using
clear language for intermediate level: [origi-
nal text]’.

3. Semantic Guardrail: An embedding-based
check is performed. We compute the co-
sine similarity between the original and T5-
generated text embeddings using the ‘all-
MiniLM-L6-v2’ model. If the similarity is
below a threshold of 0.75, the TS5 output is
rejected, and the system reverts to the pre-
processed text from stage (1). This mecha-
nism is a countermeasure against significant
semantic drift.

4 Experimental Setup

Data: We present results on the official TSAR
2025 test set (200 instances; targets A2/B1). The

human-simplified ‘reference’ texts were employed
in the official scoring and in our diagnostic analy-
sis.

Official Metrics: We present the official AU-
TORANK composite score and its components as
provided by the organizers.

* AUTORANK: Official composite metric
used by the shared task (lower is better).

* MB-orig/ref: MeaningBERT score against
the original and reference texts, respectively
(higher is better).

* RMSE: Root-mean-square error for CEFR
level prediction (lower is better).

Implementation:
ducibility notes.

Appendix A contains repro-

5 Results and Analysis

Table 1: Official final results on the TSAR 2025 test set.
The official AUTORANK score is a composite metric
where lower is better. Best scores for each metric are
in bold.

System RMSE | MB-orig? MB-reft AUTORANK |
Baseline 1.428 0.945 0.815 12.230
Expert 1.402 0.919 0.797 13.260
Generative Pipeline 1.600 0.841 0.730 19.030

Table 1 presents the official final scores for our
three systems. The results demonstrate a clear pat-
tern: while the Expert system achieved the best
CEFR compliance (lowest RMSE), the simpler
Baseline system was superior on both meaning
preservation metrics (MB-orig, MB-ref) and, con-
sequently, the final AUTORANK composite score.
The Generative Pipeline performed worst
across all official metrics.

5.1 Diagnostic Failure Analysis

To understand the trade-offs revealed by these
scores, we performed a diagnostic failure analysis
by comparing system output against the original
text and the human-written reference. Table 2 pro-
vides a representative example that illustrates the
distinct failure modes of each system.

Failure Spectrum: Our analysis confirms dif-
ferent failure modes. The Baseline makes
safe but inadequate modifications. The Expert
system’s aggressive heuristics improve readabil-
ity metrics but can severely hamper fidelity. The
Generative Pipeline, despite its potential
for fluency, is vulnerable to semantic drift through
"content omission", a common failure mode for
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Table 2: Diagnostic failure analysis for a representative example (text_id:

22-a2, Target: A2).

System & Input

Output Text (Actual)

Error Type and Analysis

Original

One of the most interesting cases of wild animals living in a city
are the wild dogs of Moscow... They have learned that it is safer to
cross the street with people...

A descriptive, multi-fact
text of 97 words.

Human Reference

There are many wild dogs in Moscow, about 35,000. Some were
born wild, and some were pets... They found that the dogs have

Simplifies vocabulary and
rephrases for clarity while

learned how to live in the city...

retaining all key facts.
Serves as the gold standard
for simplification.

Baseline One of the most interesting cases...

about 35,000 wild dogs... they have learned that it is safer to cross

the street...

Moscow. In Moscow, there are ~ Under-simplification:
Only performed lexical
substitution

(" approximately’
" about’). Failed to
simplify sentence structure.
This explains its high
MB-orig score (0.945) but
lower MB-ref score
(0.815).

—>

Expert One of the most interesting cases...

by their owners.

Information Loss via
Heuristic: Our sentence
truncation rule for long A2
texts deleted all facts about
the dogs’ adaptation to
urban life. This aggressive
rule explains the system’s
improved RMSE (1.402)
but also its drop in meaning
preservation scores.

pets that have been abandoned

Generative
Pipeline
wild dogs living on the streets.

One of the most interesting cases of wild animals living in a city
are the wild dogs of Moscow. In Moscow, there are around 35,000

Content Omission: The
TS5 model fluently
paraphrased the first two
sentences but omitted all
subsequent information
about the dogs’ origins and
learned behaviors. This
explains why it received
the worst scores on all
meaning preservation
metrics (MB-orig: 0.841,
MB-ref: 0.730).

zero-shot models that we incorrectly labeled "hal-
lucination" in a preliminary analysis. This con-
firms the reviewer’s observation and highlights the
difficulty of ensuring factual consistency with gen-
erative models.

6 Semantic Guardrail: Design and
Limitations

We implemented an embedding-cosine guardrail
(model: ‘all-MiniLM-L6-v2’; cutoff = 0.75). Its
advantages are speed and ease of deployment, and
it successfully screens out many gross semantic de-
viations. However, our analysis reveals its limita-
tions: cosine similarity is an imperfect proxy for
entailment. As seen in the example in Table 2,

a text can remain topically similar while missing
critical facts, a subtlety that the guardrail can miss.
This indicates that thresholds are dataset-specific
and that more robust verification techniques are
needed for high-stakes applications.

7 Conclusion

Our comparative analysis on the TSAR 2025
Shared Task shows a clear trade-off between con-
trol and fluency in zero-shot readability-controlled
text simplification. Our findings empirically illus-
trates that in the absence of fine-tuning data, sim-
pler, interpretable approaches can be more robust
for semantic fidelity. A simple Baseline pre-
served meaning but was insufficient for structural
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simplification. A heuristic-driven Expert system
enhanced readability metrics but caused signifi-
cant information loss. Finally, a Generative
Pipeline offered fluent paraphrasing but was
highly vulnerable to content omission, resulting
in the lowest meaning preservation scores. This
implies that for tasks with stringent semantic con-
straints, the controllability of simpler systems pro-
vides a distinct advantage.

Limitations and Future Work

Limitations: The primary limitation of this study
is the lack of a large-scale human evaluation to
confirm whether the automated metrics, including
the official AUTORANK, fully align with human
judgments of simplification quality. While our
analysis uses human-written references for scor-
ing, it does not include direct human ratings of our
systems’ outputs. Furthermore, our analysis re-
vealed that the embedding-based guardrail, while
effective at catching major deviations, is an imper-
fect proxy for fine-grained semantic fidelity.
Future Work: We propose two main directions.
First, exploring hybrid systems that balance con-
trol and fluency, for instance, through lexicon-
constrained decoding to guide generative models
away from factual errors. Second, developing
stronger, automated fidelity checks. Our analy-
sis showed that cosine similarity can be insuffi-
cient; future work should investigate using Natural
Language Inference (NLI) or Question-Answering
(QA) models to verify the preservation of key facts.
Validating these more advanced automated metrics
against targeted human evaluation will be a critical
next step for the field.

Lay Summary

Making complicated text easier to read is impor-
tant for everything from education to making pub-
lic information more accessible. This process is
called text simplification. The challenge is not just
to make text simpler, but to simplify it for a spe-
cific reading levellike for a beginner versus an in-
termediate learner—without changing the original
meaning.

Scientists use different tools for this task. Some
use simple, strict rules, like swapping a hard word
for an easy one. Others use powerful Artificial In-
telligence (AI) models, similar to ChatGPT, which
can fluently rewrite entire sentences. We wanted
to find out which approach works best for this con-

trolled simplification task, especially when there
is no specific training data available. Is the most
powerful Al always the best choice when preserv-
ing the original meaning is critical?

To answer this, we built and compared three sys-
tems: a Baseline system with just a few word-
swapping rules, a smarter Expert system with
more rules (including one to shorten long texts),
and a powerful Al Generative Pipeline.
Our study found that the simpler, rule-based sys-
tems were surprisingly better at keeping the orig-
inal meaning of the text. The powerful Al, while
often producing fluent sentences, made significant
errors by deleting important informationa problem
we call ‘content omission’. Our Expert system
also lost information when its rule to shorten long
texts was too aggressive. The safest system was
the simplest Baseline, which made only minor
changes but never altered the core message.

Our findings are important for developers build-
ing tools for education and accessibility. They
show that for tasks where accuracy is crucial, re-
lying on simple, predictable rules can be more re-
liable than using a complex Al that you can’t fully
control. The best path forward may be to create hy-
brid systems that combine the safety of rules with
the fluency of modern Al
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A Reproducibility Notes
A.1 Code and Data Availability

To facilitate full replication, the complete source
code for all three systems, the final system outputs,
and the analysis scripts utilized in this paper are
publicly available in a GitHub repository under an
MIT License. The repository can be accessed at:
https://github.com/SUJAL390/
hope-tsar—-emnlp2025

A.2 Dependencies and Hyperparameters

* General: Python 3.8+, numpy, pandas.

¢ Libraries: transformers (v4.55+),
evaluate, scikit—-learn, torch.

* T5 decoding: model t5-base; decoding
parameters: temperature = 0.7, top-p = 0.9.

* Semantic guardrail: model
sentence-transformers/
all-MiniIM-L6-v2; cutoff = 0.75.

A.3 Recommended Guardrail Validation

To validate a guardrail’s effectiveness, one should
sample N accepted and N rejected outputs, anno-
tate them for meaning preservation (binary) and
then compute precision and recall. We recom-
mend N=100 for an initial check.
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Abstract

Text simplification is an active research topic
with applications in many domains. In a simpli-
fication pipeline, assessment of text difficulty
plays a crucial role as a quality control mech-
anism: it acts as a “critic,” and guides models
to generate text at the difficulty level that is
required by the user. In this paper, we present
a LLM-based Text Simplification pipeline us-
ing several difficulty critics. We evaluate the
pipeline using the TSAR shared task dataset
and discuss the challenges in building models
for assessment of text difficulty and simplifica-
tion, including the construction of corpora for
training difficulty models.

1 Introduction

Text simplification is a widely studied task in natu-
ral language processing (NLP), with applications
in accessibility, education, and communication. It
is important in many applications where the users—
e.g., non-native speakers—struggle to understand
complex or standard language. The goal is to re-
duce the linguistic complexity of a text, while main-
taining the original text’s core meaning and coher-
ence. Increasingly, official legislation in Europe
(Inclusion Europe) requires government organiza-
tions, NGOs and other public agencies to provide
information to clients in clear and accessible form,
including for readers who may be unable to under-
stand standard language. We are motivated espe-
cially by applications of simplification in second-
language (L2) education, where personalized learn-
ing is supported by adapting text to the learner’s
proficiency level (Katinskaia and Yangarber, 2018;
Hou et al., 2019).

Our simplification pipeline,' shown in Figure 1,
uses a critic consisting of two parts: (a) difficulty—
it evaluates the difficulty level of a text simplified
by a large language model (LLM), and (b) semantic

Isimplification.py

RGE LANGUAGE MODEL
iy,

& = -& A
: A
. ¢ g I
Test Document: N s Simplified
) Critic Document:

Source level
[R[ﬁ Target level

Simplified
Document:
Intermediate level

& >

Simplification
engine

Figure 1: Overview of simplification pipeline.

similarity—it checks how well the simplified text
preserves the semantics/meaning of the original
text. This framework was introduced in (Katin-
skaia et al., 2025), in L2 education. In this paper,
we adapt the framework for simplification in En-
glish. The pipeline iteratively attempts to generate
a “simplified” version of an input text. If the gen-
erated text is above the target level of difficulty,
then feedback—including the generated text and
its currently assessed level—is sent back to the
LLM to revise the output. The pipeline makes
several attempts at simplification to reach the tar-
get difficulty level. We experiment with several
critics in the pipeline, including an open-source
transformer-based model that classifies text by dif-
ficulty level, and a regression model that we train
using English-language texts labeled with difficulty
levels.

The paper is organized as follows: Section 2
gives a brief overview of related work. Section 3
describes the shared task and the evaluation meth-
ods. Section 4 presents the architecture of our sim-
plification pipeline. Section 4.1 describes the ex-
periments with controlling the behavior of a LLM
via the difficulty critic. Section 5 presents results
and analysis. Section 6 concludes the paper and
discusses directions for future work.
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2 Related Work

Prior approaches to text simplification relied on
assessment of text difficulty to identify sentences
requiring simplification. For example, Gasperin
et al. (2009) trained a model to detect linguistically
complex sentences; Aluisio et al. (2010) developed
readability assessment tools to support simplifying
texts for low-literacy readers. Readability metrics
have also been incorporated directly into rule-based
simplifiers: Woodsend and Lapata (2011) integrate
the Flesch-Kincaid grade formula (Flesch, 1948)
into optimization-based simplification.

More recent approaches to simplification lever-
age readability predictors as feedback within gener-
ation loops. Alkaldi and Inkpen (2023) use a read-
ability classifier in a reinforcement learning frame-
work to iteratively simplify text until it reaches the
desired difficulty. Large-scale neural systems have
combined readability prediction with controllable
generation techniques to produce text at the target
difficulty level (Agrawal and Carpuat, 2023).

3 Task Description

The Shared Task on Readability-Controlled Text
Simplification (Alva-Manchego et al., 2025) in-
volves simplifying English-language paragraphs
written at upper-intermediate or advanced levels.
Participants are required to produce simplified ver-
sions at a target readability, specified as a CEFR
level: Common European Framework of Reference
for Languages (Council of Europe, 2001).

Our experiments are based on the test dataset
provided by the TSAR shared task. The test set
consists of English paragraphs at level B2 or higher,
each associated with a target level (A1, A2, or B1).
No training data, and no reference simplifications
are provided. The evaluation involves measuring
multiple aspects of the simplified texts:

* Compliance with target CEFR level is deter-
mined using a CEFR-level classifier, which
checks whether the generated paragraph meets
the specified target proficiency level.

* Meaning preservation is assessed via semantic
similarity between the original source para-
graph and the simplification, ensuring that the
essential meaning is retained.

* Similarity to a reference simplification is com-
puted, to quantify how closely the system out-
put matches the provided references.

These metrics are calculated using the official

evaluation scripts released by the shared task orga-
nizers with the test dataset. The semantic similarity
in the evaluation scripts uses meaningbert (Beau-
chemin et al., 2023). meaningbert is a BERT-
based semantic similarity model that measures how
well meaning is preserved between two texts, par-
ticularly for tasks such as text simplification and
paraphrase assessment.

4 System Overview

We next describe how we use the critic model to
guide in LL.M-based text simplification pipeline
(see Figure 1).

The pipeline begins by determining the difficulty
of a source text, either with a difficulty model or
manual annotation. The text, together with the
target CEFR level and a prompt, is passed to a
LLM, which produces a candidate output. The
critic model evaluates the candidate’s difficulty; if
it matches the target level, the process ends. Oth-
erwise, the LLM is re-prompted with the previous
output and the discrepancy from the target. This
loop continues for up to IV iterations—a predefined
maximum, to balance between cost and quality.
The system then outputs either a satisfactory sim-
plification, or an error if the target is not reached.

4.1 Methodology

In the context of the shared task, we experi-
ment with two difficulty assessment models in the
pipeline critic:

* Statistical model: we use the Flesch-Kincaid
Reading Ease score (Flesch, 1948; Kincaid
et al., 1975), implemented in the Spacy li-
brary.? This model assigns a numeric readabil-
ity value based on word and sentence length,
with higher scores indicating simpler text. To
relate these scores to CEFR levels, we apply
an approximate mapping’ shown in Table 1.
This enables us to interpret Flesch—Kincaid
scores within a CEFR framework and use
them as difficulty estimates in the simplifi-
cation pipeline.

* Transformer-based model: we use the model
AllLang2-Cefr2,* which classifies its input
into the 6 CEFR levels: A1-C2. This model
is also used in the official evaluation in the
Shared Task. We use its prediction on the

Zspacy.io/universe/project/spacy_readability
3Flesch-Kincaid readability analysis and CEFR map
*ModernBERT-base-reference_AllLang2-Cefr2
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LLM-generated text to determine whether to
stop the iterative simplification process.

To control the complexity of the generated texts,
we use LLM prompts, based on the target CEFR
level. Each prompt has three main components,
parameterized by the target CEFR level:

* Role Instruction: The LLM is instructed
to act as an expert in teaching English, to
adapt English texts for learners to the speci-
fied CEFR level (level_target).

* Output Format: The LLM must pro-
duce a JSON object containing the key
"SIMPLIFICATION", to ensure that the result
is structured and machine-readable.

e Adaptation Guidelines: The LLM is in-
structed to adapt the input text according to
the target CEFR: the prompt contains a de-
scription of what the reader can/cannot under-
stand easily (based on the definitions of the
CEFR levels). The simplified text should pre-
serve the meaning of the original text while
matching the target proficiency level.

Detailed prompt templates for all CEFR levels
are provided in Appendix A.

To perform the simplification, the pipeline uses
GPT-40 (OpenAl, 2024) with the prompts de-
scribed above. For all test documents, we mon-
itored the simplification process by recording the
CEFR level at each iteration and computing the
cosine similarity between each intermediate output
and the original text.

To measure semantic similarity in the critic—
to check how well the simplification preserves
meaning—we applied a semantic similarity model
all-mpnet-base-v2 (Reimers and Gurevych,
2020), and used a threshold of 0.7 (determined
heuristically), retaining only those simplifications
that have semantic similarity to the original above
this value. Each document was simplified for up
to N = 5 iterations; the process terminates earlier
if the critic judges the text’s difficulty to be at or
below the target CEFR level, and its similarity with
the original is above the threshold.

5 Results and Analysis

In this section, we examine the results of simplifi-
cation with different critic models. Beyond exact-
match accuracy, we assess how well the predicted
difficulty levels match the intended simplification

Flesch-Kincaid CEFR
90-100 Al
80-89 A2
70-79 B1
60-69 B2
50-59 C1
0-49 C2

Table 1: Mapping from Flesch-Kincaid Reading Ease scores
to CEFR levels.

direction. The Direction Consistency metric mea-
sures whether predictions respect the target level
ordering for each input.

Consistent Example Inconsistent Example

Target Pred Cons.? | Target Pred Cons.?
B1 B1 Bl B1
A2 Al | A2 Bl MO

Table 2: Examples of direction consistency: left = consistent
(trend preserved), right = inconsistent (trend violated).

Using the Flesch—Kincaid Reading Ease model
as critic in the simplification pipeline, exact match
between predicted and target CEFR levels is 38%:
only a minority of simplifications reach the target
level. Direction consistency measure is 62%, indi-
cating that while the model often misses the exact
target, it usually adjusts difficulty in the correct
relative direction. Thus, the model offers coarse
guidance on text difficulty, but lacks the precision
needed for strict level control.

Figure 2 shows that most errors are deviations
of =1 level, with about 60% of the misclassified
samples exceeding the target by one level. Exact
matches and predictions one level below are less
frequent, and deviations beyond £2 levels are rare.
Figure 3 illustrates that when the target is A2, out-
puts often simplify to level B1, while for B1 target,
many texts remain at the original difficulty. In rare
cases, predictions even drop to Al. These patterns
indicate that the model fails to align reliably with
CEFR standards, limiting the accuracy of the critic
and yielding only modest control over target diffi-
culty in the simplification pipeline.

Using AllLang2-Cefr2 as critic in the simpli-
fication pipeline, performance improves. Exact-

meaningbert
Critic model RMSE | Origin. Refer.
Flesch-Kincaid 0.659 | 0.801 0.832
AllLang2-Cefr2 | 0.700 0.821 0.835
Regression 0.600 | 0.772 0.815

Table 3: Performance of difficulty critics on simplification
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Figure 2: Distribution of the difference between estimated dif-
ficulty level of the simplified output and target difficulty level,
using Flesch-Kincaid model as critic. X-axis is difference
between the estimated level of the output (simplified) text and
target level. Y-axis is the number of instances in test set.
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Figure 3: Distribution of estimated difficulty of simplified
output texts for different target levels (A2,B1), using Flesch-
Kincaid critic. X-axis represents the estimated CEFR levels
(A1-C2) of output text; Y-axis indicates the percentage of
samples at each estimated level. Different target levels are
color coded.

match accuracy rises to 57%, well above that of
the Spacy critic, while Direction Consistency is
63.5%. As shown in Figure 4, deviations never
exceed 1 level, with exact matches most common
and overshooting by one level less often. Figure 5
shows that when the target is A2, most samples are
correctly simplfied to A2, with the rest at B1. For
target B1, about 60% reach B1, some remain at B2,
and the rest overshoot to A2.

The official ranking in the Shared Task is based
on (a weighted average of) the three measures re-
ported in Table 3, namely, on correct difficulty and
on semantic similarity; origin indicates similarity
of the simplified text to the original, according to
meaningbert; refer indicates similarity of the sim-
plified text to reference simplification.

6 Discussion and Future Work

The effectiveness of our proposed pipeline depends
on the choice of difficulty assessment model used
in the critic, since it guides the simplification pro-

-5 -4 -3 -1 0 1 2 3
Predicted - Target

Figure 4: Distribution of the difference between estimated
difficulty level of the simplified output and target difficulty
level, using Al1Lang2-Cefr2 as critic.

[ Target A2
BN Target Bl

Al A2 Bl B2 a1 [
Predicted CEFR Level

Figure 5: Distribution of estimated difficulty of simplified
output texts for different target levels, using AllLang2-Cefr2
as critic.

cess. In addition to the models above, we experi-
mented with training our own difficulty assessment
model. Although this approach did not appear in
our submissions for the Shared Task, it shows much
promise for future work. This section summarizes
the lessons learned from this attempt.

First, since no training data were provided for
the Shared Task, we construct a training, develop-
ment and test set—Test Set 1—by taking an exist-
ing corpus® described in (Katinskaia et al., 2025)
and translating it from Finnish into English, us-
ing the OPUS machine translation (MT) toolkit®
(Tiedemann et al., 2023). It is crucial to note that
we found that the OPUS models are particularly
strong at preserving the CEFR levels of the original
source text in the MT output text.” We also use the
reference set provided by TSAR as a second test

3Test Set 1 contains intermediate CEFR levels: A2-B1, B1-
B2, etc. For comparability, we applied a special adjustment
for AllLang2-Cefr2, in which each intermediate level was
“mapped” down to the lower adjacent level.

®We use the sla-eng MT model (Slavic-to-English).

"This property of the OPUS-MT models—that they pre-
serve the CEFR level well from the input to the output text—
was confirmed through manual inspection by experts in Simple
Language. These findings need to be confirmed more rigor-
ously in quantitative terms, in future work.
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Figure 6: Difficulty estimation using Al1Lang2-Cefr2 in Test
Set 1. Red line means the median of current CEFR level

set—Test Set 2.

Second, following the methodology of Katin-
skaia et al. (2025), we train a regression model
to predict difficulty. We were unable to gather
a sufficient amount of training data and tune our
regression model in time for the actual TSAR
competition; therefore, as a fallback, we used
AlllLang2-Cefr2 rather than the regression model
as a critic in our submission for the Shared Task.

We next check how well difficulty prediction
works—on its own, apart from the simplification
task. For Test Set 1, the difficulty prediction results
are in Figures 6 and 7. The regression model shows
a clear advantage over the A11Lang2-Cefr2 model,
exhibiting a clear step-wise pattern that aligns well
with CEFR levels. It consistently outperforms the
baseline across all evaluation metrics. The evalua-
tion metrics for difficulty prediction are shown in
the top part of Table 4.

For Test Set 2, the evaluation metrics for diffi-
culty prediction are in the bottom of Table 4. The
R? values are negative for both models, indicat-
ing a limited overall fit to the data. The difficulty
prediction results for Set 2 are in Figures 8 and 9.

Several factors may compromise the perfor-
mance of our regression model. First, the dataset
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Figure 7: Difficulty estimation error distribution of regression
model in Test Set 1.
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Figure 8: Difficulty estimation using Al1Lang2-Cefr2 in Test
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Figure 9: Difficulty estimation using regression model in Test
Set 2.

Test Model MSE RMSE MAE R’
1 AllLang2-Cefr2 1.12 1.06 0.82 -0.46
Regression 0.32 0.57 0.34  0.56
2 AllLang2-Cefr2 043 0.66 039 -0.72
Regression 0.64 0.80 0.65 -1.57

Table 4: Performance of difficulty estimation models on two
test sets; top section Test Set 1, bottom Test Set 2.

is machine-translated, which may distort the true
difficulty of the texts. Ideally, training data is man-
ually annotated for difficulty. However, manual
annotation is very complex and time-consuming.
Second, the translated dataset is still small, restrict-
ing the model’s ability to generalize across different
linguistic phenomena.

In future work, we plan to extend the setup re-
lying solely on GPT-4o for text simplification, to
consider other models, including smaller models
fine-tuned for the simplification task. We will in-
vestigate more advanced models to improve the
assessment of difficulty, which is central for the
simplification pipeline. Larger, more accurate, and
more diverse training datasets should further im-
prove performance and generalization.
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7 Lay Summary

This study investigates text simplification, in the
context of the Shared Task on Text Simplification,
Accessibility, and Readability (TSAR).

We present a difficulty-aware simplification
pipeline based on large language models (LLMs)
and small models for simplification assessment.
We use text data in English, of varying levels of dif-
ficulty, ranging from A1 to C1 on the CEFR scale.
We evaluate performance according to several cri-
teria, including error rates of difficulty assessment
models in their assessment of the difficulty of texts
in a held-out test set, and the success rates of the
simplification pipeline, relative to reference texts
provided by the organizers of the shared task.

The paper A. discusses the performance of a
number of critic models for assessing difficulty of
a text, and B. compares the performance of the sim-
plification pipeline driven by the different critics.
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A Prompts for CEFR-based Text
Simplification

CEFR

Prompt Description

Al

You must always output a JSON object with an "SIMPLIFICATION" key. You are an expert in English
language and language teaching. You will be given a text in English. Your task is to read it first and then to
provide an adaptation into CEFR level Al. Do not significantly change the meaning of the input text. Al is
the simplest, beginner level with short sentences and easy grammar. Imagine that you are teaching a complete
beginner, your adaptation should fit their proficiency level.

This is the text to simplify: {text}

A2

You must always output a JSON object with an "SIMPLIFICATION"” key. You are an expert in English
language and language teaching. You will be given a text in English. Your task is to provide an adaptation
into CEFR level A2. Do not significantly change the meaning of the input text. A2 is just above the beginner
level and should contain simple grammar and vocabulary. Imagine that you are teaching someone who just
started learning the language.

This is the text to simplify: {text}

B1

You must always output a JSON object with an "SIMPLIFICATION"” key. You are an expert in English
language and language teaching. You will be given a text in English. Your task is to provide an adaptation
into CEFR level B1. Do not significantly change the meaning of the input text. B1 is an intermediate level.
Learners can understand the main points of clear standard input and produce connected text on familiar topics.
Adapt the text accordingly.

This is the text to simplify: {text}

B2

You must always output a JSON object with an "SIMPLIFICATION"” key. You are an expert in English
language and language teaching. You will be given a text in English. Your task is to provide an adaptation
into CEFR level B2. Do not significantly change the meaning of the input text. B2 corresponds to an
upper-intermediate level, allowing complex text understanding and fluent communication. The adapted text
should be more advanced than B1 or A2.

This is the text to simplify: {text}

C1

You must always output a JSON object with an "SIMPLIFICATION"” key. You are an expert in English
language and language teaching. You will be given a text in English. Your task is to provide an adaptation into
CEFR level C1. Do not significantly change the meaning of the input text. C1 corresponds to an advanced
level, capable of producing fluent, well-structured, detailed text with complex grammar and cohesive devices.
The adapted text can therefore be more sophisticated and lexically rich.

This is the text to simplify: {text}

Table 5: Prompts used for CEFR-based text simplification to
target CEFR levels A1-C1. Each prompt instructs the model
to adapt the input text to the linguistic characteristics of the
target CEFR level.
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