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Introduction

Constructionist approaches to language posit that all linguistic knowledge needed for language compre-
hension and production can be captured as a network of form-meaning mappings, called constructions.
Construction Grammars (CxGs) do not distinguish between words and grammar rules, but allow for
mappings between forms and meanings of arbitrary complexity and degree of abstraction. CxGs are
thereby able to uniformly capture the compositional and non-compositional aspects of language use, ma-
king the theory particularly attractive to researchers in the field of Natural Language Processing (NLP).
CxG theories, for example, can serve as a valuable ‘lens’ to assess and investigate the abilities of today’s
large language models, which lack explicit, theoretically grounded linguistic insights. At the same time,
techniques from the field of NLP are often employed for the further development and scaling of CxG
theories and applications.
The inaugural Construction Grammars (CxGs) and Natural Language Processing (NLP) (CxGs+NLP)
workshop1 successfully initiated dialogue between the two complementary perspectives of CxG and NLP,
highlighting the untapped potential for collaboration and knowledge exchange. The first workshop took
place shortly after the release of ChatGPT; now, two years later, the field has advanced considerably with
the rise of generative AI and new LLMs. These developments make it all the more compelling to bring
together researchers and practitioners to discuss the evolving landscape of CxG and NLP. In addition, in
the time since the first workshop, there has been significant growth in the community’s interest at this
intersection. Building on this momentum, the second CxGs+NLP workshop brings together researchers
across theory and practice once again to explore how CxG approaches can both inform and benefit from
state of the art NLP methods, with an emphasis on LLMs.
These proceedings include papers presented at the 2nd International Construction Grammars and NLP
workshop on 24 September 2025, held in conjunction with 16th International Conference on Compu-
tational Semantics (IWCS) in Dusseldorf, Germany. CxGs+NLP 2025 received 35 submissions, out of
which 17 archival presentations were presented as in-person talks, 5 papers were presented virtually as li-
ghtning talks with posters, and 9 non-archival papers were presented during the in-person poster session.
The papers address topics including computational frameworks and tools for CxG, LLMs, constructional
knowledge and evaluation, and empirical studies and theoretical insights.
In addition to the oral paper presentations and poster session, CxGs+NLP 2025 featured three outstan-
ding invited talks by Professor Adele Goldberg (Psychology, Princeton University), Professor Laura A.
Michaelis (Linguistics, University of Colorado Boulder), and Professor Thomas Hoffmann (English Lan-
guage and Linguistics, Catholic University of Eichstätt-Ingolstadt).
Our program also included a second, community-building day of events on 25 Sept 2025. This event
featured panels and break-out sessions to spur discussion and development of persistent community re-
sources and points for communication and data-sharing. We encourage readers to join our community by
joining the online CxGs+NLP Group, which we continue to maintain with outcomes of our workshops
and upcoming events.

Message from the Workshop Chairs

We thank our organizing committee for its continuing organization of the CxGs+NLP workshops, and the
IWCS 2025 workshop chairs for their support. We are grateful to all of the authors for submitting their
papers to the workshop and our program committee members for their dedication and their thoughtful
reviews. We thank our invited speakers for making the workshop a uniquely valuable discussion of
CxGs+NLP research.
Claire Bonial, Harish Tayyar Madabushi

1https://sites.google.com/view/cxgsnlpworkshop
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Abstract

Constructional approaches to signed languages
are becoming increasingly popular within sign
language linguistics. Current approaches, how-
ever, focus primarily on theoretical description,
while formalization and computational imple-
mentation remain largely unexplored. This pa-
per provides an initial step towards addressing
this gap by studying and operationalizing the
core mechanisms required for representing and
processing manual signed forms using compu-
tational construction grammar. These include
a phonetic representation of individual man-
ual signs and a formal representation of the
complex temporal synchronization patterns be-
tween them. The implemented mechanisms are
integrated into Fluid Construction Grammar
and are available as a module within the Babel
software library. Through an interactive web
demonstration, we illustrate how this module
lays the groundwork for future computational
exploration of constructions that bidirectionally
map between signed forms and their meanings.

1 Introduction

Constructional approaches to signed languages are
becoming increasingly popular within sign lan-
guage linguistics (see Wilcox and Martı́nez (2025)
for an overview). One possible reason for this
popularity is construction grammar’s potential to
address key challenges in the field. The view on
lexicon and grammar as a continuum, for instance,
can help resolve longstanding problematic distinc-
tions between grammatical and lexical signs on the
one hand (Lepic and Occhino, 2018; Lepic, 2019),
and gestural and linguistic signs on the other hand
(Lepic and Occhino, 2018; Occhino and Wilcox,
2017; Wilcox and Xavier, 2013).

Despite its popularity, construction grammar has
primarily been used for the theoretical description
of sign language constructions (e.g., Lepic and
Occhino, 2018; Schembri et al., 2018; Lepic, 2019;

Wilcox and Occhino, 2016; Hou, 2022a,b; Wilcox
and Martı́nez, 2020; Martı́nez et al., 2019; Wilcox
et al., 2022; Johnston and Ferrara, 2012) while for-
malization and computational implementation of
these constructions remain relatively unexplored.
One exception is the work by van Trijp (2015), who
provides a proof-of-concept implementation of two
French Sign Language (LSF) constructions. Other
computational models rely on formalisms such as
Head-Driven Phrase Structure Grammar (HPSG)
(Elliott et al., 2008), Role and Reference Grammar
(RRG) (Murtagh, 2011b) or sign language specific
production rules (Filhol et al., 2017). Except for
van Trijp (2015)’s bidirectional approach, most ex-
isting computational work focuses solely on sign
language production through avatar systems.

This paper presents an initial step towards ad-
dressing these gaps by studying and operationaliz-
ing the core mechanisms needed for representing
and processing signed languages bidirectionally us-
ing a computational construction grammar frame-
work. The development of such a framework is
beneficial as it allows linguistic hypotheses to be
formalized and verified on large linguistic corpora
(van Trijp et al., 2022).

The implemented mechanisms include a pho-
netic, language-agnostic representation of indi-
vidual manual signs and a formal description of
the complex temporal synchronization patterns be-
tween them. These mechanisms are integrated into
Fluid Construction Grammar (FCG) (Steels, 2011;
Beuls and Van Eecke, 2023; van Trijp et al., 2022),
a computational construction grammar framework
that operationalizes the basic tenets of construc-
tion grammar (Steels, 2011; van Trijp et al., 2022;
Beuls and Van Eecke, 2023, 2025). The devel-
oped framework is available as a module within the
Babel software library 1, a toolkit containing all

1Download information is available at: https://
emergent-languages.org
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necessary modules for constructional language pro-
cessing using FCG (Nevens et al., 2019; Loetzsch
et al., 2008). While this module is an initial step
towards bidirectional processing of sign language,
more work is needed to scale our approach towards
different research contexts and large-scale corpora.

To demonstrate the use of the framework, we
provide an interactive web demonstration along-
side this paper. It illustrates how a French Belgian
Sign Language (LSFB) utterance can be compre-
hended and produced, showcasing the potential
of our framework for future computational explo-
ration of sign language constructions.

The remainder of this paper is structured as fol-
lows. First, we review existing representation sys-
tems (Section 2) and computational models (Sec-
tion 3) for signed languages. Then, we introduce
the implemented mechanisms for representing and
processing manual signed forms, which are avail-
able as a module within the Babel framework (Sec-
tion 4). Afterward, we illustrate the use of this
module through an interactive web demonstration
(Section 5). Finally, we conclude the paper (Sec-
tion 6).

2 Representing signed forms

Accurately representing signed forms is one of
the main challenges in developing computational
models of sign language. Sign language expres-
sions include movements produced by the entire
upper body, including manual (hands) and non-
manual articulators (face, head, eyes, shoulders,
etc.). These movements can overlap in time, result-
ing in simultaneous/multilinear structures which
cannot easily be captured using linear representa-
tion systems (Huenerfauth, 2006; Filhol and Braf-
fort, 2012; Filhol, 2012). In addition, signers make
extensive use of the three-dimensional space in
front of the upper body to introduce and manage
referents (Wilcox and Martı́nez, 2020). As a re-
sult, representations should include a fine-grained
model of this three-dimensional space. Despite the
challenges involved, several types of representa-
tion exist, including video, glosses, formal notation
systems and avatar-specific representations.

The most frequently used format for represent-
ing signed expressions is video. It accurately cap-
tures the simultaneous nature of signing and is rel-
atively easy to collect. However, it generally needs
to be complemented with additional information
for the purpose of linguistic description/modelling

(Crasborn, 2015). Glosses are lexical labels which
describe the prototypical meaning of a sign using
words from the ambient spoken language. They
do not provide any information about the internal
structure of a sign and focus primarily on man-
ual activity. In contrast, formal notation systems
such as SignWriting (Sutton, 1995) or HamNoSys
2 (Prillwitz et al., 1987; Hanke, 2004) describe the
sublexical structure of signs using a set of iconic
symbols. This sublexical structure is typically de-
scribed using a set of manual (hand shape, orien-
tation, location and movement), and non-manual
parameters (e.g. eye-gaze, brow, shoulder or head
movements, etc.). Finally, avatar-specific repre-
sentations capture the sublexical structure of signs
from an animation perspective rather than a linguis-
tic one, resulting in detailed descriptions of joint
positions and rotations (Naert et al., 2020).

With the exception of video-based and some
avatar-specific representations, most systems fo-
cus on describing isolated signs. Although these
descriptions often can be concatenated, they fail
to accurately represent the multilinearity of con-
tinuous signed expressions. For instance, while
HamNoSys allows concatenation of individual sign
descriptions to represent utterances, it lacks the
capacity to represent instances where articulators
act independently from each other, each producing
forms with different start and end times (Filhol,
2012; Filhol and Braffort, 2012).

In linguistic research, this issue is addressed us-
ing multilayered annotation tools such as ELAN
(Crasborn and Sloetjes, 2008; Dreuw and Ney,
2008) and ILEX (Hanke and Storz, 2008). They
enable multiple annotation tiers to be aligned with
a single time track, often derived from a video
recording. Using this methodology, one layer can
be created for each articulator and aligned to the
time track of the video. Temporal relationships are
conveyed implicitly through the start and end times
of the recorded segments.

Another approach has been explored within the
field of avatar synthesis, where systems such as
the partition/constitution (Huenerfauth, 2004) and
AZalee model (Filhol and Braffort, 2012; Filhol,
2012) explicitly describe temporal relationships
between articulators. The partition/constitution
model represents the structure of signed utterances
through hierarchical syntax trees, where nodes
branch into child nodes using constitution or par-

2Hamburg Notation System
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tition (Huenerfauth, 2004). Constitution denotes
traditional sequential branching, while partition ac-
counts for simultaneous production. This hierarchi-
cal framework enables the modelling of complex
synchronisation patterns across multiple articula-
tors. However, synchronisation is constrained by
the syntactic structure of the utterance. In contrast,
the AZalee model supports a more flexible repre-
sentation, allowing for the free arrangement of ar-
ticulator movements by defining temporal relation-
ships directly between their start and end bound-
aries (Filhol and Braffort, 2012; Filhol, 2012).

3 Computational Models of Sign
Language

Computational models of sign language are rel-
atively scarce, especially those that handle both
language production and comprehension. While
some work has focussed on producing sign lan-
guage utterances using a grammatical model, little
to no attention has been paid towards comprehend-
ing the semantic structure of sign language expres-
sions. For production, several grammatical frame-
works have been used to support avatar synthesis,
including Head-Driven Phrase Structure Grammar
(HPSG), Role and Reference Grammar (RRG) and
AZee Production rules. For bidirectional process-
ing, van Trijp (2015) explored the use of FCG.

The ViSiCAST and eSIGN projects use HPSG
(Pollard and Sag, 1994) within a translation sys-
tem from English to British Sign Language (BSL)
(Elliott et al., 2008). The translation process in-
volves multiple steps, including the use of BSL-
specific HPSG rules that transform a semantic Dis-
course Representation Structure (DRS) into Ham-
NoSys format (Elliott et al., 2008; Marshall and
Sáfár, 2004, 2002; Sáfár and Glauert, 2010). The
grammar includes 50 lexical and 9 grammatical
rules and handles aspects like space, plurality, sen-
tence types, and pronominal reference (Elliott et al.,
2008; Marshall and Sáfár, 2004, 2002; Sáfár and
Glauert, 2010). The HamNoSys output can be ren-
dered into an XML-format which drives avatar ani-
mation (Kennaway, 2004).

Murtagh (2011b,a) first explored the use of RRG
(Van Valin Jr. and Foley, 1980; Van Valin Jr., 1992)
as a grammatical model to drive animation of Irish
Sign Language (ISL). RRG is a functional theory
which focusses primarily on the relationship be-
tween semantic, pragmatic, and syntactic structure
(Van Valin Jr. and Foley, 1980; Van Valin Jr., 1992).

The RRG grammar for ISL maps a semantic rep-
resentation to a syntactical structure which repre-
sents manual, non-manual and temporal informa-
tion (Murtagh et al., 2022). It can be transformed
into a more detailed format which drives avatar
animation (Murtagh et al., 2022). Amongst other
aspects, the RRG approach focusses on modelling
different verb types of ISL (Murtagh, 2020), includ-
ing so-called directional/agreement verbs, which
use the signing space to refer to arguments. While
bidirectional, RRG has mainly been applied to sign
language production (Murtagh et al., 2022).

AZee avoids spoken language categories such as
noun, verb or adjective and describes sign language
grammar using a set of production rules (Filhol
et al., 2017). Each rule maps a semantic function
to a score of time-aligned articulator movements.
The output of one rule can serve as an argument to
another, creating complex structures which drive
avatar animation (Filhol et al., 2017). AZee rules
have mostly been developped for French Sign Lan-
guage (LSF), focussing on a wide range of linguis-
tic phenomena, including interrogation (Martinod
and Filhol, 2024), non-manual gestures (Challant
and Filhol, 2024; Filhol et al., 2014), usage of space
(Filhol and McDonald, 2022), and plurality (Mar-
tinod et al., 2022). The rules developped for LSF
achieve 94% coverage on a moderately sized cor-
pus (Challant and Filhol, 2022) and ongoing work
seeks to expand this coverage (Challant and Filhol,
2024; Martinod et al., 2022).

Finally, van Trijp (2015) explores the use of com-
putational construction grammar for sign language
processing. He provides a proof-of-concept im-
plementation of two LSF constructions using the
FCG framework: a construction that handles the
modification of sign parameters (i.e., hand shape,
orientation, movement, location) to alter the mean-
ing of a sign, and a construction which deals with
the inherent multilinearity of continuous signed ex-
pressions (van Trijp, 2015). In contrast to other
approaches discussed in this section, the FCG ap-
proach proposed by van Trijp (2015) is bidirec-
tional, allowing language production and compre-
hension. The proof-of-concept implementations
show the potential of computational construction
grammar (specifically FCG) for modeling signed
languages.

3



4 A Computational Construction
Grammar Framework for Modelling
Signed Languages

The main objective of the proposed framework is
to support the computational exploration of sign
language constructions in comprehension and pro-
duction. To achieve this, we identify three core
properties:

1. Phonetic representation: The framework
should accurately represent the realisation of
manual sign forms, including use of three di-
mensional space and the shape, orientation,
location and movements of the hands.

2. Multilinear representation: The framework
should provide explicit temporal relations be-
tween manual articulator movements, captur-
ing the inherent multilinear nature of signed
languages.

3. Bidirectional: The framework should al-
low bidirectional processing between signed
forms and their meanings.

The remainder of this section describes how we
integrate each of these properties into the proposed
framework for sign language processing and re-
lease it as a module within the Babel framework.

4.1 HamNoSys: Phonetically Representing
Signed Forms

Before 1960, there was an overall consensus that
sign language forms lacked internal structure, mak-
ing them unfit for linguistic study. This consensus
changed after William Stokoe published his Pio-
neering work on American Sign Language (ASL)
phonology in 1960 (Stokoe, 1960). Stokoe argued
that, similar to spoken forms, signed forms have
internal structure, determined by three main pa-
rameters: hand configuration (including the shape
and orientation of the hand), location and move-
ment (Stokoe, 1960). To support his claims, Stokoe
identified minimal pairs in ASL, where only one
of these three parameters distinguishes the two
forms, illustrating their contrasting ability within
the language. While Stokoe’s work was phonologi-
cal, his theory fuelled many phonetic theories and
writing systems for signed forms. These often de-
scribe the structure of the sign using Stokoe’s basic
parameters (handshape, orientation, location and
movement). Modern phonetic theories and writing

systems also include non-manual features (facial
expressions or shoulder and head movements).

HamNoSys (Hamburg Notation System) is one
of the writing systems building on Stokoe’s theory
for sign structure. It relies on a set of iconic glyphs
to represent hand shape, orientation, location, and
movement, along with non-manual components. It
is a phonetic alphabet that was created as a sign
language counterpart to the International Phonetic
Alphabet3(IPA). Like IPA, it contains symbols that
can be used to describe the phonetic realisation
of signs in any sign language. HamNoSys is well
integrated with modern computer software, hav-
ing a Unicode font and XML-based representa-
tion known as Signing Gesture Markup Language
(SiGML) (Elliott et al., 2004). Through SiGML,
HamNoSys strings can be converted into avatar
animations using the JASigning system4.

The basic structure of a HamNoSys representa-
tion consists of two core components: an initial
posture and a set of actions (see Figure 1). The
initial posture describes the shape, orientation, and
location of the hands at the onset of the sign. Ac-
tions describe movements through space that might
change part of the initial structure. For two-handed
signs, the initial posture is preceded by a symme-
try operator. This operator specifies how the non-
dominant hand copies information from the domi-
nant hand, avoiding repetition. For a more detailed
description, we refer to the HamNoSys manual
(Smith, 2013). Figure 1 illustrates an example of
an HamNoSys representation for the sign RIVIERE

(RIVER) in French Belgian Sign Language (LSFB).

We choose HamNoSys as a phonetic represen-
tation as it is language agnostic, well-documented
and -integrated into modern computer software
(Hanke, 2004). It contains a fine-grained model
of the signing space, which is crucial for grammat-
ical modelling. Reading and writing HamNoSys
requires some initial training, but the existance of
an extensive manual (Smith, 2013), unicode font,
input palettes (see Hanke, 2021), and avatar soft-
ware make the system easy to learn and enjoyable
to use.

3For more information, see: https://www.
internationalphoneticassociation.org

4more information about the JASigning system: https:
//vh.cmp.uea.ac.uk/index.php/JASigning
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INITIAL POSTURE

 
PREAMBLE

handshape orientation movementsymmetry


location

preamble initial posture actions

Figure 1: Example of a HamNoSys representation for
the LSFB sign RIVIERE (RIVER). The sign is produced
using two hands that behave symmetrically. The initial
posture and actions are only described for the dominant
hand, as those for the non-dominant hand can directly be
inferred from them. The dominant hand’s shape is a fist
with the index and middle fingers extended. Fingers are
oriented outwards, and the palm is directed to the left
of the signer (right for the non-dominant hand). Hands
move outward using a wavy motion.

4.2 Using Temporal Relationships to Convey
Multilinear Structure

To describe the temporal relationships between
manual signs, we first use the ELAN annotation
software to align the two manual articulators to a
single time-track, derived from the video-recording
of the expression. Annotation files contain two lay-
ers for each of the manual articulators (four layers
total). The first layer for each hand divides the
time-track into individual signs, identifying each
sign using its lexical ID-gloss label. The second
layer provides a HamNoSys representation for each
identified sign.

Afterward, the annotation file is used to extract
the ID-gloss, HamNoSys representation, and tem-
poral boundaries for each identified segment. In
our multilinear representation, every articulation is
modeled as a predicate that specifies its type (i.e.
two-hand-articulation, right-hand-articulation or
left-hand-articulation), and takes two arguments: a
unique identifier (derived from the sign’s ID-gloss)
and a HamNoSys string. For every pair of articu-
lations, we evaluate whether any of the temporal
relationships illustrated in Figure 2 apply. The re-
sulting output is a set of predicates that encode both
the phonetic structure of individual manual signs
and the temporal relations between them.

Figure 3 shows a multilinear representation of an
LSFB question from the GeoQuery-LSFB corpus5.
The LSFB expression is a translation of the En-
glish question ”What are the high points of states
surrounding Mississippi?”. To illustrate the use
of temporal relationships, we focus on the high-

5A resource of LSFB questions on U.S. geography, an-
notated with procedural semantic representations. Avail-
able at: https://gitlab.unamur.be/beehaif/
GeoQuery-LSFB

A1

time

A2

if start(A1) ≈ end(A2) 
    then adjacent(A1, A2)  

A1

time

A2

if start(A1) > start(A2) and end(A1) < end(A2)
    then during(A1 , A2) 

A1

time

A2

if start(A1) ≈ start(A2) 
    then start-coincides(A1 , A2) 

A1

time

A2

if end(A1) ≈ end(A2) 
    then end-coincides(A1 , A2) 

Where ≈ denotes approximative equality (+- 100 ms)
and A1, A2 are unique identifiers of articulations 

1. Temporal adjacency

2. Temporal inclusion

3. Equal start time

4. Equal end time

Figure 2: The collection of temporal relationships used
within the multilinear representation of our framework.
The adjacency relationship captures the sequential or-
dering of two articulations, while the remaining rela-
tionships describe multilinear structures involving two
articulations. A single articulation can be involved in
multiple relationships.

lighted part of the expression. The left hand pro-
duces a sign glossed as DS[BENT5]:ETAT, which
depicts a state. Meanwhile, the right hand performs
three sequential signs: DS:[BENT5]:ETAT+, depict-
ing multiple states, PT:DET/LOC[1]+, a pointing
sign referring to the locations of the previously
introduced states, and HAUT, which refers to a
high point. The multilinear representation specifies
each articulation’s type, unique identifier and Ham-
NoSys representation, along with five temporal re-
lationships: two adjacency relations between the
right handed signs, an equal start relationship be-
tween DS[BENT5]:ETAT+ and DS[BENT5]:ETAT, a
during relationship between PT:DET/LOC[1]+ and
DS[BENT5]:ETAT, and an equal end relationship
between HAUT and DS[BENT5]:ETAT.

Our multilinear representation was primarily in-
spired by the AZalee approach, where articula-
tors from any type can be aligned freely through
their temporal boundaries and a set of temporal
relationships (Filhol, 2012; Filhol and Braffort,
2012). While our representation currently only in-
cludes manual articulators, we acknowledge the im-
portance of non-manual components for grammar
modelling. Therefore, we designed the represen-
tation to be extensible, aiming to add non-manual
articulation types in the future.

5
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time

palm-up

palm-up

dans

dans

fs:mississppi il-y-a ds:bent[5]:etat+ pt:det/loc[1]+ haut quoi

ds:bent[5]:etat

right-hand-articulation(ds[bent5]:etat+, “”),
right-hand-articulation(pt:det/loc[1]+,””),
right-hand-articulation(haut,””),
left-hand-articulation(ds[bent5]:etat, “”),
adjacent(ds[bent5]:etat+, pt:det/loc[1]+),
adjacent(pt:det/loc[1]+, haut),
start-coincides(ds[bent5]:etat+, ds[bent5]:etat),
during(pt:det/loc[1]+, ds[bent5]:etat),
end-coincides(haut, ds[bent5]:etat) 

LSFB translation of the sentence: “What are the high points of states surrounding Mississippi ?”

RH

LH

Figure 3: Example of a multilinear representation for a form in LSFB. The highlighted part of the expression
contains four articulations in total, three right handed and one left handed one. Right handed articulations all occur
in sequence (conveyed by two adjacency relationships), while the left handed articulation is held through time and
simultaneously occurs with the sequence of right handed signs. This simultaneous occurrence is conveyed through
the start-coincides, during, and end-coincides relationships in the representation.

4.3 Fluid Construction Grammar: a
Bidirectional Computational Construction
Grammar Framework

The proposed mechanisms for processing signed
languages are integrated into the well-established
FCG framework (Steels, 2011; van Trijp et al.,
2022; Beuls and Van Eecke, 2023, 2025). It models
language processing as a state-space search process
(see Figure 4), with the initial state containing the
input (form in comprehension, meaning in produc-
tion) and the goal state containing an expanded
structure capturing both the form and meaning of
the utterance (Van Eecke et al., 2022; Van Eecke
and Beuls, 2017). Between start and end states,
constructions or form-meaning mappings act as
operators that expand this initial state (Van Eecke
et al., 2022). Representations of intermediate states
within this process are commonly referred to as
transient structures. The entire state-space search
process is referred to as the construction applica-
tion process. For more information about construc-
tional language processing using FCG, please con-
sult Van Eecke and Beuls (2017) and Van Eecke
et al. (2022).

Within the FCG sign language module, linguistic
forms are represented using our multilinear repre-
sentation, while any formal semantic framework
can be used to represent their meaning. Examples

are procedural semantics (Woods, 1968; Woods
et al., 1972; Winograd, 1972), discourse represen-
tation structure (Kamp and Reyle, 2013), and ab-
stract/uniform meaning representation (Banarescu
et al., 2013; Van Gysel et al., 2021). Like the gen-
eral FCG architecture, grammars developed using
the sign language package allow bidirectional pro-
cessing, meaning they can be used to map form
to meaning (comprehension) and meaning to form
(production).

4.4 The FCG module for processing signed
languages

We bundle the implemented mechanisms as an
FCG module integrated into the Babel software
library, allowing researchers to use and test the
developed framework on their own sign language
data.

The module contains several components, in-
cluding methods for reading in ELAN annotation
files and transforming them into the multilinear
predicate notation format. A second component
integrates these multilinear forms with the FCG
construction application process, adding them to
the initial transient structure in comprehension and
extracting them from the final transient structure
in production. Finally, a visualisation component
integrates avatar animations and graphical repre-
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0: initial

transient-structure-1

information known at start of 
construction application process

1: cxn-1 applied

transient-structure-2

expanded version of 
transient-structure-1, containing 
information added by cxn-1

3: cxn-2 has applied, goal test succeeded

transient-structure-4

expanded version of transient-structure-2 
which satisfies goal test.

2: cxn-3 applied

transient structure-3

expanded version of 
transient-structure-1, containing 
information added by cxn-3

Comprehension: all information about 
meaning is extracted as result

Comprehension: observed form 

Nodes are expanded with all constructions 
that can apply. Branches are explored until 
a solution node is found.

A solution node is reached when a goal test can 
apply.

Production: intended meaning

Production: all information about form is 
extracted as result

Figure 4: Illustration of the construction application process in FCG. The initial state (also referred to as initial
transient structure), contains all information known at the start of processing (form in comprehension, meaning in
production). Nodes are expanded by constructions and branches are explored until a solution node is reached.

sentations of multilinear structures, allowing users
to inspect signed forms visually.

To use the FCG sign language processing mod-
ule, a recent installation of the Babel toolkit is
required (see the Babel installation page). After
installing Babel and following the steps within the
README of its sign language processing module,
users can start using the framework.

5 Interactive Web Demonstration

To demonstrate the potential of the developed
framework for the computational exploration of
sign language constructions, we provide an inter-
active web demonstration6 alongside this paper.
It illustrates the functionality of our framework
through the comprehension and production of the
LSFB expression from Figure 3. The visualisations
shown within the web demonstration are integrated
into the FCG module for sign language processing
as live visualisations, allowing users to inspect the
construction application process for signed utter-
ances in real time.

Figure 5 provides a schematic overview of the
comprehension process. The initial transient struc-
ture contains the predicate notation of the observed
form. Nodes in the search tree are expanded until

6Available here: https://liesbet-devos.
github.io/SL-processing-demo/

a goal state with a complete meaning analysis is
found. The transient structure of this final node
contains a collection of units that were created by
the applied constructions and combines informa-
tion about the utterance’s form and meaning. To
complete the comprehension process, the mean-
ing predicates are extracted from the final transient
structure, resulting in a coherent meaning represen-
tation for the observed form.

The figure shows two constructions in detail: a
concrete construction that captures the form and
meaning of the LSFB sign HAUT (HAUT-CXN) and
a more abstract construction which captures the typ-
ical theme-question format of questions in LSFB
(THEME-QUESTION-CXN). The HAUT-CXN maps
between the linguistic form (right-handed articu-
lation with the index finger pointing upwards and
performing a slight upwards movement) and the
meaning of the sign HAUT (procedural meaning
referring to a high point). The construction cap-
tures additional linguistic information about the
sign, such as its semantic class, number, and lo-
cation. The args feature later connects the sign’s
semantic arguments to those of other constructions.
The THEME-QUESTION-CXN captures the informa-
tion structure of LSFB questions, where the theme
precedes the querying component. It enforces this
precedence through an adjacency relation between
the final sign of the theme and the first sign of the
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The graphical representation of the input form is transformed into the notation format discussed in the paper. Each sign is

modeled using a predicate that describes its type, unique identifier, and HamNoSys structure. This predicate

representation is added to the initial state of the construction application process, also known as the initial transient

structure:

Construction application process

Constructions apply to this initial state, expanding it incrementally to reach a complete meaning analysis:

Resulting structure

The dark green node represents the goal state of the comprehension process. Its transient structure is an expanded

version of the initial one, containing a collection of linguistic units:

! 

transient structure

root

0, 1.00:

initial

1, 2.00:

ds_bent5_etat-cxn-

1 (cxn 0.50)

5, 3.00:

haut-cxn

(cxn 0.50)

8, 4.00:

ds_bent5_etat+-

cxn-1 (cxn 0.50)

10, 5.00: pt_loc_1_+-

anaphor-cxn

(cxn 0.50)

12, 6.00:

fs_mississippi-

cxn-1 (cxn 0.50)

* figure-adjacent-to-ground-cxn-1

(cxn 0.50), pronoun-property-question-

cxn-1 (cxn 0.50)

17, 9.00: theme-
question-cxn-1
(cxn 0.50)

15, 7.00: pronoun-property-question-cxn-1 (cxn 0.50)

13, 6.00: pronoun-property-question-cxn-1 (cxn 0.50)

11, 5.00: fs_mississippi-cxn-1 (cxn 0.50)

9, 4.00: fs_mississippi-cxn-1 (cxn 0.50)

6, 3.00: ds_bent5_etat+-cxn-1 (cxn 0.50)

7, 3.00: fs_mississippi-cxn-1 (cxn 0.50)

2, 2.00: haut-cxn (cxn 0.50)

3, 2.00: fs_mississippi-cxn-1 (cxn 0.50)

4, 2.00: ds_bent5_etat+-cxn-1 (cxn 0.50)

transient structure

root

Initial transient structure:

Applied construction (node 5):

Applied construction (node 17):

extracted meaning network:

Figure 5: Schematic representation of the comprehension process for the signed expression of Figure 3. The initial
transient structure contains the observed form in predicate format. A goal state is reached in node 17. To complete
the comprehension process, all meaning predicates are extracted from the final transient structure, resulting in the
meaning representation which is shown. During the application process, multiple constructions apply, amongst
which the HAUT and THEME-QUESTION construction.

question. When this adjacency condition is met,
the construction links the semantic arguments of
both parts, resulting in a coherent meaning network
for the expression.

This demonstration showcases how the FCG
module for sign language processing facilitates
comprehension and production of an LSFB expres-
sion. Its broader aim is to showcase the poten-
tial of FCG and the implemented sign language
processing mechanisms for future computational
exploration of sign language constructions.

6 Conclusion

The main goal of the current paper was to study
and operationalize the core mechanisms required
for representing and processing signed languages
using computational construction grammar. We

identified three core properties for the framework.
It should (1) include a phonetic representation for
manual signs, (2) make temporal relationships be-
tween these signs explicit, and (3) allow bidirec-
tional processing. For phonetic representation, we
rely on the well-established HamNoSys system,
which describes the hand shape, orientation, loca-
tion, movement and non-manual features of iso-
lated signs. It is language-agnostic and represents
signs from any sign language. While it provides the
possibility to describe non-manual components as
well, we do not yet include these in our approach,
leaving this to future work. To describe temporal
relationships between these signs, we propose a
multilinear representation which extracts tempo-
ral information from ELAN annotation files. To
allow bidirectional processing, we integrate the
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developed mechanisms into the FCG framework.
The implemented mechanisms are available as a
module within the Babel software library, which is
openly available.

Through an interactive web-demonstration, we
illustrate how the proposed mechanisms effectively
represent and process the multilinear forms of a
signed language. More broadly, this demonstration
showcases the potential of the proposed framework
for future computational exploration of sign lan-
guage constructions. While it is an initial step
towards a functional framework for bidirectional
sign language processing, challenges remain before
our approach can be scaled to large corpora and
various research contexts. An example is the inclu-
sion of non-manual components and their temporal
relations.

Limitations

A considerable limitation of the presented module
is its focus on manually signed forms. Non-manual
features are frequent within sign language produc-
tions and play crucial roles in many sign language
constructions. However, formalising these non-
manual forms remains challenging, with most for-
mal notation systems focusing primarily on manual
forms. Systems like HamNoSys often include some
non-manual features, but they are not as extensive
and well-developed as the manual ones. Another
limitation of the framework is the collection of tem-
poral relationships, which currently does not cap-
ture differences in on- or offset time between two
articulations. Such differences might be needed
to capture constructions that contain non-manual
features, which often have a different on- or off-
set time. Finally, we have only tested the module
on LSFB examples. While we expect the system
to apply to other sign languages, it remains to be
verified empirically.
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Abstract

This paper investigates false positive construc-
tions: grammatical structures which an LLM
hallucinates as distinct constructions but which
human introspection does not support. Both
a behavioural probing task using contextual
embeddings and a meta-linguistic probing task
using prompts are included, allowing us to dis-
tinguish between implicit and explicit linguistic
knowledge. Both methods reveal that models
do indeed hallucinate constructions. We then
simulate hypothesis testing to determine what
would have happened if a linguist had falsely
hypothesized that these hallucinated construc-
tions do exist. The high accuracy obtained
shows that such false hypotheses would have
been overwhelmingly confirmed. This suggests
that construction probing methods suffer from
a confirmation bias and raises the issue of what
unknown and incorrect syntactic knowledge
these models also possess.

1 False Positives and Confirmation Bias

Recent work in computational syntax has focused
on the question of whether LLMs are aware of
specific syntactic structures like the LET-ALONE

construction (Bonial and Tayyar Madabushi, 2024).
The goal of such work is partly to evaluate the lin-
guistic knowledge of the models themselves but
also to evaluate the learnability of these construc-
tions without specific linguistic resources available
during training. Thus, constructions which an LLM
does successfully learn provide evidence for learn-
ability, especially when these constructions are rel-
atively rare (Misra and Mahowald, 2024).

Most previous work has followed the same high-
level procedure: First, a linguist relies on their own
introspection to determine that a construction exists
(for them) and then annotates examples of that con-
struction in a corpus or creates examples using their

own intuitions.1 Second, these annotated examples
provide stimuli for probing the linguistic knowl-
edge of an LLM to determine whether the model is
able to distinguish between this construction and
other similar constructions. The procedure, in short,
begins with specific constructions of interest and is
limited to those constructions already hypothesized
by linguists to exist for humans. For example, we
start by assuming that the AANN construction ex-
ists for humans, as shown in the contrast between
canonical order in (a) and non-canonical order in
(b) below. Then we try to determine whether a
model has also learned that construction (e.g., Ma-
howald 2023).

(a) five terrible weeks
(b) a terrible five weeks

If the LLM is unable to distinguish or identify
the construction of interest, then the conclusion is
that the model is wrong in that it disagrees with the
gold-standard of human introspection (Weissweiler
et al., 2022). If, on the other hand, the LLM is
in fact able to distinguish this construction, this is
taken as evidence that the construction is learnable
from usage alone (Misra and Mahowald, 2024). At
no point is it possible for the introspection-driven
hypothesis that a construction exists able to be dis-
proven. And at no point is it possible to discover
that the model has also incorrectly learned other
constructions that humans do not know.

There are two potential issues with this line of
argumentation: First, these methods are not able to
discover false positives: what constructions has an
LLM learned in error? Is a model aware of con-
structions which humans do not know? In other
words, by starting with constructions derived from
introspection, these methods can only confirm or

1The exception to this is Tayyar Madabushi et al. 2020,
which instead used a falsifiable if imperfect constructicon.
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disconfirm whether that specific construction has
been learned. This means that it is impossible to
discover that the model has learned a new construc-
tion, where such a new construction could be either
a false positive or a construction that remains un-
known to linguists or a construction from a dialect
or register which linguists have yet to describe.

This paper focuses on this problem of probing
for new or false positive constructions by analyz-
ing contextual embeddings representing sets of sen-
tences instantiating a single construction. The goal
is to find constructions which the model distin-
guishes as separate but which humans do not.

The second potential issue with previous ap-
proaches to construction probing is that there is
often no reproducible criteria to define what ac-
tually constitutes a construction from a linguistic
perspective. And yet before claiming that LLMs
are in error by not knowing a construction, we
would want a fully reproducible and falsifiable def-
inition of whether some pattern does in fact con-
stitute a construction (Cappelle, 2024). How can
we establish, beyond personal introspection, which
constructions should be known to an LLM?

This is especially problematic considering that
usage-based approaches to Construction Grammar
rely on a notion of entrenchment in which some
representations are more grammaticalized than oth-
ers (Divjak, 2019). What level of entrenchment
qualifies a construction as needing to be learned by
an LLM and what population/register provides the
baseline for measuring such entrenchment? The
basic challenge is that even probing-based methods
require a reproducible and falsifiable definition of
what is or is not a construction, leading to a confir-
mation bias. Such methods can only discover that
the original analysis was correct (true positives) or
that the LLM is incorrect (false negatives).

The main contribution of this paper is to ask
whether LLMs make errors by over-learning
constructions which do not actually exist for hu-
man speakers.2 We combine a behavioural prob-
ing task based on contextual embeddings with a
meta-linguistic probing task based on prompted
linguistic analysis in order to compare such false
positive constructions from the perspective of both
implicit and explicit linguistic knowledge.

Previous work has probed for the existence of
constructions within LLMs using a variety of meth-

2Supplementary material is available at
https://doi.org/10.17605/OSF.IO/W2XYB

ods. Prompt-based approaches often rely on ex-
plicit meta-linguistic knowledge, such as asking
for grammaticality judgments (Mahowald, 2023)
or providing explicit descriptions or examples of
constructions (Torrent et al., 2024; Bonial and Tay-
yar Madabushi, 2024; Morin and Larsson, 2025).
Such meta-linguistic tasks require knowledge of the
language but also knowledge of linguistics; many
native speakers of English, for instance, would
struggle with such tasks. The experiment in Section
3 uses this line of work to search for false positive
constructions in explicit linguistic knowledge.

Other work has probed for constructions using
more direct properties of models: log probabilities
(Hawkins et al., 2020; Leong and Linzen, 2023)
and contextual embeddings (Li et al., 2022; Weis-
sweiler et al., 2022; Chronis et al., 2023). Even if
a model distinguishes between constructions with
similar forms, however, this does not entail that the
model is able to correctly interpret that difference
(Zhou et al., 2024). We refer to these more direct
tasks as behavioural probes in the sense that they
do not require explicit linguistic analysis in the way
that the prompt-based methods do. The experiment
in Section 4 uses this line of work to again search
for false positive constructions, this time in implicit
linguistic knowledge.

The paper is organized as follows: First, we
discuss the corpus data used to probe for false pos-
itives; this consists of 100 sentences each for five
clause-level constructions. Importantly, the sen-
tences in each category are all examples of the
same construction. Second, we use meta-linguistic
prompts to see whether a model can be induced
to mimic false analyses in a sentence sorting task.
Third, we use contextual embeddings together with
unsupervised methods to see whether a model dis-
tinguishes incorrectly between instances of a single
construction. Together, these experiments show
that LLMs hallucinate non-existing constructions
and that probing experiments using these halluci-
nated constructions would have confirmed their
existence, a significant error. These results show
the need for caution in making conclusions about
linguistic theory based on probing experiments.

2 Data

This section discusses the corpus data used to probe
for false positive constructions. The basic idea
is to collect 100 examples each for five separate
clause-level constructions. Each of these examples
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should be comparable in terms of its constructional
analysis, although varying in other structural and
lexical and topical attributes. These sentences are
collected from the Universal Dependencies English
corpora (Nivre et al., 2020), chosen so that the
dependency annotations can be searched for sen-
tences which share the same form. The extracted
examples are then analyzed using introspection to
ensure that each set represents one and only one
clause-level construction. This provides an overall
corpus of 500 sentences divided into five construc-
tional categories as described below.

The first category is derived from intransitive
constructions, as shown in (1) and (2). Although
the selection criteria is focused on clauses without
arguments present, most of these examples contain
motion-event verbs.

(1) One little boy stands up.
(2) I literally just pretty much woke up and left

this morning.

The second category is derived from transitive
constructions, as show in (3) and (4). The selection
criteria is a clause with a single argument in which
that argument is a noun phrase.

(3) Olivia played records with the living-room
windows wide open.

(4) They just built a hotel in Syria.

The third category is closely related, containing
transitive constructions in which the argument is
an embedded clause. Examples are shown in (5)
and (6). The sentences in this category have simi-
lar structures in the embedded clauses, with some
degree of natural variation across them.

(5) The Great Powers realized they had to
change their decision.

(6) Quinn realized that he should be going.

The fourth category contains single-argument
clauses that have been passivized. Examples are
shown in (7) and (8), both containing the original
agent in a by-phrase.

(7) Without a valid visa, boarding will be denied
by the airline.

(8) Tropical cyclones are sustained by a form of
energy called latent heat.

Finally, the fifth category is double object con-
structions, as shown in (9) and (10). These sen-
tences vary by whether either of the arguments are
pronominal.

(9) Silent, I give his case some thought.
(10) I faxed you the promotional on the Nimitz

post office.

As shown in these examples, the data consists
of sentences with the same form and the same
schematic meaning at the clausal level. While there
are variations across examples of each category, in
terms of lexical items and sub-clausal structures,
they are examples of the same underlying clausal
construction given the introspections of linguists.
Our question is whether LLMs view these as coher-
ent constructions (as humans do) or whether some
instances within each category are viewed as dis-
tinct constructions (thus, false positives). In both
experiments it turns out that the models do posit
false positive constructions within these sets. Thus,
we later conduct further introspective analysis to
ensure that these distinctions are not linguistically-
motivated by confounding factors.

3 Experiment 1: Meta-Linguistic
Prompts

Our first experiment uses meta-linguistic prompts
to determine whether LLMs, in this case GPT-4,
hallucinate constructions that are invisible to hu-
man speakers. The basic prompting procedure
is replicated from recent work on probing GPT-4
for linguistic knowledge of constructions at differ-
ent levels of abstraction (Bonial and Tayyar Mad-
abushi, 2024).

This prompt-based approach is very similar to a
sentence sorting task (Li et al., 2022): the model is
given the name of a construction with an example
and a set of six stimuli sentences. Three of these
stimuli are actual examples of the construction and
the model is asked to identify them. This is the
same as sorting the sentences by syntactic similar-
ity to the example and to each other. In the original
experiment, the name of the construction is drawn
from the CxG literature and the examples are con-
structed by a linguist. For instance, the following
is a possible prompt:

From amongst the following sentences,
extract the three sentences which are
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instances of the LET-ALONE construc-
tion, as exemplified by the following sen-
tence: “None of these arguments is no-
tably strong, let alone conclusive.” Out-
put only the three sentences in three sep-
arate lines: [Followed by six examples to
sort.]

Because we are interested in discovering false
positive constructions, we cannot use the name
of existing constructions in the literature. First,
these may be present in the training data and thus
be known to the model. But, more importantly,
we want to find constructions which linguists are
not aware of and thus which have no name. To
overcome this problem, we create five nonce con-
struction names which could plausibly be used in
linguistic description but which also do not suggest
specific existing constructions: the Pristine Exem-
plar construction, the Reverted Focus construction,
the Alternate Application construction, the Normal-
ized Attribution construction, and the Entrenched
Objective construction. These names have not pre-
viously been used and thus could hypothetically
point to previously undescribed structures.

Our data consists of 100 sentences that are in-
stances of five clause-level constructions. For each
prompt, we randomly choose an example sentence
from each category and six stimuli sentences. Im-
portantly, these sentences are all instances of the
same construction given the introspections of a lin-
guist and thus the sorting task is prompting the
model to create clusters of constructions, some of
which match the fake construction name and exam-
ple and others of which do not match. We have two
goals here: First, to determine what would happen
if we asked the model to undertake a spurious lin-
guistic analysis and, second, to determine whether
any new model-driven constructions are plausible
(constituting unknown constructions) or hallucina-
tions (constituting false positive constructions).

For each category in the data set we undertake
100 unique prompts for each of the construction
names above; this allows us to examine whether
these invented names influence the output of the
model. Each of these prompts also draws on a
unique example, so that we can also examine the
influence of specific examples on the output.

We operationalize this question of false posi-
tives around the stability of the sentence sorting:
do the same sentences end up being clustered to-
gether regardless of the artificial construction name

and the provided example? If so, this means that
the LLM is consistently making a distinction be-
tween sentences which are actually instances of the
same construction. If the sorting were based on
the invented construction name or on the randomly
chosen example sentence, then the sorting patterns
would vary along these two dimensions. But if, on
the other hand, the sorting is based on an underly-
ing hallucinated construction, then the name and
the example would have no influence at all on the
sorting. Thus, a high stability across these dimen-
sions would mean that neither the name nor the
example influence which patterns are ultimately
discovered in this task.

An alternate way of viewing this experiment is
as testing a hypothetical analysis: if we assume that
there is in fact a construction with the given name
(e.g., the Alternate Application construction) with
the given example as a good instance, how would
the model behave? In this hypothetical, some of
the sentences are instances of this construction and
others are not. We evaluate this hypothesis by look-
ing at whether the same sentences are consistently
sorted together, either as members of the positive
or of the negative category. For instance, the transi-
tive constructions in (11) and (12) are consistently
grouped together four times with four separate ex-
emplars. This would constitute 100% agreement
in the sorting. Our puppet hypothesis would thus
have reached an accuracy of 100%, confirming the
validity of this hallucinated construction. The sen-
tence in (13), on the other hand, is grouped together
with (11) twice but grouped separately once. This
means the model would have an accuracy of 66%
for our puppet hypothesis. Low agreement here
means that there is no hallucinated construction.

(11) Luckily they caught the crooks before they
did one on us.
(12) They have good sushi for a good price.
(13) They can cause property damage, create a
mess, and produce unpleasant smells.

The results across constructions and artificial
construction names is shown in Table 1. This table
considers 100 random exemplars for each cell; high
consistency or accuracy within a cell means that the
same sorting of sentences is reached across many
exemplars. The rows in the table show the invented
names. Thus, if the examples influence the sorting
there would be low agreement overall and if the
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Intransitive Transitive (NP) Transitive (C) Passive Double Object
Alternate Application 92.69% 92.04% 92.84% 93.88% 92.74%
Entrenched Objective 93.93% 92.53% 91.70% 94.36% 91.25%

Normalized Attribution 94.53% 92.76% 92.20% 93.34% 93.79%
Pristine Exemplar 93.01% 93.26% 90.33% 93.18% 91.41%

Reverted Focus 93.39% 93.34% 93.64% 93.98% 93.81%

Table 1: Accuracy by Percent Correct for the Consistency of Sentence Sorting by Construction Name and Across
Exemplars. High Accuracy indicates that we would have confirmed an incorrect hypothesis. These results show
that the construction name has no influence on the observed sorting behaviour.

artificial name influences the sorting there would
different patterns across rows.

These results show that the sorting of sentences
into two constructions is remarkably robust across
both the specific exemplar given in the prompt and
the name applied to the supposed construction.3

In other words, if we viewed this as an actual
hypothesis, that these examples represent two dis-
tinct constructions with similar forms, these results
would have confirmed our hypothesis. And yet we
know that this is not a real distinction: each column
represents one and only one construction, given the
introspection of linguists. This is strong evidence
that such a methodology has a confirmation bias:
we could have confirmed any constructional anal-
ysis in this way. In short, either introspection is
unreliable for identifying constructions (the lin-
guist is wrong) or the model has hallucinated a
constructional distinction which does not exist.4

Our next question is whether these new construc-
tions which GPT-4 reliably detects are either (i)
false positive hallucinations that have no linguistic
regularity or (ii) meaningful constructions which
were previously missed by linguistic introspection.
Since the prompts reliably produce sets of sen-
tences which the model believes represent a sin-
gle construction, we use introspection to analyze
some of these model-driven distinctions. To orga-
nize the data into two separate clusters, we create

3Note that there are a few occasions on which GPT-4 re-
turns “None of the provided sentences match the X construc-
tion.” And a single time is only one sentence returned as a
match. Thus, this kind of response is technically possible but
occurs only a few times.

4Because the model does not recognize the name of these
nonce constructions, it could have been the case that this
prompt is not specific enough. To check this, we tried alternate
formulations which ensured that the analysis was linguistic in
nature. For example, we added these sentences to the prompts:
“You are a linguist who is analyzing the grammar of sentences.
A construction is a syntactic unit that maps between form
and meaning...” However, these alternate formulations had no
significant differences from the original prompt.

Category Cluster Accuracy
Intransitive 74.8%

Transitive (NP) 71.1%
Transitive (C) 77.0%

Passive 80.5%
Double Object 74.2%

Table 2: Accuracy by Percent Correct for Clusters
Learned from the Sentence Sorting Task. High Ac-
curacy means that a sentence only occurs in pairs with
other sentences in the same cluster.

a vector space which captures the co-occurrence
of sentences within prompt outputs; a 0 value for
instance would mean that two sentences were never
paired together in a response. We then use these
vectors with k-means clustering to divide the sen-
tences into two groups.

The resulting clusters make a stronger case for
hallucinated constructions: the previous analysis
focused on pairs of sentences that were sorted to-
gether. Here it turns out that this pairwise relation-
ship extends all the way to indirect groups in which
sentences only occur with pairs of pairs of pairs.
As shown in Table 2, between 71.1% and 80.5% of
sentences only occur in pairs with other sentences
in the same cluster, so that these clusters explain a
large portion of the sorting behaviour in this experi-
ment. This is remarkable in that this sorting is done
across many unique examples across many artifi-
cial construction names. The small-scale sentence
sorting prompt produces consistent groups across
many iterations, thus leaving us with these larger
clusters. The next question is whether these halluci-
nated constructions are false positives or previously
unknown structures.

(14a) All tropical cyclones are driven by high heat
content waters.
(14b) As in the old days, varnish is often used as a
protective film against years of dirt.
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(14c) Sufaat was arrested in December 2001 upon
his return to Malaysia.

An introspection-based analysis shows that there
is no constructional difference between sentences
in the two clusters suggested by the model. For
instance, passive sentences from one cluster are
given above and aligned with those from the other
cluster given below. Thus, (14a) and (15a) are
clearly instances of the same construction, for a
human, even though they are clearly separated by
GPT-4. These are examples of an hallucinated
construction.

(15a) Pressure for change is driven by the wish of
women to choose their own fate.
(15b) In the 21st century this book is still used
as one of the basic texts in modern Structural
linguistics.
(15c) His chief aide in Najaf was suddenly arrested
along with 13 other members of his organization.

What does the model think these constructions
look like? One clue comes from some of the very
rare responses in which the sentence sorting task
is not undertaken because no matches are found.
As mentioned above, these occur only a handful
of times. Here is one example explanation of a
non-match:

None of the sentences contain a posses-
sive pronoun subject (like theirs) in a
subordinate clause following a verb of
cognition (like knew), with the subject of
the subordinate clause being a reverted or
pronominalized NP referencing a salient
set from the discourse.

This description of the example sentence is
partly nonsensical but mostly far too specific to be
an actual schematic construction. This provides a
clue about the nature of these hallucinated construc-
tions: they involve too specific a description over
too broad a context. For instance, recent work has
shown that there is a negative relationship between
the size of a model and its ability to predict human
reading times (in other words, showing that models
with better perplexity on a test corpus make worse
predictions about surprisal: Oh and Schuler 2023).
The cause of this disconnect is that the model is
capable of remembering infrequent patterns within
very long contexts (Oh et al., 2024). Humans learn

constructions precisely because they must forget
the specific details of utterances and the contexts in
which they occur. Constructions are remembered
so that more specific details can be forgotten.

On the other hand, these results reflect the abil-
ity of LLMs to identify and, in this case, create
novel patterns; dealing with novel items is an es-
sential part of language processing (Eisenschlos
et al., 2023). The challenge here arises when this
ability to create new patterns is interpreted as confir-
mation of the original hypothesis. This experiment
would have confirmed a hypothesis that (14c) and
(15c) are examples of distinct constructions.

4 Experiment 2: Behavioural Probes

Our second experiment uses contextual embed-
dings from the Pythia 1.4b model to determine
whether the model is able to distinguish between
two distinct constructions which have similar forms
but different meanings. The main idea, however,
is that these two constructions are not actually dis-
tinct. Thus, we are evaluating a false positive dis-
tinction and, if this embedding-based probe is suc-
cessful in maintaining such a distinction, this is
evidence for a confirmation bias. This experiment
follows probing methods previously used to sort
sentences (Li et al., 2022) and to search for the En-
glish comparative correlative construction (Weis-
sweiler et al., 2022). The challenge here is that
many previous methods for probing constructional
knowledge (Weissweiler et al., 2023a) are not ap-
plicable if we are looking for constructions that we
do not yet know.

We take the mean embedding for each of the five
hundred sentences in the dataset, averaged across
the last two layers in the model. Because we are
not concerned here with the contribution of spe-
cific layers, we use this averaged representation to
capture the information available toward the final
layer of the model. This use of pooled sentence
embeddings is chosen to replicate the methods used
in previous work (Li et al., 2022).

For the sake of comparison, we include two em-
bedding conditions: First, we use the raw embed-
dings, which of course capture both grammatical
and non-grammatical information. These unaltered
representations are called Direct Embeddings in Ta-
bles 3 and 4. Second, we create a grammar-focused
embedding for each sentence that controls for lexi-
cal differences. This is done by also extracting the
embedding for a shuffled version of the sentence,
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Intransitive Transitive (NP) Transitive (C) Passive Double Object
Direct Embeddings 0.92 0.88 0.92 0.91 0.93
Grammar-Focused 0.85 0.79 0.87 0.85 0.85

Table 3: Prediction accuracy (f-score) for distinguishing between clause-level constructions using both types of
embeddings. A high accuracy validates that this method is able to distinguish between actual constructions. The
value for each construction is the average f-score for distinguishing it from every other construction in a binary task.

where word order is randomized. Given the sensi-
tivity of English grammar to word order, this has
the effect of removing some syntactic information,
at least that which is not recoverable from lexical
items (Papadimitriou et al., 2022). We then subtract
this non-grammatical embedding from the origi-
nal representation to create a representation which
controls for lexical or topical information. These
altered embeddings are called Grammar-Focused.

We then conduct the analysis across both sets
of embeddings to ensure that any false positive
constructions are not a confound of the lexical or
topical attributes of the sentences. Finally, we fol-
low this up with an introspective analysis of the
results in order to search for additional possible
confounds.

Our first step is to validate that these two sets
of embeddings are able to correctly distinguish
between the five true positive clause-level construc-
tions in our data set. To do this, we train a logistic
regression classifier with the goal of learning to dis-
tinguish between actual constructions. A high ac-
curacy here would mean that these representations
capture the grammatical generalizations that distin-
guish between these five constructions. These are
true positives in the sense that linguists expect the
grammatical representations of these constructions
to be distinct. The results are shown by embedding
type and construction type in Table 3; these results
are averaged across five-fold cross-validation. This
level of accuracy validates that, if we were probing
for actual true positive constructions, these meth-
ods would confirm the existence of those construc-
tions for the model. Interestingly, the grammar-
focused embeddings are worse at distinguishing
constructions in all cases.

The next step is to develop a puppet hypothesis
by trying to use these embeddings to find false pos-
itive constructions. The goal is find potential fake
hypotheses that would also be confirmed by these
same methods. For this we use k-means cluster-
ing to divide each set of sentences into two groups.
This is a simple approach of creating a false dis-

Direct Grammar-
Embeddings Focused

Intransitive 0.99 0.99
Transitive (NP) 0.94 0.93
Transitive (C) 0.96 0.99
Passive NA 0.99
Double Object 0.97 0.97

Table 4: Prediction accuracy by f-score for distinguish-
ing between fake puppet constructions within each con-
structional categories. A high f-score means that the
model hallucinates additional constructions that are not
distinguished for humans. Reported numbers are the
mean across 5-fold cross-validation.

tinction within each construction: according to the
introspections of linguists, each category contains
100 examples of one and only one construction. We
have divided these into two groups by clustering
and then use a logistic regression classifier to test
whether such a division would be confirmed as an
actual constructional distinction. As before, a high
accuracy means that the model confirms our anal-
ysis; the difference is that this is a decoy analysis.
Note that we do not control for non-constructional
factors like sentence length (Weissweiler et al.,
2023b), in part because we are searching for poten-
tial constructions rather than creating a test set for
a hypothesized construction: we cannot manipulate
these clusters. The introspection-based analysis at
the end of this section, however, shows that there
are no clear confounding factors in these two sets
of sentences.5

The results of this experiment are shown in Ta-
ble 4, across both actual constructions (rows) and
the embedding conditions (columns). As before,
Grammar-Focused embeddings have been filtered
to remove lexical or topical information, thus focus-
ing more on structure. These results consistently
show that the model makes distinctions between
hallucinated constructions that do not exist for hu-
mans. In fact, the clarity of the hallucinated con-

5A quantitative analysis shows that these clusters could not
be explained by factors like sentence length alone.
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structions (accuracy) is higher than of the true con-
structions. The only exception to this is the passive
construction with direct embeddings; in this case,
the clustering forms a single group and no classi-
fication probe is possible. In all other cases, this
false hypothesis would have been confirmed.

It is possible, of course, that the model is more
correct than human linguists in its analysis of con-
structions. Perhaps these new constructions discov-
ered by the model are actually correct. Thus, we
now ask: are these new constructional divisions
linguistically motivated? To answer this question
we undertake an introspection-based analysis of the
clusters, starting with the Transitive (NP) sentences.
Sentences from the model’s first hallucinated con-
struction are given in (16) and from the second
hallucinated construction in (17).

(16a) You can change the color of a control.
(16b) In March 1613 he bought a gatehouse in the
former Blackfriars priory.
(16c) His willful nature caused trouble throughout
his life.

A comparison of these examples reveals that
there is no grammatical distinction between these
two sets of sentences. For instance, these sentences
are paired by verb, with even the same sense of the
same verb in the same clausal construction existing
within both groups. And yet, if we had hypothe-
sized that these sentences were instances of two
separate constructions, the model would have con-
firmed our analysis with an f-score of 0.94.

(17a) You change the layout by moving the fields
to predefined drop areas.
(17b) He bought a postcard of brilliant blue sea
and dazzling white ruins.
(17c) They can cause property damage, create a
mess, and produce unpleasant smells.

A further set of examples is given in (18) and
(19), in this case representing two hallucinated con-
structions within the clausal argument transitive
sentences. According to our introspection, these
are all examples of a single construction.

(18a) I realize that some were not signed by the
artist.
(18b) We all know that John Kerry served in
Vietnam.

(18c) I believe he must have waited among the
gorse bushes through which the path winds.

As before, the examples of each hallucinated
construction are aligned by verb, with (18a) compa-
rable to (19a) and so on. And yet these do not form
actual minimal pairs: each is still an instance of
the same construction. These examples show that
the groupings from the model, while robust, do not
form a linguistically distinct set of utterances.

(19a) Nor did she realize that he wrote popular
literature.
(19b) We all know that the market share of the
railways has declined in recent years.
(19c) Once I returned to pick up my car, you can
believe I spent quite a bit more time standing
around waiting.

This section has conducted a probing experiment
using contextual embeddings, first to distinguish be-
tween actual constructions and second to search for
false positive constructions learned by the model.
The high accuracy which validates the true posi-
tives is comparable to the high accuracy for the
false positives. We then undertook a qualitative er-
ror analysis to determine if these new constructions
had a legitimate but previously unknown linguistic
basis. Our conclusion is that these do constitute
false positive hallucinated constructions.6

5 Discussion and Conclusions

The goal of this paper has been to investigate the
possibility of false positive constructions in LLMs.
If a question for computational syntax is whether
these models are aware of some syntactic struc-
ture, it is important to also search for constructions
which the LLM is aware of incorrectly: halluci-
nated constructions that exist only for the model
and not for humans.

This paper has shown that previous methods are
inadequate for mapping the full syntactic knowl-
edge of language models. Since we do not know
how many such hallucinated constructions exist,
there is a large piece missing in our understanding
of how LLMs represent grammar. We can imagine
two distinct scenarios: First, suppose that a human
speaker of English knows 10k constructions and

6Importantly, previous work which included additional
NLI tasks along with the identification of constructions (Weis-
sweiler et al., 2023b) would only have over-identified in the
first task.
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that an LLM knows 9k of those constructions. That
would be a respectable a true positive rate of 90%.
But, second, suppose that the LLM knows 9k of the
10k actual constructions, but also an additional 20k
hallucinated constructions. This would be a very
different story, with a false positive rate exceeding
the true positive rate. The problem is that previous
work has been fundamentally unable to explore the
possibility of false positive constructions.

From a linguistic perspective, this means that
probing experiments should not yet be taken as
evidence for a given linguistic analysis. Because
even incorrect analyses can be confirmed in this
way, we should not accept this form of evidence as
support for linguistic theory itself. This means that
Construction Grammar continues to struggle with
falsifiability (Cappelle, 2024). In short, probing
methods require minimal pairs which assume the
existence of the construction to be tested. They
cannot yet provide evidence for the existence of
constructions themselves.

From a computational perspective, this means
that we still do not know the full linguistic knowl-
edge within LLMs because we have only looked for
what we expected to find. What we do not know is
the potentially vast store of incorrect constructional
representations which have also been acquired by
these models. Exploring the full range of such false
positives remains a challenge for future work.

Minimal Pairs Cannot Be Formulated for Un-
known False Positives. Many of the core probing
experiments in computational syntax are focused
around minimal pairs which contrast specific phe-
nomena: examples include active/passive alterna-
tions (Leong and Linzen, 2023), dative/ditransitive
alternations (Hawkins et al., 2020), and island ef-
fects (Kobzeva et al., 2023). A paradigm that relies
on minimal pairs can be relatively confident in its
true positives and false negatives. For instance, this
kind of stimuli could be used to prove that a model
does know island constraints or that a model does
not know the restrained scope of the active/passive
alternation. But, because hallucinated construc-
tions are by definition unknown, it would never
be possible to construct minimal pairs until they
have been discovered. Thus, unless methods are
developed to thoroughly search for syntactic hal-
lucinations, we will never actually know the full
range of syntactic knowledge of a model.

Entrenchment and Exposure Are Specific to Indi-
viduals. A further challenge is that, from a usage-

based perspective, constructional representations
are entrenched to various degrees. This means that
a construction could be partially productive and it
also means that the level of productivity could vary
by individual (Fonteyn and Nini, 2020; Dunn and
Nini, 2021) and by speech community (Hollmann
and Siewierska, 2011; Dunn, 2018). In short, usage-
based theory makes claims about the grammars of
specific groups who have had specific linguistic ex-
periences. The challenge is that LLMs span speech
communities and represent many different popula-
tions (Dunn et al., 2024). It is reasonable to say
that speakers of American English have a given
construction in a spoken register. But it is not rea-
sonable to say that all speakers of English in all
registers have that construction. Thus, another chal-
lenge is to determine what the benchmark popula-
tion/register is for probing experiments. Does GPT-
4 need to know all of the constructions of written
American English? Of spoken Nigerian English?
Of Indian English? Are these false positives ac-
tually entrenched constructions for other dialects?
These are important questions to ask before we
claim to understand the constructional knowledge
which such models possess.

Can Computational Models Ever Tell Linguists
Something They Did Not Know? Previous work
in constructional probing has focused always on
confirming introspection-based analyses that lin-
guists have already undertaken about phenomena
that linguists already believed to be a part of the
grammar. These methods as previously formulated
can never discover new phenomena, and thus are
unable to tell linguists something about grammar
that they did not already expect to find. At the same
time, as we have seen, these methods come with a
confirmation bias which would incorrectly support
hypotheses that we know have no basis.

One way forward is to develop methods for map-
ping the syntactic knowledge of LLMs which do
not assume syntactic analyses from the start: what
is the grammar that a model has learned, regardless
of whether that grammar matches what linguists ex-
pect to find? As in this paper, such methods would
do best to combine both explicit meta-linguistic
knowledge with implicit behavioural knowledge.
Further, since populations and individuals differ
in their grammatical knowledge, it is important
for such false positive probing experiments to also
account for register and dialect.
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Abstract

This paper applies Sentence-Bert embeddings
to the analysis of three competing construc-
tions in Canadian English: be perfect, pred-
icate adjective and have perfect. Samples
are drawn from a Canadian news media
database. Constructional exemplars are vector-
ized and mean-pooled to create constructional
centroids, from which top-ranked exemplars
and cross-construction similarities are calcu-
lated. Clause type distribution and definiteness
marking are also examined. The embeddings-
based analysis is cross-validated by a tradi-
tional quantitative study, and both lines of in-
quiry converge on the following tendencies: (i)
prevalence of embedded – and particularly ad-
verbial – clauses in the be perfect and predicate
adjective constructions, (ii) prevalence of ma-
trix clauses in the have perfect, (iii) prevalence
of definiteness marking in the direct object of
the be perfect, and (iv) greater statistical sim-
ilarities between be perfects and predicate ad-
jectives. These findings support the argument
that be perfects function as topic-marking con-
structions within a usage-based framework.

1 Introduction

Canadian English has a be perfect construction, e.g.
I’m done my homework, with the range of partici-
ples varying by dialect, but normally restricted to
done, finished and occasionally started. The con-
struction is similar in form and function to the have
perfect, e.g. I’ve done my homework, as well as the
predicate adjective construction, e.g. I’m done with
my homework. For the sake of terminological clar-
ity, the constructions in question are exemplified in
Table 1; their abbreviations, listed parenthetically
in the first column, are used throughout the paper
for brevity.

While superficially similar, these constructions
differ systematically in semantics, syntax, and dis-
course function. These differences are examined

in this study, based on samples collected from a
Canadian news media database. The analysis com-
bines an embeddings-based approach with tradi-
tional quantitative methods. Using Sentence-BERT
(SBERT) embeddings, constructional exemplars
are vectorized, mean-pooled, and aggregated into
constructional centroids. Exemplar similarity to
centroids provides a measure of prototypicality,
while cross-construction comparisons yield a sim-
ilarity matrix. Clause type distributions are then
analyzed and statistically validated against these
embeddings-based prototypes. The analysis is fur-
ther supported by quantitative evidence from direct
object marking.

The study addresses two questions: 1.) How do
the be perfect, predicate adjective, and have per-
fect compare in terms of semantic density, clause
distribution, and definiteness marking? 2.) Can
embeddings-based prototypes capture construc-
tional tendencies in ways consistent with traditional
corpus analysis?

The findings converge on three points: (i) the
be perfect patterns most closely with the predicate
adjective, (ii) it contrasts sharply with the have
perfect, which predominantly codes new informa-
tion in main clauses, and (iii) its pragmatic spe-
cialization lies in topic marking. The analysis con-
tributes both to the description of Canadian English
variation and to the methodological toolkit of con-
struction grammar, showing how embeddings can
model constructional prototypes within a usage-
based framework.

2 Theoretical background

2.1 Sentence embeddings and construction
prototypes

Theoretical work in construction grammar has
commonly relied on acceptability judgments and
corpus-based statistics for argumentation. An
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Cxn Example

be perfect
(be)

I am done my homework
I am finished my homework
I am started my homework

predicate
adjective
(be-with)

I am done with my homework
I am finished with my homework
I am started on my homework

have
perfect
(have)

I have done my homework
I have finished my homework
I have started my homework

Table 1: Examples of the three constructions analyzed

embeddings-based approach might enhance and
guide traditional methods, as well as amplify statis-
tical signal through the strengths of deep learning
models.

Advances in distributional semantics have en-
abled us to capture linguistic meaning in vectorized
representations of words, phrases, and sentences.
Early approaches such as word2vec (Pennington
et al., 2014), GloVe (Mikolov et al., 2013), and fast-
Text (Mikolov et al., 2018) produced static embed-
dings that reflected global co-occurrence patterns.
While effective for short sequences and lexical slot
analysis, these methods are limited in modeling
pragmatic nuance.

Transformer models – and SBERT (Reimers and
Gurevych, 2019) in particular – address this limita-
tion. This family of models is better suited for mod-
eling discourse-level relationships and sentence-
level meaning. These models work best on longer
stretches of text such as a multi-clausal sentence
or a sequence of sentences and perform better in
capturing pragmatic relationships than do static
embeddings. The specific version of SBERT used
in this study for inferencing is all-mpnet-base-v2
(Song et al., 2020); it was fine-tuned by Microsoft
with semantic similarity tasks on a corpus of 1 bil-
lion sentence pairs.

Sentence embeddings are particularly effective
for modeling constructional prototypes because
they capture a mix of semantic, syntactic, and
pragmatic information within a dense vector space.
Mean pooling constructional exemplars allows us
to abstract away a construction’s most prototypi-
cal properties and create an idealized representa-
tion that defines its central meaning. The result
is constructional centroids that represent abstract
prototypes relative to its member exemplars.

In order to compute sentence embeddings, this
study employed an inferencing technique based on
mean pooling of tokens over complete sentential
spans, rather than isolated clausal domains. This
choice reflects the principles of the usage-based
paradigm, which posits a gradient continuum from
syntax through semantics to pragmatics. For in-
stance, Hopper and Thompson (1980) show that
discourse context influences grammatical choices,
and Goldberg (2005, 129-165) demonstrates how
information structure can constrain syntax. Given
that lexical retrieval activates a web of semantic
associations, it is crucial to analyze the semantic
signal extending beyond the immediate clausal do-
main. Because neighboring clauses can provide
vital semantic associations, the broader contextual
analysis enables a precise characterization of a con-
struction’s placement along a continuum of lexical
specificity and schematic generality.

2.2 be perfect in North American English

Occurrences of the be perfect have been docu-
mented in Canada (Hinnell, 2012; Yerastov, 2017;
Murphy, 2018) and Philadelphia (Fruehwald and
Myler, 2015). These attestations have been gen-
erally restricted to aspectual participles: done, fin-
ished, started, although other transitive participles
in the be perfect have been documented in Southern
Atlantic states and Pennsylvania (Atwood, 1953,
26-27), in Lumbee English in the US (Wolfram,
1996), and in Bungi English in Canada (Gold,
2007).

The be perfect is not fully abstract. It behaves
like a prefab with some fixed material, in the mean-
ing of Bybee (2006), subject to a number of con-
straints. Thus, the subject slot is restricted to ani-
mate referents, the participle slot favors three items
only, and the direct object slot tends to be marked
for definiteness, showing sensitivity to lexical id-
iosyncrasy (Yerastov, 2012, 2015), and requiring
exhaustivity (Hinnell, 2012, 74-77).

The be perfect is quite distinct from its relatives
and not reducible to an elliptical or surface instan-
tiation of any other structure. For instance, seman-
tically, it resembles the have perfect when it yields
resultative interpretations, e.g. I’m done dishes
“I’ve finished washing the dishes”. In contrast to
I’m done with dishes, the be perfect cannot have
a stative entailment such as “I do not want to do
dishes ever again”. More to the point, consider the
contrast between I’m never finished with my home-
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work on time and *I’m never finished my homework
on time, where a stative interpretation of the be per-
fect fails. Finally, in dialects that do allow start in
the construction, it is hard to induce a stative read-
ing on an inceptive verb; I’m started my homework
can only be interpreted resultatively.

Yet in other environments the be perfect behaves
like its predicate adjective relative: both construc-
tions share stative adjectival properties. For in-
stance, the two constructions allow extent adverbs,
while the have perfect does not, e.g. I’m all done
(with) my chores, c.f. *I’ve all done my chores
(Yerastov, 2012, 444) and I’m all ready. Further,
the be perfect and predicate adjective constructions
cannot accept adverbial modifiers of manner, e.g.
*I am carefully done my homework (Fruehwald and
Myler, 2015), c.f. *I’m carefully done with my
homework. Semantic similarities between be per-
fects and predicate adjectives can be further seen
in the fact that they both generally disallow conti-
nuitive, hot-news and experiential readings.

These stative similarities have led linguists work-
ing within the generative tradition to resolve the
status of the be perfect to a stative passive (Frue-
hwald and Myler, 2015; Murphy, 2018). While
the be perfect undeniably exhibits stative passive
properties in some environments, its resultative se-
mantics and behavior are equally apparent in others.
Such functional duality does not pose theoretical
problems for a usage-based approach to language,
adopted here, which allows for gradience of mor-
phosyntactic categories (Barlow, 2000).

3 Methods

3.1 Data collection

Geographically, the present study is restricted to
Canada. The data used in the study originated in
Canadian Newsstream (formerly Canadian News-
stand), a news media database, available through
many North American academic and public li-
braries. This choice is motivated by the low to
non-existent frequency of the be perfect in general
linguistic corpora; as an example, Yerastov (2017)
provides a review of scarce search results from
the Corpus of American English, the Corpus of
Historical American English, the Strathy Corpus,
the Bank of Canadian English, the Scottish Cor-
pus of Texts and Speech, and Project Gutenberg –
the documented attestations in these sources, while
valuable, are insufficient for statistical generaliza-
tions.

Because the be perfect is a low-frequency, di-
alectally marked construction, an exhaustive search
was feasible, yielding 1719 tokens. For compari-
son, stratified probability samples were collected
for the have perfect (603 tokens) and predicate ad-
jective constructions (702 tokens). Stratification
ensured balanced representation across participles
and tense permutations. Post-processing of the
samples led to the filtering-out of sequences that
did not meet target morphosyntactic criteria (e.g.,
misparsed complements). The end result was the
difference in sample size for the three constructions.
However, the resulting samples were large enough
to afford meaningful statistical generalizations.

Two exclusions from the study should be noted:
1.) the participle started, and 2.) stand-alone and
interposed adverbial clauses. Only 6 started ex-
emplars were found in the be perfect sample. Be-
cause the baseline for the comparison was the be
perfect, these exemplars were excluded from the
study. Only 1 interposed and 3 stand-alone adver-
bial clauses were found in the three samples; they
were omitted in the adverbial analysis due to their
scarcity.

3.2 Analytical procedure

Constructional exemplars were represented by
mean-pooling of token embeddings from the last
hidden layer, with inference performed over the
entire sentential span. While most exemplars were
complete sentences, some were truncated search
engine results; however, even in these cases, con-
structional slots and clause status information were
fully preserved. Centroids of the exemplar embed-
dings were then computed for the three samples,
using mean pooling as well.

The constructional prototypes were modeled by
computing cosine similarity scores between each
constructional exemplar and their respective cen-
troid in order to rank all members of a distribution
relative to its center. To ensure a focus on the
most representative data, the 10 highest-ranking
exemplars from each distribution were selected for
further analysis. While a more extensive analy-
sis involving longer rank lists or clustering of the
exemplars would be beneficial, it was beyond the
scope of the present study due to space limitations.
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4 Results

4.1 Centroid similarity
The cosine similarity matrix in Table 2 shows that
the be perfect is more similar to the predicate ad-
jective (0.83) than to the have perfect (0.75). Dis-
tributional analyses of centroid-to-exemplar scores
confirmed this pattern. The statistical properties of
each of the be, be-with and have score distributions
are visually summarized in Figure 1. Median sim-
ilarity was found to be highest for the be perfect
(x̃ = 0.3564), followed by the predicate adjective
(x̃ = 0.3418) and the have perfect (x̃ = 0.3268).
However, applying a statistical test to assess cen-
tral tendency is problematic in this case because
centroid-to-exemplar similarities might violate the
assumption of intra-sample independence: a cen-
troid is defined by all vectors in a set.

As an alternative, approximate independence
was achieved by summarizing per-exemplar sim-
ilarities. To re-assess differences in the semantic
density of each sample, cosine similarities were
computed between all pairs within each sample.
For each exemplar, its average similarity was cal-
culated relative to all other exemplars in the same
sample. These per-exemplar averages were then
treated as approximately independent observations.
In order to select an appropriate test of central ten-
dency for these observations, their intra-sample
normality was evaluated using the Shapiro-Wilk
test. Because the be sample was found to deviate
from normality (p = 0.002), the non-parametric
Kruskas-Wallis test was applied to compare the
medians across the three samples. The test indi-
cated a statistically significant difference among
the samples, H(2) = 176.26, p < 0.001; post-
hoc pairwise comparisons were performed with
Dunn’s test using the Holm correction – all pair-
wise differences remained significant after adjust-
ment (p < 0.001). The be sample exhibited the
highest median of intra-sample similarity means
(˜̄x = 0.1257), followed by be-with (˜̄x = 0.1165)
and have (˜̄x = 0.103) – the same ranking as was
observed in the centroid-based analysis.

The differences in the medians of cosine sim-
ilarity distributions are not readily explained by
variations in information quantity among the sam-
ples. All three samples were tokenized using spaCy
(Honnibal et al., 2020), and their tokens counted
per sentence. The be sample was found to have a
higher median token count (x̃ = 25) than the have
sample (x̃ = 22), yet the be sample exhibited the

be be-with have

be −− 0.8318 0.7519
be-with 0.8318 −− 0.7517
have 0.7519 0.7517 −−

Table 2: Cosine similarity scores between construc-
tional centroids

be be-with have
0.0

0.2

0.4

0.6

Figure 1: Distribution of centroid-to-exemplar similar-
ity scores

highest centroid-to-exemplar and per-exemplar sim-
ilarity medians, contrasting with the have sample’s
lowest values. More to the point, the be sample has
the largest number of exemplars, while the have
sample the lowest. These relationships suggest that
increased token length and exemplar count do not
necessarily equate to greater semantic diversity in
this comparison.

The findings with respect to cosine similarity
distributions allow us to evaluate the constructional
samples in terms of semantic homogeneity. The
more exemplars in a sample are like the center –
and, more broadly, the more they are like each
other – the more homogeneous the sample is over-
all. Therefore, it can be concluded that the be
perfect is most semantically homogeneous, while
the have perfect is least homogeneous (conversely,
the have perfect is most semantically diverse); and
the predicate adjective occupies a position in the
middle of this continuum. From the viewpoint of
construction grammar, semantic homogeneity can
be interpreted as an indicator of lexical specificity,
while semantic diversity – as an indicator of ab-
straction.

4.2 Clause type distribution

The top-ranked exemplars for the be perfect con-
struction are presented in (1) through (10) sorted
by cosine similarity in descending order. We ob-
serve that there are only 2 main clauses (3), (9) in
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this subset, while the rest of the exemplars occur
in embedded clauses. Within the embedded subset,
there are 6 preposed adverbials (1), (4), (5), (6),
(7), (10), 1 nominal clause (2), and 1 postposed
non-finite adverbial clause of reason (8).

(1) When employees are finished that we’ll
send them home.

(2) I thought I’d be done school by now.

(3) By the time we got up there on Monday
afternoon, they were done that part of it [...]

(4) Now my friends are done school, they’re
doing what they really want to do [...]

(5) Once those teachers are finished their last
practicum, and they’re eligible for gradua-
tion

(6) In Vancouver, when people are finished
work, they’re finished work.1

(7) When they are finished their work, they will
bring it forward to us.

(8) He’ll be glad to be done the homework and
on to the holidays [...]

(9) I’ll be done university two years from now,
hopefully,

(10) Once the kids are finished school in June
1999, we’ll be looking at going down.

The tendency toward embedding can also be ob-
served in the top-ranked exemplars of the predicate
adjective construction, sorted by descending simi-
larity in (11) through (20). There are 3 preposed ad-
verbial (13), (14), (17), 1 postposed adverbial (12),
1 relative (15), and 2 nominal (16), (18) clauses.
The remaining 3 exemplars occur in main clauses
(11), (19), (20).

(11) Now we are done with them.

(12) People here have made lifelong decisions
because we were finished with this, Mr.
Coma said.

(13) When I was finished with Mitch and Abby,
I was, you know, as a creator, I was done
with them, he said.

(14) When he was finished with the game,
that’s it, period, Gravelle said from his

1Here and elsewhere in the examples, when the construc-
tion of interest occurs in more than one clause within the
same sentence, the more marked variant becomes the focus of
analysis. Thus, this particular exemplar is treated as adverbial.

home in Maniwaki.

(15) It was time to have another and be done
with it.

(16) If I knew I was done with this sport, it’d
have been over, [Ahman Green] said.

(17) When we are finished with them, they are
not finished with us.

(18) They said, for themselves, when they re-
tired, they knew in their heart they were
finished with the amateur sport world, said
[Jennifer Robinson], a native of Windsor,
Ont.

(19) I am done with them.

(20) We are finished here, we are done with this
transaction, Einhorn, 42, told reporters on
a conference call.

A distinct distributional shift is observed in the
top ranked exemplars for have perfects, which are
sorted by similarity in (21) through (30). We ob-
serve that main clauses (21), (23), (24), (25), (27),
(28) have a slight edge over nominal ones (22),
(26), (29), (30), with no incidence of adverbials.

(21) They have done a wonderful job and they
are to be congratulated

(22) To have finished construction and started
up the GTG well ahead of our schedule
is an extraordinary achievement, said Der-
rick Kershaw, general manager of the Au-
rora Project.

(23) And we have done a tremendous amount
of work improving our [...]

(24) This committee has done a lot of great
work in the past two years [...]

(25) Our associates have done a fantastic job
making sure we’re ready to [...]

(26) I would have liked to have finished a little
bit stronger, but to me what’s important is
next weekend and I’m pretty happy with
today in a lot of ways, Nesbitt said in a
conference call before going for a recovery
massage.

(27) We have done our best and presented our
best.

(28) We have finished the basic work of orga-
nizing Arts Alive in Kneehill as a regis-
tered Society in Alberta, and clarified our
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clause type be be-with have

main 2 2 6
nominal 1 2 4
relative 0 1 0
adverbial 7 5 0

Table 3: Clause type distribution in top-ranked exem-
plars.
G(6, n = 30) = 17.23, p = .008

Figure 2: Standardized residuals from G-test of clause
type distribution in top-ranked exemplars

mandate and goals.

(29) By now, nearly five years after he took
over, it is evident that Gainey has finished
the job of bringing the Canadiens out of
the abyss, that awful trough where the club
languished between 1999 and 2001.

(30) Hunt said council and staff have done a lot
of good things over the past four [...]

To assess the distinctness of the three distribu-
tions within the centroid-based subsamples, a G-
test (likelihood ratio statistic) was performed, as
detailed in Table 3; this test was selected due to
the limited number of observations. The statisti-
cally significant outcome (p = .008) supports the
conclusion that the distributions differ. Further ex-
amination of the standardized residuals, shown in
Figure 2, highlights a particularly strong deviation
from the expected values for have and be adverbial
clauses. Because this test is based on a small non-
random sample, the result should be interpreted as
illustrative rather than confirmatory.

5 Discussion

5.1 Semantic density
The embeddings-based prototype of the be perfect
indicates that this construction is pragmatically
rooted in recurring topical domains, particularly
education and work. These patterns become es-
pecially important given that the be perfect dis-
plays the highest median values for both centroid-
to-exemplar and per-exemplar similarity.

From a usage-based perspective – which does
not draw strict boundaries between syntax, seman-
tics, and pragmatics – such topical concentration
is best interpreted as an intrinsic attribute of a con-
struction. Specific discourse topics activate related
semantic networks, thereby shaping and constrain-
ing syntactic choices. Accordingly, the informa-
tional density within a construction serves as a
quantifiable measure of its lexical specificity and
degree of markedness. The characteristic context
of a construction is not incidental, but essential;
it primes the selection of both lexical items and
constructional schemas.

5.2 Adverbial clause distribution
The constructional prototype analysis reveals a
strong preference for adverbial clauses among be
perfects, and a slightly weaker adverbial tendency
among predicate adjectives. In contrast, have per-
fects occur primarily in main clauses and rarely in
adverbials. Since centroid exemplars represent the
most prototypical instances, the absence of adver-
bial clauses among the top-ranked have perfects
suggests that adverbial uses are peripheral to this
construction.

The results of the prototype analysis were con-
firmed by a full quantitative analysis of clause type
distribution across the three constructions. Table 4
presents the counts of clause types within each
sample. A chi-square test of independence on
these distributions revealed a statistically signif-
icant relationship between clause type and con-
struction (p < 0.001), with a moderate effect size
(V = 0.294). Based on the standardized residuals
from the test, presented in Figure 3, the most ex-
treme deviations from expectation are observed for
the main have clauses, followed by the preposed
and postposed adverbial have clauses – these resid-
uals point to the have perfect as an outlier in the
three-way comparison. Also noteworthy is the sim-
ilar degree of deviation observed between the be
and be-with samples with respect to main clauses.
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clause type be be-with have

main 437 147 408
nominal 259 141 86
postposed adv 454 141 41
preposed adv 511 254 31
relative 56 18 36

Table 4: Clause type distribution across full samples.
χ2(8, N = 3020) = 521.72, p < 0.001

Figure 3: Standardized residuals from χ2 test of clause
type distribution

To aid in the examination of the data in Table
4, the exemplar counts are normalized to relative
frequencies and for better visualization presented
in Figure 4 where pre- and postposed adverbials are
collapsed into one class. We observe that adverbial
clauses prevail in the be perfect (f/n = 0.56)
and predicate adjective (f/n = 0.56) samples,
exhibiting near identical relative frequencies, while
main clauses dominate almost two-thirds of the
have perfect sample (f/n = 0.68). When ad-
verbial clauses are further isolated into separate
subsamples and their counts are similarly normal-
ized to relative frequencies (Figure 5), we find that
(i) preposed adverbial clauses prevail within the be
(f/n = 0.53) and be-with (f/n = 0.64) sam-
ples, and (ii) post-posed adverbial clauses prevail
within the have sample (f/n = 0.56).

These quantitative findings are consistent with
the pragmatic function of have perfects in En-
glish. It has been suggested that have perfects typ-
ically tend to code new information (Fenn, 1987;
Michaelis, 1994; Portner, 2003); it is unusual – al-
though not impossible – to use have perfects to
elaborate on old information. English perfects tend
to be reserved for new information, while simple
pasts – for elaborations of that information (i.e.
old information). The canonical – but not only –
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Figure 4: Distribution of constructions by clause type
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Figure 5: Distribution of constructions by adverbial
clause type

function of the have perfect in English is the intro-
duction of new information. Because topic shift-
ing is understandably less frequent in discourse
than topic persistence, it is unsurprising that 68%
(n = 408) of have perfect clauses in this study oc-
cur in matrix clauses rather than in embedded ones
where the likelihood of presupposition and given-
ness is higher. And when have perfects do occur
in adverbials they tend towards postposition. The
higher incidence of postposed vis-à-vis preposed
adverbial clauses among have perfects, revealed in
this study, is in agreement with Ford (1993, 23-25),
who found that the majority of perfect adverbial
clauses is postposed in American English (Table
5).

While adverbial postposition is attested for both
be and have perfects in this study, be perfect ad-
verbials substantially outnumber have perfect ad-

perfect clause count relative freq.

postposed adv 135 0.69
preposed adv 48 0.25
stand-alone adv 11 0.06

Table 5: Distribution of present perfect by adverbial
clause type in American English (adapted from Ford
(1993, 24)

30



verbials. This outperformance is important for the
present analysis because adverbial clauses are typi-
cally known to convey topical and backgrounded
information (Thompson, 2011), rather than intro-
duce new information, as would be expected from
canonical perfects. Consider the exemplar in (31)
from the study, in which the italicized postposed
adverbial codes information of local significance,
acting as a time adverbial with little anaphoric or
cataphoric anchoring.

(31) To all those wonderful men who let me of-
fer comments -- of course I looked -- and
who contributed more than a loonie for
the questionable privilege of me making
your gift look like you’d just wrapped it
yourself, thank you. [¶] The reason I was
so happy -- even bursting into an off-key
carol after the elementary school kids were
finished their concert, was that each year
I am heartened by the good nature of com-
plete strangers who understand the spirit
of the season is contagious. [¶] To all of
those people who recognized me in the
mall, bless you for reading this newspaper
and helping pay my salary.

The backgrounding tendency of be perfect ad-
verbials is even more evident when they are pre-
posed; in such cases, they tend to perform global,
discourse-organizing (Ramsey, 2011) functions.
By way of illustration, consider two exemplars
from the study. In (32), the italicized preposed
adverbial follows a series of culinary descriptions
and shifts topics from food to a depiction of the
surrounding environment.

(32) [¶] I am a dessert lover at heart and de-
cided to sample Ken’s baklava ($4) with
no regrets. This delicious dessert was
crafted with several layers of phyllo pastry
and walnuts. The taste of cinnamon and
nutmeg were not overpowering. A clear,
buttery and sweet- tasting sauce covered
the entire piece. Its heat gently warmed
the pastry. I could have chosen a variety of
pies or muffins for dessert. [¶] By the time
I was finished my meal, I was still quite
comfortable sitting in the wooden sturdy
chair at the matching table. Plenty of nat-
ural light flooded through the only large
window along the front wall. A unique

wall border separated the light-coloured
upper wall and the lower sea-foam green
coloured wall.

A similar pattern pattern can be found in (33) where
the italicized preposed adverbial shifts topics from
ideation to action.

(33) Before the Anti Wal-Mart War began, I
had my own ideas about what the Chan-
dler Park School could be put to use for.
[¶] For years I have wanted to start a Youth
Recreation Centre in Smithers, and for the
past two years, I went to school to learn
about business management. [¶] Once I
was finished school, I was excited to get
my plans into action - I went to Nadina
and got a business plan form, and asked
about small business grants. [¶] People at
Community Futures Development Corpo-
ration of Nadina told me that they couldn’t
help me in the grant department, and gave
me a form for arranging financing.

5.3 Definiteness in the direct object slot

The pragmatic specialization of the be perfect is
evident not only in its syntactic tendencies but also
in the morphology of its direct object slot. The
tendency of this slot toward definiteness was al-
ready demonstrated in experimental work with na-
tive speakers of Canadian English (Yerastov, 2012,
442-443). But this study found additional, corpus-
based evidence to reinforce the definiteness claim –
in the context of the topicalization argument.

The direct objects of the three constructions were
parsed with spaCy’s (Honnibal et al., 2020) part
of speech and dependency models, and slot-initial
material was aggregated by category. Three co-
hesive categories emerged: 1) definites (definite,
demonstrative and possessive determiners; demon-
strative, personal and reciprocal pronouns; null
anaphora); 2) indefinites (indefinite determiners
and pronouns, quantifiers, wh- complementizers
and relativizers); 3) undetermined nouns. Table 6
summarizes counts for each of these types across
the three constructions. A chi-square test of inde-
pendence revealed significant differences in these
count distributions (p < 0.001), with a moderate
effect size (V = 0.3995). The analysis of stan-
dardized residuals, presented in Figure 6, shows
that the most pronounced deviations from expecta-
tion pertain to the indefiniteness marking of have
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definiteness marking be be-with have

definite 1290 479 230
indefinite 0 31 254
undetermined 429 192 119

Table 6: Distribution of definiteness marking in the di-
rect object slot of the be perfect.
χ2(4, N = 3024) = 965.41, p < 0.001.

Figure 6: Standardized residuals for definiteness mark-
ing in direct object slots.

and be perfects.
Figure 7 visually reinforces the findings in Table

6 but in terms of relative frequency. We observe
that definiteness marking of the direct object slot is
strongest in the be perfect (f/n = 0.75) followed
by the predicate adjective construction. Conversely,
indefiniteness marking is strongest in the direct ob-
jects of have perfects (f/n = 0.42). With respect
to undetermined nouns, we observe that be-with
(f/n = 0.27) has a slight edge over both be
(f/n = 0.24) and have (f/n = 0.19). It should
be noted that undetermined noun phrases occurring
in be perfects are either bare plurals (e.g. chores)
or mass singulars (e.g. school). As such, they fre-
quently code specific and culturally salient entities,
which already carry some degree of definiteness
signal in them. The prevalence of definiteness in
the direct object slot is counter-expectational to the
canonical tendency of direct objects in English to
contain new information; it can be interpreted from
a holistic perspective which takes into account the
pragmatic function of the be perfect to background
information and mark topics.

6 Conclusion

Taken together, the analyses of semantic density,
clause distribution, and direct object marking con-
verge on a unified characterization of the be perfect.
The construction systematically patterns with pred-
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Figure 7: Relative frequency of definiteness making
across the three constructions.

icate adjectives along the following dimensions: (i)
greater semantic homogeneity, (ii) preference for
embedded – and particularly adverbial – clauses,
(iii) preference for pre-position among adverbial
clauses, (iv) preference for definiteness marking
in the direct object slot. Most importantly, the
construction as a whole shows evidence of a spe-
cialized pragmatic function that consists in cod-
ing topical and backgrounded information, in clear
contrast to have perfects, which introduce new in-
formation in matrix clauses. The topic marking
function of the be perfect adds to the inventory of
distinguishing characteristics of the construction
already present in the literature (Yerastov, 2012,
2015; Hinnell, 2012; Fruehwald and Myler, 2015).

The distributional contrasts point to the conclu-
sion that a constructional blend has taken place –
much along the lines proposed by (Barlow, 2000),
wherein syntactic, semantic, and pragmatic proper-
ties are shared across the three constructions. On
the one hand, the be perfect inherits resultative se-
mantics and transitive complementation from its
have perfect relative; on the other hand, the be
perfect inherits topicalization tendencies from its
predicate adjective relative.

Methodologically, this paper demonstrates that
SBERT embeddings can be used to construct pro-
totypical representations of constructions, offering
a scalable and interpretable complement to tradi-
tional quantitative analysis. The relationships ob-
served in the constructional similarity matrix and
in the centroid-based subsamples were replicated
by a quantitative analysis of the entire clause type
distribution. The cross-validation of these results
suggests that embeddings-based methods can re-
liably capture distributional tendencies within a
usage-based framework.

Future work should investigate the relationship
between sentence-wide pragmatic signals and sig-
nals originating specifically from constructional
slots.
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Abstract
Large language models excel at statistical pat-
tern recognition but may lack explicit under-
standing of constructional form-meaning cor-
respondences that characterize human gram-
matical competence. This paper presents
Construction-Aware LoRA (CA-LoRA), a
parameter-efficient fine-tuning method that in-
corporates constructional templates through
specialized loss functions and targeted param-
eter updates. We focus on five major English
construction types: ditransitive, caused-motion,
resultative, way-construction, and conative.
Evaluation on BLiMP, CoLA, and SyntaxGym
shows selective improvements: frequent pat-
terns like ditransitive and caused-motion show
improvements of approximately 3.3 and 3.5
percentage points respectively, while semi-
productive constructions show minimal ben-
efits (1.2 points). Overall performance im-
proves by 2.4 percentage points on BLiMP and
2.4 points on SyntaxGym, while maintaining
competitive performance on general NLP tasks.
Our approach requires only 1.72% of trainable
parameters and reduces training time by 67%
compared to full fine-tuning. This work demon-
strates that explicit constructional knowledge
can be selectively integrated into neural lan-
guage models, with effectiveness dependent on
construction frequency and structural regular-
ity.

1 Introduction

Construction Grammar fundamentally reconceptu-
alizes linguistic knowledge as a network of form-
meaning mappings called constructions, ranging
from morphemes to abstract syntactic patterns
(Goldberg, 1995; Fillmore et al., 1988). This theo-
retical framework proposes that speakers acquire
grammatical competence through learning conven-
tionalized associations between linguistic forms
and their semantic interpretations, treating all lin-
guistic knowledge as constructions of varying com-
plexity and schematicity.

The constructionist approach offers several theo-
retical advantages for computational language mod-
eling. Unlike generative approaches that separate
lexicon from grammar, Construction Grammar pro-
vides a unified framework for both compositional
and non-compositional linguistic phenomena. Con-
structions explicitly encode form-meaning corre-
spondences, making them ideal candidates for inte-
gration into neural architectures that traditionally
rely on implicit pattern recognition. The usage-
based orientation of Construction Grammar aligns
naturally with statistical learning paradigms under-
lying modern language models.

Despite these theoretical advantages, main-
stream natural language processing has largely
overlooked Construction Grammar insights. Cur-
rent transformer-based models learn linguistic pat-
terns through statistical exposure to large corpora
but lack explicit representation of constructional
knowledge (Brown et al., 2020; Devlin et al., 2018).
This creates a disconnect between theoretical under-
standing of grammatical competence and practical
implementation in language technology.

Recent work has demonstrated the potential for
integrating linguistic theory into neural language
models through parameter-efficient fine-tuning ap-
proaches (Hu et al., 2021). These methods enable
targeted adaptation of large models while preserv-
ing general capabilities and maintaining computa-
tional efficiency. However, previous approaches
have focused primarily on syntactic constraints
rather than constructional form-meaning mappings.

This paper addresses this gap by introduc-
ing Construction-Aware LoRA (CA-LoRA), a
parameter-efficient fine-tuning approach that ex-
plicitly integrates Construction Grammar princi-
ples into transformer-based language models. Our
method treats constructions as learnable templates
that specify both formal patterns and semantic in-
terpretations, enabling models to develop explicit
constructional competence.
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Benchmark RoBERTa-large Standard LoRA CA-LoRA

BLiMP Overall 76.8 77.4 79.2
Argument Structure 73.2 74.1 76.4
Filler-Gap Dependencies 74.6 75.3 77.1
Island Effects 69.7 70.2 71.8

CoLA (MCC) 0.618 0.631 0.649
SyntaxGym 69.3 70.1 71.7

Table 1: Performance on linguistic evaluation benchmarks

We make four primary contributions to
construction-aware language modeling. First, we
develop a framework for representing major En-
glish constructions as explicit templates that can
be integrated into neural training processes. Sec-
ond, we present CA-LoRA, a parameter-efficient
method that embeds constructional knowledge into
language models through targeted parameter up-
dates and specialized loss functions. Third, we
demonstrate that constructional fine-tuning im-
proves performance on linguistic benchmarks that
test understanding of argument structure and form-
meaning correspondences. Finally, we show that
our approach maintains computational efficiency
while achieving these linguistic competence gains.

2 Construction Grammar Framework

2.1 Theoretical Foundations

Construction Grammar emerged from recognition
that traditional linguistic theories inadequately
account for the pervasive role of learned form-
meaning pairings in language use (Fillmore et al.,
1988; Goldberg, 1995). The theory posits that
linguistic knowledge consists entirely of construc-
tions—conventionalized associations between form
and meaning that speakers acquire through expo-
sure to usage events.

Constructions exhibit several key properties
that distinguish them from traditional grammatical
rules. They represent holistic form-meaning map-
pings that cannot be derived purely through com-
positional processes from their component parts.
They exist at multiple levels of abstraction, from
fully specified lexical items to highly schematic
syntactic patterns. They contribute meaning in-
dependently of their lexical fillers, explaining co-
ercion phenomena where verbs acquire construc-
tional semantics not present in their basic mean-
ings.

The ditransitive construction exemplifies these
principles. The pattern [Subject Verb Object1 Ob-
ject2] carries inherent transfer semantics regard-

less of the specific verb involved. This explains
how “She baked him a cake” receives a transfer
interpretation despite bake not being inherently a
transfer verb. The construction contributes trans-
fer meaning through coercion, demonstrating how
form-meaning mappings operate independently of
lexical semantics.

2.2 Argument Structure Constructions

Argument structure constructions represent a well-
studied domain within Construction Grammar, en-
compassing basic clause-level patterns that specify
participant roles and event semantics (Goldberg,
1995). These constructions demonstrate clear form-
meaning correspondences that extend beyond what
can be predicted from lexical properties alone.

Our framework focuses on five major English
argument structure constructions that exhibit sys-
tematic form-meaning relationships:

Ditransitive Construction: [NP-Agent V
NP-Recipient NP-Theme] ↔ TRANSFER(agent,
theme, recipient)

This pattern encodes successful transfer events,
as in “She gave him the book” and “He taught her
Spanish”. The construction contributes transfer
semantics that may be absent from the verb’s core
meaning.

Caused-Motion Construction: [NP-Agent V
NP-Theme PP-Goal] ↔ CAUSE-MOVE(agent,
theme, goal)

This construction expresses caused motion
events, exemplified by “He kicked the ball into
the net” and “She pushed the cart down the aisle”.
The pattern can coerce non-motion verbs into mo-
tion interpretations.

Resultative Construction: [NP-Agent V NP-
Patient XP-Result] ↔ CAUSE-BECOME(agent,
patient, result-state)

Resultative patterns encode causation of result
states, as in “They painted the house red” and “He
wiped the table clean”. The construction provides
result-state meaning that extends basic action se-
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mantics.
Way-Construction: [NP-Agent V Poss way

PP-Path] ↔ MANNER-MOTION(agent, manner,
path)

This semi-productive pattern expresses manner
of motion, illustrated by “She danced her way
across the stage” and “He fought his way through
the crowd”. The construction creates motion inter-
pretations for non-motion verbs.

Conative Construction: [NP-Agent V at NP-
Target] ↔ ATTEMPTED-ACTION(agent, target)

The conative alternation expresses attempted
rather than successful action, contrasting “She shot
the deer” (successful) with “She shot at the deer”
(attempted). The prepositional marking contributes
aspectual meaning.

2.3 Constructional Templates

We formalize constructions as structured templates
that specify both formal constraints and semantic
interpretations. Each construction C is represented
as:

C = ⟨Φ,Σ,Θ⟩ (1)

where Φ defines the formal template includ-
ing syntactic categories and linear order, Σ speci-
fies the semantic frame with participant roles and
event structure, and Θ represents frequency-based
weighting derived from corpus observations.

For the ditransitive construction, this yields:

Cditrans = ⟨[NPagent V NPrecipient NPtheme], (2)

TRANSFER(agent, theme, recipient),
(3)

θtransfer = 0.34⟩ (4)

This representation captures both the syntactic
pattern and associated semantic frame while incor-
porating usage frequency information that influ-
ences constructional processing priorities.

3 Construction-Aware LoRA

3.1 Parameter-Efficient Constructional
Integration

We develop Construction-Aware LoRA (CA-
LoRA), a parameter-efficient fine-tuning method
that integrates constructional templates into
transformer-based language models. CA-LoRA

operates on the principle that constructional com-
petence can be achieved through targeted parame-
ter updates that encode form-meaning correspon-
dences without disrupting general language capa-
bilities.

The approach extends standard LoRA (Hu et al.,
2021) by introducing construction-specific adapta-
tion matrices that capture the statistical dependen-
cies underlying each constructional pattern. For
each construction C and transformer weight ma-
trix W0 ∈ Rd×k, we define construction-specific
low-rank adaptations:

WC = W0 +

n∑

i=1

αi∆WC
i (5)

where ∆WC
i = AC

i B
C
i represents the low-rank

adaptation for construction C, with AC
i ∈ Rd×r

and BC
i ∈ Rr×k where r ≪ min(d, k). The scal-

ing factors αi control the relative influence of each
constructional adaptation.

This architecture allows multiple constructions
to be simultaneously encoded through separate
LoRA modules, enabling the model to access differ-
ent constructional patterns during inference. The
parameter-efficient nature ensures that construc-
tional knowledge can be integrated without the
computational overhead of full model retraining.

3.2 Construction-Guided Training Objective

We develop a specialized training objective that
encourages models to learn constructional form-
meaning correspondences through targeted super-
vision. The objective combines standard language
modeling with construction-specific learning sig-
nals derived from our template representations.

The total loss function integrates multiple com-
ponents:

Ltotal = LLM + β
∑

C∈C
LC (6)

where LLM represents the standard language
modeling loss, C denotes the construction inven-
tory, LC provides construction-specific supervision
for pattern C, and β is a weighting factor that con-
trols the relative importance of the construction
losses.

Each construction-specific loss component en-
courages appropriate usage of the corresponding
pattern:
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LC = −Es∼DC

[
logP (s | C)

]
(7)

+ λEs∼D¬C

[
max(0, logP (s | C)− τ)

]

(8)

where DC contains sentences that instantiate
construction C, D¬C contains sentences that vi-
olate constructional constraints, and τ represents a
margin parameter that discourages high probability
assignment to malformed patterns.

This formulation rewards models for recogniz-
ing and generating appropriate constructional pat-
terns while penalizing violations of form-meaning
correspondences. The approach enables direct su-
pervision of constructional competence without
requiring extensive manual annotation.

3.3 Multi-Construction Processing

Real language use involves interactions between
multiple constructions, requiring models to handle
constructional composition and selection. Our CA-
LoRA framework addresses this through dynamic
construction activation mechanisms that determine
which patterns are relevant for specific inputs.

We implement construction selection through
attention-based gating that computes relevance
scores for each construction given input context:

wC(x) = softmax(MLPC(pooled(x))) (9)

where x represents input embeddings and MLPC

provides construction-specific scoring. The final
representation combines weighted contributions
from all constructions:

hfinal =
∑

C∈C
wC(x) · hC(x) (10)

This approach enables flexible constructional
processing that captures the probabilistic and gra-
dient nature of constructional activation in human
language use, where multiple patterns can simulta-
neously influence interpretation and production.

4 Experimental Setup

4.1 Model Architecture and Training Data

We implement CA-LoRA using RoBERTa-large
and GPT-2 medium as base architectures, repre-
senting both encoder-only and decoder-only trans-
former variants. LoRA adaptations are applied to

attention projection matrices and feed-forward lay-
ers with rank r = 16 for attention components and
r = 32 for feed-forward networks, based on pre-
liminary experiments balancing expressivity with
efficiency.

Training data consists of carefully selected sub-
sets from BookCorpus (Zhu et al., 2015) and Open-
WebText (Gokaslan and Cohen, 2019), totaling ap-
proximately 12GB of diverse text across multiple
domains and registers. This corpus selection en-
sures exposure to varied constructional patterns
while maintaining manageable computational re-
quirements for parameter-efficient training.

The training process involves constructional
pattern identification through template matching
against our five target construction types. We use
constituency parsing and semantic role labeling
to identify potential constructional instantiations,
then apply template matching to extract positive
and negative training examples for each construc-
tion type.

Hyperparameter optimization explores construc-
tion loss weights β ∈ {0.1, 0.3, 0.5} and margin
parameters τ ∈ {0.5, 1.0, 2.0} using validation
performance on a held-out subset of training data.
Learning rates are tested across {1e−4, 3e−4, 5e−
4} with batch sizes of 16 to balance training stabil-
ity with memory constraints.

4.2 Baseline Comparisons

We compare CA-LoRA against several baseline
approaches that represent different methods for
incorporating linguistic knowledge into language
models. Standard LoRA fine-tuning provides a di-
rect comparison, using the same training data and
parameter-efficient architecture without construc-
tional supervision.

Full fine-tuning baselines demonstrate the com-
putational advantages of parameter-efficient ap-
proaches while providing upper bounds on poten-
tial performance gains from increased model plas-
ticity. These models are trained on identical data
with the same constructional objectives but update
all model parameters.

Prompt-based approaches, while not presented
here, test whether constructional knowledge can be
effectively communicated through natural language
descriptions rather than parameter updates, provid-
ing insights into the necessity of direct architectural
integration for constructional competence.
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Task RoBERTa-large Standard LoRA CA-LoRA

GLUE Average 84.2 84.6 84.7
Reading Comprehension (SQuAD 2.0) 81.3 81.7 81.5
Sentiment Analysis (SST-2) 91.8 92.1 92.3
Natural Language Inference (MNLI) 86.4 86.8 86.6
Semantic Similarity (STS-B) 88.1 88.4 88.5

Table 2: Performance on general NLP tasks. Differences between Standard LoRA and CA-LoRA.

Method Trainable Params Training Time Memory Usage Performance Gain

Full Fine-tuning 355M (100%) 38.7 hours 26.8 GB +2.1%
Standard LoRA 1.2M (0.34%) 12.4 hours 14.3 GB +0.6%
CA-LoRA 6.1M (1.72%) 12.8 hours 14.7 GB +2.4%

Table 3: Computational efficiency comparison for RoBERTa-large. Performance gain measured on linguistic
benchmarks relative to base model.

5 Results

5.1 Linguistic Benchmark Performance

Table 1 presents results on established linguis-
tic evaluation benchmarks, demonstrating consis-
tent improvements from constructional fine-tuning
across tasks that test grammatical competence.

CA-LoRA achieves meaningful improvements
across linguistic benchmarks, with particularly no-
table gains of 3.2 percentage points on argument
structure tasks and 2.4 points on overall BLiMP
(Warstadt et al., 2020) performance. These results
including CoLA (Warstadt et al., 2019) and Syntax-
Gym (Gauthier et al., 2020) demonstrate that ex-
plicit constructional training enhances performance
on phenomena that require understanding of form-
meaning correspondences and argument role rela-
tionships.

The improvements are most pronounced on tasks
that directly test constructional competence, such
as argument structure alternations and role assign-
ment. This suggests that CA-LoRA successfully
integrates constructional knowledge in ways that
transfer to related linguistic phenomena.

5.2 Construction-Specific Analysis

Table 4 evaluates performance on tasks specifically
designed to test each target construction type, pro-
viding detailed analysis of constructional learning
effectiveness.

CA-LoRA demonstrates variable improvements
across construction types, with gains ranging from
1.2 percentage points for way-constructions to 3.5
points for caused-motion patterns. The ditran-
sitive construction shows a 3.3 point improve-
ment (71.8 → 75.1), while resultative construc-

tions show modest gains of 1.7 points (66.4 →
68.1). These results indicate that explicit con-
structional supervision enhances competence for
well-defined form-meaning mappings, though ben-
efits vary considerably by construction type and
frequency. The performance pattern reflects both
constructional frequency and structural complex-
ity in the training data. Frequent, clearly-defined
patterns like caused-motion (3.5 point improve-
ment) and ditransitive (3.3 points) show substan-
tial gains, while semi-productive constructions like
way-constructions (1.2 points) and resultatives (1.7
points) show minimal improvement. This suggests
that template-based approaches work best for con-
structions with clear syntactic patterns and consis-
tent semantic roles, but struggle with more creative
or contextually-dependent patterns that rely heavily
on pragmatic inference.

5.3 General NLP Task Performance

Table 2 demonstrates that constructional fine-
tuning maintains competitive performance on stan-
dard NLP benchmarks while achieving specialized
linguistic competence.

The results show that CA-LoRA maintains per-
formance within typical variation margins across
standard benchmarks, indicating that construc-
tional specialization does not compromise general
language understanding capabilities. This supports
the viability of our parameter-efficient approach for
practical applications.

5.4 Computational Efficiency

Table 3 compares training costs across different
approaches, highlighting the efficiency advantages
of parameter-efficient constructional learning. CA-
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Construction Type Baseline CA-LoRA

Ditransitive 71.8 ± 2.1 75.1 ± 1.9
Caused-Motion 69.1 ± 3.4 72.6 ± 2.7
Resultative 66.4 ± 2.8 68.1 ± 3.2
Way-Construction 60.2 ± 4.1 61.4 ± 3.8
Conative 64.1 ± 2.6 67.2 ± 2.9
Overall Average 66.3 ± 1.8 69.0 ± 1.6

Table 4: Construction-specific performance (accuracy %). Results averaged over 5 random seeds.

LoRA achieves superior performance gains while
maintaining reasonable efficiency compared to full
fine-tuning, requiring only 1.72% of trainable pa-
rameters and 67% less training time than full fine-
tuning. While CA-LoRA uses approximately 5
times more parameters than standard LoRA, it re-
mains highly parameter-efficient relative to full
model retraining. The modest increase in mem-
ory usage (2.8%) reflects constructional process-
ing overhead without fundamentally altering the
parameter-efficient paradigm. The trade-off be-
tween CA-LoRA and standard LoRA involves ex-
changing some parameter efficiency for improved
performance on linguistically-oriented tasks.

6 Analysis and Discussion

6.1 Constructional Learning Patterns

Analysis of learned parameters reveals that CA-
LoRA develops distinct representational patterns
for different construction types. Attention weight
visualization shows increased focus on construc-
tionally relevant features, such as recipient argu-
ments in ditransitive constructions and result states
in resultative patterns.

Probing experiments using linear classifiers
demonstrate that constructional information be-
comes more linearly separable in CA-LoRA rep-
resentations compared to baseline models. This
indicates that parameter-efficient adaptation suc-
cessfully embeds constructional distinctions into
model representations in ways that support system-
atic processing.

6.2 Form-Meaning Correspondence

Qualitative analysis of model outputs demon-
strates enhanced sensitivity to constructional form-
meaning correspondences. CA-LoRA models
show improved ability to distinguish between well-
formed constructional instantiations and violations,
such as correctly rejecting *“She donated him
money” while accepting “She donated money to
him.”

The models also demonstrate better handling
of constructional coercion phenomena, correctly
interpreting sentences like “She sneezed the napkin
off the table” where the caused-motion construction
provides motion semantics absent from the verb’s
core meaning.

6.3 Limitations and Future Directions

Current CA-LoRA implementation focuses on En-
glish argument structure constructions and requires
language-specific template definitions. Extend-
ing to other languages will need development
of language-appropriate constructional inventories
and consideration of typological differences in
form-meaning mapping strategies.

The template-based approach may miss subtle
constructional distinctions that require deeper se-
mantic or pragmatic analysis. Future work should
investigate integration of richer semantic represen-
tations and world knowledge to capture the full
complexity of constructional phenomena.

Scale limitations prevent evaluation on the
largest current language models, though our
parameter-efficient approach should facilitate ap-
plication to models with hundreds of billions of
parameters. Future research should investigate how
constructional learning scales with model size and
training data volume.

7 Conclusion

This work demonstrates that Construction Gram-
mar principles can be effectively integrated
into neural language models through parameter-
efficient fine-tuning, achieving meaningful im-
provements in constructional competence while
maintaining computational efficiency and general
language capabilities. Our Construction-Aware
LoRA approach provides a practical framework
for incorporating theoretical linguistic insights into
modern NLP systems.

The key findings establish that explicit construc-
tional templates can enhance language model per-
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formance on tasks requiring understanding of form-
meaning correspondences and argument structure
relationships. Parameter-efficient methods enable
integration of constructional knowledge without
the computational overhead of full model retrain-
ing. Constructional fine-tuning improves linguistic
competence while preserving general language un-
derstanding capabilities across diverse tasks.

Future research should explore extension to
broader constructional inventories, multilingual
constructional learning, and integration with larger-
scale language models. Investigation of construc-
tional learning in very large models could reveal
whether explicit constructional guidance remains
beneficial at scale or whether implicit statistical
learning eventually captures these patterns auto-
matically.

This work represents a step toward bridging theo-
retical linguistics and computational language mod-
eling, demonstrating that Construction Grammar
insights can inform and improve neural language
processing systems. By explicitly encoding form-
meaning correspondences, we open possibilities for
more linguistically sophisticated and interpretable
language models that better align with human gram-
matical competence.
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Abstract

Argument structure constructions (ASCs) of-
fer a theoretically grounded lens for analyzing
second language (L2) proficiency, yet scalable
and systematic tools for measuring their usage
remain limited. This paper introduces the ASC
analyzer, a publicly available Python package
designed to address this gap. The analyzer auto-
matically tags ASCs and computes 50 indices
that capture diversity, proportion, frequency,
and ASC-verb lemma association strength. To
demonstrate its utility, we conduct both bivari-
ate and multivariate analyses that examine the
relationship between ASC-based indices and
L2 writing scores.

1 Introduction

Linguistic complexity has long been recognized
as an important construct in second language (L2)
production research. It is commonly conceptual-
ized along two complementary dimensions: ab-
solute complexity and relative complexity (Bulté
and Housen, 2012; Bulté et al., 2025). Absolute
complexity refers to the structural properties of lan-
guage, where complexity increases with the num-
ber and interrelation of constituent units. In con-
trast, relative complexity pertains to the cognitive
effort involved in using particular forms, typically
operationalized via their relative frequency and the
strength of their statistical contingencies. To date,
a wide range of lexicogrammatical units have been
proposed to quantify complexity dimensions, in-
cluding argument structure constructions (ASCs).

ASCs are clausal-level lexicogrammatical pat-
terns, each anchored by a main verb and a spe-
cific argument configuration (e.g., Goldberg, 1995,
2013; Diessel, 2004; Ellis and Larsen-Freeman,
2009). In L2 research, two main approaches have
examined their linguistic complexity. One builds
on Goldberg’s (1995) inheritance hierarchy, which
organizes ASCs by semantic role complexity and

posits that learners acquire them in a developmental
sequence—from simpler constructions (e.g., sim-
ple transitives) to more complex ones (e.g., tran-
sitive resultatives). Empirical studies have opera-
tionalized this trajectory by analyzing the diversity
or proportion of ASCs in learner texts (e.g., Hwang
and Kim, 2023; Kim et al., 2023).

The other line of research focuses on the relation-
ship between verbs and constructions. It posits that
language learners initially tend to produce ASCs
with semantically prototypical verbs (i.e., those
that strongly instantiate verb-specific argument pat-
terns), which gradually generalize into more ab-
stract constructions (Ninio, 1999). For instance,
learners may first acquire the ditransitive construc-
tion using prototypical verbs like “give” (e.g., “She
gave him a book”), before extending it to less pro-
totypical verbs such as “offer” or “send”. This
developmental trajectory has often been assessed
using measures such as the relative frequency and
statistical contingency between verbs and construc-
tions (e.g., Ellis and Ferreira-Junior, 2009; Kyle
and Crossley, 2017). While a growing body of
empirical research has supported both developmen-
tal patterns (§ 2.1), scalable and systematic tools
for extracting and analyzing ASC-based indices
remain underdeveloped.

To address this gap, we present ASC analyzer, a
Python package that leverages a RoBERTa-based
ASC tagger (Sung and Kyle, 2024b) trained on
a gold-standard ASC treebank (Sung and Kyle,
2024a). The tool automatically labels ASCs and
computes a suite of indices capturing their diversity,
proportion, frequency, and ASC-verb lemma asso-
ciation strength. We also demonstrate the applica-
tion of the tool through a sample analysis of 6,482
English learner essays from the ELLIPSE corpus
(Crossley et al., 2023), examining the relationship
between ASC-based indices and L2 English writing
proficiency.
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2 Background

2.1 Empirical findings on ASC usage in L2
production

From a usage-based constructionist perspective,
language is a network of form-meaning pairings
(i.e., constructions) that emerge through repeated
exposure and use (Fillmore, 1988; Goldberg, 1995;
Langacker, 1987). The constructions develop from
actual language use and are shaped by patterns
of frequency, distribution, and co-occurrence in
the input and output (Bybee, 2010; Diessel, 2015;
Ellis, 2012; Stefanowitsch and Gries, 2003). As
learning is usage-driven, linguistic knowledge ac-
cumulates incrementally, shaped by each learner’s
unique language experience. Empirical studies in
this framework examine constructions at varying
levels of granularity (e.g., words, phrases, clauses,
discourse), with particular attention to clausal-level
ASCs, which are schematic form–meaning pairings
that encode core semantic relations such as motion,
causation, and transfer (Goldberg, 1995).

A body of L2 research has illustrated how
ASC usage can be investigated across different
L2 modalities and proficiency scores. In L2 writ-
ing, for example, Hwang and Kim (2023) found
that more proficient L2 writers tend to produce a
higher proportion of complex ASCs such as resul-
tatives. Kim et al. (2023) further demonstrated that
ASC-based indices outperform traditional T-unit
measures in predicting writing proficiency. An-
other line of research highlights the role of verb-
construction pairings. Kyle and Crossley (2017)
found that L2 essay scores were negatively cor-
related with the relative frequency of these pair-
ings but positively correlated with their strength
of association, suggesting that advanced learners
favor less frequent but more strongly associated
verb–construction combinations.

Although less studied, L2 speaking shows sim-
ilar patterns. Choi and Sung (2020) found that
ASC use (especially transitive constructions) ex-
plained most of the variance in L2 fluency. Kim
and Ro (2023) reported that advanced L2 speak-
ers produced a wider range of verb–construction
combinations. A recent study by Sung and Kyle
(2025) further confirmed these findings, showing
that ASC-based indices alone accounted for 44%
of the variance in L2 oral proficiency scores.

2.2 ASC tagger

In this context, reliable identification of ASCs is
essential for investigating their relationship with
L2 proficiency in large-scale learner corpora (Kyle
and Sung, 2023). To meet this need, prior studies
have explored a range of tagging methodologies,
including dependency parsing (e.g., O’Donnell and
Ellis, 2010; Römer et al., 2014; Kyle and Crossley,
2017), rule-based approaches built on top of de-
pendency structures (e.g., Hwang and Kim, 2023;
Kim et al., 2023), and methods that leverage se-
mantic role labels (e.g., Jeon, 2024; Kyle and Sung,
2023). Of particular relevance, Kyle and Sung
(2023) introduced a supervised ASC tagger trained
on a treebank that integrates semantic information
across key construction types. Their system tar-
geted nine ASC types, each defined by a charac-
teristic mapping between semantic and syntactic
frames (Appendix A).

Building on this supervised training approach
and the selected ASC types, Sung and Kyle (2024b)
evaluated multiple training strategies and found
that a RoBERTa-based tagger trained on a com-
bined L1 and L2 gold-standard treebank (Sung and
Kyle, 2024a) achieved high F1 scores across L2
writing (0.915) and L2 speaking (0.928) domains.
The results suggest that the tagger is reasonably ro-
bust across L2 production modes, providing a foun-
dation for downstream tools that compute ASC-
based indices for corpus-based L2 proficiency anal-
ysis.

3 ASC analyzer architecture

ASC analyzer is designed to compute interpretable
indices that quantify the use of ASCs in English
texts. Based on ASC annotations generated by the
ASC tagger, the analyzer transforms these labels
into a set of operational metrics.

As illustrated in Figure 1, the analyzer processes
ASC-tagged output from input texts and calculates
four families of indices. Diversity and proportion
are text-internal measures that reflect the range and
distribution of ASC types and ASC-verb lemma
pair types within each text. In contrast, frequency
and strength of association (SOA) are text-external
measures, computed by comparing ASC usage in
the input texts to norms from reference corpora,
capturing how often input texts include common or
strongly associated ASC-verb combinations. Note
that based on the F1 scores reported in Sung and
Kyle (2024b), the Gold L1+L2 model was used to
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Figure 1: High-level architecture of ASC analyzer

process input texts due to its higher accuracy in
L2 contexts, while the Gold L1 model was applied
to the reference corpus for its more stable perfor-
mance in L1 contexts. See Appendix B for detailed
F1 scores of each tagger.

3.1 ASC-based Indices

Below we formalize each index family. Implemen-
tations in Python follow the equations verbatim.

Diversity. The moving-average type-token ratio
(MATTR; Covington and McFall, 2010) with a slid-
ing window w (default: 11) for a token sequence
X of length N is defined as:

MATTRw(X) =
1

N − w + 1

N−w+1∑

i=1

|types(Xi:i+w−1)|
w

,

if N ≥ w + 1,

We derive three variants: ascMATTR (ASC to-
kens), ascLemmaMATTR (ASC-verb lemma
pairs), and ascLemmaMATTRNoBe (ASC-verb
lemma pairs excluding be).

Proportion. For each construction type c, we
define its proportion (Hwang and Kim, 2023) in
the text as

Propc(X) =
fc

NASC
,

where fc is the number of tokens of type c in X ,
and NASC is the total number of ASC tokens in X .
This yields nine variants, one per ASC type (e.g.,
ATTR Prop).

Frequency. Let an input text contain M tokens
t1, . . . , tM , where each ti is matched up to its raw
frequency f ref(ti) in a reference corpus (excluding
types with f ref < 5). Defining

ℓ(ti) = ln
(
f ref(ti)

)
,

we compute a frequency index as:

Freq =
1

M

M∑

i=1

ℓ(ti).

Two variants are derived, depending on the se-
lected token sets: ascAvFreq (ASC tokens) and
ascLemmaAvFreq (ASC verb-lemma pairs), fol-
lowing the approach of Kyle and Crossley (2017).

SOA. For each ASC–verb lemma pair (c, v),
SOA scores are computed from frequency counts
in a reference corpus, where a = fc,v, b = fc̄,v,
c = fc,v̄, and d = fc̄,v̄, with total corpus size
N = a+ b+ c+ d. The expected frequency of the
pair is given by:

E(c, v) =
(a+ b)(a+ c)

N

Based on these values, we define four pointwise
association metrics: mutual information (MI), t-
score (T), and two ∆P values:

MI(c, v) = log2

(
a

E(c, v)

)

T(c, v) =
a− E(c, v)√

a

∆PLemma(c, v) =
a

a+ b
− c

c+ d

∆PStructure(c, v) =
a

a+ c
− b

b+ d

We derive two text-level SOA indices: ascAv∗,
the mean score across all ASC-lemma tokens (e.g.,
ascAvMI ), and t∗, a type-specific mean computed
only over tokens labeled with ASC type t (e.g.,
ATTR AvMI ). This indexing approach follows
Gries and Ellis (2015) and Kyle and Crossley
(2017).
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3.2 Reference corpora for norm extraction

As briefly explained, frequency and SOA are text-
external measures that reflect how closely an input
text aligns with constructional norms from large
external corpora. In its current version, the analyzer
draws on two reference corpora:

cow We used a subset of the English Corpus
of the Web (EnCOW; Schäfer, 2015; Schäfer and
Bildhauer, 2012). It contains 360,783,433 tokens,
15,439,673 sentences, and 39,838,785 automati-
cally tagged ASCs.

subt We used the SUBTLEX-US corpus of
American film and television subtitles (Brysbaert
et al., 2012; Brysbaert and New, 2009). The version
used here comprises 76,965,430 tokens, 164,686
word types, 5,128,462 sentences, and 5,665,251
tagged ASCs across 8,388 subtitle files.

4 Using ASC analyzer: From installation
to application

4.1 Installation and quick start

First, install the required dependencies and the
ASC analyzer package:

pip install spacy
pip install spacy-transformers
python -m spacy download en_core_web_trf
pip install asc-analyzer

Next, view the available options:

python3 -m asc_analyzer.cli --help

To analyze a directory of input texts and save the
features to CSV, run:

python3 -m asc_analyzer.cli \
--input-dir "/path/to/texts" \
--output-csv "/path/to/output.csv" \
--source "cow" # or "subt"

4.2 Application: ELLIPSE Corpus

To demonstrate the utility of the ASC analyzer in
L2 research, we conducted both bivariate and mul-
tivariate analyses using a large-scale ESL writing
dataset. We used 6,482 essays from the ELLIPSE
corpus (Crossley et al., 2023), a reliability-filtered
subset of U.S. statewide writing assessments span-
ning grades 8–12 across 29 prompts. Each essay in-
cludes six analytic scores for cohesion, syntax, vo-
cabulary, phraseology, grammar, and conventions.
To construct a composite proficiency index, we
averaged the four subscores most aligned with con-
structional usage (syntax, vocabulary, phraseology,

and grammar). The constructional norms were de-
rived from the COW to compute frequency and SOA
indices.

4.3 Modeling the relationship between ASC
use and L2 writing proficiency

Bivariate correlations: Pearson correlations
were computed between each ASC-based index and
the composite writing score, retaining only those
with |r| ≥ 0.10 (Cohen, 2013).1 As shown in Ta-
ble 1, ascMATTR yielded the strongest positive
correlation (r = 0.26), while the frequency-based
index ascAvFreq showed the strongest negative
correlation (r = −0.22). Although the correlations
were modest overall, the results align with previous
findings: more proficient L2 writers tend to use
a wider variety of ASC types (Hwang and Kim,
2023) and rely less on highly frequent, but strongly
entrenched, verb–construction pairings—except in
the case of simple transitives (Kyle and Crossley,
2017).

Construct Index r

Diversity ascMATTR .26
ascLemmaMATTR .16
ascLemmaMATTRNoBe .11

Proportion ATTR Prop -.11
CAUS.MOT Prop .06
DITRAN Prop .06
INTRAN.MOT Prop .04
INTRAN.RES Prop .13
INTRAN.S Prop .06
PASSIVE Prop .19
TRAN.RES Prop .16
TRAN.S Prop -.13

Frequency ascAvFreq -.22
ascLemmaAvFreq -.15

SOA asc AvMI .12
CAUS.MOT AvMI .09
DITRAN AvMI .11
INTRAN.MOT AvMI .08
INTRAN.RES AvMI .20
INTRAN.S AvMI .11
PASSIVE AvMI .15
TRAN.RES AvMI .14
TRAN.S ∆PStructure -.14

Table 1: Correlations between ASC-based indices and
L2 writing scores

Multivariate regression: Indices that passed the
bivariate filter were entered into an AIC-based

1Within each SOA family, we retained only the index most
strongly correlated with the scores.
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model selection procedure (∆AIC < 4; Akaike,
2003; Tan and Biswas, 2012), with multicollinear-
ity controlled beforehand. The final model re-
tained 12 ASC-based predictors and explained a
modest proportion of variance in writing scores
(R2

adj = 0.143; Table 2), with an overall correla-
tion of r ≈ 0.38.

Predictor Estimate SE t p Rel. Imp. (%)

Intercept 3.001 0.106 28.26 <.001 –
ascMATTR 0.892 0.204 4.37 <.001 16.4
ATTR Prop -0.902 0.106 -8.48 <.001 8.1
DITRAN AvMI 0.013 0.003 4.58 <.001 4.2
INTRAN.RES AvMI 0.036 0.004 9.95 <.001 15.2
INTRAN.RES Prop -1.082 0.502 -2.15 .031 3.4
INTRAN.S AvMI 0.052 0.007 7.32 <.001 6.1
PASSIVE AvMI 0.052 0.006 8.10 <.001 9.2
PASSIVE Prop 2.242 0.294 7.62 <.001 12.2
TRAN.RES AvMI 0.023 0.005 5.09 <.001 5.7
TRAN.RES Prop 0.650 0.240 2.71 .007 5.9
TRAN.S ∆PStructure -8.372 1.174 -7.13 <.001 7.8
TRAN.S Prop -0.518 0.101 -5.14 <.001 5.7

R2 = 0.145 (adj. 0.143); RSE = 0.521; F (12, 6469) = 91.1, p < .001

Table 2: Summary of the regression model predicting
L2 writing scores

4.4 Comparative evaluation with other models

Comparison with a syntactic complexity-based
model: To evaluate the explained variance of
ASC-based indices, we compared their predic-
tive power against a multivariate model composed
of syntactic complexity measures widely used in
L1/L2 acquisition research (Hunt, 1965; Lu, 2011;
Ortega, 2003).

Drawing from prior studies (Biber et al., 2016;
Kyle, 2016; Kyle and Crossley, 2017), syntactic
complexity was operationalized using a set of text-
internal indices that capture structural elaboration
and grammatical maturity in learner writing. These
indices were grouped into three broad categories
based on the syntactic units they quantify: (1) Unit
length, which includes measures such as the mean
length of clause; (2) Clausal complexity, which cap-
tures the frequency and depth of embedded clause
constructions; and (3) Phrasal complexity, which
reflects the internal modification and elaboration of
noun phrases. The full list of representative indices
is provided in Appendix C.

Following the same procedure used for the ASC-
based indices, we built a regression model using
the suite of syntactic complexity indices. The final
model yielded a lower adjusted R2 = 0.077. This
comparison suggests that, for this corpus, ASC-
based indices accounted for a greater portion of the
variance in L2 writing scores than models based
solely on syntactic complexity measures.

Comparison with an alternative lexicogrammat-
ical complexity model: In studies of this kind,
it is also important to examine whether newly pro-
posed indices offer unique explanatory power be-
yond existing measures of lexicogrammatical com-
plexity. To address this, we compared the ASC-
based indices against a second baseline model com-
posed of well-established lexicogrammatical in-
dices, which primarily capture complexity at the
word and bigram levels (Bulté et al., 2025).

Following prior research (Kyle and Eguchi,
2023; Paquot, 2018), the lexicogrammatical indices
in this study fall into three main categories: (1)
Syntactic dependency bigrams, which measure the
SOA between syntactically linked words (e.g., verb
and object pairs); (2) Contiguous lemmatized bi-
grams, which capture lexical co-occurrence pat-
terns independent of syntactic structure; and (3)
Word-level indices, reflecting lexical sophistication
(e.g., frequency, concreteness, contextual and asso-
ciative distinctiveness) and diversity. Full descrip-
tions of these indices are provided in Appendix D.

The baseline model, which included only
word- and phrase-level lexicogrammatical indices,
achieved an adjusted R2 = 0.363, while the
combined model incorporating both lexicogram-
matical and ASC-based indices yielded a higher
adjusted R2 = 0.390, reflecting an increase of
∆R2 = 0.027. This result suggests that ASC-
based indices may capture an additional variance
in L2 writing scores, offering complementary in-
sights into constructional aspects of language use
not fully accounted for by existing lexicogrammat-
ical measures.

5 Conclusion

This study introduced the ASC analyzer, an open-
source toolkit designed for L2 researchers and ap-
plied linguists interested in examining ASC us-
age in English texts. Through a proof-of-concept
analysis, we demonstrated how ASC-based indices
can quantify constructional patterns in L2 writing
and examined their relationships with writing profi-
ciency scores. We also compared their explanatory
power against traditional syntactic complexity in-
dices and assessed how much additional variance
they capture beyond existing lexicogrammatical
measures. Additional information about the pack-
age is available at https://github.com/hksung/
ASC-analyzer.
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Limitations

Several limitations should be acknowledged. First,
the outputs of the ASC tagger may be influenced
by model-internal biases and training data limita-
tions, which can affect the accuracy and reliability
of the extracted indices. As one reviewer noted,
certain ASC types (e.g., intransitive resultatives)
were underrepresented in the training data, poten-
tially limiting performance for these low-frequency
but pedagogically relevant constructions.

Second, the constructional norms used to calcu-
late frequency and SOA scores were derived from
a limited set of reference corpora. While these cor-
pora provide useful native-speaker baselines, they
may not fully capture the range of registers or gen-
res present in the target texts.

Third, as proof of concept, this work focused
on modeling rather than interpretation and did not
conduct a detailed linguistic analysis of ASC usage.
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A Target ASCs and semantic-syntactic representations

This table is reproduced from Table 1 in Sung and Kyle (2024a).

ASC (Tag) Semantic frame Syntactic frame

Attributive (ATTR) theme–VERB–attribute nsubj–cop–root
Caused-motion (CAUS MOT) agent–VERB–theme–destination nsubj–root–obj–obl
Ditransitive (DITRAN) agent–VERB–recipient–theme nsubj–root–iobj–obj
Intransitive motion (INTRAN MOT) theme–VERB–goal nsubj–root–obl
Intransitive simple (INTRAN S) agent–VERB nsubj–root
Intransitive resultative (INTRAN RES) theme–VERB–result nsubj–root–advmod
Passive (PASSIVE) theme–aux–Vpassive nsubj:pass–aux:pass–root
Transitive simple (TRAN S) agent–VERB–theme nsubj–root–obj
Transitive resultative (TRAN RES) agent–VERB–theme–result nsubj–root–obj–xcomp

B F1 scores across ASC types by model and domain

This table, adapted from Table 2 in Sung and Kyle (2024b), reports F1 scores by ASC tag across two
taggers: one trained only on the L1 treebank (Gold L1) and another trained on a combined L1+L2 treebank
(Gold L1+L2). Each model is evaluated on three test sets (L1, L2 writing, and L2 speaking) to assess
cross-domain robustness.

ASC Tag Gold L1 Gold L1+L2
L1 L2-writing L2-speaking L1 L2-writing L2-speaking

ATTR 0.972 0.954 0.986 0.968 0.971 0.988
CAUS MOT 0.818 0.833 0.710 0.857 0.867 0.710
DITRAN 0.919 0.914 0.842 0.865 0.881 0.947
INTRAN MOT 0.800 0.770 0.789 0.772 0.807 0.843
INTRAN RES 0.750 0.788 0.800 0.625 0.813 0.833
INTRAN S 0.779 0.806 0.817 0.808 0.803 0.865
PASSIVE 0.920 0.775 0.938 0.940 0.865 0.909
TRAN RES 0.884 0.800 0.625 0.881 0.792 0.625
TRAN S 0.931 0.929 0.927 0.936 0.943 0.948

Weighted Avg. 0.908 0.900 0.905 0.912 0.915 0.928
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C Syntactic complexity indices

Dimension Index Description

Clause mlc Average number of words per finite clause
mltu Average number of words per T-unit
dc c Number of dependent clauses per clause
ccomp c Frequency of finite complement clauses
relcl c Frequency of relative clauses per clause
infinitive prop Proportion of “to + verb” constructions
nonfinite prop Proportion of nonfinite (gerund/participial) clauses

Phrase mean nominal deps Average number of nominal dependents per noun
relcl nominal Relative clauses modifying nominals
amod nominal Adjectival modifiers of nominals
det nominal Determiners modifying nominals
prep nominal Prepositional phrases modifying nominals
poss nominal Possessive modifiers of nominals
cc nominal Coordinating conjunctions in noun phrases

D Word and bigram-level lexicogrammatical indices

Dimension Index Description

Bigram n amod {T, MI, MI2, DP*} SOA scores for noun–adjective dependencies
v advmod {T, MI, MI2, DP*} SOA scores for verb–adverb dependencies
v dobj {T, MI, MI2, DP*} SOA scores for verb–object dependencies
v nsubj {T, MI, MI2, DP*} SOA scores for verb–subject dependencies
lemma bg {T, MI, MI2, DP*} SOA scores for lemmatized word bigrams

Word amod freq log Log frequency of adjectives
advmod freq log Log frequency of adverbs
adv manner freq log Log frequency of manner adverbs
mverb freq log Log frequency of main verbs
lex mverb freq log Log frequency of lexical main verbs
noun freq log Log frequency of nouns
cw lemma freq log Log frequency of content word lemmas
b concreteness Word concreteness ratings
mcd Contextual distinctiveness (entropy-based)
usf Associative distinctiveness (from USF norms)
MATTR 11 Moving-average type–token ratio (window = 11)

Note. DP* indicates various types of ∆P scores, computed using either the left or right word as the cue (or the head
or dependent in the case of dependency bigrams). All scores were calculated, and for the regression model, only the
score showing the strongest relationship with scores was included—consistent with the treatment of the SOA scores
in the baseline model (see Footnote 1).
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Abstract

Is the framework of Universal Dependencies
(UD) compatible with findings from linguistic
typology about constructions in the world’s lan-
guages? To address this question, we need to
systematically review how UD represents these
constructions, and how it handles the range of
morphosyntactic variation attested across lan-
guages. In this paper, we present the results
of such a review focusing on verbal predica-
tion constructions. We find that, although UD
can represent all major constructions in this
area, the guidelines are not completely coher-
ent with respect to the criteria for core argu-
ment relations and not completely systematic
in the definition of subtypes for nonbasic voice
constructions. To improve the overall coher-
ence of the guidelines, we propose a number of
revisions for future versions of UD.

1 Introduction

Universal Dependencies (UD) is a framework for
morphosyntactic annotation, which is designed to
be applicable to all human languages in a way
that enables meaningful cross-linguistic compar-
isons (Nivre et al., 2016, 2020; de Marneffe et al.,
2021). Construction grammar has also been com-
bined with linguistic typology to allow for cross-
linguistic comparison of grammatical constructions
(Croft, 2016, 2022). This paper contributes to the
project of adding the third edge to this triangle: rep-
resenting cross-linguistically valid constructions in
UD (Nivre, 2025). To find out whether UD can
represent typologically justifiable constructions,
Nivre (2025) proposes to build a constructicon for
UD based on the survey of universal constructions
and morphosyntactic realization strategies in Croft
(2022) and the MoCCA database of comparative
concepts derived from it (Lorenzi et al., 2024).

Croft’s survey is based on two types of compar-
ative concepts (Haspelmath, 2010; Croft, 2016):

constructions, which are universal form-function
pairings defined solely in terms of their function,
and strategies, which are non-universal and de-
fined by the pairing of a function with some cross-
linguistically identifiable morphosyntactic form.
Annotations in UD are not defined in terms of con-
structions and strategies, but for the framework to
be universally applicable it must be possible to an-
notate all major constructions and strategies in the
world’s languages. And to support cross-linguistic
comparisons, these annotations should ideally re-
flect systematic correspondences in constructions
and strategies across languages.

The research program outlined in Nivre (2025)
is to develop a constructicon for UD, consisting of
the following components:

• An inventory of universal constructions.

• For each construction, an inventory of com-
mon strategies for realizing that construction
in the world’s languages.

• For each construction-strategy pair, a cross-
linguistically valid UD analysis and represen-
tative examples from different languages.

This will help improve cross-linguistic annotation
consistency by providing a complementary view
of the UD guidelines, which is holistic and ono-
masiological; it will also provide better support
for construction-based annotation on top of UD
(Weissweiler et al., 2024); it will finally reveal to
what extent UD can represent constructions and
strategies systematically and transparently across
languages, thereby identifying shortcomings in the
current guidelines.

The first contribution to this project can be found
in Nivre and Croft (2025) and reviews the guide-
lines for reference and modification constructions
in UD. In this paper, we proceed to discuss verbal
predication constructions, or verbal clauses, involv-
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ing simple verbal predicates and their arguments.
This family of constructions is discussed in Chap-
ters 6–9 of Croft (2022).

2 Verbal Clause Constructions

A verbal clause construction consists of two types
of elements: the head, which is a verb denoting an
action or event, and argument phrases denoting par-
ticipants of the action or event. This is exemplified
in (1), from Croft (2022, p. 180), where the verb
broke is associated with four argument phrases:
Sue, a coconut, for Greg, and with a hammer.

(1) Sue broke a coconut for Greg with a hammer.

The grammatical encoding of argument phrases is
primarily determined by their degree of salience
or topicality to the interlocutors in the discourse.
The most topical argument is encoded by the sub-
ject, the next most salient argument by the object,
and all other arguments by oblique phrases. For
example, in (1), Susan is the subject, a coconut is
the object, and for Greg and with a hammer are
obliques. Subjects and objects are often grouped
together as core arguments.

In the most prototypical clause constructions, the
more topical arguments are also the more central
participants of the action or event. Thus, in (1),
the subject denotes the agent of the action, and
the object denotes the object most directly affected
by the action, while the oblique arguments denote
more peripheral participants. Such constructions
are called basic voice constructions and are dis-
cussed in Section 3. In Section 4, we then turn to
constructions that have been conventionalized to
express non-prototypical combinations of partici-
pant roles and argument salience.

3 Basic Voice Constructions

Basic voice constructions are traditionally classi-
fied based on the number of central participant
roles, or core arguments, into intransitive, transi-
tive, and ditransitive constructions. We will begin
with the transitive construction, with two core ar-
guments, which is generally assumed to be the
prototypical verbal clause (Croft, 2022, p. 183).

3.1 The Transitive Construction

If the transitive construction is the most prototypi-
cal verbal clause construction, the most prototypi-
cal event type expressed through this construction
is an agentive change of state event, that is, an event

where an external volitional agent brings about a
change in a patient. The asymmetric semantic re-
lation between agent and patient is force-dynamic,
that is, the change of state event involves a transmis-
sion of force from the agent to the patient (Talmy,
1988; Croft, 2010). To facilitate cross-linguistic
comparison, typologists have proposed that the con-
struction be defined by an even more specific event
type, the agentive breaking event exemplified in (1)
(Haspelmath, 2011, 2015; Croft, 2022).

In the prototypical transitive clause, the phrase
expressing the agent (A) role is the subject, and
the phrase expressing the patient (P) role the object.
But the same construction is commonly used also to
express other event types with other semantic roles,
such as motion events or experiential events. Thus,
in a sentence like she entered the cave, the subject
(she) expresses the figure role (F), and the object
(the cave) expresses the ground role (G). And in
she saw the sun, the subject (she) is an experiencer
(X) and the object (the sun) is a stimulus (M).

There are cross-linguistic generalizations about
the tendency for different event types to recruit1

the transitive construction, often summarized in
so-called transitivity hierarchies (Tsunoda, 1981,
1985; Malchukov, 2005; Beavers, 2011). To map
out the distribution of the transitive construction in
a given language, we need to study how the subject
and object are encoded in prototypical transitive
clauses and see to what extent the same encod-
ing appears with other event types and semantic
roles. Generally speaking, there are three common
strategies used to distinguish arguments in verbal
clauses, including transitive clauses, exemplified in
(2–4) (Croft, 2022, pp. 187–188).

(2) Tanj-a ubi-la Mas̆u
Tanya-F.NOM kill-PST:FSG Masha-F.ACC

‘Tanya killed Masha’

(3) x-Ø-uu-choy chee7 tza7n ikaj
PST-3SG.ABS-3SG.ERG-cut tree with axe
‘he cut tree(s) with an axe’

(4) ka’se’kaw: samlap ko:n kru:k
farmer kill child pig
‘(the) farmer(s) kills/killed (the) piglet(s)’

The Russian example (2), from Comrie (1989), ex-
emplifies the use of flags, morphemes that encode
the semantic relationship between the participant

1Recruitment is a relationship between two constructions
in which the structure of one construction is recruited for use,
or extended to use, in the other construction (Croft, in press).
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and the event. In this example, flags take the form
of case affixes, but flags can also be realized as ad-
positions. Cross-linguistically, there is a tendency
for argument phrases lacking overt flags to express
core argument roles.

The Tzutujil example (3), from Dayley (1989),
illustrates the strategy of indexation, where an ar-
gument is indexed by a morpheme that is typically
an affix of the predicate. In this case, both the sub-
ject and the object are indexed on the verb. Cross-
linguistically, there is a strong tendency that in-
dexed arguments express core argument roles.

Since flags occur on arguments and indexation
occurs on the predicate, the two strategies may
be used together. This is the case in the Russian
example (2), where the subject Tanja carries a flag
and is also indexed on the verb.

The Khmer example (4), from Haiman (2011),
uses neither flags nor indexation, and the arguments
are distinguished only through word order. The
cross-linguistic study of basic word order in transi-
tive clauses goes back to Greenberg (1966) and has
shown that it is overwhelmingly more common for
subjects to precede objects in languages that have
a dominant order.

3.2 The Intransitive Construction

The intransitive clause construction involves a verb
and a single core argument, whose role is called
S by typologists, which is almost always encoded
like one of the two core arguments in the transitive
construction. The encoding patterns of the three
roles is called alignment and the three most com-
mon patterns are neutral (A = S = P), accusative
(A = S ̸= P) and ergative (A ̸= S = P) alignment.
Neutral alignment is found in English when no
argument is realized as a pronoun, as shown in ex-
ample (5).Example (6), from Weber (1989), shows
accusative alignment in Huallaga Quechua, involv-
ing both flags and indexation; example (7), from
Williams (1980), shows ergative alignment with
flags in Yuwaalaraay.

(5) a. the dog barked
b. the dog chased the cat

(6) a. yaku-Ø timpu-yka-n
water.NOM boil.IPFV-3
‘the water is boiling’

b. Hwan-Ø Tumas-ta maka-n
John.NOM Tom.ACC hit.-3
‘John hits Tom’

(7) a. wa:l nama yinar-Ø banaga-ni
NEG that woman-ABS run-NFUT

‘the woman didn’t run’
b. duyu-gu nama dayn-Ø yi:-y

snake-ERG that man-ABS bite-NFUT

‘the snake bit the man’

Regardless of the alignment, however, the single
core argument in an intransitive clause is classified
as a subject, because it is the single most topical
argument of the construction.

3.3 Reflexives and Reciprocals

In addition to the transitive and intransitive con-
structions, there are two constructions that have
affinities with both and often employ the same
strategies: the reflexive and the reciprocal construc-
tion. The reflexive construction expresses an event
with a single participant (like intransitives) but two
distinct roles (like transitives), as in she injured
herself. The reciprocal construction expresses an
event with a pair of participants that both assume
the same two roles, as in they touched each other.

Both reflexives and reciprocals typically recruit
either the transitive or the intransitive construction
for their realization. The former is the dual-role
strategy, with two argument phrases, as in the ex-
amples above, and may involve a specialized argu-
ment expression such as a reflexive or reciprocal
pronoun. The latter is the single-role strategy, with
only one argument phrase, as in he shaved and they
met. Cross-linguistically, the dual-role strategy of-
ten grammaticalizes into the single-role strategy
through fusion of a specialized reflexive/reciprocal
element with the verb (Croft, 2022, pp. 208–209).

3.4 The Ditransitive Construction

The ditransitive clause construction is defined in
terms of transfer events, physical transfer events
expressed by verbs like give and sell, as well as
mental transfer events expressed by verbs like show
and tell. The roles associated with these events are
agent (A), theme (T), and recipient (R). There is
a force-dynamic ordering A > T > R, but R is al-
most always human and hence topical enough to
be encoded as a core argument, comparable to T.
While the A role appears to be universally encoded
as the grammatical subject, languages use different
strategies for encoding the T and R roles, which
can again be described in terms of alignment with
the transitive construction. In the neutral align-
ment (T = P = R), or double-object strategy, both
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(a)

they eat fish
PRON VERB NOUN

Mood=Ind

Number=Plur

Person=3

Tense=Pres

VerbForm=Fin

nsubj obj

(b)

they have eaten fish
PRON AUX VERB NOUN

Mood=Ind Tense=Past

Number=Plur VerbForm=Part

Person=3

Tense=Pres

VerbForm=Fin

nsubj

aux obj

(c)

they will have eaten fish
PRON AUX AUX VERB NOUN

VerbForm=Fin VerbForm=Inf Tense=Past

VerbForm=Part

nsubj

aux

aux obj

Figure 1: UD annotation of verbal predicates: (a) finite main verb, (b–c) main verb with auxiliaries.

(a)

Tanja ubila Mas̆u
NOUN VERB NOUN

Case=Nom Gender=Fem Case=Acc

Gender=Fem Number=Sing Gender=Fem

nsubj obj

(b)

xØuuchoy chee7 tza7n ikaj
VERB NOUN ADP NOUN

Case[1]=Erg

Case[2]=Abs

Number[1]=Sing

Number[2]=Sing

Person[1]=3

Person[2]=3

obj case

obl (c)

ka’se’kaw: samlap ko:n kru:k
NOUN VERB NOUN NOUN

nsubj nmod

obj

Figure 2: UD annotation of encoding strategies: (a) flags, (b) indexation, (c) word order.

T and R are co-expressed with P. In the indirective
alignment (T = P ̸= R), T and P are co-expressed
and referred to as the direct object, while R has a
distinct encoding and is referred to as the indirect
object. In the secundative alignment (T ̸= P = R),
finally, R and P are co-expressed and distinct from
T. In this case, the phrase expressing R or P is the
primary object, while the phrase expressing T is
the secondary object.

3.5 UD Annotation

When reviewing the UD annotation of basic voice
constructions, our discussion will focus on how UD
treats different alignment strategies across intransi-
tives, transitives and ditransitives. Before we turn
to that discussion, however, we will briefly review
how UD annotates verbal predicates and how it
handles the encoding strategies used to distinguish
arguments in any of these constructions.

Verbal Predicates
The predicate of a verbal clause consists of a
main verb, which is assigned the part-of-speech
tag VERB, possibly together with one or more
auxiliaries, which are assigned the tag AUX. Both
main verbs and auxiliaries may be assigned mor-
phological features capturing properties such as
tense, mood, and aspect. It is worth noting that
UD always treats the main (lexical) verb as the root
of the clausal structure, regardless of whether it is

finite or not, and attaches auxiliaries to the main
verb with the syntactic relation aux, as illustrated
in Figure 1.2

Encoding Strategies

As observed in Section 3.1, there are three main
strategies used to distinguish arguments: flags, in-
dexation, and word order. These are annotated to
varying degrees in UD, using part-of-speech tags,
morphological features, and relations:

• Flags realized as morphological affixes are
represented by the morphological feature
Case, as shown for example (2) in Figure2(a),
while adpositions are tagged ADP and at-
tached with the case relation, as exemplified
by the oblique argument in Figure 2(b).

• Indexation is also represented by morphologi-
cal features, whose values correspond to those
of the indexed arguments, as shown for exam-
ple (3) in Figure 2(b). When multiple argu-
ments are indexed, as in this example, the tech-
nique known as layering is used to represent
multiple values of the same feature. However,
as observed by Nivre and Croft (2025), there

2In these and all following examples, we simplify the UD
representations by omitting (a) lemmas and (b) morphological
features that are not relevant for discussion (notably features
on nominal arguments in these examples and features on ver-
bal predicates in subsequent examples).
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is nothing in the annotation that explicitly con-
nects the index features to the arguments.

• The word order strategy is not annotated ex-
plicitly, but word order is preserved in the rep-
resentation; cf. example (4) and Figure 2(c).

Intransitive–Transitive Alignment
The intransitive construction is annotated in UD by
attaching the single core argument to the verb with
the nsubj relation. This is consistent with the anal-
ysis in Croft (2022) in that the phrase expressing
the S role is analyzed as the grammatical subject.

For the transitive construction, the idea is to use
nsubj and obj for any two arguments encoded as
the A and P arguments of a prototypical transitive
clause describing an agentive change-of-state event,
including clauses describing motion events (she
entered the cave) and experiential events (she sees
the sun). However, if one of the arguments has
an oblique encoding, then it is instead annotated
with the obl relation, even if it expresses the same
role as in the corresponding transitive clause. Thus,
a clause like she ran into the cave is analyzed as
an intransitive clause, with she as nsubj and into
the cave as obl, and similarly for a clause like she
looked at the sun. Of course, oblique arguments
may also appear in transitive clauses, as in caused
motion events like she chased them into the cave
(she = nsubj, them = obj, into the cave = obl).

The question, however, is how to identify sub-
jects and objects in languages with different align-
ment strategies. The documentation on the UD
website3 appears to follow Croft (2022) in treat-
ing the phrase expressing the A role in a prototyp-
ical transitive clause as the grammatical subject
regardless of alignment, because it is the most topi-
cal argument. More specifically, it says that “case
alignment should not be used to decide the assign-
ment of core argument roles” and that “in ergative
languages, the patient-like argument of a transitive
verb (O/P) will take the the obj relation despite the
fact that it carries the same case marking as the
nsubj argument (S) of an intransitive verb”. The
annotations in Figure 2 are compatible with these
guidelines, specifically Figure 2(b), where the ar-
gument indexed with absolutive case is analyzed as
obj. However, in a more detailed discussion of erga-
tivity, de Marneffe et al. (2021) argue that, while
this analysis is appropriate for languages where

3https://universaldependencies.org/u/overview/simple-
syntax.html#intransitive-and-transitive-clauses

ergative–absolutive case marking is primarily a
morphological feature, such as Basque, there are
other languages, such as Jirrbal (or Dyirbal), where
ergativity extends to syntactic relations. For such
languages, de Marneffe et al. (2021) propose an
analysis based on Dixon (1994), where the S and
P arguments are treated as a “pivot” and are both
assigned the nsubj relation, while the A argument
is instead assigned the obj relation. To indicate the
unusual role assignment, it is recommended to use
the subtype nsubj:pass4 for the P argument and the
subtype obj:agent for the A argument (de Marneffe
et al., 2021, p. 295).

Reflexives and Reciprocals
Reflexive and reciprocal constructions are in prin-
ciple annotated exactly as the constructions they
recruit, that is, the transitive or intransitive con-
struction. However, if a language employs a spe-
cialized dual-role strategy involving a reflexive or
reciprocal pronoun, this may be captured by fea-
tures on the pronoun, such as Reflexive=Yes and
PronType=Rcp. The UD guidelines also prescribe
a special treatment of so-called inherent reflexive
verbs, such as se souvenir (remember) in French,
where the verb cannot occur with a non-reflexive
pronoun and where there is arguably only one se-
mantic role. In this case, the reflexive pronoun
should be attached to the verb with the expl (exple-
tive) relation (instead of the obj relation) to indicate
that it does not express a semantic role in relation
to the predicate.

Ditransitive–Transitive Alignment
UD defines ditransitive clauses more narrowly than
Croft (2022) and only has specific guidelines for
the neutral alignment strategy, where the T and
R roles are both encoded as core arguments. In
this case, UD assigns nsubj to the A argument, obj
to the T argument, and a special relation iobj (for
indirect object) to the R argument. The obj/iobj
distinction is upheld even if the T and R arguments
have identical encoding, and is thus based on roles
rather than morphosyntactic realization.

For the indirective strategy, UD uses nsubj for
the A argument, obj for the T argument, and obl for
the R argument with an oblique encoding, which
typically involves either an adposition, as in En-
glish she gave the book to Peter, or morphological

4The subtype :pass was first used in the analysis of passive
constructions (hence the name), but it is now used more gen-
erally in UD for subjects whose semantic role is lower than
expected in the transitivity hierarchy.
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Roles
Construction Strategy S A P T R C
Intransitive – nsubj
Transitive Accusative nsubj:pass nsubj obj nsubj:pass nsubj:pass nsubj:pass

Ergative 1 nsubj obj
Ergative 2 obj:agent nsubj:pass

Ditransitive Neutral nsubj obj iobj
Indirective nsubj obj obl
Secundative nsubj obl obj

Construction Basic Voice
Passive Transitive obl:agent nsubj:pass
Causative Intransitive obj:caus nsubj

Transitive iobj:caus obj nsubj

Table 1: UD relations for semantic roles in verbal clause constructions (C = external causer).

case, as in Latin librum Petro dedit (he/she gave
the book to Petrus), where the oblique R argument
Petro is in dative case, while the object librum is
in accusative case.5 The secundative strategy is
not described in the UD guidelines, but it is natural
to assume that the core R argument is annotated
obj (since the iobj relation normally requires the
presence of an obj argument in the same clause),
while the oblique T argument is annotated obl.

Interim Summary
The upper part of Table 1 summarizes the UD treat-
ment of basic voice constructions by showing how
prototypical semantic roles are mapped to syntactic
relations (with the two different treatments pro-
posed for transitives with ergative alignment).

4 Non-Basic Voice Constructions

Non-basic voice constructions are clausal construc-
tions used to express a non-prototypical combina-
tion of the topicality of referents and the participant
roles those referents play in the event denoted by
the predicate.

4.1 Passive–Inverse Constructions

A passive–inverse construction expresses a situa-
tion where the P referent has higher topicality than
the A referent (Croft, 2022, p. 252). In the English
passive construction in (8b), the P argument (he) is
coded like the A argument (she) in the prototypical
active construction in (8b), while the A argument

5A dative case argument may be treated as a core argument,
hence iobj, if other criteria point to it being core, notably if it
is indexed on the verb.

(by her) is oblique. In the Algonquian inverse con-
struction in (9b), from Wolfart and Carroll (1981),
the P argument is again coded like the A argument
in the direct construction in (9a), but the A argu-
ment is now coded as the P argument in the more
prototypical construction.

(8) a. she took him to school
b. he was taken to school (by her)

(9) a. ni-wapam-a-wak
1-see-DIR-3PL

‘I see them’
b. ni-wapam-ikw-wak

1-see-INV-3PL

‘they see me’

These are only two of the many strategies used in
passive–inverse constructions in the world’s lan-
guages. For further discussion, see (Croft, 2022,
pp. 256–263).

4.2 Antipassive Constructions
Antipassive constructions involve a P argument
with lower topicality than in a basic transitive
clause. Such constructions are common in erga-
tive languages, where the P argument is demoted
to an oblique and the A argument takes over the
absolutive encoding. Example (10), from Patz
(2002), illustrates the antipassive construction in
Kuku Yalanji.
(10) a. nyulu dingkar-angka minya-Ø nuka-ny

3SG.NOM man-ERG meat-ABS eat-PST

‘the man ate meat’

b. nyulu dingkar-Ø minya-nga muka-ji-ny
3SG.NOM man-ABS meat-LOC eat-ANTP-PST

‘the man had a good feed of meat’
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Example (10) illustrates the oblique P strategy,
which is also found in an English example like the
dog chewed the bone versus the dog chewed on the
bone (although without overt coding on the verb).
Other common strategies in antipassive construc-
tions are the omitted P strategy (she ate a sandwich
versus she ate) and different types of noun incorpo-
ration (Croft, 2022, pp. 266–270).

4.3 Causative Constructions

Causative constructions add an external causer (C),
universally encoded as a subject core argument.
The encoding of the ordinary subject, the causee,
depends on what strategy is used, and sometimes
also on whether the base clause is transitive or in-
transitive. Many languages use a complex predicate
strategy, as in the English examples in (11), where
the causee becomes the direct object and everything
else stays the same.

(11) a. she made him cry
b. she made him write the letter

Turkish instead uses a simple predicate strategy,
with overt coding on the verb, as shown in (12),
from Comrie (1989). In (12a), the base clause
is intransitive and the causee is expressed as an
object with accusative encoding; in (12b), the base
clause is transitive and the causee is expressed as
an oblique with a dative flag.

(12) a. Ali Hasan-ı öl-dür-dü
Ali Hasan-ACC die-CAU-PST

‘Ali killed Hasan’

b. Dişçi mektub-u müdür-e imzala-t-tı
dentist letter-ACC director-DAT sign-CAU-PST

‘the dentist made the director sign the letter’

4.4 Applicative Constructions

In applicative constructions, a peripheral partici-
pant is encoded as a core argument, usually as an
object, and the object of the corresponding pro-
totypical transitive clause may be encoded as an
oblique. This is illustrated with a Hungarian exam-
ple in (13), from Moravcsik (1978).

(13) a. János fák-at ültetett a kert-be
John trees-ACC planted the garden-into
‘John planted trees in the garden’

b. János be-ültette a kerte-t fák-kal
John APPL-planted the garden-ACC trees-with
‘John planted the garden with trees’

Hungarian uses a simple predicate strategy, with
overt coding on the verb, but it is also common
to use a complex predicate strategy for applicative
constructions, in particular a serial verb strategy.

4.5 UD Annotation

Passive–Inverse Constructions

Passive constructions are annotated in UD by at-
taching the passive subject to the verb with the sub-
type relation nsubj:pass to indicate that it expresses
the argument role associated with the direct object
in the corresponding transitive clause. The agent
phrase, if present, is annotated using the subtype
obl:agent. If the verb is overtly marked for the pas-
sive voice, it carries the feature Voice=Pass; if the
the passive is a periphrastic construction, the aux-
iliary may instead be annotated with the subtype
aux:pass. Inverse constructions like the one in (9b)
are not discussed explicitly in the UD guidelines,
but it seems straightforward to use the subtypes
nsubj:pass and obj:agent recommended for tran-
sitive clauses in (some) languages with ergative
alignment, with the feature Voice=Inv on the verb.

Antipassives

Antipassives are not explicitly discussed in the UD
guidelines, but the oblique P and omitted P strate-
gies can be straightforwardly annotated using the
existing guidelines.6 The treatment of noun incor-
poration in UD is a more controversial issue, which
we will sidestep in this paper. We refer the inter-
ested reader to Tyers and Mishchenkova (2020) for
a discussion and a proposal.

Causatives

For causatives with the simple predicate strategy,
UD recommends using the subtypes obj:caus and
iobj:caus for the causee, as shown in Figure 3
for the Turkish examples in (12) (with the feature
Voice=Cau on the verb). The use of the iobj rela-
tion here is unexpected, given that the argument
has an oblique encoding, and the subtype obl:caus
would seem more natural. For the complex pred-
icate strategy, illustrated by the English example
(11), the causee will normally be annotated with
the obj role (without subtype), while the second
verb will be assigned the xcomp relation.

6In the former case, the demoted P argument is assigned
the obl relation; in the latter case, it is simply dropped.
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(a)

Ali Hasanı öldürdü
PROPN PROPN VERB
Case=Nom Case=Acc Voice=Cau

nsubj

obj:caus

(b)

dişçi mektubu müdüre imzalattı
NOUN NOUN NOUN VERB

Case=Nom Case=Acc Case=Dat Voice=Cau

nsubj

iobj:caus

obj

Figure 3: UD annotation of causative constructions.

Applicatives
Applicatives do not appear in the official UD guide-
lines, but there is a short discussion in de Marneffe
et al. (2021) of ditransitive applicatives in Swahili,
where it is recommended to use the iobj relation for
the promoted argument if it is indexed by the verb.
For the Hungarian example (13b) it seems natural
to use obj for the promoted argument and obl for
the demoted one. In addition, one could envisage a
feature Voice=App on the verb, but no such feature
currently exists in UD.

Interim Summary
The treatment of nonbasic voice constructions in
UD is summarized in the lower part of Table 1.
We have, however, only included constructions for
which there are official guidelines.

5 Discussion

Our review has shown that the UD annotation
framework can in principle represent all the major
constructions and strategies for verbal predication
discussed in Croft (2022), even though not all non-
basic voice constructions are treated explicitly in
the current documentation of the UD guidelines.
These guidelines are summarized in Table 1, which
can be regarded as a blueprint for the UD construc-
ticon of verbal predication constructions.

However, we have also observed a few cases
where the UD treatment does not quite align with
comparative concepts from typology, and some-
times arguably even conflicts with basic principles
of UD itself. One such case is the treatment of tran-
sitives in ergative languages, where de Marneffe
et al. (2021) advocates a mixed analysis, which
is sometimes based on topicality, sometimes on
morphosyntactic encoding, specifically case align-
ment. Another case is the analysis of ditransitive
clauses with neutral alignment, where the use of
the iobj relation appears to be motivated on dif-
ferent grounds than other core argument relations.
Finally, we note that the use of subtypes to mark

non-prototypical argument realizations can be im-
proved with respect to systematicity and naming
conventions. Nevertheless, we believe that, with
relatively small adjustments, the guidelines can be
made globally coherent and consistent with basic
UD principles as well as findings from linguistic
typology. We will now try to outline these modified
guidelines and their motivation.

A cornerstone of UD is the assumption that the
core-oblique distinction, albeit not completely un-
problematic, is a better foundation for morphosyn-
tactic annotation than the argument-adjunct distinc-
tion (de Marneffe et al., 2021, pp. 266–268). The
basis for distinguishing core arguments in a given
language is the encoding of the two arguments in
a prototypical transitive clause; any argument that
uses the same encoding as one of these is core; any
argument that uses a different encoding is oblique.

The basis for assigning specific syntactic rela-
tions to core arguments in basic voice constructions
is topicality, with the nsubj relation reserved for the
most topical argument and the obj relation for the
second most topical argument. It follows that the
single S argument in intransitive clauses is nsubj.

In transitive clauses, we assume that the topi-
cality hierarchy is A > P, which means that the A
argument is nsubj and the P argument obj, regard-
less of case marking or other coding properties, and
all other arguments are obl. This analysis naturally
carries over to other event types like motion events:
F=nsubj, G=obj in uncaused motion (she entered
the cave); A= nsubj, F= obj, G= obl in caused
motion (she chased them into the cave). For expe-
riential events, the analysis mirrors the encoding
in the prototypical transitives, which means that
M=nsubj and X=obj in the causative construal
(she frightens them) and vice versa in the attending
construal (they fear her).

In ditransitive clauses, we assume that topicality
reflects the force-dynamics (A > T > R), which
means that A is nsubj and that T is obj if it is real-
ized as a core argument; the expected realization of
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R is obl, which makes the indirective alignment the
basic voice construction for ditransitives. We will
therefore treat the neutral and secundative align-
ments as nonbasic voice constructions (more pre-
cisely as applicative constructions), which obviates
the need for the iobj relation.

In nonbasic voice constructions, which by defi-
nition involve some kind of mismatch between top-
icality and encoding, we use subtypes to indicate
deviances from prototypical argument realizations.
Here we propose a new subtyping system based
on the argument roles used in linguistic typology,
including at least :s, :a, :p, :t, :r, and :c (c for
causer). We believe that this will be a more expres-
sive and coherent subtyping system than the current
use of :pass, :agent, and :caus, which mixes dif-
ferent naming conventions (constructions vs. roles)
and where especially :pass has a misleading name
as it covers more than just passives. Given these
subtypes, we can annotate nonbasic voice construc-
tions transparently as follows:

• Passive–Inverse: The P/T/R argument is
nsubj:p/nsubj:t/nsubj:r, and the A argument
is obj:a or obl:a, depending on strategy.

• Antipassive: The A argument is nsubj and
the P argument is obl:p.

• Causative: The causer is nsubj:c. If the base
clause is intransitive, the S argument is obj:s;
if the base clause is transitive, then the A ar-
gument is obj:a or obl:a and the P argument
obj or obl:p, depending on strategy.

• Applicative: The A argument is nsubj, the
P/T argument is obj or obl:p/obl:t, depending
on strategy, and the promoted argument is obj
with a subtype reflecting its role. A special
case of this is a ditransitive with neutral or
secundative alignment, where the R argument
is obj:r (instead of iobj) and the T argument
is obj (neutral) or obl:t (secundative).

A possible alternative to using role-based subtypes
is to use a simpler system with only two general
subtypes, :high and :low, which indicate that an
argument has, respectively, higher or lower topi-
cality than expected. The P argument would then
be nsubj:low in a passive–inverse construction and
obl:high in an antipassive construction. However,
this would be a much less expressive system, which
would make some nonbasic voice constructions in-
distinguishable (for example, inverse constructions
and intransitive causatives).

Finally, and regardless of whether future ver-
sions of UD will adopt our proposed revisions of
the annotation guidelines, there will be a need for
additional morphological features to capture non-
basic voice constructions coded on the verb itself.
This includes at least a feature or feature value for
applicative constructions.

6 Conclusion

In this paper, we have taken another step towards a
constructicon for UD, in the sense of Nivre (2025),
by reviewing the way UD annotates constructions
and strategies for verbal predication, following the
taxonomy of Croft (2022), extending the previous
work on reference and modification (Nivre and
Croft, 2025). An overview of the constructicon
is shown in Table 1, where we outline which syn-
tactic relations are used to annotate different argu-
ment phrases across constructions and strategies.
To this should be added the annotation of verbal
predicates using part-of-speech tags, features and
the aux relation, and of argument encoding through
morphological features and the case relation, as
described in Section 3.5.

Based on our review of the existing guidelines
and annotation practices, we have also proposed
some modifications to the guidelines that should be
considered for future versions of UD. This includes
modified guidelines for transitive clauses in (some)
languages with ergative alignment, and for ditran-
sitive clauses generally, as well as a proposal for a
new subtyping system, which will make the anno-
tation of nonbasic voice constructions more trans-
parent. As stated in Nivre and Croft (2025), these
proposals need to be evaluated also from other per-
spectives, since UD is designed as “a very subtle
compromise between a number of competing cri-
teria” (de Marneffe et al., 2021, p. 302), and the
discussion also needs to be informed by a more
comprehensive review of the UD framework, cov-
ering all major types of constructions and strategies.
It is our goal to continue this review in a series of
future publications.
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Abstract

Linguistic evaluations of how well LMs gen-
eralize to produce or understand language of-
ten implicitly take for granted that natural lan-
guages are generated by symbolic rules. Ac-
cording to this perspective, grammaticality is
determined by whether sentences obey such
rules. Interpretation is compositionally gener-
ated by syntactic rules operating on meaningful
words. Semantic parsing maps sentences into
formal logic. Failures of LMs to obey strict
rules are presumed to reveal that LMs do not
produce or understand language like humans.
Here we suggest that LMs’ failures to obey
symbolic rules may be a feature rather than a
bug, because natural languages are not based on
neatly separable, compositional rules. Rather,
new utterances are produced and understood
by a combination of flexible, interrelated, and
context-dependent constructions. Considering
gradient factors such as frequencies, context,
and function will help us reimagine new bench-
marks and analyses to probe whether and how
LMs capture the rich, flexible generalizations
that comprise natural languages.

1 Introduction

How well do large Language Models (LMs) gen-
eralize beyond their training data? Much work on
this question has presumed that generalizations re-
quire symbolic rules for syntax and semantics that
generate acceptable new forms and compositional
meanings. Rules are invoked to explain that if you
learn a new modifier (‘blonky’) and a new count
noun (‘gravimin’), a compositional rule could pre-
dict that ‘a blonky gravimin’ is a gravimin that is
blonky. In what follows, we use “rule” to refer to
context-free generalizations that contain variables,
to be instantiated by any instance of a general type,
uninfluenced by frequency, similarity, or context
(Pinker, 1999). Our focus here is on the use of
a strict algebraic conception of rules, which we

argue, underlies certain approaches to NLP evalua-
tion, even though the notion of a rule is used vari-
ably in linguistics today, with several frameworks
incorporating functional and/or frequency-based
attributes into representations (e.g., Bresnan et al.,
2007; Brehm et al., 2022; O’Donnell, 2015),

Because early statistical models (e.g., n-gram
or Markov models) seemed unable to generalize
fully or capture non-local dependencies (Chomsky,
1957), early on, rules seemed to many to be the
only game in town for human language. After all,
if a standard bigram model hadn’t seen ‘blonky
gravimin’ before, it would be unable to form a
representation of it. Influential thinkers argued that
neural networks, which did not involve rules, would
never be appropriate models of human cognition
for this reason (Fodor and Pylyshyn, 1988; Pinker
and Prince, 1988; Marcus, 1998; Fodor and Lepore,
2002; Marcus, 2001; Calvo and Symons, 2014).

However, current LMs arose from statistical, dis-
tributional parallel models (Mikolov et al., 2013;
Rumelhart et al., 1986) rather than rule-based nat-
ural language technologies. They do not rely on
hard-coded rules, yet their ability to produce co-
herent, naturalistic language and respond appropri-
ately is unparalleled by purely symbolic systems
(Piantadosi, 2024; Goldberg, 2024; Weissweiler
et al., 2023; Hofmann et al., 2025). GPT-4o, for
example, not only recognizes ‘a blonky gravimin’
as a noun phrase, it explicitly offers several natu-
ralistic interpretations, e.g., ‘A person or act that
awkwardly and absurdly pretends to be serious.’

Nonetheless, an assumption that generalizations
are equivalent to rules continues to motivate many
evaluations of syntax, meaning, and their compo-
sitional combination: e.g., Natural Language In-
ference (Bowman et al., 2015), Semantic Parsing
(Palmer et al., 2005; Reddy et al., 2017), tests of
binary grammatical acceptability (Warstadt et al.,
2019; Dentella et al., 2023) and rule-based com-
positionality (Kim and Linzen, 2020). Together,
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such tasks made up more than half of the GLUE
benchmark (Wang et al., 2018), created to evaluate
language models on their skill at being “general,
flexible, and robust.” Lackluster performance on
rule-based tasks in the early days of LMs was taken
to imply that the models did not use language the
way people do and were instead merely imitating
shallow surface patterns (Bender and Koller, 2020;
Kim and Linzen, 2020; Weißenhorn et al., 2022;
Bolhuis et al., 2023). In a survey of 79 NLP re-
searchers, McCurdy et al. (2024) reported that 87%
believed LMs were not sufficiently compositional
and a sizable proportion (39%) believed explicit
discrete symbolic rules were required.

Evaluations of LMs’ early challenges with al-
gebraic or logical rules did expose certain short-
comings in their ability to reason abstractly and
solve math problems (see e.g., Mahowald et al.,
2024). At the same time, LM’s concurrent abil-
ity to produce and respond to natural languages
naturalistically is hard to overstate (e.g., Coil and
Shwartz, 2023).

Mastering a natural language requires mastering
a network of hundreds of thousands of context-
dependent, gradient, flexible schemata (construc-
tions, see §5), which often contain ‘slots’ that con-
strain their fillers and how those fillers are inter-
preted. Constrained slots allow for new combina-
tions, flexibly adapted in context. For instance, the
phrase ’<time period> ago’ can coerce a temporal
interpretation of filler phrases that do not designate
time periods (e.g., ‘three rest stops ago’). Rather
than rule-based compositionality, composition-by-
construction allows constructions to contribute
meaningfully to interpretation in ways that range
from abstract to quite narrow and specific. There-
fore, for LMs to use language like humans, they
require interpretations that are far richer than rules
can provide for thousands of collocations, conven-
tional metaphors, idioms, and context-dependent
interpretations. Even abstract grammatical patterns
also regularly convey semantic and/or pragmatic
information that restrict their contexts of use and
interpretations. Since different languages and di-
alects provide speakers with different networks of
constructions (ConstructionNets), cross-linguistic
differences can be captured naturally.

We suggest that rule-based evaluations have been
over-emphasized in the domain of natural language
production and comprehension. Our goal is to em-
phasize the importance of recognizing context, fre-
quencies, meaning and other gradient functional

factors in modern evaluations of natural language.

We do not argue that no categorical rule exists
in any language. If a categorical rule is needed, it
can be treated as the limiting case, a fully abstract
construction (Jackendoff, 2002). For instance, Jack-
endoff (2002) proposes a symbolic Verb + Particle
rule for the syntax of English complex verbs. At
the same time, the meanings of individual verb
plus particle combinations are far from composi-
tional by any general rule (e.g., one can look up
a number or look down on someone but not ?look
up on someone nor ?look down a number). Here
we advocate for an increased focus on the extent to
which and how LMs manage to produce and com-
prehend human-like natural languages in all their
context-specificity and complexity.

Many of our theoretical points are not new, par-
ticularly in the domain of morphology. Neural net-
work researchers have continuously argued in favor
of a single representational system and against the
usefulness of rules in the domain of words and in-
flectional morphology (e.g., Rumelhart et al., 1986;
Rogers and McClelland, 2004; Elman, 2009; Chris-
tiansen and Chater, 1999; MacDonald et al., 1994;
McClelland, 2015). While early work in Artificial
Intelligence relied on algebraic rules (Minsky and
Papert, 1969; Lenat, 1995), many researchers soon
realized that rules were too brittle to scale up be-
yond highly restricted domains such as artificial
block worlds (Winograd, 1980).

Our contribution is to review leading paradigms
used in LM evaluations of syntax (§2), semantics
(§3), and compositionality (§4). We argue that,
while these paradigms have been fruitful, they in-
herit from a tradition that was overly focused on
rules, hierarchy, compositionality, and a binary no-
tion of grammaticality. We briefly characterize how
these assumptions arose and how they are baked
into evaluations. We argue that evaluations that
presume categorical and strictly compositional
language ignore some of the richest elements of
human language. We review construction-based
and gradient functionalist approaches to language,
arguing that this tradition points to certain lacunae
in existing evaluations and open up new possibili-
ties for evaluating natural language understanding.
Early work in this direction has already included
more nuanced metrics, measuring gradient judg-
ments and context-dependent interpretations (e.g.,
Juzek, 2024; Hu et al., 2024).
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2 Syntactic Rules in LM Evaluations

Evaluations of the syntactic capabilities of LMs
have frequently assumed a binary categorical no-
tion of grammaticality, which is then used to create
datasets for evaluation. Below, we discuss several
such cases, attempting to make these assumptions
explicit to show their limitations.

Grammaticality Judgment Tasks Human judg-
ments on sentences are gradient rather than binary,
and demonstrably depend on frequency, plausibil-
ity, complexity, memory demands, potential alter-
natives, and context (Grodner and Gibson, 2005;
Schütze and Sprouse, 2013; Robenalt and Gold-
berg, 2015; Gibson and Hickok, 1993; Fang et al.,
2023). The amount of exposure to written lan-
guage or linguistic theory also influences people’s
judgments. For instance, Dąbrowska (2010) found
that laypeople’s judgments on sentences containing
long-distance dependencies were more sensitive
to lexical content than linguists’ judgments were.
Even sentences included in linguistic textbooks,
which one might presume to have clear-cut judg-
ments, in reality are judged gradiently by people
(Juzek, 2024). Nonetheless, LMs’ language skills
are often evaluated on binary grammaticality judg-
ments on sentences (Dentella et al., 2024, 2023;
Warstadt et al., 2019).

The fact that human judgments are gradient can
have profound consequences on evaluations. For
instance, Dentella et al. (2023) compared humans
and LMs against predetermined binary acceptabil-
ity labels, reporting that LMs’ performance cor-
related poorly. However, comparing gradient per-
plexity measures with the same human judgments
revealed a strong positive correlation (Hu et al.,
2024). Using perplexity measures for models (as
well as allowing humans to provide ordinal or gra-
dient judgments) is a step in the right direction (Hu
et al., 2024; Juzek, 2024).

Dependency Parsing as Evaluation Parsing text
for universal dependencies (UD, de Marneffe et al.,
2021) has become a well-established task for eval-
uating models (Zeman et al., 2017, 2018), and
since Hewitt and Manning (2019) showed BERT
(Devlin et al., 2019) to be somewhat skilled in
UD, it has became the default operationalization
of syntax in the NLP world (Amini et al., 2023;
Kryvosheieva and Levy, 2025; Müller-Eberstein
et al., 2022) and in discussions of inductive biases
(Lindemann et al., 2024; Glavaš and Vulić, 2021).

UD annotations are partially determined by seman-
tics and they are based on lexical items, which
makes them closer to the approach advocated here
rather than abstract phrase structure rules. However,
UD analyses presume a universal set of grammat-
ical relations, which is problematic, because not
all languages employ the same constructs. That is,
there is no universally valid way to define or test
for the syntax of nouns, verbs, adjectives, subjects,
or direct objects (e.g., Croft, 2001). Moreover,
UD requires an asymmetric relationship between a
’head’ and dependent, yet the long tail of language
includes headless constructions (e.g., the Xer, the
Yer construction) (Michaelis, 2003) and co-headed
constructions (e.g., phrasal verbs, conjunctions, id-
ioms). Therefore, UD annotations need to be deter-
mined for individual languages and need to allow
for non-headed or co-headed cases to align well
with formal aspects of natural languages.

3 Semantic Rules in LM Evaluation

Formal logic was developed as a branch of mathe-
matics, used to prove mathematical and philosophi-
cal theorems and identify provability gaps (Frege,
1918; Russell, 1905; Gödel, 1931). It was based on
algebraic rules operating on categorical and broadly
defined categories. Notably, many logicians did not
generally assume nor endorse using formal logic
to represent the meanings of natural language ut-
terances (Carnap, 1937; Baker and Hacker, 1986),
recognizing that natural languages differ from for-
mal logic in many ways.1 For instance, logic treats
and and but as equivalent. It does not provide a nat-
ural way to capture commands or questions (Austin,
1975), nor does it naturally distinguish presuppo-
sitions from assertions (Strawson, 1967). Finally,
formal logic is not intended to capture effects of
context (Wittgenstein, 1953; Russin et al., 2024).

Yet the assumption that natural language seman-
tics can be modeled by formal logic has been made
in the design of certain classic LM understanding
benchmarks. Below, we review some instances and
discuss their connection to formal semantics.

Natural Language Inference Natural Language
Inference tasks label the second of two sentences
as an entailment, contradiction, or neutral, and this
NLI task was originally used to train models (Wang
et al., 2019; Dagan et al., 2006; Nie et al., 2020).

1Some logicians did advocate for using formal logic for
natural language (Tarski, 1944; Montague, 1970, 1973).
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Today, NLI is used as a zero-shot evaluation met-
ric to assess natural language understanding (Zhou
et al., 2024; McCoy et al., 2019). In introducing the
Stanford NLI corpus, Bowman et al. (2015) state,
“The semantic concepts of entailment and contra-
diction are central to all aspects of natural language
meaning. ”) (emphasis added, see also Katz, 1972;
van Benthem, 2008). While in the same paper,
Bowman et al. (2015) acknowledge that judgments
depend on many factors, such as commonsense
knowledge, this fact is generally overlooked in pa-
pers that use NLI as a task to evaluate LMs’ general
understanding.

Necessary and plausible inferences are a critical
aspect of natural language understanding. However,
they are highly dependent on the interlocutors’ gen-
eral communicative goals. We aim to make sense
of others’ messages, so we assume others are try-
ing to be relevant and helpful and do our best to
assign coherent meanings to all utterances (Grice,
1975). For example, outside of logic classes or
heated arguments, people rarely conclude that two
statements made by the same person are contradic-
tory. If someone utters: ‘The boy is depressed but
he is not DEPRESSED’, listeners do not throw
up their hands and shout ‘contradiction!’. Instead,
they may infer that the boy in question is only
somewhat, and not extremely, depressed, or ask to
learn more. People also assign interpretations to
statements in ways that differ from what formal
logic would predict (e.g., ‘run fast and you’ve got
this’ or ‘If it snows, it snows.’ NLI tasks that rely
on judging contradictions or entailments may over-
or under-estimate how well LMs’ understanding of
natural language aligns with humans’, particularly
when binary judgments are required (cf. Dentella
et al., 2024).

Evaluation metrics need to take humans’ commu-
nicative goals into account and allow for gradient
and context-dependent interpretations. An exam-
ple of the type of evaluation we endorse can be
found in the underappreciated NOPE testbed. Par-
rish et al. (2021) selected 10 distinct constructions
that trigger presuppositions and curated 100+ in-
stances of each one, based on naturally occurring
examples. Each stimulus includes two preceding
sentences for context. The authors then collected
gradient judgments from human raters, allowing
them to use their ‘background knowledge about
how the world works’ and compared the accuracy
of several models, with several controls in place.
This strikes us as a highly valuable blueprint for

modern evaluations of LMs.

Semantic Parsing Banarescu et al. (2013) intro-
duced abstract graphical meaning representations
(AMR) for sentential meaning that importantly in-
cludes aspects of lexical semantics. It was created
to offer a repository of structured meanings to be
used for evaluating understanding in LMs (Li et al.,
2023; Qiu et al., 2022; Shaw et al., 2021, see also
§4). Yet work on AMR concedes that it ignores
so-called ‘syntactic idiosyncracies.’ For example,
‘he described her as a genius’ and ‘his description
of her: genius’ are assigned the same AMR. Yet the
former is unambiguously about her intellect, while
the latter may instead be used to compliment his
cleverly tactful description. More generally, simpli-
fications of distinctions made in a natural language
can be expected to result in lost meaning, since
two utterances are rarely interchangeable in all con-
texts. Focusing on subtle but important differences
in meaning offers an opportunity to design more
challenging linguistic evaluations of LMs.

4 Compositionality

As computer coding languages became more and
more widespread, rule-based syntax and semantics
took root in linguistics. A Principle of Compo-
sitionality states that the semantics of a sentence
is determined by the meanings of the words and
the syntactic rules used to combine them (Mon-
tague, 1970; Partee, 1984; Dowty, 1979; Jackend-
off, 1992; Fodor and Lepore, 2002). It is intended
to be a bottom-up process: syntactic rules combine
words, which have determinant meanings. Fodor
and Pylyshyn (1988) make this clear: “a lexical
item must make approximately the same semantic
contribution to each expression in which it occurs”.
That is, context may not influence the interpretation
of words in a top-down manner; therefore down-
stream inferences are required to address the fact
that interpretations do depend on context. Realiz-
ing this, like Carnap and Frege before him, Fodor
and Pylyshyn (1988) acknowledge: “It’s uncertain
exactly how compositional natural languages actu-
ally are.”

Nonetheless, compositionality is often taken as
a truism, based on the standard argument for it
summarized below.

People tend to agree on the interpretation of
new sentences. ⇒ There must be some set
of rules that determine the meaning of new
sentences.
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Note that one can agree with the premise without
accepting the consequent. In particular, people
generally agree on the interpretations of pointing
gestures and novel words as well as sentences, and
yet shared interpretations must be gleaned from
non-linguistic context in the case of pointing ges-
tures, and from a combination of linguistic and
non-linguistic context in the case of novel words.
Shared interpretation of sentences likewise comes
in part from linguistic and non-linguistic context.

Consider the sentence, ‘the Persian cat is on the
mat.’ If the speaker’s goal is simply to help some-
one find the furball, there need be no commitment
to the cat being a thoroughbred Persian breed nor
to the cat being wholly on, rather than adjacent to,
the mat. Or, comprehenders may appreciate the
statement is ironic if the cat is hairless.

Cases that might seem amenable to a rule of-
ten turn out to require a good deal of item-specific
memory. For instance, a compositional rule in-
volving set-intersection may seem appealing for
‘<color term> noun’ combinations in the domain of
artificial block worlds (e.g., a green cube is some-
thing that is both a cube and green). However,
violations of such rules abound: green tea is more
yellow than green, and Cambridge blue is actu-
ally green. Even more common are instances that
evoke richer meanings than predicted by any alge-
braic rule: e.g., a green light implies that forward
motion or progress is permitted, and a green card
provides a path toward citizenship in the US (or
ought to). The meanings of familiar collocations
are typically not fully determined by general com-
positional rules, and novel cases can be interpreted
on analogy to familiar cases rather than according
to some very general rule. For instance, if "flam"
is interpreted to mean any kind of event or action,
a green flam is likely to be interpreted to imply an
eco-friendly or beginning-level event. Represent-
ing only the rule-compliant cases in evaluations can
therefore lead to the wrong conclusions. A more
comprehensive evaluation paradigm should take
into account how people actually interpret familiar
and novel cases.

Another issue is that rules massively over-
genenerate. That is, rules predict all manner of
odd locutions (Pawley and Syder, 1983; Sag et al.,
2002): e.g., ‘Meeting you is pleasing to me’; ‘The
tall winds hit the afraid boy’; ‘Explain them the
problem.’ Humans are sensitive to the frequencies
of various types of word combinations and judge
formulations unnatural if there exists a more con-

ventional way to express the intended message in
context (e.g., Goldberg, 2019).

Evaluating LMs for Compositionality Compo-
sitionality benchmarks combine elements from syn-
tactic and semantic evaluations. Kim and Linzen
(2020)’s compositional generalization challenge
(COGS) tested whether models could translate any
sentence generated by a small set of syntactic rules
into formal semantics. For instance, trained on rep-
resentations of ‘the girl,’ ‘the cat,’ ‘the hedgehog,’
‘the cat loves the girl,’ ‘the hedgehog sees the cat,’
and so on, the model was tested on how well it
predicted a formal semantic representation of ‘The
girl loves the hedgehog.’ However, note that if
‘mosquitoes’ is substituted for ‘the cat,’ different
interpretations of ‘love’ are evoked (‘Mosquitoes
love the girl’ vs. ‘The girl loves mosquitoes’), not
to mention different degrees of plausibility. The
authors also anticipated generalizations from sen-
tences like ‘Jane gave the cake to John’ to ‘Jane
gave John the cake,’ and the models were found
to perform poorly. Yet the two sentences differ
in terms of information structure (Bresnan and
Ford, 2010) and the relative frequencies and simi-
larities of verbs witnessed in each version (Leong
and Linzen, 2024; Ambridge et al., 2014; Hawkins
et al., 2020). Thus, while an evaluation of this kind
can capture something about how humans interpret
automatically generated sentences in an experimen-
tal context, focusing on this type of task may distort
our view of how well LMs handle natural language
in the wild.

Other compositionality benchmarks adopt NLI
tasks, which commonly presume interpretation is
determined by rules. For example, in the context of
robotic agents interpreting instructions, Lake and
Baroni (2018, p.1) state:

Humans can understand and produce new utter-
ances effortlessly, thanks to their compositional
skills. Once a person learns the meaning of a
new verb ‘dax’, he or she can immediately un-
derstand the meaning of ‘dax twice’...

The robotic agents struggled to interpret the rule-
based command, though it was appropriate in the
narrow domain tested. Notably, the rule does not
apply to natural language generally. For instance,
unbounded actions are not countable, so if ‘twice’
appears at all, it is likely followed by a compara-
tive phrase (e.g., ‘work twice as hard’), which has
a very different meaning than performing an ac-
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tion two times. Other cases require knowledge of
specific combinations: ‘to think twice’ means ’to
hesitate’ and ‘going twice’ tends to evoke the con-
text of an auction. Familiar phrases with meanings
not fully captured by compositional rules are com-
mon: By one estimate, we learn tens of thousands
of them (Jackendoff, 2002). Importantly, we tend
to agree on their interpretations, even though each
means something more or different than predicted
simply by the words and their syntactic combina-
tion. In this way, phrasal combinations regularly
involve subregularities or item-specific interpreta-
tions not predicted by general algebraic rules.

Another example comes from the seemingly in-
nocuous algebraic rule: “If X is more Y than Z,
then Z is less Y than Z, irrespective of the specific
meanings of X, Y, and Z” (Dasgupta et al., 2020,
:5). This is meant to capture that ‘Anne is more
cheerful than Bob’ should both contradict ‘Anne
is less cheerful than Bob’, and entail ‘Bob is less
cheerful than Anne.’ NLI models that failed to
draw these inferences were considered lacking. Yet
natural language rarely relies on free variables. The
content of X, Y, and Z matters. No one would infer
that because Annex is more cheerfuly than carefulz ,
that ‘Carefulz is less cheerfuly than Annex.’ Per-
haps more importantly, if a speaker uttered ‘Anne
is higher than Bob and Bob is higher than Anne,’
listeners would likely infer either that Bob climbed
above Anne in the time it took to utter the first
clause or that Bob has been smoking. We have
so far argued that an overemphasis on symbolic
abstract rules for natural languages can lead to eval-
uations of natural language that are not aligned
with humans. Below we suggest an alternative ap-
proach to language, which we argue helps refocus
evaluations on interesting new research questions.

5 The Constructionist Approach

This section briefly explains the constructionist ap-
proach to language, which conceives of a language
as a vast network of interrelated constructions, of
varying size and complexity. This differs from a
perspective that treats languages as a set of sen-
tences generated by a small set of algebraic rules.
We suggest a change of perspective about the na-
ture of language, not a mere substitution of the
units on which some type of rules operate. That
is, certain traditional evaluations were far too lim-
ited in requiring models to adhere to strict com-
positionality, when humans do not. At the same

time, the constructionist approach encourages strin-
gent evaluations by testing whether models capture
the gradient and function-sensitive patterns that
characterize natural languages.2 The approach en-
courages us to broaden our view of language and
linguistic evaluations of LMs.

(Partially-filled) Words, Common & Rare
Schemata as the same type of Representations
A ‘construction’ is any learned association between
a formal pattern and a range of related functions.
This simple definition treats words, idioms, rare
and common grammatical patterns as constructions.
As a result, the lexicon and syntax are not treated as
distinct or modular systems. This allows the many
parallels between them to be easily captured. It
also allows a natural way to allow for the diversity
found in the world’s languages, in which more or
less information is encoded in a single word. For-
mal attributes of constructions include phonology,
grammatical categories, word order, discontinuous
elements, specific words or morphemes, and/or in-
tonation. Any construction may include one or
more constrained open ‘slots’.

A Wide Range of Functions Considered Jointly
with the Forms Constructions’ functions vary
widely: words, collocations, and idioms convey
rich, specific, contentful meaning. A plethora of
other constructions are productive but constrained
in a variety of semi-specific ways; argument struc-
ture constructions convey ‘who did what to whom’;
discourse structuring constructions indicate which
parts of an utterance are at-issue or backgrounded.
A range of constructions exist to ask questions,
express surprise or disapproval, greetings or gos-
sip. Construction can be associated with specific
registers, genres, and/or dialects. The construction-
ist commitment to considering semantics jointly
with syntax represents a more comprehensive un-
derstanding of their interactions, which can help
develop tests that evaluate both.

Sensitivity to Similarity and Frequency Lan-
guage users are sensitive to the frequencies of con-
structions. For instance, the passive construction is
used far more frequently in Turkish than English
and young Turkish speakers learn the construction
far earlier than English-speaking children (Slobin,
1986). Constructions are also influenced by simi-

2For more comprehensive introductions to the construc-
tionist approach, or ‘Construction Grammar’, see Hoffmann
and Trousdale (2013) and Hoffmann (2022).
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larity: Instances of a construction prime instances
of the same or closely related construction (e.g.,
Du Bois, 2014; Pickering and Ferreira, 2008). Con-
structionist approaches take this to be a core aspect
of language and language learning, rather than an
inconvenience or afterthought. This leads to a de-
emphasis of definitional boundaries and an organic
incorporation of fuzzy boundaries and prototypi-
cality effects.

Productive Constructions May Include Fixed
Lexical Units Syntax, semantics, and morphol-
ogy are interrelated rather than assigned distinct
levels. This is useful because even productive hi-
erarchical constructions often include particular
words and semantic constraints. For example, an
English construction that implies real or metaphori-
cal motion allows a wide range of verbs but requires
the particular noun ‘way’ (‘He charmed his way
into the meeting.’).

Interrelated Network, Not an Unstructured Set
Unlike rules, which are commonly presented as un-
structured lists, constructions comprise a network
of interrelated patterns. This allows for the fact
that each language includes families of related con-
structions. It also allows for the simple fact that
productive constructions simultaneously co-exist
with specific conventional instances. For instance,
the English ‘double object’ construction is produc-
tive, and speakers are also familiar with dozens of
conventional instances (e.g., ‘give <someone> the
time of day’, ‘throw <someone> a bone’).

More Maximal than Minimal A Construction-
Net includes words as well as grammatical patterns,
and lossy instances are included as well as general-
izations across instances, as just mentioned, which
provides some redundancy. There is no reason to
restrict the complexity of constructions or their de-
scriptions more than is warranted by psychological
and linguistic evidence.

Construction Slots Are Constrained The open
‘slots’ of constructions are constrained in a wide
variety of ways. For instance, the English double-
object construction can appear with a wide range
of verbs, but prefers simple verbs to those that
sound Latinate (e.g., ‘She told them something’ vs.
‘She proclaimed them something’). The English
comparative suffix ‘-er’ (e.g., ‘calmer’, ‘quicker’)
is available for most single-syllable adjectives that
allow a gradient interpretation, but it is not used
with past participle adjectives (? ‘benter’).

An Example Consider ‘X is the new Y’. It is pro-
ductive and can be used to create new utterances,
e.g., ‘Semiconductor chips are the new oil.’ As is
typical of productive constructions, the generaliza-
tion co-exists with several familiar instances (e.g.,
‘50 is the new 40’; ‘Orange is the new black’). The
construction is not an algebraic rule: Its slots, indi-
cated by X and Y, are not variables that range freely
over fixed syntactic categories. Instead, ‘X’ must
be construed (playfully) as currently functioning in
the culture as ‘Y’ used to. Therefore, not all combi-
nations of slot fillers make sense: (e.g., ? ‘Orange
is the new oil’). Adding a parallelism constraint
between X and Y is insufficient since ‘103 is the
new 101’ would also require an unusual context
to make sense. Finally, instances of the construc-
tion are not amenable to a general compositional
rule, nor can they be translated into formal logic.
Either approach would presumably treat ‘Orange
is the new black’ as equivalent to ‘Black is the old
orange,’ which does not conventionally evoke the
same meaning.

6 Implications Beyond Natural Language

Outside of natural language, even in domains that
are rule-like by design, rule-based interpretations
are sometimes lacking, potentially due to the fact
that natural language is used by people when dis-
cussing these domains. For instance, LMs have
been found unreliable at drawing the following
inference, which the authors dubbed the reversal
curse: “if ‘A is B’ [...] is true, then ‘B is A’ follows
by the symmetry property of the identity relation"
(Berglund et al., 2023, p. 2).

Why are LMs prone to the reversal curse? Al-
though the quote above is stated in natural lan-
guage, it does not apply to natural language sen-
tences, which are rarely reversible without a dif-
ferent interpretation: e.g., ‘A mental illness is the
same as a physical illness’ means something very
different than ‘A physical illness is the same as
a mental illness’ (see also Tversky, 1977; Talmy,
1975). Even simple conjunctions are not generally
reversible in natural language. For instance, ‘night
& day’ and ‘day & night’ are both acceptable, but
their interpretations differ: the former conveys a
stark contrast (e.g., ‘as different as night and day’),
the latter suggests a relentless activity or process
(e.g., ‘he worried day and night’). In summary, it
is perhaps reasonable to expect truly symmetric
knowledge to be reversible. But LMs are trained
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on natural language, which is not symmetric.

7 New Directions for Evaluation

Natural languages involve complex and context-
sensitive systems of constructions, which vary from
being wholly fixed to highly abstract and produc-
tive. Constructions are combined when a unit, po-
tentially itself composed of constructions, fills a
slot in another construction. Viewing language as a
system of constructions rather than words and rules
may fundamentally change how the successes and
failures of models are construed, and new goals
and questions come into focus. The complexity of
constructions with respect to gradience in frequen-
cies, functions, slot constraints, and prototypicality
can be used to develop evaluations that demand
the same complexity from LMs found in natural
languages.

A caveat is required for low-resource lan-
guages, where rule-based linguistic evaluations
(e.g., Jumelet et al., 2025) can be useful. More
generally, evaluations should meet models where
they are: if the representational complexity of an
LM is restricted, restricted types of evaluations
are required. But when evaluating LMs on high-
resource languages, richer evaluations are appro-
priate. Specifically, we recommend the following.

When possible, use a variety of naturalistic
sentences rather than sentences generated by a tem-
plate that presupposes grammatical rules with in-
terchangeable vocabulary items, as is done, e.g.,
by Multi-NLI (Williams et al., 2018). The idea
that sentences can be constructed by subbing ran-
dom lexical items into templates often misses lex-
ical subtleties that are an important part of natu-
ral language. Instead, ecologically valid stimuli
can be collected or adapted from natural corpora
and normed for naturalness and plausibility. Since
human judgments are highly context-dependent,
benchmark tasks should also vary contexts system-
atically (see, e.g., Ross et al., 2024; Parrish et al.,
2021).

Collect human assessments that allow for gra-
dient context-sensitive interpretations that ap-
peal to learned constructions. Evaluating LM
competence on individual constructions requires
assessing both acceptability judgments and inter-
pretations from humans to draw appropriate com-
parisons.

We also need to be sensitive to the implications
people and LMs draw from instructions and the test-

ing context. Do not give instructions to human-
evaluators (or models) in ways that make the
results a foregone conclusion. If people are in-
structed to interpret ‘red X’ as ‘X that is red for any
X,’ they are capable of doing so; this may reflect
the instructions, not their natural intuitions. In natu-
ral contexts, people understand that red grapefruits
are closer to pink, red hair is more orange, a red
book may be about communism, and crossing a red
line may have consequences.

The items included in testing also influence in-
terpretations by people and models, by providing
context. For instance, if certain pairs of items are
mismatched (e.g., “The cup is green.” “The cup is
blue.”) while others are matched, people can infer
which ones are intended to be contradictory. LMs,
like people, are now capable of generalizing by
rule when tasked to do so. For instance, Lampinen
et al. (2025) found Gemini 1.5 Flash (Team et al.,
2024) avoided the reversal curse, achieving 100%
accuracy, when the Berglund et al. (2023) dataset
was provided to the LM as context.

A variety of items, participants, and contexts
ought to be valued as much as a variety of mod-
els. It has long been recognized that real words,
phrases and sentences vary in an open-ended num-
ber of ways (Clark, 1973). So care must be taken to
include a variety of stimuli items. Because linguis-
tic meaning is deeply tied to local context, even
seemingly similar sentences can have very differ-
ent interpretations in ways that depend on context.
Different subgroups of participants may perform
differently so distinct dialects should be taken into
account.

The most interesting questions may no longer be
whether LMs are skilled at producing and respond-
ing to natural languages, but how they achieve such
remarkable skills. As is familiar from the lexicon,
constructions comprise an interrelated network. We
can now how relationships between construc-
tions are picked up by LMs. For instance, Misra
and Mahowald (2024) have demonstrated that even
when all instances of a rare non-compositional con-
struction are ablated from training data, non-trivial
learning of the construction remains, enabled by
the presence of related constructions in training.
Moreover, nearly every productive construction co-
exists with at least a few formulaic instances, and
LMs offer ways to test various theoretical perspec-
tives on the nature of those relationships. These
and other newer ways of probing LMs are possible,
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and our toolkit will only grow.

As discussed by Weissweiler et al. (2023), inves-
tigating whether LMs distinguish subtle meaning-
ful differences between constructions is another im-
portant direction. Recent work on this has included
Weissweiler et al. (2022), who found LMs reliably
discriminated instances of the English Comparative
Correlative from superficially similar expressions.
Tayyar Madabushi et al. (2020) tested a dataset of
automatically induced constructions and reported
that BERT (Devlin et al., 2019) could determine
whether two sentences contained instances of the
same construction. As mentioned earlier, Tseng
et al. (2022) showed that LMs gradiently predict
appropriate slot fillers. Li et al. (2022) probed
RoBERTa’s implicit semantic representations of
four argument structure constructions (ASCs) and
found similarities in behavior in the model and a
sorting task done by humans. However, Zhou et al.
(2024) found LMs failed to distinguish entailment
differences between the causal excess construction
(e.g., ’so heavy that it fell’) and two structurally
similar constructions (’so happy that she won’; ’so
certain that it rained’).

8 Conclusion

Generalization is a key component of human
language—and a big part of why LMs are success-
ful at processing language. But we have argued that
evaluations of the linguistic abilities of LMs are too
often based on an assumption that generalization
requires algebraic rules operating on words. Natu-
ral languages are not Lego sets. Instead, language
involves flexible combinations of rich and varied
constructions of differing sizes, complexities, and
degrees of abstraction, which differ from algebraic
rules in many ways. By designing new evaluations
that accurately reflect the complexities of language,
we can avoid under- or overestimating language
models. The extent to which LMs produce and
interpret combinations of constructions has only
begun to be explored. We believe future progress
lies not in asking whether LMs obey abstract rules,
but in probing what kinds of constructions they
learn, how they relate them, and how those struc-
tures guide novel interpretation and production. In
doing so, we may better capture what it truly means
to comprehend and use language.

Limitations

While we have aimed to discuss benchmarks and
evaluations in ways that reflect the historical tra-
jectory as well as the present-day landscape, eval-
uations of LMs are continually developing. We
feel the dominant paradigms have and continue
to be based on data generated by rules and evalu-
ated without regard for context effects, gradience,
or semantic nuance, but we are keenly aware that
we have likely overlooked metrics that go beyond
rule-based evaluations (e.g., Parrish et al., 2021).

We recognize the growing work in multilingual
evaluations, which are inherently valuable (Mueller
et al., 2020; Jumelet et al., 2025; Kryvosheieva and
Levy, 2025). The current perspective applies to all
natural languages, but comparative work is not the
focus of the current perspective, and we use English
examples for the sake of easy comprehension and
brevity.

Acknowledgments

We thank Najoung Kim, Kanishka Misra, and Will
Merrill for helpful discussions and feedback. We
are grateful to audiences at the NSF-sponsored
New Horizons in Language Science workshop and
the Analytical approaches to understanding neural
networks summmer school sponsored by Simon’s
Foundation for helpful feedback. Leonie Weis-
sweiler was supported by a postdoctoral fellow-
ship of the German Academic Exchange Service
(DAAD).

References
Ben Ambridge, Julian M. Pine, Caroline F. Row-

land, Daniel Freudenthal, and Franklin Chang. 2014.
Avoiding dative overgeneralisation errors: semantics,
statistics or both? Language, Cognition and Neuro-
science, 29(2):218–243.

Afra Amini, Tiago Pimentel, Clara Meister, and Ryan
Cotterell. 2023. Naturalistic causal probing for
morpho-syntax. Transactions of the Association for
Computational Linguistics, 11:384–403.

J.L. Austin. 1975. How To Do Things With Words:
The William James Lectures delivered at Harvard
University in 1955. Oxford University Press.

Gordon P. Baker and P. M. S. Hacker. 1986. Language,
sense and nonsense: a critical investigation into mod-
ern theories of language, reprinted edition. Black-
well, Oxford.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin

69

https://doi.org/10.1080/01690965.2012.738300
https://doi.org/10.1080/01690965.2012.738300
https://doi.org/10.1162/tacl_a_00554
https://doi.org/10.1162/tacl_a_00554
https://doi.org/10.1093/acprof:oso/9780198245537.001.0001
https://doi.org/10.1093/acprof:oso/9780198245537.001.0001
https://doi.org/10.1093/acprof:oso/9780198245537.001.0001


Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Emily M. Bender and Alexander Koller. 2020. Climbing
towards NLU: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5185–5198, Online. Association for
Computational Linguistics.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita
Balesni, Asa Cooper Stickland, Tomasz Korbak, and
Owain Evans. 2023. The reversal curse: Llms trained
on" a is b" fail to learn" b is a". arXiv preprint
arXiv:2309.12288.

Johan J. Bolhuis, Stephen Crain, and Ian Roberts. 2023.
Language and learning: the cognitive revolution at
60-odd. Biological Reviews, 98(3):931–941.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Laurel Brehm, Pyeong Whan Cho, Paul Smolensky,
and Matthew A. Goldrick. 2022. Pips: A parallel
planning model of sentence production. Cognitive
Science, 46(2):e13079.

Joan Bresnan, Anna Cueni, Tatiana Nikitina, and R Har-
ald Baayen. 2007. “Predicting the Dative Alterna-
tion”. In Gerlof Bouma, Irene Krämer, and Joost
Zwarts, editors, Cognitive Foundations of Interpreta-
tion, pages 69–94. KNAW.

Joan Bresnan and Marilyn Ford. 2010. Predicting syn-
tax: Processing dative constructions in american and
australian varieties of english. Language, 86(1):168–
213.

Paco Calvo and John Symons. 2014. The Architecture
of Cognition: Rethinking Fodor and Pylyshyn’s Sys-
tematicity Challenge. MIT Press.

Rudolf Carnap. 1937. Logical Syntax of Language, 1st
edition. Routledge.

Noam Chomsky. 1957. Syntactic Structures. Mouton.

Morten H Christiansen and Nick Chater. 1999. Toward a
connectionist model of recursion in human linguistic
performance. Cognitive Science, 23(2):157–205.

Herbert H. Clark. 1973. The language-as-fixed-effect
fallacy: A critique of language statistics in psycho-
logical research. Journal of Verbal Learning and
Verbal Behavior, 12(4):335–359.

Albert Coil and Vered Shwartz. 2023. From chocolate
bunny to chocolate crocodile: Do language models
understand noun compounds? In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 2698–2710, Toronto, Canada. Association for
Computational Linguistics.

William Croft. 2001. Radical construction grammar:
Syntactic theory in typological perspective. Oxford
University Press, USA.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges. Evaluating
Predictive Uncertainty, Visual Object Classification,
and Recognising Tectual Entailment, pages 177–190,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Ishita Dasgupta, Demi Guo, Samuel J. Gershman, and
Noah D. Goodman. 2020. Analyzing machine-
learned representations: A natural language case
study. Cognitive Science, 44(12):e12925.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255–308.

Vittoria Dentella, Fritz Günther, and Evelina Leivada.
2023. Systematic testing of three language mod-
els reveals low language accuracy, absence of re-
sponse stability, and a yes-response bias. Pro-
ceedings of the National Academy of Sciences,
120(51):e2309583120.

Vittoria Dentella, Fritz Günther, Elliot Murphy, Gary
Marcus, and Evelina Leivada. 2024. Testing ai on
language comprehension tasks reveals insensitivity to
underlying meaning. Scientific Reports, 14(1):28083.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

David R. Dowty. 1979. The Semantics of Aspectual
Classes of Verbs in English, pages 37–132. Springer
Netherlands, Dordrecht.

John W. Du Bois. 2014. Towards a dialogic syntax.
Cognitive Linguistics, 25(3):359–410.
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Abstract

Linguistic theories and models of natural lan-
guage can be divided into two categories, de-
pending on whether they represent and process
linguistic information numerically or symbol-
ically. Numerical representations, such as the
embeddings that are at the core of today’s large
language models, have the advantage of be-
ing learnable from textual data, and of being
robust and highly scalable. Symbolic represen-
tations, like the ones that are commonly used to
formalise construction grammar theories, have
the advantage of being compositional and in-
terpretable, and of supporting sound logic rea-
soning. While both approaches build on very
different mathematical frameworks, there is no
reason to believe that they are incompatible. In
the present paper, we explore how numerical, in
casu distributional, representations of linguis-
tic forms, constructional slots and grammatical
categories can be integrated in a computational
construction grammar framework, with the goal
of reaping the benefits of both symbolic and nu-
merical methods.1

1 Introduction

Linguistic theories and models of natural language
typically fall into one of two categories. The first
category represents and processes linguistic infor-
mation symbolically, adopting formal logic as the
underlying framework. The second category repre-
sents and processes linguistic information numeri-
cally, adopting the framework of linear algebra.

The symbolic approach is widely used to for-
malise construction grammar theories (Fillmore,
1988; Kay and Fillmore, 1999; Steels and De Beule,

*Joint last authors.
1The authors declare that this paper was conceived and

written without the assistance of generative writing aids.

2006; Michaelis, 2008; Sag, 2012), with symbolic
programming techniques forming the backbone of
their computational implementations (Bergen and
Chang, 2005; Steels and De Beule, 2006; van Trijp
et al., 2022). Symbolic representations bring the
advantage of being compositional and interpretable,
and of supporting sound logic reasoning.

The numerical approach is widely adopted in the
field of natural language processing (NLP), and lies
for example at the core of today’s large language
models (LLMs) (Mikolov et al., 2013; Vaswani
et al., 2017; Lenci, 2018; Devlin et al., 2019). In
essence, numerical representations of linguistic in-
formation are learnt from textual data, thus based
on the distribution of tokens with respect to each
other. Apart from being learnable from raw tex-
tual input, distributional representations bring the
advantage of being robust against noise, of gener-
alising well to new data, and of scaling effectively
with respect to growing amounts of input data from
different domains.

As both approaches are rooted in very different
mathematical frameworks, namely formal logic ver-
sus linear algebra, the integration of concepts and
techniques from both fields is not straightforward.
At the same time, logic-based and distributional
approaches are widely regarded as complementary,
and there exists no a priori reason to believe that
they would be in any way incompatible.

In this paper, we explore how distributional rep-
resentations can be integrated in a computational
construction grammar framework, and how this in-
tegration of symbolic and numerical methods can
enhance the robustness and generality of construc-
tional language processing. In particular, we show
how distributional representations of (i) linguis-
tic forms, (ii) constructional slots, and (iii) gram-
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matical categories can be integrated into the data
structures and algorithms that underlie Fluid Con-
struction Grammar (FCG) (Steels, 2004; Beuls and
Van Eecke, 2023). Through a variety of exam-
ples, we demonstrate how this integration can ben-
efit a broad-coverage FCG grammar learnt from
PropBank-annotated corpora. Finally, we conclude
that the future of construction grammar is neither
symbolic nor numerical, but lies in a combination
of both paradigms.

2 Background

For the purposes of this exploration, we start from
a symbolic construction grammar that was learnt
from a collection of corpora in which English ut-
terances were semantically annotated with Prop-
Bank rolesets (Palmer et al., 2005).2 The gram-
mar was learnt using the Fluid Construction Gram-
mar framework (Beuls and Van Eecke, 2023) and
holds 21,052 constructions that can be used to an-
notate open-domain English utterances with argu-
ment structure information in the form of semantic
frames.

The basic architecture of the grammar is laid
out in Figure 1. The input to the grammar con-
sists of an utterance, in this case “The doctor wrote
him a prescription.”, which is analysed on the fly
into its immediate constituents using the Berke-
ley neural parser (Stern et al., 2017) (see Step
1 ). A first type of construction identifies possible

frame-evoking elements based on their lemma and
part-of-speech tag. Here, the WRITE(V)-CXN indi-
cates that the constituent ‘unit-4’ might represent a
frame-evoking element by adding the for now un-
derspecified roleset feature to this unit, along
with a lexical category proper to the WRITE(V)-
CXN (see Step 2 ). The resulting unit is shown
as ‘unit-4a’. The addition of a lexical category
unlocks the application of a second type of con-
struction that attributes semantic roles based on
an utterance’s constituent layout. In the example,
a ditransitive construction that is compatible with
the category contributed by the WRITE(V)-CXN

respectively attributes the roles ‘arg0’ (prototypi-
cal agent),‘arg1’ (prototypical patient) and ‘arg2’
(prototypical beneficiary) to the constituents ‘unit-
2’, ‘unit-6’ and ‘unit-5’. The ditransitive construc-

2In particular, the examples throughout this paper were
selected from the test sets of the OntoNotes (Weischedel et al.,
2013) and English Web Treebank (EWT) (Bies et al., 2012)
corpora, while the grammar itself was learnt from the training
sets of the same corpora.

tion also contributes its own grammatical category
to the unit containing the frame-evoking element
(see Step 3 ). The result is shown as ‘unit-4b’.
A final construction that is compatible with both
the lexical category contributed by the WRITE(V)-
CXN and the grammatical category contributed by
the ditransitive construction fills out the value of
the roleset feature, in this case PropBank’s
write.01 roleset (see Step 4 ). The result is
shown as ‘unit-4c’. As the example utterance only
expresses a single frame, the construction appli-
cation process stops here. The resulting frame is
then extracted and rendered into a more human-
readable format (see Step 5 ). All constructions
as well as the categorial links that express compat-
ibility between constructional units were learned
from corpus data using FCG’s fcg-propbank
subsystem (Van Eecke and Beuls, 2025).

3 Distributional Representations of
Linguistic Forms

A classical argument against symbolic methods
revolves around their reliance on exact matches be-
tween symbols. For example, the symbol DOG is
in its representation not any more closely related
to the symbol PUPPY than it is to the symbols CAT

or PHILOLOGY. Representationally, symbols are
either equal to or different from each other. Stan-
dard FCG builds on this property for implementing
the process of construction application, where fea-
tures and values in the pre- and postconditions of
constructions are unified with their counterparts
in the transient structure based on the equality of
symbols (Steels and De Beule, 2006). The clas-
sical argument against symbolic methods points
to the brittleness of relying on exact matches, as
symbolic models tend to have difficulties handling
input that even slightly deviates from what is ex-
pected. Distributional methods on the other hand
represent linguistic forms in a vector space, where
forms are compared in terms of distributional simi-
larity rather than representational equality. In such
models, the distance between DOG and PUPPY will
effectively be smaller than the distance between
DOG and PHILOLOGY.

Take for example the utterance “So I mean
that right there it enraged me.” (OntoNotes
bc/cnn/00/cnn 0000), which expresses an in-
stance of the mean.01 roleset and an instance of
the enrage.01 roleset. The base grammar from
the previous section however, only retrieves the
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unit-1
string: “the doctor wrote him a prescription”
pos: sentence

write(v)-cxn

?unit-a
roleset: ?tbd
lex-cat: cat-1

?unit-a
lemma: write
pos: verb

unit-4a
string: “wrote”
pos: verb
lemma: write
roleset: ?tbd
lex-cat: cat-1

unit-4b
string: “wrote”
pos: verb
lemma: write
roleset: ?tbd
lex-cat: cat-1
roles:
   arg0: unit-2
   arg1: unit-6
   arg2: unit-5
gram-cat: cat-2unit-4c

string: “wrote”
pos: verb
lemma: write
roleset: write.01
lex-cat: cat-1
roles:
   arg0: unit-2
   arg1: unit-6
   arg2: unit-5
gram-cat: cat-2

unit-4
string: “wrote”
pos: verb
lemma: write

unit-6
string: “a prescription”
pos: np

arg0(np)-v(v)-arg2(np)-arg1(np)-cxn

?unit-d
pos: verb
lex-cat: cat-2

?unit-b
pos: np

?unit-e
pos: np

?unit-f
pos: np

?unit-a
pos: sentence

?unit-c
pos: vp

?unit-d
roles:
   arg0: ?unit-b
   arg1: ?unit-f
   arg2: ?unit-e
gram-cat: cat-2

unit-2
string: “the doctor”
pos: np

unit-3
string: “wrote him a prescription”
pos: vp

unit-5
string: “him”
pos: np

?unit-a
pos: verb
lex-cat: cat-3
gram-cat: cat-3
roleset: ?tbd

?unit-a
roleset: write.01

write.01-cxn

?unit-a = unit-4

?unit-d = unit-4a
cat-2 ~ cat-1

?unit-a = unit-1
?unit-b = unit-2
?unit-c = unit-3
?unit-e = unit-5
?unit-f = unit-6

?unit-a = unit-4b
cat-3 ~ cat-1
cat-3 ~ cat-2

output: write.01

FEE: “wrote”
arg0: “the doctor”
arg1: “a prescription”
arg2: “him”

input: “the doctor wrote him a prescription”1

3

4

2

5

Figure 1: Illustrative example of the symbolic base grammar comprehending “The doctor wrote him a prescription.”
1 . The WRITE(V)-CXN identifies a potential frame-evoking element 2 . A ditransitive construction then attributes

the semantic roles of agent (‘arg0’), patient (‘arg1’) and beneficiary (‘arg2’) to particular constituents 3 . The
WRITE.01-CXN determines the roleset (write.01) of the evoked frame 4 , after which the result is shown 5 .

instance of the mean.01 roleset. Upon closer in-
spection, it turns out that the verb “enrage” did not
occur anywhere in the training corpus and that con-
sequently no construction was learnt that identifies
“enraged” as a possible frame-evoking element. At
the same time, many constructions were learnt for
other verbs that are distributionally close to “en-
rage” (such as “anger“, “madden” or “infuriate”)
and that even appear in similar argument structure
constructions (“NP:Arg0 (angers — maddens —
infuriates) NP:Arg1”). The reason why these con-
structions cannot apply is simply that there is no
exact match between the lemma of the observed to-
ken (“enrage”) and the lemmas incorporated in the
constructions (“anger”, “madden” and “infuriate”).

As a first step in the integration of symbolic and
distributional methods, we will represent lemmata
distributionally rather than symbolically in FCG
constructions and transient structures. Concretely,
we substitute the lemma features in the units of
the input transient structure by embedding fea-
tures that hold as their value pointers to pre-trained,
100-dimensional GloVe embeddings of the orig-
inal lemmata (Pennington et al., 2014). This is
shown for the example utterance “So I mean that

right there it enraged me.” in Step 1 of Figure 2.
Likewise, we substitute the lemma features in the
constructions of the grammar by embedding fea-
tures that point to pre-trained GloVe embeddings
(see Step 2 ). The INFURIATE(V)-CXN thereby
does not match on the symbol INFURIATE any
more but on the GloVe embedding for the form
“infuriate”. We also modify FCG’s unification al-
gorithms in such a way that they no longer com-
pute symbol equality when handling vectors, but
compute their cosine similarity. These similarities
are then used to create scored unification results
and rank possible construction applications. In
the example, the highest-ranked result is yielded
by the INFURIATE(V)-CXN, which matches on the
unit holding “enraged” with a cosine similarity of
0.84. Then, the transitive construction that was
learned during training to be compatible with the
INFURIATE(V)-CXN can apply, followed by the
INFURIATE.01-CXN. This results in the extrac-
tion of an instance of the infuriate.01 roleset,
with “enraged” as the frame-evoking element and
“it” and “me” respectively as its ‘arg0’ (‘causer of
anger’) and ‘arg1’ (‘angry entity’).

This example demonstrates how constructions
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unit-4
string: “.”
embedding: .
pos: .

unit-1
string: “[…] it enraged me.”
pos: sentence

unit-5
string: “enraged”
embedding: enrage
pos: verb

arg0(np)-v(v)-arg1(np)-cxn

?unit-d
pos: verb
lex-cat: cat-5

?unit-b
pos: np

?unit-e
pos: np

?unit-a
pos: sentence

?unit-c
pos: vp

?unit-d
roles:
   arg0: ?unit-b
   arg1: ?unit-e
gram-cat: cat-5

?unit-a
pos: verb
lex-cat: cat-6
gram-cat: cat-6
roleset: ?tbd

?unit-a
roleset: infuriate.01

infuriate.01-cxn ?unit-d = unit-5a
cat-5 ~ cat-4

?unit-a = unit-5b
cat-6 ~ cat-4
cat-6 ~ cat-5

output: infuriate.01

FEE: “enraged”
arg0: “it”
arg1: “me”

input: “[…] it enraged me.”1

3

4

5

unit-2
string: “it”
embedding: it
pos: np

unit-3
string: “enraged me”
pos: vp

unit-6
string: “me”
embedding: I
pos: np

2 infuriate(v)-cxn

?unit-a
roleset: ?tbd
lex-cat: cat-4

?unit-a
embedding: infuriate
pos: verb

?unit-a   =    unit-5
0.84infuriate enrage ~

unit-5a
string: “enraged”
pos: verb
embedding: enrage
roleset: ?tbd
lex-cat: cat-4

unit-5b
string: “enraged”
pos: verb
embedding: enrage
roleset: ?tbd
lex-cat: cat-4
roles:
   arg0: unit-2
   arg1: unit-6
gram-cat: cat-5?unit-a = unit-1

?unit-b = unit-2
?unit-c = unit-3
?unit-e = unit-6

unit-5c
string: “enraged”
pos: verb
embedding: enrage
roleset: infuriate.01
lex-cat: cat-4
roles:
   arg0: unit-2
   arg1: unit-6
gram-cat: cat-5

Figure 2: Schematic illustration of the integration of distributional token representations in constructional language
processing. The INFURIATE(V)-CXN identifies “enraged” as a possible frame-evoking element based on the high
cosine similarity between the embeddings for “enrage” and “infuriate”, recovering from the absence of the token
“enrage” in the training corpus.

can apply without requiring a perfect symbolic
match, relying on the distributional closeness of
forms, in this case the lemmata of potential frame-
evoking elements. This was achieved by integrating
numerical representations of linguistic information
(i.c. word embeddings) and operations over them
(i.c. cosine computation) with symbolic represen-
tations (i.c. feature structures) and operations over
these (i.c. unification). In fact, this integration
can be considered an extension of the way matches
between categories in the categorial network of a
grammar were already integrated into FCG’s unifi-
cation algorithms (see Van Eecke, 2018).

4 Distributional Representations of
Constructional Slots

Now that we have represented the substantive
material in constructions, such as word forms and
lemmata, using word embeddings, we take the
same idea a step further and integrate distributional
representations of constructional slots. Let us con-
sider as an example the utterance “Jesus taught the
people in the Temple area every day.” (OntoNotes
ontonotes/pt/nt/42/nt 4219). The base
grammar yields two competing analyses which
it considers equally fit. Both analyses identify

an instance of the teach.01 roleset, in which
“Jesus” takes up the role of ‘arg0’ (‘teacher’).
One analysis assigns the role of ‘arg1’ (‘subject’)
to “the people”, while the other assigns it the
role of ‘arg2’ (‘student(s)’). The two analyses
differ in the argument structure construction
that is used. In the first analysis, a transitive
construction applies that maps the noun phrase
after the verb to the ‘arg1’ role, whereas in
the second analysis, a construction applies that
maps this noun phrase to the ‘arg2’ role. Both
constructions can be traced back to utterances in
the training corpus, such as “Her mother taught
[Sunday School]arg1 for 50 years.” (OntoNotes
bn/cnn/03/cnn 0324) and “You teach
[others]arg2, so why don’t you teach [yourself]arg2

?” (OntoNotes pt/nt/45/nt 4502). This
ambiguity cannot be resolved on the level of the
morphosyntactic structure of the utterances and
necessitates modelling the lexical content of the
slot fillers.

We extend the idea of including an embedding
feature to the units in the initial transient structure
also to phrasal units. The embeddings on phrasal
level are in this prototype computed as the sum
of the GloVe embeddings of the lemmas of their
constituent parts (see Step 1 in Figure 3). In each
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unit-4a
string: “taught”
pos: verb
embedding: teach
roleset: ?tbd
lex-cat: cat-7

unit-4
string: “taught”
embedding: teach
pos: verb

unit-1
string: “Jesus taught the people […]”
embedding: Jesus + teach + the + people + […]
pos: sentence

unit-4c
string: “taught”
pos: verb
embedding: teach
roleset: teach.01
lex-cat: cat-7
roles:
   arg0: unit-2
   arg2: unit-5
gram-cat: cat-8

arg0(np)-v(v)-arg2(np)-cxn

?unit-d
pos: verb
lex-cat: cat-8

?unit-b
pos: np
embedding: arg0 

?unit-e
pos: np
embedding: arg2

?unit-a
pos: sentence

?unit-c
pos: vp

?unit-d
roles:
   arg0: ?unit-b
   arg2: ?unit-e
gram-cat: cat-8

?unit-a
pos: verb
lex-cat: cat-9
gram-cat: cat-9
roleset: ?tbd

?unit-a
roleset: teach.01

teach.01-cxn

?unit-d   =   unit-4a
cat-8   ~   cat-7

output: teach.01

FEE: “taught”
arg0: “Jesus”
arg2: “the people”

input: “Jesus taught the people […]”1

3

4

5

unit-5
string: “the people”
embedding: the + people
pos: np

2 teach(v)-cxn

?unit-a
roleset: ?tbd
lex-cat: cat-7

?unit-a
embedding: teach
pos: verb

?unit-a   =   unit-4

unit-4b
string: “taught”
pos: verb
embedding: teach
roleset: ?tbd
lex-cat: cat-7
roles:
   arg0: unit-2
   arg2: unit-5
gram-cat: cat-8

unit-2
string: “Jesus”
embedding: Jesus
pos: np

unit-3
string: “taught the people”
embedding: teach + the + people
pos: vp

unit-6
string: “the”
embedding: the
pos: det

unit-7
string: “people”
embedding: people
pos: noun

?unit-a = unit-4b
cat-9 ~ cat-7
cat-9 ~ cat-8

?unit-a = unit-1
?unit-b = unit-2
?unit-c = unit-3
?unit-e = unit-5

arg0 Jesus ~0.60
arg2  the+people ~0.93

teach teach ~
1.0

Figure 3: Schematic illustration of the integration of distributional information for representing prototypical
slot fillers within argument structure constructions. The embeddings in the argument structure constructions are
computed based on their fillers as observed in the training corpus.

argument structure construction, we also add an
embedding feature to all units that are assigned
a role (see Step 3 ). These embeddings are com-
puted by averaging the summed embeddings of
all lemmata for all fillers observed in a particular
slot during training. For example, the value of the
embedding feature in the ‘arg1’ slot of a tran-
sitive construction would point to a vector repre-
senting the prototypical patient/undergoer that fills
that slot. The unification algorithm described in the
previous section, which computes cosine similar-
ities when handling vectors, is again used. In our
example, this leads to two construction application
results, one for each of the two argument structure
constructions, with the one where the ‘arg2’ role is
taken up by “the people” is ranked highest. Indeed,
the match between “the people” and the prototypi-
cal vector of the ‘arg2’ slot of this construction is
considerably higher than the match between “the
people” and the prototypical vector for the ‘arg1’
slot in the other construction. The highest-ranked
solution thereby yields a correct semantic role as-
signment.

While the previous section and the current sec-
tion have both integrated distributional represen-
tations into FCG constructions, the impact on the
grammar is quite different. In the previous sec-
tion, symbols representing substantive material in

constructions were substituted by pointers to em-
beddings. This has rendered the constructions more
general and less specific to particular input struc-
tures, as exact matches between symbols are no
longer a hard constraint. In the present section, the
embeddings were introduced to represent the pro-
totypical lexical content of constructional slots and
do not replace a feature that was present in the base
grammar. The constructions have thereby become
more specific, allowing for a more fine-grained
disambiguation between possible construction ap-
plication results. The integration of embeddings
should thus not be seen solely as a means to make
symbolic grammars more general, but it can also
serve to integrate more specific information into
constructions that would be considered too specific
when relying on exact matching.

5 Distributional Representations of
Grammatical Categories

In the previous sections, we have integrated pre-
trained GloVe embeddings in the base grammar
to distributionally represent linguistic forms and
prototypical slot fillers. These embeddings were
trained independently from the base grammar on
large amounts of text and mainly reflect the lexi-
cal content of words and phrases. In this section,
we explore a different approach to integrating dis-
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tributional representations in constructions. We
no longer rely on externally trained embeddings,
but model the similarity between grammatical cat-
egories based on the constructional slots they are
compatible with. A weighted graph capturing the
frequency of these slot-filler relations is built up
while the grammar is being learnt from corpus data.

Let us consider the example utterance “Try
googling it for more info.” (English Web Treebank
answers/00/20080426141111AAgPUwU
ans). The base grammar identifies “googling”
as a potential frame-evoking element, but holds
no argument structure construction that is both
compatible with the lemma google and the
imperative transitive structure in which it appears
syntactically. Consequently, no instance of the
google.01 roleset is being detected using the
base grammar and no semantic roles are assigned.
Importantly, the reason is not that the imperative
transitive construction was not learnt during
training, but that it was not learnt to be compatible
with the category proper to the GOOGLE(V)-CXN.

Based on the weighted graph that captures the
distribution of slot-filler categories over construc-
tional slots, similarity between categories can be
computed using the weighted cosine similarity met-
ric. As such, slot-filler categories that are simi-
larly distributed over constructional slots will be
closer to each other than categories that rarely oc-
cur in the same constructions. In the base gram-
mar, the category proper to the GOOGLE(V)-CXN

bears a high similarity to the category proper to
the DISREGARD(V)-CXN. Intuitively, this is not
surprising, as both verbs are strictly transitive. If
the distributions of two categories are close to
each other, which means that the two categories
behave similarly in the grammar, one could in-
fer that if one category is compatible with a spe-
cific constructional slot, the other category is also
likely to be compatible with it. In our example,
the compatibility of the category proper to the
DISREGARD(V)-CXN with the category matched by
the frame-evoking element unit of the imperative
transitive construction can be taken as an indica-
tion that this specific argument structure construc-
tion might also provide a correct role assignment
for the GOOGLE(V)-CXN. Indeed, the imperative
transitive construction here correctly assigns the
‘arg1’ role (‘target of search’) to “it”. The pro-
cessing of this example utterance is schematically
depicted in Figure 4. The link in the categorial net-

work between cat-10 (GOOGLE(V)-CXN) and
cat-11 (V(V)-ARG1(NP)-CXN), which is neces-
sary to apply the imperative transitive construction
is inferred on the fly with a graph cosine similar-
ity score of 0.3 based on the distributional simi-
larity between cat-10 (GOOGLE(V)-CXN) and
cat-21 (DISREGARD(V)-CXN).

6 Related Work

While we provide to the best of our knowledge
the first fully operational and computationally im-
plemented prototype of a symbolic construction
grammar that integrates distributional representa-
tions and processing mechanisms to enhance its
robustness and generality, many scholars have al-
ready addressed in one way or another the chal-
lenge of combining construction grammar with dis-
tributional semantics. Levshina and Heylen (2014)
pioneered the use of distributional representations
to represent the prototypical slot-fillers of construc-
tions in a corpus-linguistic study. Hilpert and Perek
(2015) and Perek (2016) have used distributional
representations to track changes in the slot-fillers of
constructions over time. In the same spirit, Lebani
and Lenci (2018) make use of distributional rep-
resentations to represent thematic roles. Rambelli
et al. (2019) and Blache et al. (2024) make a case
for integrating distributional representations into
construction grammar and present a theoretical pro-
posal of how distributional representations could
be integrated into Sign-Based Construction Gram-
mar to represent word forms and slots. Finally,
Dunn (2017, 2024) provides a grammar induction
algorithm that makes use of distributional represen-
tations to model the prototypical content of con-
structional slots. A related body of research is not
directly concerned with construction grammar, but
with the integration of formal and distributional se-
mantics (for an overview, see Boleda and Herbelot,
2016, and other papers in the same special issue).
The goal is again to combine the compositional and
inferential aspects of logic-based representations
with the machine learnability and lexical modelling
capacities of distributional representations.

A more distantly related line of research that
is concerned with both construction grammar and
word embeddings investigates the linguistic capa-
bilities of large language models from a construc-
tion grammar perspective. The goal is not to inte-
grate symbolic and distributional approaches, but to
assess to what extent distributional approaches, in
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unit-4a
string: “googling”
lemma: google
pos: verb
roleset: ?tbd
lex-cat: cat-10

unit-4
string: “googling”
lemma: google
pos: verb

unit-1
string: “Try googling it […]”
pos: sentence

unit-4c
string: “googling”
lemma: google
pos: verb
roleset: google.01
lex-cat: cat-10
roles:
   arg1: unit-5
gram-cat: cat-11

v(v)-arg1(np)-cxn

?unit-b
pos: verb
lex-cat: cat-11

?unit-a
pos: vp

?unit-c
pos: np

?unit-b
roles:
   arg1: ?unit-c
gram-cat: cat-11

?unit-a
pos: verb
lex-cat: cat-12
gram-cat: cat-12
roleset: ?tbd

?unit-a
roleset: google.01

google.01-cxn

?unit-b  =  unit-4a

output: google.01

FEE: “googling”
arg1: “it”

input: “Try googling it [...]”1

3

4

5

2 google(v)-cxn

?unit-a
roleset: ?tbd
lex-cat: cat-10

?unit-a
lemma: google
pos: verb

?unit-a  =  unit-4

unit-4b
string: “googling”
lemma: google
pos: verb
roleset: ?tbd
lex-cat: cat-10
roles:
   arg1: unit-5
gram-cat: cat-11

unit-2
string: “Try”
lemma: try
pos: vp

unit-3
string: “googling it”
pos: vp

unit-5
string: “it”
lemma: it
pos: np

?unit-a = unit-4b
cat-12  ~ cat-10
cat-12  ~ cat-11

?unit-a = unit-3
?unit-c = unit-5

cat-11
(v)-arg1(np)-cxn

cat-21
disregard(v)-cxn

cat-28
arg0(np)-(v)-arg1(np)-cxn

cat-43
arg0(np)-(v)-arg1(np)-cxn

cat-10
google(v)-cxn

cat-11 cat-10~0.3

Figure 4: Schematic illustration of the integration of distributional representations of grammatical categories. The
category that is proper to the GOOGLE(V)-CXN is not directly compatible with the category of the frame-evoking
element slot of the imperative transitive construction (see 3 ). However, this categorial link is inferred on the fly
based on the close distributional similarity between cat-10 and cat-21.

particular large language models, capture the con-
structional knowledge that is typically represented
symbolically in the construction grammar litera-
ture (see e.g. Tayyar Madabushi et al., 2020; Weis-
sweiler et al., 2022, 2023; Bonial and Tayyar Mad-
abushi, 2024; Zhou et al., 2024; Tayyar Madabushi
et al., 2025).

7 Discussion and Conclusion

We have started from the observation that linguis-
tic theories and models of natural language typi-
cally adopt either a symbolic or a numerical ap-
proach. At the same time, symbolic and numerical
approaches are widely acknowledged to be compli-
mentary to each other (see e.g. Boleda and Herbe-
lot, 2016). Symbolic approaches have the advan-
tage of supporting compositionality, interpretabil-
ity and sound logic inference, whereas numerical
approaches have the advantage of being more scal-
able, robust and easier to learn from data. The
integration of symbolic and numerical approaches
is however complicated by the fact that they are
rooted in very different mathematical frameworks,
namely formal logic versus linear algebra.

In this paper, we have explored the integration

of numerical representations, in this case distri-
butional representations of word forms, construc-
tional slots and grammatical categories, in a sym-
bolic computational construction grammar frame-
work. Concretely, we have shown how such rep-
resentations can be operationalised in Fluid Con-
struction Grammar and enhance the robustness and
generality of learned FCG grammars. In a first
experiment, we have replaced the substantive ma-
terial in the constructions of a learned, symbolic
base grammar by pre-trained GloVe embeddings of
the same material. By extending FCG’s unification
algorithms to compute cosine similarities instead
of symbol equalities during the construction appli-
cation process, we obtained a range of ranked con-
struction application results in cases where there
was no exact match, but a close match, between
the lemma required by a construction and the one
observed in the input utterance. In a second experi-
ment, we have integrated vector representations of
the prototypical lexical content of constructional
slots to aid disambiguation where competing con-
structions could apply. The vectors were computed
while the grammar was being learned, based on
pre-trained GloVe embeddings of the words and
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phrases that were observed in the respective slots
of the construction. By aggregating the cosine sim-
ilarities of slots and their fillers during construc-
tion application, we again obtained a range of con-
struction application results ranked according to
their lexical fit with the applied constructions. In
a third experiment, we no longer relied on exter-
nally trained embeddings, but have modelled the
similarity between grammatical categories based
on their observed distribution over constructional
slots. This distribution was then used to create links
on the fly in the categorial network that were never
learnt during training.

The experiences gained while working on this
initial prototype have convinced us that the future
of computational construction grammar will be hy-
brid. Yet, further research is now needed to scale
this prototype for large-scale evaluation, where the
advantages of integrating distributional representa-
tions can also be shown quantitatively.
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Abstract

Constructionist approaches to language posit
that all linguistic knowledge is captured in con-
structions. These constructions pair form and
meaning at varying levels of abstraction, rang-
ing from purely substantive to fully abstract
and are all acquired through situated commu-
nicative interactions. In this paper we provide
computational support for these foundational
principles. We present a model that enables an
artificial learner agent to acquire a construction
grammar directly from its sensory experience.
The grammar is built from the ground up, i.e.
without a given lexicon, predefined categories
or ontology and covers a range of constructions,
spanning from purely substantive to partially
schematic. Our approach integrates two previ-
ously separate but related experiments, allow-
ing the learner to incrementally build a linguis-
tic inventory that solves a question-answering
task in a synthetic environment. These findings
demonstrate that linguistic knowledge at differ-
ent levels can be mechanistically acquired from
experience.

1 Introduction

According to constructionist approaches to lan-
guage (Fillmore, 1988; Goldberg, 1995; Croft,
2001; Goldberg, 2003) all linguistic knowledge is
captured in constructions, pairing form and mean-
ing. Within this framework, constructions vary in
their level of abstraction, ranging from purely sub-
stantive to fully abstract, all shaped by usage. As
Goldberg (2003, p. 223) famously put it: “it’s
constructions all the way down”.

*Joint first authors.
†Joint last authors.

Constructions are not abstract templates shared
uniformly between members of a linguistic com-
munity, rather each one is grounded in an indi-
vidual’s embodied experience and interaction with
the world (Lakoff, 1987; Langacker, 1987; Bybee,
2010; Tomasello, 2003; Diessel, 2017). For in-
stance, a construction mapping the form “dog” to
its underlying DOG concept is shaped by an indi-
vidual’s encounters with dogs, including what they
have seen, learned or heard about them. Beyond
the perceptual level, language users also acquire
constructions that coordinate more abstract cogni-
tive processes (Goldberg, 1995). Consider the sen-
tence “The dog chases the cat.” in which the tran-
sitive construction organises the relation between a
CHASING event and its participants. This abstract
relation is learned through repeated encounters of
linguistic utterances and observations in the world.
Whether the meaning of a construction is a concept
grounded in direct sensory experience or an ab-
stract schema, all are pairings of form and meaning
and arise from situated interactions (Beuls and Van
Eecke, 2025). This linguistic knowledge is built
up through cognitive mechanisms that reconstruct
the intended meaning of an interlocutor and find
patterns over form-meaning mappings (Tomasello,
2003; Dąbrowska and Lieven, 2005; Behrens, 2009;
Lieven, 2014).

A computational approach to modelling lan-
guage acquisition involves language games, in
which embodied agents acquire constructions
through repeated situated communicative interac-
tions (Steels, 1995, 1999). These simulations offer
a mechanistic model of language acquisition, and
have been used to study the emergence of linguistic
structure at multiple levels, from basic grounded
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lexicons (Steels, 1995; Kaplan et al., 1998; Loet-
zsch, 2015; Nevens et al., 2020; Botoko Ekila et al.,
2024) to early forms of syntax (De Beule and
Bergen, 2006; Van Eecke, 2018) and more com-
plex grammatical systems (van Trijp, 2008; Beuls
and Höfer, 2011; Spranger and Steels, 2015; Steels
and Garcia Casademont, 2015; Nevens et al., 2022;
Doumen et al., 2024). However, a key challenge re-
mains unsolved: no existing computational model
has yet demonstrated the emergence of a construc-
tion grammar that is both directly learned from sen-
sory experience and capable of capturing a range of
constructions, spanning from fully substantive con-
structions to more abstract constructions, without a
given lexicon, ontology or predefined categories.

In this paper, we present a model that enables
a learner agent to acquire a construction grammar
from the ground up through situated communica-
tive interactions with a tutor agent. Using a curricu-
lum learning approach, where training progresses
from simpler to more complex interactions, the
learner develops a grammar that spans from percep-
tually grounded lexical constructions to partially
schematic constructions. We validate our approach
experimentally in a synthetic continuous environ-
ment in which a learner develops a grammar to
interpret and answer questions. We thereby demon-
strate that, with the help of a tutor, a computational
construction grammar including more abstract con-
structions can be acquired directly from sensory
experience, supporting the hypothesis that it is also,
indeed, constructions all the way up.

2 Background

The model we present is embedded within the
framework of language games (Steels, 1995, 1999),
which is used to simulate how agents can estab-
lish linguistic conventions through repeated sit-
uated communicative interactions. In this paper,
we build on language acquisition experiments that
each focus on different levels of abstraction: (i)
acquiring perceptually grounded lexical construc-
tions that link sensory experiences to linguistic
forms (Nevens et al., 2020; Botoko Ekila et al.,
2024) and (ii) acquiring grammatical constructions
that capture structural patterns in language use
(Nevens et al., 2022; Doumen et al., 2024). Al-
though these four experiments focus on acquiring
constructions at varying levels of abstraction, they
rely on the same shared principle: agents acquire
form-meaning mappings through situated commu-
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ω2: 1.0

ω3: 1.0

µ2: 33.92
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B

Figure 1: Example of a grounded lexical construction
learned by the learner agent for the word “red”, which
has specialised towards the three colour feature dimen-
sions (RGB). Only dimensions with weights greater
than 0.0 are shown.

nicative interactions (Beuls and Van Eecke, 2024).
The next sections summarise the core mechanisms
behind each experiment, which forms the basis of
our integrated approach.

2.1 Acquiring grounded lexical constructions
The experiments of Nevens et al. (2020) and
Botoko Ekila et al. (2024) are concerned with ac-
quiring form-meaning pairings that link sensory
experiences to linguistic forms. In this process, a
learner agent acquires a set of constructions that
capture perceptual concepts such as RED or LARGE

by interacting with a tutor agent. Importantly, the
learner starts without any prior linguistic knowl-
edge.

In the experiments, both agents are situated in
a shared environment with different objects and
engage in a series of referential games, each cor-
responding to a single interaction. In each inter-
action, the tutor (i) selects a target object from
the scene and (ii) produces a single-word utter-
ance that refers to a property of the selected object
that distinguishes it from the other objects. The
learner observes the scene through its own sensors,
which capture raw perceptual features (e.g. RGB
for colour or the number of pixels an object occu-
pies in the image for size). The goal of the learner
is to infer which object the tutor is referring to,
based on the utterance, the perceptual input, and
any linguistic knowledge acquired in previous inter-
actions. After each interaction, the tutor reveals the
correct referent (i.e. the target object), providing
explicit feedback. At no point are the tutor’s and
learner’s internal representations shared between
agents. The learner must refine its own internal
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representations through these interactions with the
tutor. They store the observed word forms (e.g.

“red”) and associated internal concept representa-
tions as form-meaning mappings in its inventory.

Concepts are modelled as weighted Gaussian dis-
tributions over sensory features. Each distribution
captures the prototypical range of values associ-
ated with that feature, while the associated weight
captures the feature’s relevance to the concept. For
example, as seen in Figure 1, the concept linked
to the word “red” assigns high weights to RGB
features and low weights to other features. These
distributions and weights are updated incrementally
through repeated interactions with the tutor.

Early on, the learner’s answers are mostly incor-
rect, but as they interact more, the learner refines its
concept representations based on the feedback of
the tutor. Over time, the learner builds a conceptual
system grounded in its own sensory experience of
the world.

2.2 Acquiring grammatical constructions

In the experiments of Nevens et al. (2022) and
Doumen et al. (2024), a learner acquires lexical and
grammatical constructions by playing a question-
answering game. The game operates in a symbolic
representation of the environment of the experi-
ments discussed in Section 2.1. In this symbolic
version of the setting, objects are described using
structured attribute-value pairs (e.g. OBJECT-1:
{COLOUR: RED, SHAPE: CUBE}). This setup ab-
stracts away from raw sensory inputs and percep-
tual processing, allowing the learner to work di-
rectly with high-level representations of objects.
Thus, as seen in Figure 2, the meaning of the
CUBES-CXN is represented by the symbol CUBE.

Within this symbolic setting, the tutor poses
questions about a scene such as “How many red
cubes are there?” or “What shape does the blue
object have?”. The learner’s task is to interpret
the question and produce a correct answer. To
achieve this, the learner builds a construction gram-
mar that maps linguistic utterances to meaning rep-
resentations that can be executed to retrieve the
answer. To acquire these constructions, the learner
is equipped with two core learning mechanisms:
intention reading and pattern finding (Tomasello,
2003). Intention reading refers to a language user’s
ability to reconstruct the intended meaning of an ut-
terance, enabling the learner to hypothesise about
the speaker’s intended meaning. Pattern finding

Categorial network

cubes-cxn

cubes-cxncubes-cxn

“cubes”

how-many-?x-are-there-cxn

“How many ?x are 
there?”

filler-cat: cubes

slot-cat: how-many-?x-are-there(?x)

CUBEω1: 1.0

OBSERVE-SCENE ?scene

FILTER ?filtered-set ?scene ?concept

COUNT ?number ?filtered-set

how-many-?x-
are-there(?x)

cubesspheres

cylinders

Figure 2: Example of two constructions acquired by the
learner agent during the question-answering game that
takes place in a symbolic environment. A lexical CUBES-
CXN with a symbolic concept representation, an item-
based HOW-MANY-?X-ARE-THERE-CXN and part of
the categorial network, capturing the slot-filler relation
through the categories in the constructions, are shown.
Figure based on Nevens et al. (2022) and Doumen et al.
(2024).

refers to the ability to generalise across different
communicative interactions. We briefly summarise
how these processes are operationalised, but for
a more comprehensive explanation we refer the
reader to Nevens et al. (2022) and Doumen et al.
(2024).

The learner starts the game with an empty lin-
guistic inventory but is endowed with a set of
atomic cognitive operations (so-called primitive op-
erations). The meaning of questions is represented
as sequences of these operations, each of which
are needed to find the correct answer, i.e. a form
of procedural semantics (Winograd, 1972; Woods,
1968). Formally, each question is encoded as a
set of predicates. Each predicate corresponds to a
primitive operation that the learner can perform,
such as filtering objects by their properties or count-
ing elements in a set. For example, the question

“How many cubes are there?” can be represented
as a sequence of three primitive operations: (i) ob-
serving the current scene with OBSERVE-SCENE,
(ii) filtering for objects of type cube with FILTER,
and (iii) counting the resulting set with COUNT.

At the start of each interaction, both agents are
situated in the same scene. The tutor then poses a
question to the learner about the scene. The learner
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attempts to interpret and answer the question using
its current linguistic inventory. If the learner fails to
interpret the question or the answer is incorrect, the
tutor provides feedback in the form of the correct
answer. The learner then attempts to recover the in-
tended meaning by abductively reasoning about the
tutor’s communicative goal (i.e. intention reading).
In doing so, it searches for a program (a sequence
of primitive operations) that would lead to the tu-
tor’s answer. Once a plausible program is found,
the learner can store this new utterance-program
pairing as a candidate construction.

Over time, through an inductive process, the
learner generalises across observed utterances and
reconstructed meanings to build more abstract
schemata (i.e. pattern finding). For example, if
the learner has previously encountered and under-
stood the question “How many spheres are there?”
and then observes “How many cubes are there?”,
it can induce a pattern. As shown in Figure 2,
one possible generalisation could yield a construc-
tion that includes a slot, e.g. HOW-MANY-?X-ARE-
THERE?-CXN, and another that can fill that slot,
e.g. CUBES-CXN. A construction can thus be par-
tially schematic: containing both fixed elements
and variable slots. Slots are the parts that remain
open and available to be filled by other construc-
tions. Constructions may contain more than one
slot, and slots can also occur adjacently. In the re-
mainder of this text, we refer to partially schematic
constructions with one or more slots as item-based
constructions, while fully substantive constructions
are referred to as lexical constructions.

As the construction inventory grows, the learner
becomes able to interpret parts of novel utterances.
The learner can then use this partial analysis as
a starting point to more efficiently search for the
remaining operations needed to construct a full
program that leads to the answer. In total, seven
generalisation operators are introduced by Nevens
et al. (2022) and Doumen et al. (2024).

A critical component of the approach is the
categorial network which organises the learner’s
acquired knowledge of which constructions can
fill in slots of other constructions (Van Eecke,
2018). As seen in Figure 2, the how-many-?x-are-
there(?x) category is linked to three filler categories
(spheres, cylinders, cubes) that can fill the ?x slot.
The categorial network thus stores slot-filler re-
lations observed during interactions and dynam-
ically expands as new combinations are encoun-

tered. This mechanism supports an important gen-
eralisation: even when the learner has never seen
a particular combination of constructions, it can
still interpret the utterance if the individual compo-
nents are known. For example, the learner might
already know a construction WHAT-IS-THE-?X-
MADE-OF?-CXN and another SPHERE-CXN, but
never observed the specific combination “What is
the sphere made of?”. In such cases, the catego-
rial network allows the learner to combine known
constructions by creating a new link between these
categories, without needing to create a new con-
struction.

Together, intention reading, pattern finding and
the categorial network form the core mechanisms
through which the learner agent acquires a flexible
and compositional grammar. Through this gram-
mar, the agent can solve the task of interpreting and
answering the questions.

3 Acquiring a Construction Grammar
from Sensory Experience

To demonstrate how a computational construction
grammar spanning multiple levels of abstraction
can be acquired directly from sensory experience,
we integrate the experiments discussed in Sections
2.1 and 2.2. In our integrated methodology, a
learner agent first acquires grounded lexical con-
structions through a reference-based game, before
using these constructions as building blocks in a
question-answering game.

To achieve this integration, the symbolic scene
representations used in the question-answering
game must be replaced by a continuous environ-
ment. As discussed in Section 2.2, the original
experiment assumes symbolic input in the form of
structured representations. This allows the learner
to reason directly over discrete, high-level struc-
tures using its primitive operators, bypassing the
challenge of perceptual grounding. In the continu-
ous setting, the primitive operators must be adapted
to reason over low-level structures which is not
straightforward. We highlight three key changes.

Similarity between concepts and objects A cru-
cial cognitive operation in the experiment is the
FILTER primitive, which takes a set of objects as in-
put and returns a filtered set containing only those
objects for which a given concept applies. In the
original symbolic setting, filtering objects by a con-
cept relied on symbolic matching. In our continu-
ous setup, we adapt the FILTER primitive to work
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with raw perceptual features. Rather than check-
ing whether an object has a given symbolic feature,
the learner now computes a similarity score be-
tween the grounded concept and each object in
the input set. This similarity is calculated using
the algorithm introduced in Nevens et al. (2020). It
estimates the likelihood that an object’s sensory fea-
tures were generated by the concept’s distribution.
Any object whose similarity exceeds a threshold γ
is included in the filtered set.

Deriving category hierarchies The original
question-answering experiments operate under a
critical assumption: agents must also already have a
prespecified category hierarchy (Rosch et al., 1976)
to perform certain basic cognitive operations, such
as querying on a category (e.g. COLOUR). The
learner is assumed to already understand, for exam-
ple, that SIZE constitutes a superordinate category
with mutually exclusive values like SMALL and
LARGE. This assumption provides a scaffold that
simplifies the problem, but it does raise questions
about how such hierarchies can be acquired.

It has been hypothesised that a categorial net-
work, capturing slot-filler relationships, contains
the information needed to derive these category
hierarchies (Van Eecke, 2018; Steels et al., 2022;
Nevens et al., 2022; Doumen et al., 2024). Simply
put, categories that behave similarly across con-
structions may belong to the same domain. To
operationalise this hypothesis, we identify poten-
tial semantic fields: groups of categories that likely
belong to the same domain. This is achieved by
clustering categories based on their constructional
behaviour captured by the categorial network. Con-
cretely, we compute the vertex cosine similarity
(Salton and McGill, 1983) between all pairs of
categories (i.e. fillers) in the categorial network.
This yields a fully connected graph where each
node corresponds to a category and each edge is
weighted by the similarity score. Categories that
frequently fill the same slots will have many shared
connections, and thus a higher vertex cosine simi-
larity. To identify meaningful clusters, we apply a
threshold τ and retain only edges with high simi-
larity scores. This pruning step breaks the network
into connected components that represent potential
semantic fields, such as size, colour or shape.

Generalisation operators As discussed in Sec-
tion 2.2, the original question-answering experi-
ment uses seven generalisation operators. These

red-cxnred-cxn

“red”

cubes-cxnhow-many-?x-objects-are-there-cxn

“How many ?x 
objects are there?”

OBSERVE-SCENE ?scene

FILTER ?filtered-set ?scene ?concept

COUNT ?number ?filtered-set

slot-cat: how-many-?x-objects-are-there(?x)

filler-cat: red

ω1: 1.0

ω2: 1.0

ω3: 1.0

µ2: 33.92
σ2: 1.28

µ3: 34.94
σ3: 1.28

µ1: 172.89
σ1: 1.28

R

G

B

how-many-?x-
objects-are-there(?x)

red

blue

metal

small

Categorial network

Figure 3: Example of two constructions acquired by
the learner during the question-answering game in the
continuous setting. A lexical RED-CXN, an item-based
HOW-MANY-?X-OBJECTS-ARE-THERE-CXN and part
of the categorial network, capturing the slot-filler re-
lation through the categories in the constructions, are
shown.

included generalisations over holistic mappings
between linguistic forms and reconstructed mean-
ings. These types of generalisations could lead
to item-based and lexical constructions. In our
experiment, all required lexical constructions are
acquired before the question-answering game be-
gins. As a result, operators that generalise over
holistic mappings that yield lexical constructions
are no longer needed. Due to our two-phased ap-
proach, only three generalisation operators are used
(i.e. add-categorial-link, lexical→item-based and
nothing→holophrase).

4 Experimental Validation

We validate our methodology experimentally. The
experiment is structured in two phases. Initially,
the learner acquires concepts through a reference-
based game using the methodology discussed in
Section 2.1. After this phase, the learner has ac-
quired a set of grounded lexical constructions that
are mappings between linguistic forms and percep-
tually grounded concept representations. In the
second phase, the learner participates in a question-
answering game using the adaptations discussed
in Section 3. Concretely, the learner agent further
expands its construction inventory with item-based
constructions, in which the previously acquired
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grounded lexical constructions serve as fillers. Fig-
ure 3 captures this idea: the construction inven-
tory of the agent consists of both grounded lexical
constructions as well as item-based constructions
linked through the categorial network. In contrast
to Figure 2, the meaning of the lexical construction
is now represented by a grounded concept. Im-
portantly, although the two phases are structured
sequentially, learning is not confined to each phase:
during the second phase, the concept representa-
tions in the grounded lexical constructions continue
to be refined through new observations.

Data The experiment uses the CLEVR dataset
(Johnson et al., 2017). This dataset contains ques-
tions about images containing three to ten geomet-
ric objects. Each object is described by a combi-
nation of attributes: one of three shapes (SPHERE,
CUBE or CYLINDER), one of eight colours (GREY,
BLUE, BROWN, YELLOW, RED, GREEN, PURPLE

or CYAN), one of two material types (METAL or
RUBBER) and one of two sizes (SMALL or LARGE).

Following Nevens (2022) and Doumen et al.
(2024), we use a subset of the CLEVR scenes and
questions. To create the continuous environment,
we extract features for each object in the scenes
from the dataset following the data processing steps
discussed in Nevens et al. (2020, p. 7). We use
14,000 of the 15,000 scenes across both Phase 1
and 2 and hold out the remaining 1,000 scenes
for evaluation. This allows us to assess how well
the methodology generalises to previously unseen
scenes after Phase 2. Only questions involving (i)
counting, (ii) checking for existence and (iii) query-
ing for a certain attribute are retained. To obtain
this subset, we removed questions related to com-
parison, spatial relations and logical operations. As
explained in Doumen et al. (2024), this choice is
motivated by the complexity of these operations
which is far removed from the complexity of the
questions that children encounter in the beginning
of the language acquisition process. Lastly, in the
CLEVR dataset, synonyms are used to describe the
exact same concepts (e.g. sphere and ball). We
remove these questions, following the principle of
no synonymy (Goldberg, 1995, p. 67). Thus, in
Phase 2 of the experiment 1,935 unique questions
can be posed about 14,000 different scenes.

Experimental setup The experimental setup of
Phase 1 follows Nevens et al. (2020). Phase 2,
due to its increased complexity, is further broken

down into three successive steps to facilitate learn-
ing. First, the tutor poses counting and existence
check questions (respectively named Phase 2A and
Phase 2B). This allows the learner to observe many
slot-filler relationships and gradually build up its
categorial network. After this, the tutor moves onto
questions related to querying attributes of objects
(Phase 2C), which requires reasoning over category
hierarchies. These hierarchies are created based
on the categorial network that was built up during
the previous phases using the category clustering
method described in Section 3. The thresholds γ
and τ are hyperparameters and are set empirically
to respectively γ = 0.8 and τ = 0.7. In total the
experiment consists of 20,000 interactions. Phase
1 consists of 5,000 interactions, while Phase 2 con-
sists of 5,000 interactions for each of the three parts:
Phase 2A, 2B and 2C. All reported results are av-
eraged over 10 independent runs. All runs were
conducted on a 12-core CPU paired with 16GB of
RAM, with each run completed in ±0.5 hours.

Learning dynamics The learning dynamics of
the experiment are shown in Figure 4. For each
phase, we keep track of the average communicative
success over time. For the reference-based game,
an interaction is successful if the learner points
to the tutor’s intended referent. For the question-
answering game, there is success when the learner
utters the expected answer. In both cases, a success
of 100% means that learner understands the tutor
perfectly.

As seen in Figure 4, at the end of Phase 1, an
inventory of 15 grounded lexical constructions is
acquired.1 In the beginning of Phase 2A, when the
learner encounters questions related to counting,
success drops down, but quickly rises again when
the learner successfully acquires item-based con-
structions that are needed to answer the questions.
By the end of this phase, on average, 20 item-based
constructions and 4 holophrase constructions are
acquired and the necessary links between the slots
of the item-based constructions and the slot-filler
relations are learned and added to the categorial net-
work. Similar dynamics are observed when the ex-
istence and query questions are introduced (Phases
2B and 2C). First, the success drops down, but the

1Note that the number of lexical constructions jumps from
15 to 18 between Phase 1 and Phase 2. This increase is due to
the creation of three plural equivalents for the singular ‘shape’-
constructions. In Phase 1, the tutor only refers to singular
concepts, but later in the experiment, the plural versions are
required.
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Figure 4: Learning dynamics of the experiment. The blue line denotes the degree of average communicative success
over the past 500 interactions. At the start of each phase the average window is reset. The other dashed lines
(yellow, red and blue) respectively denote the number of lexical, item-based and holophrase constructions that were
acquired over time. At the beginning of each phase, communicative success drops down, but quickly recovers as
constructions are acquired to resolve communicative impasses. Results are averaged over 10 independent runs.

agent quickly acquires the necessary constructions
and communicative success is reached again after
a couple of hundred interactions. The linguistic
inventory size expands to ± 50 item-based and 9
holophrase constructions at the end of Phase 2B
and reaches a number of 157 item-based construc-
tions at the end of the experiment, leading to a total
of ± 184 constructions.2 Finally, we evaluate the
acquired construction grammar on a held-out set
of 1,000 unseen scenes in ten independent runs.
During this phase, the learner’s linguistic system is
frozen and cannot be updated. We perform 5,000
additional interactions on this evaluation set. The
learner correctly interprets and answers the tutor’s
question posed in 99.65% of interactions, averaged
over 10 independent runs. Analysis of the rare fail-
ure cases reveals that errors are primarily due to

2Note that there is no typical ‘overshoot’ pattern for the
number of constructions. In the reference-based game, this
is due to the lack of ambiguity regarding form about which
forms map to which meaning. The learner directly acquires
a construction with an initial concept representation that is
gradually refined. In the question-answering game, we ob-
serve that the agent likewise acquires the optimal meaning
representation from the start. This contrasts with the orig-
inal experiment, where many suboptimal lexical mappings
were first acquired. Our two-phased approach prevents lexical
suboptimal hypotheses.

grounding issues, where slight out-of-distribution
observations relative to the learned concept repre-
sentations lead down the line to incorrect answers.

Formation of a category hierarchy The catego-
rial network captures the slot-filler relations of the
constructions. These relations are built up during
the experiment and form the basis for the formation
of category hierarchies, which are used in the last
phase of the experiment.

Figure 5 shows the expansion of the learner’s
categorial network during the different phases of
the experiment. For visual purposes, we zoom
in on categories related to nine grounded lexical
constructions and three item-based constructions.
After Phase 1, the network consists only of dis-
connected categories for grounded lexical construc-
tions. During Phase 2A categories start to cluster.
We observe that categories that relate to the shape
of objects act as fillers in similar slots (e.g. they fill
the ?y slot in the HOW-MANY-?X-?Y-ARE-THERE-
CXN) and are thus possibly more related to each
other than, for example, the ‘material’, ‘colour’ and
‘size’ categories which fill the ?x slot in the same
construction (see Figure 5). During Phase 2B, the
categorial network expands. Now, we clearly ob-
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Figure 5: Expansion of the learner’s categorial network over the course of the experiment. Phase 1 shows the
network after the grounded lexical construction learning phase, with no links between categories yet. In Phase 2A
initial clusters of categories begin to form. In Phase 2B, shaded in grey, four semantically relevant clusters emerge
(size, colour, material, shape). Only a subset of the categorial network is shown for illustrative purposes.

serve that categories cluster together into meaning-
ful hierarchies over concepts, indicated by the grey
shaded regions in Figure 5. This cluster formation
is used to build the hierarchy needed in Phase 2C
of the experiment in which the agent needs to query
attributes of certain objects. Applying the method-
ology described in Section 3 results in 5 clusters:
the shapes (singular and plural), the colours, the
materials and the sizes. Our results demonstrate
that a useful category hierarchy can emerge based
on the constructional behaviour captured by the
categorial network of an agent.

5 Related Work

Many computational models for grounded lan-
guage acquisition have been developed in dif-
ferent fields, including cognitive linguistics, AI
and robotics. This paper studies this grand chal-
lenge from a constructionist perspective. There-
fore, in what follows, we outline the different
strands of work that take this perspective. Fol-
lowing a recent survey by Doumen et al. (2025),
we thus focus on constructionist models that incre-
mentally acquire productive form-meaning map-
pings that extend beyond lexical items. Doumen
et al. (2025) distinguish approaches based on how
much semantic supervision is provided. In a first
set of models, training examples pair an utter-
ance with its gold semantic annotation (e.g. Al-

ishahi and Stevenson, 2008; Beuls et al., 2010;
Chang, 2008; Doumen et al., 2024; Gerasymova
and Spranger, 2010, 2012). Other models reduce
this supervision by presenting multiple candidate
gold semantic annotations, introducing referential
uncertainty (Abend et al., 2017; Beekhuizen and
Bod, 2014; Beekhuizen, 2015; Chen and Mooney,
2008; Dominey, 2005a,b; Dominey and Boucher,
2005; Garcia Casademont and Steels, 2015, 2016;
Gaspers et al., 2011; Gaspers and Cimiano, 2012,
2014; Gaspers et al., 2017; Kwiatkowski et al.,
2010, 2011, 2012; Steels, 2004). A third set of
models focus on learning in situated interactions
without gold semantic annotations altogether. In
these works, a combination of a predefined lexi-
con, categories or ontology is assumed (Artzi and
Zettlemoyer, 2013; Nevens et al., 2022; Spranger,
2015; Spranger and Steels, 2015; Spranger, 2017).
Finally, De Vos et al. (2024) present a grammar
coupled with concepts grounded in a way similar
to Section 2.1. Notably, their approach is applied to
the same visual question answering task considered
in this paper. However, whereas they manually de-
signed a grammar tailored to the task, our focus lies
on the acquisition of a grammar across different
levels of abstraction. This makes the problem sig-
nificantly more challenging and motivated our use
of a subset of the dataset (see Section 4). As such,
direct comparison is not straightforward. De Vos
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et al. (2024) report an accuracy of 96% on the full
dataset, while we achieve near-perfect success on
the subset.

A growing related strand of research examines to
what extent large language models (LLMs) capture
constructional knowledge. These probing studies
indicate that state-of-the-art LLMs can capture sub-
stantive constructions reasonably well, but have
more difficulty with more schematic patterns (see
e.g. Weissweiler et al. (2022); Bonial and Tay-
yar Madabushi (2024); Zhou et al. (2024); Rozner
et al. (2025)). These findings provide valuable
insights into the strengths and limitations of cur-
rent models. Our objective, rather, is to present a
mechanistic model in which constructions at vary-
ing levels of schematicity emerge incrementally
through situated communicative interactions, rather
than via optimisation for next-token prediction over
large-scale corpora.

6 Discussion and Conclusion

This paper has presented a computational model
in which a construction grammar is acquired di-
rectly from sensory experience, capturing construc-
tions at varying levels of abstraction. We have
integrated two previously separate but related ex-
periments operationalised in the language game
paradigm, guided by the hypothesis that construc-
tions at different levels can be acquired through
the same underlying cognitive mechanisms. While
Beuls and Van Eecke (2024) formulated this idea at
a conceptual level, we offer a concrete operationali-
sation. In our approach, constructions are acquired
through repeated situated communicative interac-
tions between a tutor and a learner agent. Across
these interactions, the learner identifies regularities
(whether these are associations between sensory
feature values and linguistic forms or correspon-
dences between syntactic patterns and semantic
operations) and uses those regularities to incremen-
tally refine its linguistic system. To enable this
integration, we have introduced a component that
induces a category hierarchy from the slot-filler
relations of the acquired constructions, thereby re-
placing a major scaffold of the earlier model by
Nevens et al. (2022), which assumed access to a
predefined hierarchy. In this setting, the component
derives category hierarchies that are one layer deep,
although future work could investigate extensions
to multi-level hierarchies.

The methodology has been validated through an
experiment in the synthetic CLEVR environment.
The experiment has demonstrated that lexical con-
structions that were grounded in the sensors of the
agent and were acquired in referential games can
serve as building blocks for abstract grammatical
constructions in a subsequent question-answering
game. In this paper, we focused on the acquisi-
tion of lexical and item-based constructions. These
results provide computational support for a core
assumption in construction grammar, showing how
both purely substantive and more abstract construc-
tions can emerge from repeated situated commu-
nicative interactions. However, further work is
needed to investigate the acquisition of construc-
tions at all levels of abstraction in more complex
environments.
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Abstract

The empirically established null subject (NS)
stage, lasting until about 4 years of age, in-
volves frequent omission of subjects by chil-
dren. Orfitelli and Hyams (2012) observe that
young English speakers often confuse imper-
ative NS utterances with declarative ones due
to performance influences, promoting a tem-
porary null subject grammar. We propose a
new computational parameter to measure this
misinterpretation and incorporate it into a sim-
ulated model of obligatory subject grammar
learning. Using a modified version of the Vari-
ational Learner (Yang, 2012) which works for
superset-subset languages, our simulations sup-
port Orfitelli and Hyams’ hypothesis. More
generally, this study outlines a framework for
integrating computational models in the study
of grammatical acquisition alongside other key
developmental factors.

1 Introduction

The Null Subject (NS) stage is a well-researched
phenomenon in child language acquisition, char-
acterized by young children sometimes forming
declarative sentences without subjects. This is
expected in children exposed to null subject lan-
guages but contentious in obligatory subject lan-
guage environments. The NS stage challenges
the Subset Principle (Gold, 1967; Berwick, 1985;
Manzini and Wexler, 1987; Valian, 1990; Déprez
and Pierce, 1993; Fodor and Sakas, 2005) — chil-
dren learning obligatory subject languages exhibit
NS-like sentences (a superset language), which
gradually shift to non-NS (subset language) with
time. This phenomenon puzzles learning theorists.
Explanations vary, with some attributing the NS
stage to differences between children’s internal
grammar and adult target grammars (Yang, 2012;
Orfitelli and Hyams, 2008; Valian, 1990), while
others cite extrasyntactic factors like memory and
processing constraints (Bloom, 1970, 1990; Valian,

1991; Wang et al., 1992). Rizzi (2005a,b) con-
nects a performance account of a limited produc-
tion system with its consequence of the varying
grammatical competence we see in children. In
this paper, we model the grammatical theory of the
NS stage in children using a developmental param-
eter and the Variational Learner (VL)(Yang, 2012),
a well-known computational model of language
acquisition. More generally, this study outlines a
framework for integrating computational models in
the study of language acquisition alongside other
key developmental factors.

2 Background

2.1 Orfitelli & Hyams (2012) Experiment 2

The two distinct theories of performance and gram-
matical competence present distinct explanations
for children’s comprehension of subject-lacking
sentences (NS sentences, such as imperatives in
English). Grammatical theories propose that young
English speakers view NS sentences akin to gram-
matically correct declaratives, similar to adults in
null subject languages. Conversely, performance
theories attribute omissions to production limita-
tions, suggesting children interpret NS sentences
as adults do in obligatory subject languages, lim-
iting English-speaking children’s interpretations
to imperatives or diary forms. To explore this,
Orfitelli and Hyams (2012, Experiment 2) used a
truth-value judgment (TVJ) experiment (Crain and
McKee, 1985; Crain and Fodor, 1993). In Experi-
ment 2, a child watched a narrative, then listened
to a puppet’s (Mr. Bear) comment, and judged the
comments’ accuracy relative to the story. The child
corrected Mr. Bear by indicating the correctness of
his statements, with explanations. Thirty children
from Los Angeles daycare centers were involved,
divided into three age groups (2;6-2;11, 3;0-3;5,
and 3;6-3;11) to represent early, middle, and late
NS stages. Details on age range and distribution
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Group Age Range Mean Age N

2;6-2;11 2.54-2.96 2.73 10
3;0-3;5 3.12-3.48 3.3 10
3;6-3;11 3.64-3.98 3.82 10

Total 2.54-3.98 3.28 30

Table 1: Orfitelli and Hyams (2012)[Experiment 2] par-
ticipant details.

are in Table 1, adapted from Orfitelli and Hyams
(2012, Table 6).

The children underwent assessment on 24 gram-
matical items (sentences), equally split between
correct and incorrect true/false responses. There
were 8 NS condition sentences, while the remain-
ing 16 items were evenly divided among the re-
maining four conditions. Orfitelli & Hyams (O&H)
classified the children’s responses to NS condition
sentences into three categories based on interpreta-
tion:

• Consistently imperative: 7-8 out of 8 NS
sentences interpreted as imperative.

• Both interpretations allowed: 2-6 out of 8
NS sentences interpreted as imperative.

• Consistently declarative: 0-1 out of 8 NS
sentences interpreted as imperative.

2;6-2;11 3;0-3;5 3;6-3;11

Imperative
(7-8 imp)

0% (0) 40% (4) 80% (8)

Both
(2-6 imp.)

80% (8) 60% (6) 20% (2)

Declarative
(0-1 imp.)

20% (2) 0% (0) 0% (0)

Table 2: Individual performance on the NS condition
sentences in Orfitelli and Hyams (2012)[Table 8].

Additional details regarding the performance of
children on the task are illustrated in Figure 1. The
performance on the NS items varied with age as
O&H reported that the youngest group assigned an
imperative (adult) interpretation to NS items 40%
of the time on average, while the middle age group
assigned an imperative interpretation 64% of the
time. While O&H do not report an average number
for the performance on NS items for the oldest age

Figure 1: Performance on NS condition sentences from
Orfitelli and Hyams (2012)[Figure 5].

group, from Figure 1 we can estimate the average
performance to be close to 90%. For concreteness,
we adopt 90% for this age group from this point
on.

The fact that in O&H’s study children compre-
hend NS sentences differently than an adult, rein-
forces the grammatical account of the NS stage.
However, O&H also argue for performance limita-
tions which create the illocutionary force ambiguity
associated with the imperative NS sentences result-
ing in the NS stage.

2.2 Language Acquisition in P&P Framework

The study of language acquisition presents an ex-
traordinary challenge for scientific inquiry. It re-
quires that a child, over a remarkably short period,
must develop a grasp of a grammar system capable
of producing and interpreting a set of utterances
comparable to those produced by adults within
their linguistic surroundings.1 The child’s cogni-
tive mechanisms for language learning achieve this
despite having limited or no exposure to sentence-
level linguistic phenomena, and without the capac-
ity to perceive intrinsic properties of the latent struc-
tures that generate the surface forms of utterances
(see Fodor 1998 for reference). This restricted in-
teraction with sufficient surface forms forms the
core of the argument known as the poverty of the
stimulus (Chomsky, 1981, 1955, 1965, 1986).

This argument has been instrumental in advo-
cating for an intrinsic language faculty that im-
parts universal structural principles (such as the
notion that all languages possess subjects) and pa-
rameters, which dictate language-specific structural
traits (e.g., whether SpecIP is initial or final) that
are adjusted during the language acquisition pro-
cess.,The framework of principles and parameters

1Or nearly identical, encompassing microvariations within
linguistic communities.
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(P&P), as introduced by (Chomsky, 1981), was de-
signed to streamline the language learning process
by:

• Limiting the potential scope of grammatical
possibilities, transitioning linguistic theory
from a potentially limitless universe of human
grammars to a explicitly finite set

• Simplifying complex structural phenomena
into parameter values, which vary between
languages. This framework comprises a set
of foundational principles that “sharply re-
strict the class of attainable grammars and nar-
rowly constrain their form, but with parameter
[values] that have to be fixed by experience”
(Chomsky, 1981).

Essentially, the child is inherently equipped with
these principles, while parameter values are influ-
enced by the linguistic input they encounter in their
environment.2 We align with Fodor’s interpreta-
tion of parameter values within the P&P model
(Fodor and Sakas 2005): Universal Grammar (UG)
endows parameters with two possible, albeit mu-
tually exclusive, structural "treelets" – elements
of grammatical architecture – that serve as tools
for both linguists and children acquiring language
to distinguish between different human languages.
Subsequently, (Howitt et al., 2021) suggest that pa-
rameter values should be seen not as simple binary
choices between parametric treelets, but rather as
points within a gradient spectrum between these
discrete choices, viewing parameter values as dy-
namically adjustable along a continuum.

2.3 Variational Learner
Yang (2002a, 34) argues for the necessity of learn-
ers to perform well in domains without unambigu-
ous inputs (see Clark 1992; Clark and Roberts 1993
who argue against the general existence of unam-
biguous evidence). He proposes a parameter setting
reward-based algorithm that converges to a target
grammar despite the presence of ambiguous evi-
dence (Straus, 2008). His Variational Learning
(VL) model posits that a child accesses multiple
grammars, competing throughout learning. When
encountering a sentence, the child uses her current
grammar hypothesis for parsing. Success results
in rewards; failure incurs penalties. Competing
grammars vie to become the next hypothesis, with

2For the sake of simplicity, linguistic learnability typically
presumes the language environment as monolingual.

the most rewarded becoming the adult grammar. In
VL, a learning rate R̂ dictates grammar rewards
or penalties. Each grammar Gi is linked to a prob-
ability Pi, indicating past rewards and penalties.
At time t, this probability Pi depends on linguistic
exposure Et and grammar performance. Imple-
menting variational learning with Principles and
Parameters involves managing 2n probabilities for
grammars in an n-parameter space, exceeding a bil-
lion in a 30-parameter P&P domain. Yang suggests
maintaining one weight (wi) per parameter (pi).
Like non-parametric VL, parameters are adjusted
based on parsing outcomes, modifying weight (wi)
accordingly. Each pi is binary, with value (pvi ) of
0 or 1. Grammar probabilities form a weight vec-
tor (W ) of size n, where wi aligns with parameter
pi. Weights encode cumulative parametric reward
and penalty results at time t after Et. In P&P VL,
Yang (2002a) details two weight update methods
following a sentence parse (st) at time t. Weights
vector W = [w1, w2...wn] is adjusted, rewarding
successful parsing by Gcurr = [pv1, p

v
2...p

v
n] and

penalizing failures. Updated weights then define
new Gcurr. Yang (2012) describes a reward-only
VL where unsuccessful parsing leaves weights un-
altered. Following Sakas et al. (2017), we adopt
and modify principles and parameters reward-only
VL for simulations.

The reward scheme of the reward-only VL fol-
lows the (LR−P ) scheme of Bush and Mosteller
(1955). If a parameter value, pvi , in Gcurr is 0 and
wi is to be rewarded, the weight is nudged towards
0 according to Equation (1):

wt+1
i = wt

i − R̂ · (wt
i) (1)

If a parameter value, pvi , in Gcurr is 1 and wi

is to be rewarded, the weight is nudged towards 1
according to Equation (2):

wt+1
i = wt

i + R̂ · (1− wt
i) (2)

Where wt
i denotes weight wi in the vector of

weights W at time instance t. wt+1
i is the weight

after the update when encountering the input sen-
tence st at time instance t.

Yang (2002b) hypothesized that a child is unable
to distinguish between English grammar and its NS
counterpart early on (imperfect learning), while
in later stages of acquisition the corrective force
of grammar competition sets the target parameter
correctly.
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3 Computational Modelling of NS
utterance interpretation

The remainder of this paper presents a simula-
tion study which models the work of Orfitelli and
Hyams (2012). Specifically, we model the increase
of a child’s ability to interpret imperative sentences
in an adult manner and observe the change in a
simulated learner’s (an e-child’s) competence over
the course of language acquisition in an English-
like abstract linguistic environment. We run sim-
ulation experiments employing a computational
models of syntactic parameter setting: The Vari-
ational Learner (Yang, 2002a, 2012; Sakas et al.,
2017) which we modify to incorporate (a version
of) the Subset Principle. These experiments are run
on the English-like language drawn from a large
domain developed at the City University of New
York (CUNY). The study presents a computational
investigation of how performance factors might
influence competence longitudinally.

3.1 The CUNY-CoLAG language domain
The CUNY-CoLAG domain is a database of word
order patterns that children could be expected to
encounter, together with all syntactic derivations
of those patterns and the syntactic parameter val-
ues which generated each derivation. The multi-
language domain is large, containing 3,072 artifi-
cial languages, 48,077 distinct word order patterns,
and 93,768 distinct syntactic trees. Germane to
this article, is CoLAG English (Sakas et al., 2017),
most English-like language in the domain. A more
thorough overview of the domain and how the mul-
tilingual derivations were generated can be found
in Sakas (2003) and the most recent version of the
CUNY CoLAG domain (hereafter, simply CoLAG)
is comprehensively presented in Sakas and Fodor
(2011, 2012).3 4

3.2 Subset-superset languages and the
Variational Learner

Yang’s Variational Learner is highly regarded in
terms of bringing statistical methods to the table
together with generative grammar. However, the
VL cannot distinguish between superset and subset

3The domain is available for download at: https://bit.
ly/3nGdhPc.

4While we acknowledge that CoLAG is an artificial do-
main, natural language domains like CHILDES(MacWhinney,
2000) has been explored with the VL in (Sakas et al., 2017).
The CoLAG domain is used to prove a theoretical point and
test the convergence pattern of model with a wide variety of
distributions reminiscent to the study in (Howitt et al., 2021).

Figure 2: The SSVL with a conservative learning rate of
r = 1.24× 10−7. The NS parameter weight is plotted
on the y-axis and the number of utterances on the x-axis.
Additionally, 6 month intervals from age 2;6 to 4;0 as
measured in number of utterances are marked.

grammars and cannot be prevented from converg-
ing on an incorrect superset hypothesis. However,
a version of Yang’s learner that does distinguish be-
tween superset and subset grammars and avoid con-
vergence on an incorrect superset hypothesis can
be envisioned: Whenever the learner encounters a
sentence licensed by a current grammar hypothe-
sis which generates a superset language, it checks
if the sentence can be parsed by a subset hypoth-
esis of the current grammar. If the sentence can
be parsed by the subset grammar the learner picks
the subset grammar choice, rather than the current
(superset) grammar hypothesis for adjusting the
weights (Yang, p.c.).

We embrace this strategy, however, we found a
need to augment it. The strategy focuses on ac-
quiring a target subset grammar and is potentially
detrimental, in the worst case fatally, when the VL
is faced with a superset target grammar. Suppose an
e-child employing the VL is trying to learn a super-
set target grammar. Every time the e-child hears an
utterance that can be parsed by the subset grammar,
the learner adjusts its weights in the direction of the
subset grammar. Thus, convergence towards the
superset is dependent on the order, and the ratio of
sentences unambiguously licensed by the superset
grammar to those licensed by the subset grammar.

To confirm our suspicions we ran this version of
the Variational Learner with a 100 e-children ac-
quiring CoLAG Null Subject English (NS-English),
i.e., a language that has all the CoLAG English pa-
rameter settings except for Null Subject which has
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Algorithm 1 Superset-Subset Yang’s Variational
Learner reward only.
W is the array of weights Gcurr is the current grammar, i.e.
vector of parameter values
n is the number of parameters
for each wi in W do

wi ← 0.5
end
for each input sentence s do

pick Gcurr ← [pv1 , ... ,pvn] according to Algorithm 3 if
Gcurr can parse s then

for wi in W do
if pi is a not superset-subset parameter or pvi is
the subset value then

Adjust wi conservatively towards pvi
else // pvi is the superset value

Gtemp ←[pv1 , ...,1− pvi , ... pvn] // 1−
pvi =subset value

if Gtemp can parse s then
Adjust wi conservatively towards 1−
pvi ;

else
Adjust wi aggressively towards pvi ;

end
end

end
end

a value of 1 allowing null subjects in declaratives.
All 100 e-children converged incorrectly on the
subset value of the Null Subject parameter.5

We propose an adaptation of the VL which al-
lows it to consistently converge to the correct pa-
rameter setting of a superset-subset parameter. The
approach we adopt is to ensure that whenever the
VL encounters a sentence that can be parsed only
by the superset grammar, we reward it at a higher
rate in comparison to the rate used for the sub-
set value. The idea is to have two learning rates
— a higher rate for rewarding the superset and a
lower rate for rewarding the subset. Following
Howitt et al. (2021), we will call them the “ag-
gressive" (R) and “conservative" learning rates (r)
respectively. To test this idea, we again ran simula-
tions involving a 100 e-children acquiring CoLAG
NS-English with learning rates of R = 0.008 and
r = 0.001.6 This learning strategy is successful
— the Superset-Subset Variational Learner (SSVL)
successfully converges on the target superset value
for the Null Subject parameter for all e-children
acquiring CoLAG NS-English, see Figure 2.

5Following (Sakas et al., 2017), the simulations were run
on a uniform distribution of CoLAG English sentences with a
learning rate of 0.001 and successful convergence was defined
as the weights reaching within 0.02 threshold of the target
parameter values.

6In line with Footnote 5, the aggressive rate of 0.008 was
chosen through trial and error for the learner to converge with
a conservative rate of 0.001.

Pseudocode for the SSVL is given in Algorithm
1. The initialization of the weights and the pick of
Gcurr is identical to Algorithm 3 (Yang’s Reward-
only VL). After every sentence, if the input sen-
tence can be parsed by Gcurr, the SSVL checks
all pvi in Gcurr for superset-subset values, if any.
If pi is not a superset-subset parameter or if pi is
a superset-subset parameter and pvi is the subset
parameter value, wi is rewarded conservatively to-
wards pvi . Otherwise, pvi is a superset value. In
that case, the SSVL checks if the current grammar
with the superset value of pi flipped (Gtemp in Al-
gorithm 1) to the subset value 1 − pvi can parse
the current input sentence, if so, wi is rewarded
conservatively towards the subset value, Otherwise
wi is rewarded aggressively towards the superset
value. As with the original reward-only VL, if the
current input sentence can not be parsed by Gcurr

no weight updates occur.
The weights in W are rewarded as follows:

• Reward aggressively: Replace R̂ by the ag-
gressive rate R in Equation (1) or (2) and up-
date wi accordingly.

• Reward conservatively: Replace R̂ by the
conservative rate r in Equation (1) or (2) and
update wi accordingly.

The original Variational Learner follows the
Naive Parameter Learning (NPL) model, which
assumes that when the composite grammar success-
fully parses the incoming sentence, all parameter
values are rewarded. However, as seen in our exper-
iments involving CoLAG English and NS-English,
for successful convergence on either the superset
or subset grammar, the VL cannot not afford to
be “naive”. Specifically, it requires knowledge of
which parameter values are in superset-subset re-
lationship and exactly how to reward the relevant
value.

3.3 A performance parameter: IARC
Orfitelli and Hyams (2012) based on their TVJ ex-
periment, observe that there is a misinterpretation
of illocutionary force in null subject sentences due
to performance limitations in children and conjec-
ture that adults and children have different gram-
mars. This section outlines the modeling approach
we adopt to capture this observation.

Table 2 presents data that show that children’s
ability to correctly interpret imperative illocution-
ary force changes over time. This change is almost
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linear: Children between ages 2;6-2;11 show 40%
adult interpretation of NS utterances on average,
while children between ages 3;0-3;5 show 64% and
3;6-3;11 show 90%.

‘We computationally model the interpretation of
the illocutionary force of an e-child by introducing
imperative NS sentences labeled with declarative
illocutionary force into the e-child’s linguistic en-
vironment. This “noisy” input to an e-child can
be manipulated to mirror the data in Table 2 by
decreasing the noise as the e-child matures. Em-
ploying this simulated performance factor, we map
the pathway the NS parameter takes during the ac-
quisition of CoLAG English. The question we are
asking is — Assuming English children do indeed
have a declarative interpretation of imperative NS
sentences — how can we model the change in the
Null Subject parameter, a parameter whose acqui-
sition is affected by these NS sentences, to come
to a conclusion regarding its target setting? And
given the projected trajectory of this developmen-
tal change, what course would the trajectory of NS
parameter acquisition take?

In learning CoLAG English, reliance must be
placed on declarative utterances with subjects. Mis-
understanding imperative NS forms as declaratives
impairs learning, treating some NS utterances as
noise and incorrectly shifting the parameter to-
ward the null subject superset. In obligatory sub-
ject languages for adults, mature children’s transi-
tion should reflect a shift from superset (optional
subject) to subset (obligatory subject) grammars.
Drawing on Orfitelli and Hyams (2012)’s TVJ ex-
periment, we introduce the Illocution Ambiguity
Resolution Coefficient (IARC) for measuring chil-
dren’s misinterpretations of imperatives. An IARC
of 1 indicates perfect recognition of imperative
NS as such, whereas an IARC of 0 signifies total
misinterpretation as declaratives. An IARC of 0.2
suggests 20 out of 100 NS imperatives are correctly
understood, with 80 misunderstood as declaratives.
Our goal is to explore NS parameter acquisition
in CoLAG English, considering these performance
limitations.

3.4 Growth of IARC
In this section, we develop a framework for quanti-
fying how the performance parameter IARC grows
as a function of age, measured here by the cumu-
lative utterances heard by a child at the end of age
range i (Ui). Recall that IARC is a probability
measure and hence is bound within the values 0

and 1. As discussed in Section 2.1, the average
values of IARC between the age ranges of 2;6-
2;11, 3;0-3;5 and 3;6-3;11 exhibit almost linear
growth (0.4 to 0.64 to 0.9). Thus, a natural way
to model IARC would be as a bound function of
Ui, 0 ≤ IARC ≤ 1 with IARC linearly increasing
with respect to Ui. One such approach is presented
in Equation (3), where m is the slope, and c is the
intercept of a linear function of IARC growth.

IARClinear(Ui) =





0 Ui ≤ − c
m

mUi + c − c
m ≤ Ui ≤ 1−c

m

1 Ui ≥ 1−c
m

(3)

In addition to the IARClinear function, we
also employ a logistic function implementation
of IARC, IARClogistic as shown in Equation (4)
bound by 0 and 1, with growth rate m and midpoint
c. The logistic function exhibits an s-shaped (sig-
moid) curve. For a sufficiently low m, the logistic
function behaves almost linearly across the mid-
point c and is asymptotic at the (0 and 1) endpoint
values.

IARClogistic(Ui) =
1

1 + e−m×(Ui−c)
(4)

3.5 Simulation of a 100 e-children
Building on the research presented in Pearl and
Sprouse (2021); Hart and Risley (1995, 2003),
our estimate is that by age 5;0, a child from a
professional-class background has been exposed
to 10,054,267 utterances. To depict the variabil-
ity among children noted in O&H’s Experiment 2,
we simulate 100 virtual children using a truncated
Gaussian age distribution for each age category
listed in Table 1, which specifies the minimum,
maximum, and mean ages. Constructing a trun-
cated Gaussian demands parameters such as range,
mean (µ), and standard deviation (σ). O&H pro-
vide age ranges and mean ages (µage) in Table 1,
but omit standard deviations for each group (σage).
We approximate these standard deviations (σage) as
0.1 for all age groups based on available age ranges.
According to Gleitman et al. (1984), imperatives
make up about 16% of the language input a child
receives until age 2. Earlier, Newport et al. (1977)
estimated an 18% imperative usage beyond age 2.
With IARC = 0, this reflects the expected level of
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(a) Frequency histogram of ages. (b) Frequency histogram of IARC values.

Figure 3: Performance of 100 e-children with a bin size of 20 and the Gaussian kernel estimation of the probability
density function (PDF) across 3 age groups generated using a truncated Gaussian distribution emulating O&H.

2;6-2;11 3;0-3;5 3;6-3;11

IARC Range 0-0.75 0.25-1 0.25-1

Tail end probability (< 0.25)
= 0.2

(> 0.75)
= 0.4

(< 0.75)
= 0.2

µIARC 0.4 0.64 0.9

σIARC 0.1785 0.43 0.179

Table 3: Table depicting the calculation of standard de-
viation of the Gaussian distribution of IARC parameter
over age ranges.

noise (imperatives misunderstood as declaratives)
encountered by the learner. Our simulations modu-
late the IARC parameter following Equations (3) or
(4), assuming an imperative exposure rate of 16%
up to age 2 (approximately 3,566,210 utterances)
and 18% thereafter.

Similar to the age data, O&H do not provide
the standard deviation of IARC (σIARC) for the
3 age groups. However, O&H do provide some
additional distributional data which can be used to
estimate the standard deviation. The O&H IARC
data, presented in Table 2, has been recast as dis-
tributional metrics in Table 3. We infer the tail end
probabilities of the IARC distribution from Table 2
in order to calculate the standard deviation (σIARC)
of each age group. We observe that for ages 2;6-
2;11, 20% of the children correctly interpret less
than 2 out of 8 imperatives (IARC value less than
0.25), i.e., the probability that IARC is less than
0.25, P (IARC) < 0.25, is 0.2 (20% of the chil-
dren). In addition, the mean IARC (µIARC) of this
age range is 0.4 as reported in Section 2.1. With

this tail end probability and the mean (µIARC),
the standard deviation of the Gaussian distribution
of the children’s IARC value (σIARC) for the age
range 2;6-2;11 was estimated to be 0.1785. The
tail end probabilities for the other age groups were
similarly inferred7 and the standard deviations of
all three age ranges are calculated and compiled in
Table 3.

Using the parameters discussed above, a trun-
cated Gaussian distribution in Scipy was used to
generate an age distribution and an IARC distribu-
tion using two growth functions — IARClinear

and IARClogistic, of a 100 e-children across 3
age groups as depicted in Figures 3a and 3b re-
spectively. After a 100 age and IARC values for
each of the three age groups were generated, we
sort the ages and the IARC values within each
group. To approximate the longitudinal devel-
opment of the IARC value for each e-child in
the pool of a 100 e-children, we generate three
(IARC, age) pairs for each e-child, one from each
age group, using the sorted IARC and age values.
The first (IARC, age) value in each of the three
lists is used to generate e-child 1, the second three
(IARC, age) pairs are used to generate e-child
2, etc. Using these three (IARC, age) pairs for
each e-child, the optimal parameters for the two
growth functions — IARClinear and IARClogistic

— were calculated as outlined previously in this sec-
tion. We then proceed to simulate the acquisition
of the NS parameter for each of the resulting 100
e-children.

7For the middle age group, the right tail was used rather
than the left.
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Algorithm 2 Simulation of one e-child incorporat-
ing IARC.
Gtarg is the target grammar IARC is the probability of
interpreting an imperative sentence correctly as an imperative
m and c are the optimal parameters for IARC growth
Gtarg ← CoLAG English, i.e., 0001001100011
IARC ← 0
num_sentences← 10,054,267, i.e., cumulative utterances
by age 5;0
for i in range(num_sentences) do

calculate IARC using m and c accordingly if i <
3, 566, 210, i.e., age < 2; 0 then

s← sentence from the target language with 16 per-
cent probability of being an imperative

end
else

s← sentence from the target language with 18 per-
cent probability of being an imperative

end
if s is imperative then

with probability of, 1-IARC, interpret s as a declara-
tive

end
Run SSVL on s

end

We conducted 2 experiments with a pool of 100
e-children employing the SSVL acquiring CoLAG
English with 2 growth functions IARClinear and
IARClogistic. The e-children were generated ac-
cording to the methodology described above. The
simulations used an aggressive rate (R) of 2×10−4

and a conservative rate (r) of 5× 10−6. 8 The NS
parameter weight / confidence values of these 100
e-children over time are plotted on the y-axis of
the graphs presented in Figures 4a and 4b with
the x-axis representing the number of cumulative
utterances encountered. To show the variation of
the e-children, all 100 are plotted with the fastest,
the slowest, and the median e-child, in terms of
convergence speed, demarcated.

4 Results

In the work of Orfitelli and Hyams (2012), a signif-
icant empirical discovery regarding developmental
constraints is presented, specifically focusing on
the differential interpretation of Null Subject (NS)
sentences between adults and children. The NS
stage arises from an intricate interplay of grammati-
cal and performance elements. The objective of the
study’s simulations is to replicate this early-stage
developmental constraint and the ensuing partial
learning observed over time. The objective was to
create electronic children, or e-children, whose lin-
guistic development could accurately reflect the

8The choice of learning rates was derived through trial and
error.

longitudinal findings of O&H. The simulations
were conducted using a specifically adapted varia-
tional learning model (SSVL) incorporating super-
set and subset language frameworks, alongside two
distinct models of IARC growth (IARClinear and
IARClogistic). The experiments with the SSVL
model (illustrated in Figures 4a and 4b) reveal a
particular behavior of the Null Subject parameter:
it begins at an initial value of 0.5, then swiftly as-
cends to approximately 0.8, before subsequently
declining, which mirrors the observed decrease in
the employment of null subjects among English-
speaking children. A minor resurgence occurs
around age 2;0 due to a simulated increase in imper-
ative sentence exposure experienced by an e-child,
as elaborated in Section 3.5. This phenomenon is
supported by findings from two distinct studies on
imperatives directed at young children, one before
the age of 2;0 and the other thereafter. Further-
more, we also performed simulations of the SSVL
model in a noiseless setting within the CoLAG en-
vironment acquiring NS-English. Under noiseless
conditions, SSVL demonstrates that the NS param-
eter promptly converges well before the e-children
reach 2;0, the age traditionally associated with the
onset of the NS stage.

5 Summary and Discussion

Orfitelli and Hyams (2012) observe that young
English-speaking children often misinterpret (sub-
jectless) imperative utterances as declaratives (e.g.,
Play with blocks.), which could potentially lead
them to initially acquire an NS grammar. The
present study computationally models the findings
of Orfitelli and Hyams (2012). More generally, it
establishes a framework for simulating a develop-
mental ‘performance parameter’ and its influence
on acquisition. The performance parameter rele-
vant to Orfitelli and Hyams (2012) and the compu-
tational work reported here we coin the Illocution
Ambiguity Resolution Coefficient (IARC) — a mea-
sure of a child’s ability to correctly disambiguate
between imperative and declarative illocutionary
force in utterances without a subject.

We computationally model the performance pa-
rameter IARC, based on empirical data from Or-
fitelli and Hyams (2012), and study its effect during
acquisition of the NS syntactic parameter. Employ-
ing a modified version of the Variational Learner
(VL, Yang 2002a, 2012), we simulate the change
over time in the confidence value associated with
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(a) IARClinear growth function (b) IARClogistic growth function

Figure 4: The SSVL employing the with learning rates R = 2× 10−4, and r = 5× 10−6 for 100 e-children. The
fastest, the slowest and the median e-children, in terms of convergence speed, are highlighted.

the NS parameter in simulated ‘e-children’ acquir-
ing an English-like language in an artificial lan-
guage domain (Sakas and Fodor, 2011). The VL
cannot reliably learn languages in superset/subset
relationships Sakas et al. (2017), which is critical
to modeling the acquisition of the NS parameter.
To employ the VL paradigm in this context, we
develop the Superset/Subset Variational Learner
(SSVL) — a version of the VL that can effectively
distinguish superset and subset grammars and suc-
cessfully acquire them.

Simulating 100 SSVL e-children employing two
growth functions of IARC, we observe that the
IARC parameter’s development over time affects
each growth function in a similar fashion: Imper-
fect learning of the NS parameter early on, cor-
rected later, converging on the obligatory-subject
target grammar. Based on the psycholinguistic data
presented in Orfitelli and Hyams (2012), one would
expect to see an adjustment in the English-speaking
child’s grammar away from an NS grammar, as
children grow to interpret subjectless imperative
sentences correctly as imperatives (as modeled by
the IARC parameter). The simulations conducted
in this study reflect this trajectory of the NS param-
eter, which supports the conjecture presented in
Orfitelli and Hyams (2012) — that the misinterpre-
tation of subjectless imperatives is indeed a likely
contributor to a child’s Null Subject (NS) stage.
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A Appendix

A.1 Convergence

Convergence is the learner’s arrival at a final gram-
mar hypothesis (Gtarg). The final grammar hy-
pothesis should license nearly all utterances of the
target language and generate the same set of sen-
tences. Under standard learnability assumptions,
convergence is defined as arriving at a static gram-
mar, i.e., one that will never change within a finite
amount of time after entertaining a series of gram-
mar hypotheses — Gold (1967), c.f., PAC-learning,
Valiant (1984).

Integrating finiteness into a criterion of success
is desirable in terms of formal learnability theory,
and from an empirical standpoint — developmental
psycholinguistic studies have established a period
during which language learning occurs rapidly and
apparently effortlessly. After this critical period
(Penfield and Roberts, 1959; Lenneberg, 1967), the
learner achieves a state of maturity with less plas-
ticity in terms of language development (i.e., the
learner converges on an adult grammar).

The implementation of this finiteness criterion
varies between studies. For example, in Sakas
et al. (2017) the criterion of successful conver-
gence for the variational learner was a parametric
weight threshold of 0.02 from the target parame-
ter setting for each parameter, and in the case that
the threshold was not met, the simulations were
stopped after an e-child encountered 2 million ut-
terances. Whereas, for the No-Defaults Learner in
Howitt et al. (2021), simulations ended after an ad
hoc number of sentences (500,000) were encoun-
tered by an e-child.

Pearl and Sprouse (2021, Appendix A, Table 9),
estimate the number of sentences a real child hears
between 2;4 and 5;0. They assume learning starts
at 2;4 and calculated that from 28 months to 5 years
a child from a professional family hears roughly
5,658,535 sentences. This calculation was based
on Hart and Risley (1995, 2003), who provide data
on how many sentences professional class parents
speak to their children and Davis et al. (2004) who
provide the average total daily sleep hours for chil-
dren. In our case, however, we assume acquisition
of the NS parameter starts at birth and estimate the
number of sentences from birth to 5;0. We used
Davis et al. (2004, Figure 1), which plots daytime
and nighttime sleeping hours to plot total waking
and total sleeping hours by age, see Figure 5.

Using the data presented in Figure 5, we esti-

mate the number of sentences a child hears from
birth to age 5;0. In order to develop the relevant
calculations, we adopted three assumptions:

1. The number of waking hours of a child at age
1 month is almost the same as at birth.

2. The number of utterances per hour spoken by
a parent to a child is uniform across all ages,
i.e., 487 (Hart and Risley, 1995, 2003).9

3. The increase in waking hours across age inter-
vals is linear.

When presenting our calculations, we employ
the following notation. The age period (ai) is the
difference in years, between two points delineating
a specified age range (i). The daily waking hours
(h1i to h2i ) are the waking hours at the two endpoints
of age range i. The total waking hours of a child in
age range i is represented by Hi. Total utterances
(ui) is the total number of utterances heard by the
child in age range i while the cumulative utterances
(Ui) is the total number of utterances heard by a
child from birth to the last date of age range i.

We now turn to how we calculate some of these
variables. To calculate total utterances in age range
i (ui), and subsequently cumulative utterances by
the end of age range i (Ui), we must first calculate
the total waking hours at that age range (Hi). Fig-
ure 5 gives the number of waking hours at specific
ages. Assuming the growth of waking hours be-
tween any two adjacent ages is linear (Assumption
3) — to calculate the total waking hours between
two adjacent ages, we compute the area under the
straight “line” of growth between the two age inter-
vals and multiply the area by the number of days
in a year (365), see Equation (5).

Hi =
(h1i + h2i )

2
× ai × 365 (5)

The total utterances at age range i (ui) is then
derived, under Assumption (2) by Equation (6):

ui = ⌈Hi × 487⌉ (6)

Finally, we can then calculate the cumulative ut-
terances at the end of age range i (Ui) using Equa-
tion (7):

Ui = Ui + Ui−1 (7)

9Pearl and Sprouse (2021) make a similar assumption.
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Figure 5: Average total daily sleep and waking hours for infants and young children. Data is taken from Davis et al.
(2004).

age range
(i)

0;0 to 0;6 0;6 to 1;0 1;0 to 2;0 2;0 to 3;0 3;0 to 4;0 4;0 to 5;0

age period
(ai)

0.5 0.5 1 1 1 1

daily waking hours
(h1i to h2i )

8.5-9.5 9.5-10.25 10.25-11 11-12 12-12.5 12.5-13

total waking hours
(Hi)

1,642.5 1,802.19 3,878.13 4,197.5 4,471.25 4,653.75

total utterances
(ui)

799,898 877,665 1,888,647 2,044,183 2,177,499 2,266,376

cumulative utterances
(Ui)

799,898 1,677,563 3,566,210 5,610,392 7,787,891 10,054,267

Table 4: Estimation of number of utterances encountered over different age ranges of child language acquisition.

The results of these calculations are presented in
Table 4. Following Pearl and Sprouse (2021), we
take the stopping point for our simulated e-children
to be 5;0. The number of cumulative utterances at
5;0 per our calculations is 10,054,267.

We can also approximate the number of cumu-
lative utterances heard by a child at any given age.
For example, to calculate the utterances heard by
a child at age 3.3 years, we first need to approxi-
mate the waking hours at that age. The difference
between the number of waking hours between ages
3;0 (12 waking hours) and 4;0 (12.5 waking hours)
is 0.5 hours. Since we assume linear growth, we
can approximate the number of waking hours at
age 3.3 years: 12.15 = 12 + (0.3 ∗ 0.5). From
Table 4, we know that the number of cumulative

utterances at age 3 years is 5,610,392. The total
utterances a child hears between 3 years and 3.3
years can be calculated according to Equations (5)
and (6), as is illustrated in (8):

1, 322.2 =
12 + 12.15

2
× 0.3× 365

643, 918 = ⌈1, 322.2× 487⌉
(8)

The cumulative utterances heard by age 3.3
years can then be calculated using Equation (7):
6, 254, 310 = 643, 918 + 5, 610, 392.

A.2 CoLAG domain details
Thirteen syntactic parameters were used to gener-
ate the languages and derivations in CoLAG (see
Table 5). The target parameter values of CoLAG
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Parameter List
Parameter Name Abbrev Target Value = 0.0 Target Value =1.0

Subject Position (SP) Initial Final
Headedness in IP (HIP) Initial Final
Headedness in CP (HCP) Initial Final
Optional Topic (OpT) Obligatory Topic Optional Topic
Null Subject (NS) No Null Subject Optional Null Subject
Null Topic (NT) No Null Topic Optional Null Topic
Wh-Movement (WhM) Wh-Insitu Obligatory Wh Movement
Preposition Stranding (PI) Obligatory Pied Piping Optional Preposition Stranding
Topic Marking (TM) No Topic Marking Obligatory Topic Marking
V to I Movemnt (VtoI) No VtoI Movement Obligatory VtoI Movement
I to C Movement (ItoC) No ItoC Movement Obligatory ItoC Movement
Affix Hopping (AH) No Affix Hopping Affix Hopping
Question Inversion (QInv) No QInversion Obligatory QInversion

Table 5: The 13 CoLAG parameters and their corresponding target values.

English are: 0001001100011 which corresponds
from left to right, the values of the thirteen parame-
ters in Table 5 from top to bottom. CoLAG English
has word order patterns made up of the following
lexical tokens: S, 01, 02, 03, P, Adv, Aux, Verb, not,
and never. These tokens correspond to subject, di-
rect object, indirect object, object of a preposition,
preposition, adverb, auxiliary, main verb, not and
never respectively. CoLAG sentence patterns also
have an overt (audible by e-children) illocution-
ary force feature: Q, DEC and IMP for questions,
declaratives and imperatives respectively. An ex-
ample English pattern in CoLAG is: S Aux V O1
[DEC] which might correspond to the natural lan-
guage sentence: ‘The little dragon is breaking the
wall.’.

CoLAG English has 360 distinct sentence pat-
terns, 180 declaratives, 36 imperatives, and 144
questions. The Null Subject (NS) parameter is the
parameter of interest here. If a CoLAG language is
generated with NS=0 (e.g., CoLAG English), then
every declarative and question has an overt subject.
If NS=1, two versions of an utterance are generated,
one with a subject and one without. The simulation
studies detailed in this study present declaratives,
questions, and imperatives to an e-child immersed
in a CoLAG English-like language. Declaratives
and questions are presented with overt subjects in
CoLAG English. In CoLAG, imperative word or-
ders universally do not have overt subjects.

A.3 Additional Algorithms

Algorithm 3 Variational Learner reward only.
for each wi in W do

set wi to 0.5.
end
for each input sentence s do

for i in range(n) do
with probability wi, parameter value pvi ← 1 with
probability 1− wi, parameter value pvi ← 0

end
Gcurr = [pv1 , ... ,pvn]
if Gcurr can parse s then

for wi in W do
adjust wi towards pvi using Equation (1) or (2);

end
end

Algorithm 4 Simulating the TVJ experiment for a
100 e-children
IARC-list1← sorted distribution of IARC for a 100 e-children
of ages 2;6-2;11
IARC-list2← sorted distribution of IARC for a 100 e-children
of ages 3;0-3;5
IARC-list3← sorted distribution of IARC for a 100 e-children
of ages 3;6-3;11
age-list1 ← sorted distribution of ages for a 100 e-children of
ages 2;6-2;11
age-list2 ← sorted distribution of ages for a 100 e-children of
ages 3;0-3;5
age-list3 ← sorted distribution of ages for a 100 e-children of
ages 3;6-3;11
for i in range (0 to 100) do

IARC1 ← IARC-list1[i]
IARC2 ← IARC-ist2[i]
IARC3 ← IARC-list3[i]
age1 ← age-list1[i]
age2 ← age-list2[i]
age3 ← age-list3[i]
Calculate optimal m and c using (IARC1, age1),
(IARC2, age2), (IARC3, age3)
Run Algorithm 2 with optimal m and c

end
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Abstract

Generic statements like A dog has four legs
are central to encode general knowledge. Yet
their form–meaning mapping remains elusive.
Some predicates sound natural with indefinite
singulars (a-generics), while others require the
definite article (the-generics) or the bare plural
(bare-plural generics). For instance, why do we
say The computer revolutionized education but
not A computer revolutionized education? We
propose a construction-based account explain-
ing why not all generic statements are created
equal. Prior accounts invoke semantic notions
like kind-reference, stage-levelness, or acciden-
tal generalization, but offer no unified expla-
nation. This paper introduces a new explana-
tory dimension: predicate collectivity level, i.e.
whether the predicate applies to each member
of a group or to the whole group as a unit (with-
out necessarily applying to each of its members
individually). Using two preregistered accept-
ability experiments we show that a-generics,
unlike the-generics and bare-plural generics,
are dispreferred with collective predicates. The
findings offer a functionally motivated, empir-
ically supported account of morphosyntactic
variation in genericity, providing a new entry
point for Construction Grammar.

1 Introduction

We interact meaningfully in the world on the ba-
sis of our knowledge of categories. A key reason
humans (and other animals) categorize entities is
to predict how to interact with new instances. In-
stances of a category tend to share properties with
other members of the same category and not share
properties with members of competing categories
(Rosch & Mervis, 1975).

One way humans explicitly inform others about
properties of categories is by using certain linguis-
tic constructions, regularly referred to as generic
statements. An aspect of generic statements that

has garnered a great deal of attention is that peo-
ple are willing to endorse generic statements even
when a property only holds of a minority of in-
stances. For instance, most people agree with the
statement in (1) (Pelletier & Asher, 1997; Leslie
et al., 2011), even though only adult female ducks
lay eggs.

(1) Ducks lay eggs.
Much interest in generic statements concerns

this fact, which distinguishes generics from uni-
versally quantified statements (All duck lay eggs).
As in example (1), generic categories are often ex-
pressed using a bare plural form and much work on
generics focuses on this type of generic (e.g., Carl-
son, 1977; Cohen & Erteschik-Shir, 1997, 2002;
Kiss, 1998; Nyugen, 2020).

However, generic expressions in English can be
expressed in alternative ways as well. In particular,
generic meaning can be expressed with the indef-
inite singular article (a) as in (2), which we refer
to here as a-generics. A third way of expressing
generic meaning involves the definite article (the)
with a singular noun as in (3), which we refer to
here as the-generics.

(2) A-generic: A duck lays eggs.
(3) The-generic: The duck lays eggs.
Languages rarely offer speakers a choice be-

tween constructions without the choice being
meaningful. The choice of one construction over
another may signal a different interpretation, con-
text, register, or dialect (Humboldt, 1999; Clark,
1987; Goldberg, 1995). And in fact, when distinct
generic constructions have been considered, re-
searchers have posited some functional distinction
or other between them.

In a comparison between a-generics and bare
plurals, Cohen (2001) argued that a-generics must
express a rule or a regulation. Bare plurals, in-
stead, may either express the same type of mean-
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ing, or simply describe the way things happen
to be. Others have likewise evoked the idea that
a-generics convey law-like, nonaccidental gener-
alizations (Greenberg, 2003), expressing neces-
sary (“analytic”) properties (Lawler, 1973; Burton-
Roberts, 1977).

Furthermore, it has been suggested that bare
plural generics but not a-generics are compati-
ble with conjunctions of predicates that refer to
equally good, but mutually incompatible charac-
teristic properties, none of which are satisfied by
the majority of the kind, as in example (4) (Nickel,
2008; Kirkpatrick, 2022):

(4a) Computers were invented in the 20th cen-
tury and perfected in the 21st century.

(4b) #A computer was invented in the 20th cen-
tury and perfected in the 21st century.

It is not the case, indeed, that most individual
computers were both invented in the 20th century
and perfected in the 21st century.

A-generics have been claimed to be further re-
stricted by disallowing “stage-level” predicates,
which take stages of individuals as arguments (Con-
doravdi, 1994), as in (5):

(5a) Penguins are endangered.
(5b) #A penguin is endangered.
Guerrini (2025) has recently argued that some

restrictions on a-generics—like not allowing for
accidental generalizations (see example 6c)—stem
from the claim that the singular indefinite form can-
not denote a “kind,” because kinds are inherently
plural entities.

A second research direction concerns the dis-
tinction between a-generics and the-generics. For
instance, Platteau (1980:121-122), suggesting that
the basic principles of definite and indefinite refer-
ence are also applicable to generic NPs, claimed
that indefinite generics “refer to a random element
of a certain species”, such that “the selected sam-
ple has the same default properties as all the other
members of the species”. On the other hand—they
claim—definite generics refer to one definite en-
tity, which is “the abstract representative of the
species”.

Later work by Krifka (1987) and Krifka et al.
(1995) distinguished the functions of indefinite
generics (“I-generics”) and definite generics (“D-
generics”) as follows.1 Definite generics can in-

1As will become clearer later, Krifka’s categories of “D-
generics” and “I-generics” are not to be equated with specific
grammatical forms such as the definite singular or the indef-
inite singular. Rather, definite generic NPs and indefinite

volve “kind” predicates (6a), i.e. predicates whose
subject is a kind; dynamic predicates (6b), i.e. non-
stative predicates (see also Heyer, 1985); or ac-
cidental properties (6c) (see also Lawler, 1973;
Burton-Roberts, 1977; Cohen, 2001; Greenberg,
2002, 2003). On the other hand, none of these
types of predicates is possible with indefinite gener-
ics (7a-c):

(6a) The lion is extinct.
(6b) The rat reached Australia in 1770.
(6c) The madrigal is popular.
(7a) ?A lion is extinct.
(7b) ?A rat reached Australia in 1770.
(7c) ?A madrigal is popular.
Krifka further argues that only indefinite gener-

ics can be applied to “kinds that are not well-
established,” providing the contrast in (8) (see also
Carlson, 1977):

(8a) ?The lion with three legs is ferocious.
(8b) A lion with three legs is ferocious.
As for the forms, according to Krifka (1987),

singular definites, plural definites and taxonomic2

generics belong to the class of “D-generics”, while
singular indefinites belong to the class of “I-
generics”. Bare plurals and bare singular gener-
ics, instead, have none of the restrictions just men-
tioned (see also Krifka, 2003), occurring in both
classes, as shown in the following examples:

(10a) Lions are extinct.
(10b) Bronze was invented before 2000 B.C.
(11a) Rats reached Australia in 1770.
(11b) Rice was introduced in East Africa some

centuries ago.
(12a) Madrigals are popular.
(12b) Music is popular.
(12a) Lions with three legs are ferocious.
(12b) Gold which is hammered flat is precious.
Overall, within this system, D-Genericity has

been analyzed as “reference to kinds, which is
NP-oriented”, i.e. dependent on the type of noun
phrase (13a); and I-genericity has been analyzed as
“default quantification” which has scope over the

generic NPs merely serve as their most typical realizations
(Krifka, 1987: 4).

2Taxonomic generics have been claimed to have them-
selves different forms, and to refer to subspecies of a kind
(Galmiche, 1985), as in the following examples:

(9a) One lion, namely the Asian lion, is nearly extinct.
(9b) This lion (the Asian lion) is nearly extinct.
(9c) The rice they grow in East Africa needs little water.
A detailed treatment of their possible forms lies beyond the

scope of this paper.
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VP as well (Krifka, 1987), occurring in “charac-
terizing sentences” (13b), i.e. generalizations over
groups of particular episodes of facts (Krifka et al.,
1995). Krifka et al.’s proposal also allows for kind-
referring NPs to occur in characterizing sentences
(13c), recognizing potential overlaps in both form
and meaning between I-generics and D-generics:

(13a) The potato was first cultivated in South
America.

(13b) A potato contains vitamin C, amino acids,
protein and thiamine.

(13c) The potato is highly digestible.
In our work, instead, we distinguish three

types of generic constructions, which we refer to
simply as a-generics, the-generics and bare-plural
generics. This differs from Krifka’s use of the
labels “I-generics” and “D-generics”, because
we presume that the morphology provides an
invitation to identify functional categories, and our
goal is to determine what those categories are.

As for experimental work, Driemel et al. (2025)
presented cross-linguistic evidence based on an ac-
ceptability judgements study testing singular def-
inite, singular indefinite, bare plural, and definite
plural generic forms. Their results show that bare
plurals are preferred in English and German for
kind- and characterizing-level readings, while defi-
nite plurals dominate in Romance and Greek. Al-
though from their graph it is possible to note that
definite singulars are preferred over indefinite sin-
gulars for kind reference, the authors do not explic-
itly mention it.

We are unaware of other prior experimental
work testing distinctions among generic mor-
phosyntactic forms, with the exception of Fuel-
lenbach et al. (2019), who hypothesized that a-
generics prefer normative or essential predicates
(“principled”: e.g. A fep has red wings) rather
than incidental predicates (“statistical”: e.g. A fep
throws glow sticks). In a two-alternative forced
choice task, child and adult participants were first
exposed to an image of a target novel animal (e.g.,
a kevta) followed by a statement of one of four
types:

Kevtas / A kevta / The kevta / This kevta wears
scarves.

Participants were then asked: Which one of these
is also a kevta? Only one of the images contained
the same novel animal with the predicated prop-
erty (e.g., a kevta wearing a scarf). Of interest was

whether participants would interpret the statement
as generic, in which case other instances of the
same category should also share the same prop-
erty (e.g., wear a scarf). The-generics were instead
predicted to lead to lower generalisability with sta-
tistically connected property, but not necessarily to
higher generalisability with principled properties3.
They also predicted that bare plural subjects would
support both principled and statistical properties
equally well. Results showed that participants were
more likely to treat the statement as generic when
the predicate was normative or essential (e.g., “has
red wings”) than when the property was incidental
“throws glow sticks”) regardless of the morphosyn-
tactic form of the statement.

2 Hypotheses

Much prior work on genericity has focused on the
semantic compatibility between generics and cer-
tain types of predicates. Building on this literature,
we hypothesize that a key factor influencing the
acceptability of different generic constructions lies
in whether the predicate is construed as applying
to an individual or to a group. This distinction
amounts to the well-known contrast between dis-
tributive and collective predicates. A distributive
predicate applies individually to each member or
subset of a group (or parts of an entity), while a
collective predicate applies to a group or entity
as a unit, without necessarily applying to each of
its members individually (Link, 1983; Landman,
1989; Champollion, 2020).

For instance, the quantifiers each and every re-
quire a distributed interpretation, while all allows
for a collective interpretation. That is, the state-
ments in (14a) describe some very strong children,
while (14b) allows an interpretation in which the
children acted as a group to raise the turkey.

(14a) Distributive: Each / Every child lifted a
100 pound turkey.

(14b) Collective: All the children lifted a 100
pound turkey.

We hypothesized that the critical distinction be-
tween a-generics and the-generics is similar. Since
the indefinite singular determiner, a, evokes a sin-
gle indefinite individual, a-generics require predi-
cates that can be construed as applying to (most)

3The author claimed that this pattern is similar to the one
predicted for a-generics, but they expected the-generics to be
rated lower overall, due to their overall more restricted use.
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any4 individual of the category. The meaning of
a-generics, is motivated, on this perspective, by
the fact that the predicate applies to any randomly
selected individual of a category.

The definite singular determiner, the, on the
other hand, generally combines with identifiable,
specific nouns rather than any randomly selected
member of a group. Therefore the-generic inter-
pretations cannot be motivated in the same way
as a-generics. Instead, we hypothesized that the-
generics predicate a property of a clearly identifi-
able group or kind.

Construction a-generics the-generics
Morphosyntactic

Form
[A N’] VP [The N’] VP

Functional
Constraints

VP predicate is
construed to ap-
ply to a ran-
domly selected
instance of the
category N’

VP predicate is
construed to ap-
ply to the cate-
gory as a collec-
tive or group

Table 1: Two hypothesized generic constructions in

English

To understand the claims in Table 1, consider the
pairs of sentences in (15) and (16). As confirmed
by norming, described in the next section, (15) in-
volves a collective predicate and (16) a distributive
predicate. We predict that collective predicates
will be rated more acceptable with the-generics
(e.g., 15a) than with a-generics (15b), while dis-
tributive predicates will be rated more acceptable
with a-generics (e.g., 16a) than with the-generics
(16b):

Predicate construed to apply to a collective:
(15a) The bee pollinates crops across the

globe.>
(15b) A bee pollinates crops across the globe.
Predicate construed to apply to (randomly cho-

sen) individuals:
(16a) A bee dies after it stings. >
(16b) The bee dies after it stings.
In this paper we test in two preregistered stud-

ies5 the prediction that the distinction between col-
lective and distributive readings impacts English
speakers’ preference for the- vs. a-generics. The
derivations of this prediction can be schematized
as follows:

4We include “most any” here because of the well-known
fact that generic statements need not hold of every single
instance of a group to be judged felicitous (e.g. A duck lays
eggs).

5Link to the preregistrations:
https://aspredicted.org/hs5y-b6p7.pdf

i) a-generics favor predicates that apply to
randomly chosen individual instances of a cat-
egory: a-generics will be judged less acceptable
when combined with properties that apply to a cat-
egory construed as a collective.

ii) the-generics favor predicates that apply
to a specific, clearly identifiable category: the-
generics will be judged more acceptable when com-
bined with properties that apply to a category con-
strued as a collective.

iii) bare plurals display neither restriction.

Our proposal draws inspiration from Platteau’s
(1980) distinction between reference to a random
element of a certain species and reference to the
abstract representative of the species. We also take
up Krifka’s (1987) call for a functional distinc-
tion between types of genericity, but reinterpret
it within a constructional perspective, associating
functional distinctions with morphosyntactic dis-
tinctions. Note also that predicate collectivity is
orthogonal to kind-reference in the sense described
by Krifka (1987): while kindhood concerns the
referential status of the NP, collectivity captures
how the VP applies across instances.

In sum, previous accounts have identified a wide
range of semantic constraints on a-generics. Rather
than replacing earlier insights, our findings identify
a new explanatory dimension, i.e. predicate col-
lectivity, proposing a novel empirically-grounded
and morphosyntactically-oriented perspective on
genericity.

3 Experiment 1

To test these predictions empirically, we conducted
two experiments. Experiment 1 focused on how
predicate collectivity influences the acceptability
of a- vs. the-generics across a range of naturalistic
sentences.

3.1 Methods

Participants. 79 native English speakers were re-
cruited via Prolific (47F, 32M; M = 38.2 yrs) to pro-
vide acceptability ratings. As planned, participants
who failed to accurately rate acceptable fillers
higher than unacceptable fillers were excluded
from analyses (mean rating unacceptable fillers ≥
mean rating acceptable fillers). This proved a strin-
gent criterion and 23 participants were excluded,
resulting in 56 participants included in the analysis.
Because of the high number of exclusions, we also
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ran the analyses on all participants. Results on the
predicted interaction did not change and can be
found in Appendix A.
Materials. We constructed 12 English predicates
(verb phrases) and count nouns in subject position
(e.g., [computer] has transformed education) (see
Appendix B for items). Twenty-four stimuli were
then created by instantiating each noun phrase in
two versions: with an a-generic (e.g., A computer
has transformed education), and with a the-generic
(e.g., The computer has transformed education).
We additionally included 6 filler items. Each filler
was a generic sentence with a bare plural subject; 3
fillers were intended to be fully acceptable, while
three others deliberately contained grammatical
errors. The latter served as attention checks and
exclusion criterion. To quantify the degree of col-
lectivity vs distributivity, we normed each of the 12
predicates combined with bare plural subjects. For
this, a separate group of 22 native English speakers
was recruited via Prolific and paid for their time
to perform a forced-choice task asking whether
each sentence was about individuals or groups. An
example is provided in Figure 1:

Figure 1: An example of the task in the norming experiment.

Participants who always responded with the
same answer (n = 5) were excluded. The mean pro-
portion of “group” responses from the remaining
participants for each item was then used as predic-
tor in the statistical analysis. This is a collectivity
score, and ranged between 0 and 1. Predicates and
their corresponding collectivity scores are reported
in Appendix B.
Procedure. Each participant rated the acceptabil-
ity of one version of each sentence (either an a-
generic or the-generic), on a 7-point Likert scale,
with generic type counterbalanced across partici-
pants. We further subdivided items so that each
participant judged 6 target sentences: 3 a-generics
and 3 the-generics, along with the 6 filler sentences.
Items were presented in a randomized order for
each participant. Instructions are provided in Fig-
ure 2.

An alternative design would have been to present

participants with both versions of each sentence
(with an a-generic and with a the-generic) and ask
them to rank the two sentences of the pair for ac-
ceptability. A within-subjects setup of this kind typ-
ically affords greater statistical power by reducing
variability across participants. However, exposure
to one version would likely influence judgments of
the other, turning the task into a relative rather than
independent assessment. To avoid this, we adopted
a design in which each participant was exposed
to only one version of a given sentence, rating it
independently of its alternative.

Figure 2: Instructions for Experiment 1.

3.2 Results

Results confirmed the hypotheses that a-generics
and the-generics display different distributional
patterns, and that a-generics were judged more
acceptable when combined with a predicate that
was more likely to be interpreted as applying to
individuals (i.e., lower collectivity), rather than
groups. This is shown in Figure 3.

Figure 3: Acceptability ratings (1–7) as a function of collec-
tivity scores (0–1) for a-generics and the-generics. Each point
represents an individual response. Solid lines depict linear fits
for each article type. Collectivity scores, normed separately,
capture the degree to which a predicate was judged to refer to
a collective vs. individual property. The figure illustrates that
article acceptability interacts with collectivity, with a-generics
associated with lower acceptability as collectivity increases.
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This was confirmed with the planned cumulative
link mixed-effects model (using the ordinal pack-
age in R [Christensen, 2019]. The output was raw
acceptability ratings on the Likert scale. Article
(the vs. a) and degree of collectivity were included
as fixed interacting factors. Random intercepts and
slopes for collectivity level were included by par-
ticipant, while by-item random effects included
intercepts and random slopes for article.

The model was fit to 342 observations (log-
likelihood = –434.60; AIC = 901.21). The pre-
dicted interaction between article and predicate
type was significant (β = 2.45, SE = 0.92, z = 2.66,
p = .0077). Specifically, when the article was a, in-
creasing collectivity scores significantly decreased
acceptability ratings (β = –1.68, SE = 0.66, z =
-2.56, p = .0105). A likelihood ratio test comparing
the full model with article–collectivity interaction
to a reduced additive model confirmed that includ-
ing the interaction significantly improved model fit
(χ2(1) = 5.8367, p = .0157), justifying its inclu-
sion.

To examine this interaction more closely, we
then fit separate models for a-generics and the-
generics sentences6. For a-generics sentences,
acceptability ratings decreased as collectivity in-
creased, with a marginally significant negative ef-
fect of collectivity (β = –1.81, SE = 0.95, z = -1.9,
p = .057). In contrast, for the-generics, collectiv-
ity showed a positive but non-significant effect on
ratings (β = 0.48, SE = 0.79, z = 0.6, p = .546).

Taken together, these results indicate that the
significant interaction observed in the full model is
primarily driven by the sensitivity of a-generics to
collectivity, whereas the-generics appear robust to
this variation.

3.3 Discussion

Our results provide evidence that the morphosyn-
tactic form of generic statements motivates their
constraints. Specifically, as the predicate’s col-
lectivity score increased, a-generics significantly
decreased in acceptability, as predicted by the con-
straint hypothesized in Table 1. As for the-generics,
although the effect of collectivity did not reach sta-
tistical significance, the positive trend in the data
warrants further investigation.

The contrast between collective and distribu-
tive predicates recalls Krifka et al.’s suggestion

6In doing so, we had to drop the random slope for article
by item due to convergence issues.

(1995; see also Krifka, 1987; Guerrini, 2025) that
a-generics do not allow subjects that refer to kinds.
The current proposal goes beyond this observa-
tion in several ways. First, we demonstrate that
a-generics disprefer not only kind-level predicates
(as suggested by Krifka et al., 1995), but collec-
tive predicates more broadly. This includes cases
that do not involve reference to kinds per se. For
instance, a-generics are rated significantly less ac-
ceptable with predicates such as pollinates crops
across the globe or hunts in packs (e.g., A bee
pollinates crops across the globe, A wolf hunts in
packs), both of which attribute properties to the col-
lective behaviour of a cateogry. Secondly, we show
that not only do a-generics disprefer predicates
that apply to groups, we positively characterize the
type of interpretation a-generics prefer: a-generics
prefer predicates that apply to a randomly selected
instance of a category. Furthermore, we motivate
why the a-generic construction patterns the way
it does: the conventional referential profile associ-
ated with indefinite NPs in English helps explain
its functional constraints in generic interpretation.
As a result, we predict that languages with analo-
gous morphosyntactic distinctions (e.g., indefinite
singular vs. definite singular forms) will exhibit
similar distributional tendencies, and that reversed
patterns would be typologically rare or marked.

4 Experiment 2

While Experiment 1 confirmed our core prediction,
it left open the behavior of bare-plural generics.
Experiment 2 introduces this additional form to
evaluate whether it patterns more like the-generics
or a-generics in its sensitivity to predicate collec-
tivity.

4.1 Methods

Participants. We recruited 116 native English
speakers via Prolific (68F, 45M, 2NB; M=37yrs).
As planned, participants whose mean rating of
three ungrammatical catches was equal to or higher
than the mean rating of grammatical bare plurals
were excluded from analyses (n = 25, excluded).
Reported analyses were therefore run on 91 partic-
ipants.
Materials. The same a-generic and the-generic
sentences used in Experiment 1 were included,
now along with a bare plural generic as well (e.g.,
Computers have transformed education). Since
bare-plural generics were a new condition, we re-
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duced the 6 filler sentences in Experiment 1 to 3
ungrammatical catch trials (all in bare plural form).
As in Experiment 1, these 3 sentences served as at-
tention checks and exclusion criterion. The stimuli
can be found in Appendix C.
Procedure. The procedure for this experiment was
the same as in Experiment 1 (participants were
asked to rate each sentence’s acceptability on a
7-point Likert scale). Each participant saw one ver-
sion of each sentence (either with a-generic, the-
generic or bare plural generic), with article type
counterbalanced across participants. We further
subdivided items, so that each participant judged
6 target sentences—2 the-generics, 2 a-generics
and 2 bare-plural generics, from one of six lists,
assigned randomly, along with the 3 catch trials.
Items were presented in a randomized order for
each participant.

4.2 Results

Results again confirmed that the perceived natural-
ness of generic noun phrases is modulated by the
collective properties of the predicate. As shown
in Figure 4, a-generics received the highest ac-
ceptability ratings when combined with predicates
that were less collective, while receiving the low-
est acceptability with predicates that were more
collective. Bare-plural generics and the-generics
trended toward greater acceptability with more col-
lective predicates, though this effect did not reach
significance in isolation.

Figure 4: Acceptability ratings (1–7) as a function of col-
lectivity scores (0–1) for a-generics, the-generics and bare
generics. Each point represents an individual response. Solid
lines depict linear fits for each article type. Collectivity scores,
normed separately, capture the degree to which a predicate
was judged to refer to a collective vs. individual property. The
figure illustrates that article acceptability interacts with col-
lectivity, with a-generics associated with lower acceptability
as collectivity increases.

This was confirmed with the planned cumulative
link mixed-effects model (fitted using the ordinal
package in R; Christensen, 2019). The output was
raw acceptability ratings on the Likert scale. Arti-
cle (definite singular vs. indefinite singular vs. bare
plural) and degree of collectivity were included as
fixed interacting factors. Random intercepts and
slopes for collectivity were included by participant,
while by-item random effects included intercepts
and random slopes for article. The model was fit to
546 observations (log-likelihood = –682.52; AIC =
1407.04). The predicted interaction between article
type and predicate collectivity was statistically sig-
nificant. While a-generics showed a negative effect
of collectivity on acceptability (β = –2.03, SE =
0.9482, z = -2.137, p = .033), both bare and the-
generics showed significantly more positive slopes
compared to a-generics (β = +3.02, SE = 1.09, z
= 2.76, p = .006, and β = +3.06, SE = 1.13, z =
2.71, p = .007, respectively), reversing the trend.
Separate models for each article type7 replicated
what we saw in Experiment 1: a-generics showed
a moderately significant decrease in acceptability
as collectivity increased (β = –1.62, SE = 0.93, z
= -1.735, p = .083). The-generics and bare plurals
numerically trended in the opposite direction, but
there was no significant effect of collectivity on
acceptability for either the-generics (β = +1.27,
SE = 0.80, z = 1.58, p = .114) or bare-generics
(β = +0.41, SE = 0.69, z = 0.60, p = .551).

4.3 Discussion

This second experiment builds on Experiment 1
by introducing bare-plural generics, thereby allow-
ing us to assess how they pattern with respect to
predicate collectivity level. The results replicate
the core finding from Experiment 1: a-generics
decrease in acceptability as predicate collectivity
increases, aligning with previous proposals that
they are anchored in random instance interpreta-
tion. On the other hand, the-generics exhibit the
opposite trend, albeit non-significantly when tested
in isolation. Bare-plural generics show a positive
trend similar to the-generics, suggesting they may
prefer collective predicates more than a-generics.
Crucially, although the positive effects of collectiv-
ity on the- and bare-plural generics did not reach
significance in isolation, the interaction structure

7In fitting separate models for each article type, we had
to drop the random slope for article by item and the random
slope for collectivity level by participant, due to convergence
issues.
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of the model shows that their behavior is reliably
distinct from that of a-generics.

This supports the broader claim that the mor-
phosyntactic form of generic constructions mod-
ulates how it interacts with the properties of the
predicate. This distinction helps motivate why lan-
guages differentiate morphosyntactic strategies for
expressing genericity: each form carries its own
functional constraints—whether tight or loose.

5 Conclusion

The findings presented in this paper provide the
first experimental evidence that genericity is sen-
sitive to constructional variation. By systematical
comparisons, we demonstrate that different mor-
phosyntactic forms are not interchangeable. In-
stead, each encodes distinct functional constraints
motivated by more typical uses of the same forms.
In particular, unlike the-generics and bare-plural
generics, a-generics tend to combine with VPs
predicating a property of any individual member of
a category, but not of a collectivity. These findings
support the Construction Grammar insight that it
is constructions (i.e. form-meaning pairings), and
not merely lexical items or semantic content, that
shape interpretive possibilities.

Other factors may plausibly influence the
choice between a-generics, the-generics and bare-
plural generics. For instance, noun type (e.g.
mass/count), register, or information structure
might modulate acceptability judgments. Future
research could explore how these factors inter-
act with predicate collectivity level, possibly by
extending the stimuli dataset. Future work may
also investigate how morphosyntactic distinctions
correlate with collectivity in other languages, and
whether such patterns can be captured or induced
in Large Language Models.

While preliminary, these findings lay the foun-
dation for a broader empirical research agenda fo-
cused on genericity as a construction-sensitive phe-
nomenon.
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Appendices

A Analysis without exclusions (Exp. 1)

For this analysis, we fitted the same model as the
one with exclusions, with the only exception that
we had to drop the random intercept for item due to
convergence issues. The model was fit to 486 obser-
vations (log-likelihood = –633.68; AIC = 1297.36).
The predicted interaction between article and pred-
icate type was significant (β = 2.04, SE = 0.84, z
= 2.42, p = .0153).

We then fitted separate models for a-generic
and the-generic sentences. Due to convergence
issues, we simplified the random-effects structure
by dropping the random slope for article by item.
A-generics sentences showed negative but non-
significant effects of collectivity on acceptability
ratings (β = –0.75, SE = 0.81, z = -0.92, p =
.358). In contrast, for the-generics, collectivity
showed a positive but non-significant effect on rat-
ings (β = 0.76, SE = 0.65, z = 1.16, p = .243).
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B Sentence Stimuli for Experiment 1

Item TARGET SENTENCES Collectivity
Score

1
The wolf hunts in packs.

0.94
A wolf hunts in packs.

2
The wolf sharpens its teeth on bones.

0.41
A wolf sharpens its teeth on bones.

3
The bee pollinates crops across the globe.

0.65
A bee pollinates crops across the globe.

4
The bee dies after it stings.

0.12
A bee dies after it stings.

5
The airplane revolutionized global travel.

1.00
An airplane revolutionized global travel.

6
The airplane lowers its gear before landing.

0.59
An airplane lowers its gear before landing.

7
The computer has transformed education.

0.94
A computer has transformed education.

8
The computer boots up in seconds.

0.29
A computer boots up in seconds.

9
The elephant is the largest land animal.

0.65
An elephant is the largest land animal.

10
The elephant flaps its ears to cool down.

0.41
An elephant flaps its ears to cool down.

11
The microwave modernized home cooking.

0.94
A microwave modernized home cooking.

12
The microwave heats food in minutes.

0.47
A microwave heats food in minutes.

FILLER SENTENCES

Cats purr them when they are content.

Birds build nests in spring.

Students often study late before exams.

Phones distract to people during meetings.

Doctors help to patients managing pain.

Plants grow faster in sunlight.

C Sentence Stimuli for Experiment 2

Item TARGET SENTENCES Collectivity
Score

1

The wolf hunts in packs.

0.94A wolf hunts in packs.

Wolves hunt in packs.

2

The wolf sharpens its teeth on bones.

0.41A wolf sharpens its teeth on bones.

Wolves sharpen their teeth on bones.

3

The bee pollinates crops across the globe.

0.65A bee pollinates crops across the globe.

Bees pollinate crops across the globe.

4

The bee dies after it stings.

0.12A bee dies after it stings.

Bees die after they sting.

5

The airplane revolutionized global travel.

1.00An airplane revolutionized global travel.

Airplanes revolutionized global travel.

6

The airplane lowers its gear before landing.

0.59An airplane lowers its gear before landing.

Airplanes lower their gear before landing.

7

The computer has transformed education.

0.94A computer has transformed education.

Computers have transformed education.

8

The computer boots up in seconds.

0.29A computer boots up in seconds.

Computers boot up in seconds.

9

The elephant is the largest land animal.

0.65An elephant is the largest land animal.

Elephants are the largest land animals.

10

The elephant flaps its ears to cool down.

0.41An elephant flaps its ears to cool down.

Elephants flap their ears to cool down.

11

The microwave modernized home cooking.

0.94A microwave modernized home cooking.

Microwaves modernized home cooking.

12

The microwave heats food in minutes.

0.47A microwave heats food in minutes.

Microwaves heat food in minutes.

FILLER SENTENCES

Cats drink quickly milk.

Students study often late before exams.

Doctors help to patients managing pain.
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Abstract
Constructional approaches to language have
evolved from rigid tree-based representations
to framing constructions as flexible, multidi-
mensional pairings of form and function. How-
ever, it remains unclear how to formalize this
conceptual shift in ways that are both computa-
tionally scalable and scientifically insightful.
This paper proposes dynamic tensegrity – a
term derived from “tensile integrity” – as a
novel architecture metaphor for modelling lin-
guistic form. It argues that linguistic structure
emerges from dynamically evolving networks
of constraint-based tensions rather than fixed
hierarchies. The paper explores the theoretical
consequences of this view, supplemented with
a proof-of-concept implementation in Fluid
Construction Grammar, demonstrating how a
tensegrity-inspired approach can support ro-
bustness and adaptivity in language processing.

1 Introduction

Since its conception in the 1980s, Construction
Grammar has evolved from a bold challenger of
the field’s core-periphery distinction into one of the
most widely adopted frameworks in contemporary
linguistics. The constructional idea – that all lin-
guistic knowledge can be described as pairings of
form and function, called constructions – collapsed
the traditional boundaries between rules and excep-
tions, and between lexicon and grammar (Fillmore,
1988, 1989; Fillmore et al., 1988).

As the field shifted from more traditional, static
descriptions towards dynamic usage-based ap-
proaches (Bybee and Thompson, 2000; Langacker,
2000; Goldberg, 2006), the initial conception of
constructions as constituent trees was replaced
by a view of them as multidimensional structures
(Fried and Östman, 2004; van Trijp, 2016; Gold-
berg, 2019). However, it has proven difficult to
formalize this conceptual shift in a computation-
ally scalable and scientifically interpretable way.

Most current analyses in construction grammar
still rely on tree-like or slot-filler architectures in-
herited from earlier paradigms. While these models
are useful for static descriptions of linguistic struc-
ture, they are not adapted for handling the fluidity
and adaptivity required for usage-based models.
In response, several researchers have begun to in-
vestigate the relevance of Large Language Models
(LLMs; Goldberg, 2024; Piantadosi, 2024); but al-
though LLMs undeniably offer new possibilities,
their lack of explicit structures makes them difficult
to interpret – particularly for formulating scientific
generalizations about how constructions contribute
to meaning-making in situated interactions.

This paper aims to complement this modeling
landscape by offering an explicit, constraint-based
account of linguistic structure that unifies fluidity
and robustness, while remaining fully interpretable
for the human researcher. More specifically, we
propose dynamic tensegrity – a structural principle
used in architecture, robotics, and some biological
models to explain how systems maintain stability
through distributed tension and compression – as a
novel metaphor for describing linguistic form.

Rather than representing linguistic structure as a
rigid hierarchy, we model it as an evolving network
of interdependent constraints held in a dynamic
equilibrium. In this view, constructions combine
to build structures that self-stabilize through on-
going resolution of interdependent morphosyntac-
tic, semantic and pragmatic constraints, much like
tensegrity structures distribute mechanical forces
across the system to preserve structural balance.

We explore the theoretical consequences of this
reframing and present a proof-of-concept imple-
mentation in Fluid Construction Grammar (FCG
Steels, 2004, 2011; van Trijp et al., 2022; Beuls
and Van Eecke, 2026), an open-source computa-
tional platform explicitly designed for developing
adaptive yet robust models of language processing.
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2 The Case for Constructional Integrity

All complex systems – whether biological, architec-
tural or computational – require components that
can sustain their integrity under dynamic condi-
tions. In linguistics, however, integrity has often
been misinterpreted as rigidity: as something that
must remain fixed or untouched. In reality, integrity
is what enables a system to maintain structural co-
herence while remaining flexible enough to func-
tion under pressure. In this section, we argue that
this systems-level insight requires us to rethink the
nature of grammatical structure. We propose con-
structional integrity as a foundational principle
that explains how language can be both stable and
adaptive – capable of preserving meaningful struc-
ture while dynamically responding to the demands
of communication.

2.1 Integrity Misunderstood
During the heydays of transformational syntax,
Noam Chomsky (1970) famously introduced the
“lexicalist hypothesis”, proposing a strict separa-
tion between word formation (morphology) and
sentence formation (syntax). According to this
view, the morphological component produces lex-
ical items as ready-made parts, which are then
arranged into syntactic configurations by phrase
structure rules and transformations. By enriching
the lexicon and minimizing the burden on syntax,
Chomsky aimed to advance his broader goal of
developing a theory of Universal Grammar.

The Lexicalist Hypothesis influenced the field far
beyond transformational syntax, and led to the for-
mulation of the Lexical Integrity Principle (Wa-
sow, 1977; Lapointe, 1980), which Haspelmath and
Sims (2010, p. 203) define as follows:

“Rules of syntax can refer/apply to entire
words or the properties of entire words,
but not to the internal parts of their words
or their properties.”

The Lexical Integrity Principle is committed to
rigidity: words are treated as atomic units that can
be rearranged but not internally modified. At first
glance, this seems plausible. Words do exhibit a
cohesiveness that larger structures seem to lack.
Take the sentences in (1), from Goldberg (2006, p.
21), which preserve the same underlying argument
structure – an agent (Nina) transferring a patient (a
dozen flowers) to a recipient (her mother) – despite
differences in surface order.

(1) a. Nina sent her mother a dozen flowers.
b. A dozen flowers, Nina sent her

mother!

In lexicalist approaches, these argument structure
relations are already determined in the meaning of
the verb. Surface alternations are then explained
through transformations of a shared deep structure
(e.g. Haegeman, 1994), or through lexical rules that
modify the verb’s syntactic behaviour (Briscoe and
Copestake, 1999).

Constructional approaches, however, take a dif-
ferent view. According to Goldberg (2006), the
argument structure relations in both sentences are
contributed not by the verb alone, but by the Ditran-
sitive construction – a more abstract argument struc-
ture construction that expresses Caused-Transfer
semantics. Word order differences are attributed
to the interaction of this construction with others –
such as the topicalization construction – to satisfy
discourse-pragmatic needs. In this view, meaning
and structure are not projected from verb-centered
templates, but emerge from the dynamic composi-
tion of constructions in context.

More importantly, the constructional view does
not treat the Ditransitive construction as a rigid,
phrase-structural template. Instead, it assumes a
high degree of structural flexibility: the construc-
tion can be used in various configurations, such as
topicalization or clefting, while preserving its core
semantic function of indicating who does what to
whom.

This kind of flexibility requires a form of in-
tegrity that we observe in living systems as well:
the ability to maintain functional coherence while
adapting to functional pressures. A clear illustra-
tion is the biological cell. As Huang et al. (2006,
p. 290) note, “death of both cells and whole organ-
isms is characterized by a rapid increase in rigidity
(rigor mortis), with a complete loss of the flexi-
bility that dominates the living state. Thus, this
unification of robustness with flexibility, both in
terms of cell structure and behavior, is a hallmark
of complex living systems.”

Crucially, while the rigid principle of Lexical
Integrity has already been shown to be empirically
inadequate (Bruening, 2018), we will argue that
this kind of dynamic integrity is not a property of
the lexicon alone, but of all constructions more
broadly – including those that handle argument
structure, information packaging, and discourse-
level coordination.
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2.2 Constructional Integrity in Action

Let’s illustrate Constructional Integrity through
some examples, starting with (2), which shows
ellipsis in the coordination between hand-drawn
and computer-drawn:

(2) Do you prefer hand- or computer-drawn
animation?

This example violates the Lexical Integrity Princi-
ple, which prohibits syntactic operations from tam-
pering with the internal structure of words. Here,
the coordination construction must elide the second
component of hand-drawn.

From the perspective of Constructional Integrity,
however, such cases are not exceptions anymore.
Constructions are mappings between form and
function, where the form itself plays a diagnos-
tic role: it enables language users to detect which
constructional knowledge to activate (Croft, 2001).
Morphological constructions are typically recog-
nizable by their specific arrangement of phonemes,
while syntactic constructions – such as the En-
glish passive construction – are typically recog-
nizable by surface patterns (e.g. auxiliary-have +
ed-participle).

In most contexts, removing drawn from hand-
drawn would indeed be detrimental: it would ren-
der the construction unrecognizable, disrupting its
communicative function. In the coordinated phrase
in (2), however, functional integrity is preserved.
The structural “load” is shared with computer-
drawn, which enables the listener to reliably re-
construct the full concept underlying hand-drawn
despite the omission.

Moreover, the ellipsis construction adds new
functionality on its own: it avoids repetition while
sharpening the contrast between hand and com-
puter – highlighting the most salient distinction
of the speaker’s question. The interplay between
ellipsis and compounding here exemplifies con-
structional integrity in practice: flexible form (even
for words), robust meaning.

Now, let’s explore another example that shows
how constructional flexibility is needed for guiding
semantic interpretation in ways that is often missed
by word + syntax approaches. Consider example
(3), which is typically analyzed in terms of “filler-
gap” mechanisms (Sag, 2010):

(3) Do you remember the song that Jack loves?

A standard filler-gap analysis is that the Object
the song has been “extracted” from its canonical
position in an underlying structure like Jack loves
the song, leaving a silent “gap” behind. But this
view presupposes that the sentence is derived from
a more basic configuration – and more importantly:
it misrepresents the semantics and fails to explain
why this structure exists in the first place.

What the formal account overlooks is the func-
tion of the song as a noun phrase. Typically, a
definite noun phrase signals that its referent is iden-
tifiable (Lambrecht, 1994). If I say Jack loves the
song, I imply that the song alone is sufficient to
know which song I am talking about. Yet, in ex-
ample (3), that is not the case. The only way to
identify the song in question is precisely by saying
that Jack loves it.

To resolve this, English speakers have invented
what we might call a Möbius strip construction:
a structure in which the intended interpretation
emerges through interconnection rather than strict
syntactic hierarchy. Breaking this process down:

1. A definite noun phrase must establish a
uniquely identifiable referent. Here, the song
alone fails to do so. Ironically, this means that
the phrase Jack loves the song cannot possibly
have served as the extraction site: it ticks all
checkboxes of syntactic well-formedness, but
it is pragmatically incomplete in the current
context because its Object NP cannot fulfil its
referential function.

2. To restore its functionality, the noun phrase
must integrate the transitive clause as post-
nominal modifier, effectively “recruiting” it to
establish reference (and maintaining its own
functional integrity).

3. Because the transitive clause is now embedded
within the noun phrase, the object no longer
needs to be realized in post-verbal position –
it is structurally distributed. This allows the
transitive construction to sustain its functional
integrity, even as it supports the referential
work of the noun phrase.

All of the above illustrates how formal flexibil-
ity is not just permitted but sometimes required to
maintain functional integrity. Rather than treating
structures like (3) as derivations, we should rec-
ognize them as adaptations that balance syntactic
constraints with communicative needs.
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3 Linguistic Form as Dynamic Tensegrity

We just argued that constructional integrity is a
necessary condition for modelling language as a
dynamic, adaptive system. But how can we achieve
such integrity in a formal architecture?

We propose dynamic tensegrity as a novel ar-
chitectural metaphor for linguistic form: a system
in which constructions interact through interdepen-
dent constraints held in dynamic equilibrium.

This section introduces the concept of dynamic
tensegrity and explores how it may inform both
the theoretical understanding and computational
implementation of construction grammar.

3.1 What is Tensegrity?

The term tensegrity – short for “tensile integrity” –
was first coined by Buckminster Fuller in the mid-
20th century to describe an architectural principle
in which structural stability arises from the inter-
action between elements under continuous tension
and elements under localized compression (Swan-
son, 2013). The concept was directly inspired by
the sculptural artwork of Kenneth Snelson, a stu-
dent of Fuller, whose pioneering constructions gave
the idea physical form.

Figure 1 illustrates this principle through Snel-
son’s artwork Tree I, a suspended structure com-
posed of rigid struts (under compression) and flexi-
ble cables (under tension). In a true tensegrity, the
struts never touch; they are held in place entirely
by the pull of the tensile network. What looks im-
probable – floating beams in open space – is in
fact a precisely tuned equilibrium, where no single
element holds the structure together, but the system
as a whole sustains its integrity.

Tensegrity exemplifies how complex systems
can be resilient without rigidity, and stable without
central control – a principle that has found wide
applications not only in architecture, but also in
robotics (Shah et al., 2022) and biology (Huang
et al., 2006; Swanson, 2013).

3.2 Systems within Systems within Systems

The principle of tensegrity has become a powerful
heuristic in biomechanics, offering insights across
multiple scales of organization – from cells and
tissues to organs and whole organisms. This nested
hierarchy – “tiers of systems within systems within
systems” (Ingber, 2003, p. 1167), with emergent
properties at each level – will serve as our architec-
tural model for language.

Figure 1: Tree I by Kenneth Snelson. Photo available
via Wikimedia Commons, licensed under CC BY-SA
4.0.1 Image scaled for formatting; no other changes.

The most intuitive application of tensegrity is at
the level of the organism. Humans walk, stand, and
move their bodies thanks to the musculoskeletal
system, which achieves structural stability through
the interaction of local compression and continu-
ous tension. In this system, bones bear compres-
sion, while muscles, tendons, and ligaments form a
tensile network that distributes mechanical stress
throughout the body. Crucially, our bones do not di-
rectly touch each other for bearing load, but are sus-
pended in a matrix of tension. This distributed ar-
rangement allows the body to absorb shocks, adapt
to uneven terrain, and maintain balance. Rather
than relying on central control, the system achieves
equilibrium through the self-regulating dynamics
of its parts. Tensegrity robotics draws directly on
these properties, designing systems that are both
robust and flexible (Shah et al., 2022).

But tensegrity also applies to other tiers. At the
cellular level, for instance, tensegrity may explain
how cells retain structural integrity despite constant
remodelling in response to external pressure. As
Huang et al. (2006) note, the shape and mechanical
behavior of mammallian cells are largely governed
by an internal scaffold called the “cytoskeleton”.
In the tensegrity view, this scaffold functions like a
dynamic 3D network: filamentous proteins (micro-
filaments) create tension by pulling inward, while
rigid rods (microtubules) push outward to resist
compression. Together, these elements form a self-
stabilizing system that can deform and reorganize
without collapsing.

1https://creativecommons.org/licenses/
by-sa/4.0/deed.en
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Besides observing that tensegrity seems to be a
“fundamental design principle that is used to sta-
bilize biological networks at all size scales in the
hierarchy of life”, Huang et al. (2006, p. 296) argue
that tensegrity “may also directly impact informa-
tion flow in biological systems”. In other words,
the spatial properties of tensegrities (their form)
seem strongly interrelated with the function of the
systems they stabilize.

Form and function co-emerging through dis-
tributed tension may also explain how grammatical
constructions stabilize meaning. The next step is
therefore to see if this structural principle extends
from cells to constructions.

3.3 Linguistic Tensegrity Networks

To model linguistic structure as dynamic tenseg-
rities, we must shift from trees to networks: not
hierarchical command structures, but lattices of
constraint and support.

Network-based thinking already plays a key role
in understanding how structure emerges from dis-
tributed interaction. In complex adaptive systems,
networks model how local interactions give rise
to global properties (Yang et al., 2023). In con-
struction grammar, they help chart the usage-based
relationships between constructions (Diessel, 2019)
and collostructional affinities (Wellens, 2011).

Moreover, networks are suited for describing
both structural systems and information processing
systems (Huang et al., 2006). While this paper
focuses on structure, tensegrity networks thus offer
a promising foundation for modelling the interplay
between form and meaning in future research.

Let us start with the familiar tree representation
in (4) and its notational variant as boxes-within-
boxes in (5).

(4) S

NP

A dozen roses,

S

NP

Nina

VP

VBD

sent

NP

her mother!

(5)

S
SNP

A dozen roses NP
Nina VBD

sent
NP

her mother

VP

Although they differ in notation – one emphasizing
hierarchy, the other slot-filling – both rest on the
same structural assumption that phrase-structural
relations form the backbone of linguistic analysis,
which can then be enriched with feature-value de-
scriptions. From a mechanical perspective, both
representations connect rigid parts directly: struc-
ture is assembled by stacking the different building
blocks on top of each other. From an information
flow perspective, there is a clear entry point to the
structure (the root node S); and accessing relevant
information requires tree traversal.

By contrast, tensegrity models suggest an alter-
native: suspension through tension. Structures are
not held together by direct contact, but through
distributed constraint resolution. Moreover, un-
like a tree with a single root and directed paths, a
tensegrity-like network behaves more like a city
map, offering multiple points of entry and redun-
dant pathways for accessing information.

To formalize this perspective, we reconceptu-
alize the basic components of linguistic structure.
Instead of stacking nodes directly on top of each
other in a rigid hierarchy, we suspend them as sep-
arate compression units: modular structures that
encapsulate a coherent set of feature-value pairs.
These may describe phonological, morphosyntac-
tic, semantic or pragmatic properties, as illustrated
in (6). The unit as a whole behaves as a rigid body:
internally structured, but moving or linking like a
single entity.

(6)

unit

constituents

grammatical-relations

subject

predicate

object

argument-structure

agent

event

patient

In this model, constituent structure is not the back-
bone, but one of many possible descriptions en-
coded within a compression unit – e.g. using a
constituents feature. This decoupling allows the
model to accommodate the multi-dimensionality of
constructions, which often cut across levels in non-
uniform ways. Some constructions are compact,
engaging with only phonology and morphology.
Others reach from the conceptual to the pragmatic.
As Fried and Östman (2004, p. 19) put it:
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“Construction Grammar [is] a multi-
dimensional framework in which none
of the layers is seen as ‘more basic’ than
any other; constructions only differ in the
extent to which they make use of these
resources.”

We now have compression units. But what holds
them together? What provides tension?

In our model, tension arises through unit links.
Rather than filling slots directly or imposing hierar-
chical dominance, compression units are connected
by linking the values of their internal features to
other compression units. These unit links define
the network of interdependence, and thus serve as
tension constraints: abstract forces that align and
balance feature information across units. In sum,
structure no longer emerges through assembly, but
through relational suspension.

Examples (7) and (8) offer a partial illustration of
how English active and passive sentences link com-
pression units in different ways. In our model, the
Passive is not treated as a transformation of some
underlying active form, but as a self-contained
tensegrity configuration with its own usage and
interpretation conditions.

(7)

unit

grammatical-relations

subject

predicate

object

argument-structure

agent

event

patient

Agent-unit

Patient-unit

(8)

unit

grammatical-relations

subject

predicate

object

argument-structure

agent

event

patient

Patient-unit

Likewise, the topicalization alternation in sentence
pair (1) can now be reinterpreted as two distinct
tensegrity configurations. In A dozen flowers, Nina
sent her mother, the same underlying ditransitive re-
lation holds as in Nina sent her mother a dozen flow-
ers – but the compression units associated with the
topicalized phrase are reoriented through a different
pattern of linking, driven by discourse-pragmatic
constraints.

Rather than treating such alternations as mere
surface permutations, our models captures them
as structurally distinct yet functionally coherent
configurations within a dynamic network. The cru-
cial difference from transformational approaches is
that the latter privilege a single base structure from
which others are derived, whereas in a tensegrity
model, all constraints coexist on equal footing.
Each configuration emerges from a unique balance
of forces, not a uniform derivational origin.

3.4 Constructions vs. Construction Schemas
Formalized approaches to construction grammar,
such as Berkeley Construction Grammar (Fill-
more, 2013) and Sign-Based Construction Gram-
mar (Michaelis, 2009), describe constructions as
static constraints on well-formed tree configura-
tions or filler-slot relations. In our dynamic tenseg-
rity view, we subscribe to the constraint-based
approach, but we further adopt a distinction be-
tween constructions – the emergent, conventional-
ized pairings of form and function observable at
the community level – and construction schemas,
the knowledge that an individual language user has
about these constructions.

Construction schemas act as dynamic operators
that build and combine constructions. More specif-
ically, construction schemas need the following
components:

• Applicability conditions: These determine
when a schema may be invoked, typically
based on the presence of certain feature-value
pairs across one or more compression units.

• Linking constraints: Once activated, the
construction schema imposes relational con-
straints that coordinate values across units.
These constraints include unit links – the “ten-
sions” that maintain structural integrity.

• Contributing part: The schema may also ex-
pand existing units or introduce entirely new
compression units – adding structure neces-
sary for stabilizing the evolving network and
for satisfying the language user’s communica-
tive needs.

For example, the schema for building the En-
glish Active-Transitive construction requires the
presence of three compression units that represent
an event and its agent and patient. In the resulting
construction, these units are linked together in a
dynamic equilibrium.
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11/16/2018 Babel web interface

http://localhost:8000/ 1/1

"Found:"

reset

contributing-part formulation-lock
comprehension-lock

construction-name (cxn 0.50) show attributes

conditional-part
  

  

      ⨀      

Figure 2: A skeletal representation of a simple construc-
tion schema in Fluid Construction Grammar.

4 Modelling Dynamic Tensegrity in Fluid
Construction Grammar

Fluid Construction Grammar (FCG) is an open-
source computational platform for construction
grammar that was originally developed to support
experiments in language evolution and emergence
(Steels, 2004, 2012). As such, it makes no a priori
assumptions about syntactic structure: its archi-
tecture is explicitly designed to allow structure to
emerge in local usage events.

Another key advantage of FCG is its transparent,
symbolic representation of constructions, which are
fully inspectable via an interactive web interface
(Loetzsch, 2012). Besides its source code, FCG
also has a freely available and cross-platform Inte-
grated Development Environment (van Trijp et al.,
2022), making it an ideal system for interpretable
modelling and hypothesis testing.

Moreover, prior research in FCG has already
anticipated several of the architectural intuitions
explored in this paper – including the treatment of
grammatical structure as dynamic networks rather
than rigid trees (Beuls and Steels, 2013; van Trijp,
2016, 2020). The current proposal builds on and
extends this work by introducing tensegrity as a
unifying metaphor for organizing and linking con-
structional representations.

4.1 Adopting Tensegrity in FCG
Due to space limitations, this paper focuses on how
the tensegrity principle can be adopted within the
FCG framework. A working implementation and
interactive web demo are available in the supple-
mentary materials.

Figure 2 provides a schematic representation of a
construction schema in FCG. Each schema consists
of two sides:

• The right-hand side defines the applicability
conditions: what must be present in the tran-
sient structure to activate the schema.

• The left-hand side provides the contributing
part: what information needs to be added.

Each side contains one or multiple boxes – units
in FCG parlance – which we reinterpret here as
compression units. On the conditional side, each
compression unit is further subdivided into two
parts: the formulation-lock (above) determines the
conditions under which the construction can be
built in production; while the comprehension-lock
specifies the necessary cues for recognizing a con-
struction in parsing.

Constructional activation, constraint resolution
and contribution are all three achieved through
two types of unification processes: matching and
merging (Steels and De Beule, 2006). The activa-
tion process works by matching the relevant lock’s
conditions against the transient structure – a dy-
namically evolving representation of the sentence’s
tensegrity network. If the match is successful, this
simultaneously resolves (some) structural tension
by unifying variables or completing partial struc-
tures. Every successful match is followed by two
merging phases: first, the information of the lock is
opened and integrated with the transient structure;
after which the contributing part is unlocked and
integrated as well. The result is an expanded and
more stabilized tensegrity network.

4.2 Proof-of-Concept Implementation

In the supplementary materials, the mapping be-
tween tensegrity and FCG is illustrated using the
following expressions:

(9) a. The rabbit nibbled the carrot.
b. The carrot was nibbled by a rabbit.
c. A nibbled carrot.

Although each example includes the same verb
form nibbled, traditional analyses consider only (a)
as the “basic” verbal form, while (b) and (c) are
treated as derivations – respectively, the passive
verb form and a deverbal adjective. But this analy-
sis misses important semantic generalizations.

We offer a different interpretation: nibbled is
never a derived form, but a stable tensegrity net-
work – a local configuration licensed by two con-
structions: one evoking a semantic frame, the other
imposing morpho-aspectual form and semantics.

The NIBBLE-CXN2 evokes a semantic frame
based on the verbal root nibble. Following a force-
dynamic approach (Talmy, 2000; Croft, 2012), this
frame encodes a causal chain in which an agent
applies force to affect a patient.

2The abbreviation “cxn” stands for “construction”.
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participle-unit
foregrounded

constituents

causal-chain

affected-participant

actor
nibble-unit

ed-unit
?unknown-unit

Figure 3: Schematic tensegrity configuration for the verb form “nibbled”. Three compression units – representing
the participial form, the verb root, and the morphological suffix – are suspended in dynamic equilibrium by unit
links. The structure foregrounds the affected participant but remains underspecified (?unknown-unit), allowing
integration into multiple grammatical configurations (e.g. passive, nominal).

Example (10) offers a simplified representation
of the NIBBLE-CXN schema. In plain words, this
construction schema will be activated if the speaker
wants to express the Nibble Frame (here repre-
sented using first-order predicates in the formu-
lation lock); or if the listener observes the verbal
root “nibbles” in comprehension. If matching is
successful – that is, a compression unit is found
in the transient structure that meets the schema’s
conditions – the contributing information is added.
In this case, the schema expands the compression
unit with additional information.

(10)

25/06/2025, 18:14Babel web interface

Page 1 of 2http://localhost:8008/

Comprehending "nibble"

Applying

in comprehension

initial structure

application process

constructional dependencies

nibble-cxn

?nibble-root

applied constructions

resulting structure

FCG CONSTRUCTION SET (10)

search... Search

referent:
causal-chain:

sem-frame:

?nibble-root
?ev  

actor:
affected-participant:

?x  
?y  

[nibble]  

# meaning:

# form:

nibble-cxn (cxn 0.50) show attributes

?nibble-root
{nibble(?ev),
nibbler(?ev, ?x),
nibbled(?ev, ?y)}

{string(?nibble-root, "nibble")}

      ⨀      

good-luck-x-cxn (cxn 0.50)

proper-professor-cxn (cxn 0.50)

katrien-organisor-cxn (cxn 0.50)

katrien-collaborator-cxn (cxn 0.50)

katrien-supervisor-cxn (cxn 0.50)

katrien-founder-cxn (cxn 0.50)

katrien-expanded-cxn (cxn 0.50)

katrien-expert-cxn (cxn 0.50)

katrien-morph-cxn (cxn 0.50)

⨁ 

transient structure

root

0, 0.00: initial 1, 1.00: nibble-cxn (cxn 0.50)

nibble-cxn (cxn 0.50)

Moving onto the ed-suffix, English ed-forms con-
sistently foreground the result state of the event –
precisely the point in the causal chain where the
patient has been affected. This explains why that
ed-form naturally fits all three examples: (a) in past
tense expressions, the event has been completed;
(b) in the passive, the focus is on what happened to
the undergoer; and (c) in nominal phrases, the ed-
form identifies the noun as the affected participant.

We therefore model the -ED-PARTICIPLE-CXN

as a morpho-aspectual construction: it contributes
the surface form “nibbled”, and constrains interpre-
tation to highlight the affected participant. In com-
prehension, its construction schema is activated as
soon as a verbal root is encountered followed by
the -ed-suffix.

The result of combining these two constructions
is schematically represented in Figure 3. As can
be seen, three compression units are suspended
(participle-unit, nibble-unit and ed-unit), held in
tension by two unit links going from the participle-

unit’s constituent feature to the other two units.
However, in order to reach full equilibrium, the
tensegrity configuration still needs a fourth com-
pression unit (here mentioned using the placeholder
variable ?unknown-unit), indicating that the af-
fected participant is foregrounded by this tensegrity
structure. This underspecified unit allows the con-
struction to be integrated in various other tenseg-
rity configurations, such as passive and nominal
networks.

This illustrates the central advantage of tenseg-
rity: grammatical structure emerges not from
derivational rules, but from locally stable networks
of constraints that can be “pulled” or reoriented –
robust, flexible, and transparently interpretable.

5 Conclusion

This paper made the case for constructional in-
tegrity as a necessary condition for modelling lan-
guage as a complex adaptive system. It then intro-
duced dynamic tensegrity as a novel metaphor and
modelling principle for ensuring structural integrity
in construction grammar.

By shifting from stacked trees to suspended net-
works, we offered a structural account of gram-
mar that promises both robustness and flexibility
without derivations. Our formalization reframes
construction schemas as constraint-resolving oper-
ators within a tensegrity network of compression
units and linking tensions. We supplemented the
approach with a proof-of-concept implementation
in Fluid Construction Grammar.

The principle of tensegrity complements the con-
structional modelling landscape by aligning with
usage-based, multidimensional views of grammar
while remaining human interpretable. Future work
may focus on how tensegrity may also stabilize the
semantic functions of constructions.
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Abstract

This paper proposes a formal framework based
on Tree Adjoining Grammar (TAG) that aims
to incorporate central tenets of Construction
Grammar while integrating mechanisms from a
psycholinguistically motivated variant of TAG.
Central ideas are (i) to give TAG-inspired
tree representation to various constructions in-
cluding schematic constructions like argument
structure constructions, (ii) to link schematic
constructions that are extensions of each other
within a network of constructions, (iii) to make
the derivation proceed incrementally, (iv) to al-
low the prediction of upcoming constructions
during derivation and (v) to introduce the incre-
mental extension of schematic constructions to
larger ones via extension trees in a usage-based
manner. The final point is the major novel con-
tribution, which can be conceptualized as the
on-the-fly traversal of the inheritance links in
the network of constructions. Moreover, we
present first experiments towards a parser im-
plementation. We report preliminary results of
extracting constructions from the Penn Tree-
bank and automatically identifying construc-
tions to be added during incremental parsing,
based on a generative language model (GPT-2).

1 Introduction

Theories of construction grammar (Goldberg, 1995,
2003) posit that the building blocks of language are
constructions, or form-meaning pairs at various lev-
els of abstraction: not only words but also phrasal
or larger patterns, from multi-word expressions
and collocations to syntactic patterns like argument
structures. In this approach, those constructions
are combined to form representations linked to
sentences in a manner constrained by semantic or
pragmatic compatibilities as well as usage. It is
further hypothesized that these constructions are
cognitively organized as a network, whose links
represent inheritance relations.

Despite the strong concern with cognitive plau-
sibility in construction grammar, psycholinguistic
evaluation of its tenets seems to be done mainly
on qualitative predictions (Bencini and Goldberg,
2000; Perek, 2025), while more quantitative evalua-
tion with psycholinguistic data has been attempted
for other grammar formalisms (Roark et al., 2009;
Padó, 2007; Konieczny, 1996; Stanojević et al.,
2023; Brennan et al., 2016). This is not surpris-
ing, given that the existing formalized variants of
construction grammar (Bergen and Chang, 2005;
Steels, 2017; Boas and Sag, 2012) and studies of
computational extraction of constructions (Dunn,
2017) appear to lack broad coverage and psycholin-
guistically plausible parsers.

In this regard, Tree Adjoining Grammar (TAG,
Joshi et al., 1975) seems to be a promising frame-
work to formalize and implement construction
grammar, as has been suggested in Kallmeyer and
Osswald (2013) and Lichte and Kallmeyer (2017)
among others. Moreover, there is a psycholin-
guistically motivated variant of TAG with an in-
cremental broad-coverage parser (Psycholinguis-
tically motivated TAG, PLTAG, Demberg et al.,
2013; Demberg-Winterfors, 2010). PLTAG, how-
ever, does not take into account all the key tenets
of construction grammar.

Thus, we will develop Psycholinguistically mo-
tivated Construction-based TAG, or PLCxTAG, a
formalization of construction grammar inspired by
PLTAG. In addition, we will present a preliminary
implementation of the framework leveraging a neu-
ral language model (LM) as a proof of concept,
including a lexicon automatically extracted from
the Penn Treebank (Marcus et al., 1993, PTB) and a
broad-coverage supertagger based on a decoder LM
(GPT-2, Radford et al., 2019), which will comprise
the core of an incremental parser for psycholinguis-
tic evaluation to be conducted in future work.
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2 Related work

2.1 Construction grammar

Key tenets of construction grammar. The focus
of our approach is on the following five key tenets
of construction grammar (Goldberg, 2003). First,
the grammar is viewed as the composition of con-
structions, which are form-meaning pairs stored
in memory. This requires that phrasal or larger
patterns can be directly associated with meaning.
Also, the constructions are combined depending
on the semantic compatibility among them, reject-
ing the autonomy of syntax. Second, schematic
constructions such as argument structure construc-
tions (Goldberg, 1995) are also memorized. These
capture the regularities traditionally described in
syntax. Third, construction grammar is generally
surface-oriented (Goldberg, 2003). Great empha-
sis is placed on the surface generalization, without
resorting to assumptions about deep structure from
which surface structures might be derived. Also,
phonologically null elements like traces, PRO or
null function heads are avoided. Fourth, the theo-
ries of construction grammar often take a usage-
based approach (Langacker, 1987; Bybee, 2010;
Tomasello, 2005), which postulates that specific us-
ages are memorized according to their frequencies,
and more general constructions like schematic con-
structions arise in a bottom-up manner. Finally,
the lexicon of constructions is postulated to be
structured as a network of constructions (Diessel,
2023), where constructions are connected based
on inheritance relations among them, where more
specific constructions “inherit” information from
abstract constructions. This network captures how
schematic constructions, such as argument struc-
ture constructions, productively license quite rare
but grammatical uses, e.g. “sneeze the foam off
the cappuccino” or “kick Bob a ball” (Goldberg,
1995).

Formalizations of construction grammar.
There are three major computational theories of
construction grammar: Embodied Construction
Grammar (ECG, Bergen and Chang, 2005; Chang,
2008; Feldman, 2022; Bryant, 2008), Fluid Con-
struction Grammar (FCG, Steels, 2017; Beuls and
Van Eecke, 2023) and Sign-Based Construction
Grammar (SBCG, Boas and Sag, 2012). All
of them have parser implementations, but no
incremental parser exists for FCG nor SBCG to
our knowledge, though Müller (2017) suggests

that existing incremental parsers for Head-driven
Phrase Structure Grammar (e.g. Konieczny, 1996)
could be adapted to SBCG. ECG does have a
psycholinguistically motivated incremental parser,
“constructional analyzer” (Bryant, 2008), but the
scalability of the parser appears limited due to
the need of manually writing the grammar and
defining parameters for some phenomena of
interest (Bryant, 2008, p. 156).

There have also been attempts to extract con-
structions automatically with a view to making the
study of constructions scalable and not limited to
a handful of constructions selected by linguists
(Dunn, 2017). Still, it is by no means obvious how
these constructions can be combined to form actual
sentence representations.

2.2 Modeling human sentence processing

Properties of human sentence processing. Ac-
cumulating studies in psycholinguistics have not
only identified various psycholinguistic phenom-
ena, such as garden path, indicating the preferences
of certain structures over others, but also demon-
strated three general principles of human sentence
processing (Demberg and Keller, 2019). First, the
parse is built incrementally, updated for every new
word (Konieczny, 2000; Tanenhaus et al., 1995).
Second, it is known that the mismatch of subject
and reflexive pronoun affects the reading time even
before the VP is completed with the second PP
object, suggestive of connected syntactic structure
facilitating such agreement (Sturt and Lombardo,
2005). Finally, parsing proceeds based on predic-
tions, e.g. by anticipating the argument of a verb be-
fore encountering it (DeLong et al., 2005; Kamide
et al., 2003; Staub and Clifton, 2006).

PLTAG. PLTAG is a psycholinguistically mo-
tivated variant of TAG (Demberg et al., 2013;
Demberg-Winterfors, 2010), which is designed to
satisfy the three properties described above.

There are crucial innovations to maintain in-
crementality and connectedness during derivation,
such as the prediction-verification scheme. More-
over, the grammar has been automatically extracted
from the PTB, and a broad-coverage parser was im-
plemented based on it, which was then evaluated
on reading time data.

Yet, there is some room for exploring alterna-
tive formalizations, and more importantly, PLTAG
does not satisfy some key tenets of construction
grammar, e.g., there is no network of constructions
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and null elements are used extensively (though this
latter property is not inherent to the PLTAG formal-
ism, i.e., it would be straightforward to choose a
grammar without null elements).

3 Formal framework

Our formalization is guided by the principles of
linguistic and psycholinguistic plausibility. Condi-
tions for linguistic plausibility consist of the five
tenets of construction grammar: (i) Grammar as
the composition of constructions, (ii) Schematic
constructions, (iii) Surface-oriented approach, (iv)
Usage-based approach and (v) Network of con-
structions. As conditions for psycholinguistic plau-
sibility, three properties of human sentence process-
ing are chosen: (a) incremental, (b) connected and
(c) predictive.

Our formalization incorporates on the one hand
aspects of constructions and their composition, and
on the other hand aspects of incremental processing
that lead to incremental extension of constructions
(along the network of constructions) and additional
prediction of upcoming constructions.

CxTAG: Constructions and their composition.
Our starting point is the use of (lexicalized) TAG
(LTAG) and frame semantics for modeling con-
structions along the lines of Kallmeyer and Oss-
wald (2013) and Lichte and Kallmeyer (2017). In
that approach, the elementary trees of TAG are
paired with frame-semantic representations (for-
malized as extended attribute value structures) to
elementary constructions (or lexicalized construc-
tions), in which specific nodes of the tree can
be linked to specific components of the semantic
frame. The tree-combining operations substitution
and adjunction go along with the unification of the
associated frames. (In our case, substitution and
sister adjunction are used.1) In the present paper,
we keep the semantic side of constructions largely
aside since our primary focus is on the formal as-
pects of incremental syntactic processing as well
as on the extraction of the form aspect of construc-
tions from treebanks. Note, however, that in the
ongoing parsing implementation (Section 5), se-
mantics is implicitly covered both at the lexical as
well as at the constructional level via the embed-
dings learned in the model.

1Substitution consists of inserting a tree at a non-terminal
leaf, i.e., filling an argument slot. Sister adjunction merges
the root of the adjoining tree with an internal node, thereby
introducing additional subtrees below that internal node.

Elementary trees are partial constituent trees
such that each tree has at least one leaf represent-
ing the head word, called a lexical anchor, and that
all of the anchor’s projections and arguments are
localized in the same tree where arguments are rep-
resented as leaves that are substitution nodes; see
the tree for ‘gave’ in Fig. 1 for illustration.2

Our theoretical judgment of what qualifies as
arguments or adjuncts is more or less in line with
standard LTAG analysis (XTAG Research Group,
1998): The subject and the objects of verbs and
the noun phrase in prepositional phrases are ar-
guments, while determiners, adjectives, adverbs,
auxiliary verbs, semi-auxiliary verbs (e.g. “used
to”), copula verbs, raising verbs, complementizers
and the infinitive marker “to” are adjuncts.

Elementary constructions also cover multi-
word expressions, collocations, and frequently co-
occurring patterns, motivated by usage-based postu-
lates. In these cases, the corresponding elementary
trees can have multiple anchors, called co-anchors.

Schematic constructions such as argument struc-
ture constructions, however, are not to be repre-
sented by LTAG elementary trees since they are
unlexicalized and lack a lexical anchor. Therefore,
in order to represent them, we employ unlexical-
ized counterparts of elementary trees known as su-
pertags in the TAG literature (Bangalore and Joshi,
2010). The parent node of a removed lexical ele-
ment in a supertag is called an anchor node and is
usually marked with a ⋄.

The network of constructions and the ‘extend’
operation. Within the (L)TAG framework, more
complex constructions can be derived from simpler
ones in a strictly compositional manner by general
tree operations such as substitution and adjunction.
How different elementary constructions are related
to each other and, in particular, how certain con-
structions can be part of certain other constructions,
are not expressed by tree operations but at a differ-
ent level of grammatical description, often called
the metagrammar (Kallmeyer and Osswald, 2013;
Lichte and Kallmeyer, 2017). The metagrammar
allows the specification of trees (and frames) by
means of expressive constraint languages (Crabbé
et al., 2013; Lichte and Petitjean, 2015).

The resulting set of schematic constructions can
2The specific categories and trees used in this paper are

to some degree influenced by the PTB (Marcus et al., 1993)
employed in Section 5. Notice, however, that the formal-
ization presented here is general and compatible with other
constituency formats.
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NP
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Figure 1: Composition of elementary trees for (1-a);
the black trees represent schematic constructions (i.e.,
‘supertags’); dashed arrows represent tree operations.

be seen as a network of constructions, whose re-
lations indicate specialization (“inheritance”) but
also more complex types of embeddings of sub-
structures. The described division of labor between
general operations on elementary constructions and
the more advanced “off-line” specification of ele-
mentary constructions and their interrelation by
means of constraints have conceptual and practi-
cal advantages. The approach falls short, however,
if we are to study in which way the network of
constructions can guide incremental language pro-
cessing.

In order to overcome this problem, we propose
an additional “operation” extend, which mimics
standard tree operations, mostly adjunction, but in
effect realizes the move from one construction to
another, usually more extended construction, which
(at least on the semantic side) is typically non-
compositional. We refer to the modified formalism
as Construction-based Tree Adjoining Grammar
(CxTAG).

Schematic, i.e., lexically unanchored construc-
tions are instantiated by lexicalized constructions
for words in context. Therefore, instead of treat-
ing elementary constructions as part of the lexicon,
we further assume here that for a given lexical ele-
ment wi, depending on its left context LC i (com-
prising w1 . . . wi and any syntactic, semantic and
pragmatic structures built so far), schematic con-
structions t⋄i are chosen with a certain probability
P (t⋄i |LC i), and also extensions tei,j of previously
chosen constructions t⋄j (j < i) to more specific
ones occur with a certain probability P (tei,j |LC i).3

This is why trees assigned to each word in the fig-
ures contain anchor nodes with ⋄.

Consider the examples in (1) for illustration,
whose derivations are shown in Figs. 1 and 2.

3In our implementation, the probabilities for schematic
constructions are estimated via fine-tuning a GPT-2 model
towards predicting them, see Section 5.

NP

N⋄

Kim

S

VP

NPV⋄

baked

NP

VP∗

NP

NP

PRO⋄

him

NP

N⋄

cookies

Figure 2: Elementary trees and schematic constructions
for (1-b); the solid gray arrow indicates extension by a
benefactive NP resulting in the ditransitive construction.

(1) a. Kim gave him cookies
b. Kim baked him cookies

Both sentences are assumed to give rise to the same
syntactic trees except for the lexical head verb.
Their derivations differ, however: We may assume
that the verb ‘gave’ generally selects a ditransitive
argument structure construction with much higher
probability than a transitive construction. The di-
transitive construction then provides substitution
sites for the two remaining NP arguments. The verb
‘baked’, by comparison, would select a transitive
argument structure construction with higher proba-
bility by default as is most likely, and a benefactive
NP tree is added by means of extend, which in turn
gives rise to a structure that matches an existing
construction, namely the benefactive ditransitive
construction. In this case, we call the added NP
construction (the benefactive NP) an extension tree
and say that the transitive construction has been ex-
tended to the benefactive ditransitive construction.

Note that in general extension trees could also
add another co-anchor to extend constructions to
those representing multi-word expressions. From
the perspective of usage-based approach, exten-
sion trees can be seen as secondary generalizations
that emerge through the comparison of existing
schematic constructions, which are themselves gen-
eralizations from instantiations, along with the for-
mation of the network, and they are often inter-
pretable as constructions themselves.4

PLCxTAG: Incremental extension of construc-
tions and prediction of upcoming constructions.
In the following, we extend the CxTAG formalism
in the spirit of PLTAG (Demberg et al., 2013). So
far, the order of the derivation steps in CxTAG is

4We avoided referring to extension trees as constructions
categorically, since extension trees may not always qualify as
independent constructions from a semantic viewpoint.
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not restricted, but in order to achieve psycholinguis-
tic plausibility, we extend the formalism towards
allowing derivations that build connected parses
incrementally. This not only imposes constraints
on how syntactic operations can be applied but also
requires additional mechanisms and operations.

At the same time, our formalism departs from
PLTAG in that it aims to capture the key tenets of
construction grammar. Crucially, the extension of
schematic constructions is an integral part of the
incremental derivation: For each word, a supertag
representing some schematic construction is added
given the context up to it, and it can be extended
later to match the appropriate construction by the
end of the sentence in a way described in CxTAG.
This incremental extension might be conceptual-
ized as the traversal of inheritance links during the
derivation.

The overall idea of our psycholinguistically mo-
tivated modification of CxTAG is that at each word,
we add a new elementary tree and at most one exten-
sion tree via substitution or sister adjunction, where
the operation can be in both directions (i.e., the
already derived tree added to the new one by substi-
tution/adjunction or vice versa). These derivation
steps are restricted in such a way as to add material
only to the right of the rightmost lexical node in the
already derived tree. As an example, Fig. 3 shows
the sequence of derived trees we obtain with such a
derivation when combining the constructions from
Fig. 2. The (orange) tree fragment representing the
supertag added at ‘baked’ is extended to a larger
supertag at ‘him’. The words (in green) above the
; arrows indicate the next word, whose processing
triggers the next derivation step.

Such an incremental connected derivation is,
however, not always possible: When the elemen-
tary tree of a word should be combined with a node
in an elementary tree of a future word, it is im-
possible to create a connected partial parse. For
example, in “John often smiles”, the supertags for
words up to “often” cannot be combined without
the S and VP nodes from the supertag for “smiles”
(see Fig. 4).

To remedy this, we employ a restricted ver-
sion of the prediction-verification scheme pro-
posed in PLTAG (Demberg et al., 2013; Demberg-
Winterfors, 2010) and a new scheme, delay, to com-
pensate for the restriction.

The prediction-verification scheme consists of
two steps: prediction and later verification. In pre-
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Figure 3: Incremental and connected derivation for
(1-b): Incremental extension for inheritance

NP

N⋄

John

VP∗

ADVP
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S

VP

V⋄

smiles

NP

Figure 4: Intervening nodes come from the supertag for
a subsequent word

diction, for each word, an additional supertag is
optionally selected as a prediction tree, such that
it contains all the nodes missing at that point but
necessary for a connected partial parse. We assume
here that the prediction trees are chosen probabilis-
tically, depending on the left context.5 They are
attached via substitution or sister adjunction to the
partial parse while keeping track of the fact that
they are only predicted. At a later stage, such a
prediction tree has to be verified by a matching su-
pertag that is anchored by an actual word. Note that
a supertag used to verify a prediction tree will not
be attached to the partial parse via substitution or
adjunction. Instead, the nodes from the prediction
tree have to be mapped to corresponding nodes in
the verifying supertag in such a way that labeling
and structural relations are preserved. A sample
derivation is given in Fig. 5. The prediction tree
is the upper-left tree (depicted in gray) and the
mapping performed in the verification operation is
indicated by dotted arrows. The red numbers at the
arrows indicate the order of derivation operations.

Prediction trees can be extended to larger su-

5Estimated by the second classification head of the fine-
tuned GPT-2 model in our implementation, see Section 5.
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Figure 5: PLCxTAG derivation of ‘Kim often eats ...’

pertags due to verification, in cases where the two
trees are not isomorphic. For instance, to attach an
adverb after a subject NP, as in Fig. 5, it is enough
to use an intransitive supertag as the prediction tree,
even if the following verb is actually transitive. In
this case, the prediction tree is extended during
verification due to the verb’s transitive supertag.

For prediction-verification, it is an open ques-
tion how to configure the granularity of predic-
tions: Even though we decided to use supertags as
prediction trees, one could also create a separate
lexicon of tree fragments that only contain the nec-
essary nodes, as in PLTAG (Demberg et al., 2013;
Demberg-Winterfors, 2010).

On the other hand, we forbid adding several
prediction trees in a row, following PLTAG. This
means that if the nodes needed for a connected
partial parse come from multiple supertags, one
prediction tree is not enough in our framework. In
the example in Fig. 6, the boxed AP and NP nodes
are both necessary in order to combine the supertag
for ‘very’ with the partial parse.

NP

John

S

VP

NPV⋄

has

NP

AP∗

ADVP

very

NP∗

AP

large

NP

N⋄

cars

Figure 6: Nodes from multiple supertags

To address such cases, we decided to relax the
incrementality condition and allow the delayed at-
tachment of a word’s supertag: The creation of a
connected partial parse is suspended, waiting for
necessary nodes to appear in supertags assigned to
subsequent words. To be more precise, we attach
the supertag in question to the supertag for the next
word first, which in turn will be combined with the

partial parse. If needed, we might allow further
delays. Our hypothesis is that most actually occur-
ring cases are covered with a maximal delay of 1,
based on the inspection of the data from the PTB
used in Section 5 below.

The resulting extension of CxTAG is called Psy-
cholinguistically motivated CxTAG (PLCxTAG).

4 Sample derivations involving various
constructions

For further illustrations, let us look at a few more
interesting examples. It should be noted that the
derivations presented below are not prescriptive,
and PLCxTAG can be employed to represent alter-
native analyses.

Argument structure constructions without co-
anchors. Let us first consider examples of argu-
ment structure constructions: caused motion con-
struction and resultative construction.

(2) a. Kim kicked the ball over the fence
b. Kim sneezed the foam off the cappuccino
c. Kim painted the barn red
d. Kim kicked his feet sore

Derivations for (2-a) and (2-b) are given in Fig. 7–
8. The red numbers indicate the order of derivation
steps. Dashed arrows indicate substitutions and
sister adjunctions that are standard combinations
of elementary trees. In contrast, solid gray arrows
indicate operations that extend an already chosen
elementary tree to a larger one such as the caused
motion construction or the resultative construction
with extension trees. For the sake of readability,
some of the sub-derivations are omitted, i.e., only
their result is displayed.

In Fig. 7, the transitive tree selected for ‘kick’
is extended to the caused motion construction by
adding a path PP.

NP

Kim

S

VP

NPV⋄

kicked

NP
VP∗

PP

NP

the ball

PP

over the f.

1

3

2 4

Figure 7: PLCxTAG derivation of (2-a)

The derivation of (2-b) extends an intransitive
tree (the ‘sneezed’ supertag) to the caused motion
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construction where slots for both mover (NP) and
path (PP) are added. The derivation for resulta-

NP

Kim

S

VP

V⋄

sneezed

NP

VP∗

PPNP

NP

the foam

PP

off the c.

1

2

3
4

Figure 8: PLCxTAG derivation of (2-b)

tive constructions such as (2-c) and (2-d) would
look very similar to the two derivations in Fig. 7
(where the object NP is already introduced with
the verb) and Fig. 8 (where the object NP is intro-
duced via the extension), except that the result is
an AP. Semantically, caused motion and resultative
constructions differ as a matter of course.

Constructions with co-anchors. In the follow-
ing, we will discuss analysis options for two exam-
ples involving co-anchors, (3-a) and (3-b).

(3) a. Kim elbowed his way through the crowd
b. Kim kicked the bucket

The respective complete elementary trees for the
two verbal construction would be as in Fig. 9. Note,
however, that (3-a) is not restricted to a single verb
while ‘kick the bucket’ is a fixed idiomatic expres-
sion. Concerning the latter, it can also have a lit-
eral meaning, but our analysis here is about the
idiomatic meaning, to which we assign an indepen-
dent elementary tree with co-anchors.

S

VP

PPNP

N⋄

way

V⋄

elbowed

NP

S

VP

NP

N⋄

bucket

V⋄

kicked

NP

Figure 9: Complete elementary trees for the multi-
anchored constructions in (3-a) and (3-b)

If we assume a strictly incremental derivation
with prediction trees whenever words cannot be
connected yet, we could choose an analysis as in
Fig. 10. Step 5 in this case is special since it not
only verifies the predicted NP tree but also reana-
lyzes its substitution (operation 3 in this derivation)
as a substitution that is an extension. This latter
is something that is not yet covered by the above
definition of PLCxTAG but that could be added.

NP

Kim

S

VP

V⋄

elbowed

NP

VP∗

PPNP

NP

N⋄

NP

N⋄

way

NP∗

his

PP

through the c.1

2

4

3

5

5

6

1 substitution

2 extend via sister adjunction

3 substitution of prediction tree

4 sister adjunction

5 verification and reanalyze 3 as extend

6 substitution

Figure 10: PLCxTAG derivation of (3-a) with verifca-
tion and reanalyze as extension

The difficulty here comes from the fact that ‘his’
has to be attached before seeing ‘way’, a difficulty
that could be avoided with a delay for this attach-
ment. In general, it might be justified to adopt a de-
lay for all cases of functional operator attachment.
If we do this, we can actually adopt an analysis as
in Fig. 11, where the extension tree anchored at
‘way’ extends the verbal tree.

NP

Kim

S

VP

V⋄

elbowed

NP
VP∗

PPNP

N⋄

way
NP

his

PP

through the c.

1

2

3

4

Figure 11: PLCxTAG derivation of (3-a) with delayed
attachment of ‘his’

Similarly, for (3-b), we could predict an NP tree
at ‘the’, followed by a verification by a tree an-
chored by ‘bucket’, thereby reanalyzing the substi-
tution of the prediction tree as an extension. Assum-
ing, however, that the attachment of function words
can be delayed, this complication is not needed.
The corresponding derivation is given in Fig. 12.

NP

Kim

S

VP

NPV⋄

kicked

NP

NP∗

the

NP

N⋄

bucket

1
2

3

Figure 12: PLCxTAG derivation of (3-b) with delayed
attachment for ‘the’

136



5 Implementation

In this section, we will present preliminary results
from the ongoing implementation of a PLCxTAG
parser. The details of the parser architecture are
still in development, but the core components are
to be the lexicon, the (k-best) supertagger and a
parallel parsing scheme with beam search. As the
current stage of the implementation, we present the
preliminary lexicon extraction and a supertagger.

Lexicon extraction. To extract the lexicon au-
tomatically, we used the Sections 00–24 from the
Wall Street Journal portion of the Penn Treebank
(Taylor et al., 2003). The extraction procedure is
similar to those previously used for LTAG extrac-
tion (Xia et al., 2000; Chiang, 2000; Demberg et al.,
2013): Trees in the PTB were preprocessed to suit
our linguistic analysis and nodes were marked as
head, argument and adjunct, using a modified ver-
sion of the head and argument/adjunct rules from
Collins (1999, 1997).

The preprocessing of the trees consists of five
steps, three of which were conducted before mark-
ing the nodes, and the remaining two were per-
formed afterwards.

Firstly, to be surface-oriented, (a) we deleted
all null elements (Bies et al., 1995), including
traces and PRO. Secondly, (b) we collapsed unary
branches that appear due to the previous step, while
retaining those which are already present in the
original PTB. Thirdly, (c) we relabeled the part
of speech tags of auxiliaries ‘have’, ‘be’ and ‘do’
as AUX, which are originally labeled as full verb,
because all auxiliaries including those should be
labeled as adjunct.

Then, we annotated each node of the trees ac-
cording to the head/argument/adjunct rules de-
scribed in Appendix A, making use of the tags
including function tags.

At this point, (d) we reduced the tagset by re-
moving function tags and merging some of the tags
used in the PTB (cf. Appendix B). This reduced the
number of tags from 71 to 36, which would in turn
reduce the number of supertags and thus potentially
improve the efficiency of the supertagger training
as well as the performance of the resulting model.
Then, (e) we collapsed the tree branches if the label
of the parent node is identical to that of the head
child node and no other children nodes are labeled
as argument. This is because in CxTAG sister ad-
junction is used to attach adjuncts directly to the

head phrase, without introducing new branches.
Fig. 13 illustrates the procedure with an example

from the PTB. First, (a) the * (PRO) under -NONE-
is removed, and then (b) the resulting unary branch
from S to VP is collapsed. According to the mark-
ing rules, all nodes (except the root) are labeled as
H(ead), C(omplement for argument) and A(djunct).
Finally, (d) the tagset is reduced, where function
tags like -SBJ are removed, NNP is modified along
with other subcategories of noun to N(oun) and VB
and VBD are merged into V(erb). Then, (e) the
VP above TO and its head child labeled as VP are
collapsed, since the other child is an adjunct. The
result is the middle tree in Fig. 13.

Then elementary trees were extracted based on
the annotation in a bottom-up fashion. Basically,
the tree is to be split at the nodes labeled as C or
containing children labeled as A (cf. the third tree
in Fig. 13).

The elementary trees in this version are with-
out co-anchors, excluding some well-known con-
structions like way-construction. Also, extension
trees and hence the network of constructions are
not covered yet. For those, we would need further
extraction procedures to combine or decompose su-
pertags obtained so far, depending on the statistics
of the entire treebank.

In addition to supertags, we also extracted a se-
quence of prediction trees for each sentence in the
data that the parser has to predict when process-
ing it by computing the connection path (Demberg
et al., 2013; Demberg-Winterfors, 2010) to check
for each pair of adjacent words if there are some
intervening nodes belonging to supertags to be an-
chored by subsequent words. At this point, the
delay mechanism is not implemented yet, limiting
the coverage to 33466 sentences out of 49208.

Our current lexicon extraction on the PTB yields
2663 different supertags, out of which 1293 are
also used as prediction trees.

Supertagging. The supertagger is implemented
via fine-tuning GPT-2 using multi-task learning
with two classification heads, returning a pair of
prediction tree (possibly none) and supertag for
each word. We trained the model on Sections 02–
21 for five epochs and evaluated it on Section 23.
The data consists of a sequence of pairs of predic-
tion tree/none and supertag. For more details see
Appendix C.

The per-word accuracy of the supertagger af-
ter training is 0.91 and 0.79 for prediction trees
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Figure 13: Sample extraction of supertags from a PTB tree

and supertags, respectively. Note that the accuracy
for prediction trees looks better than it actually is,
since for most words, the prediction is none, i.e.,
always predicting none could already yield an ac-
curacy of about 0.80. For supertags, our accuracy
is below the state-of-the-art for LTAG supertagging
(for instance, Bladier et al., 2019, achieved 0.81 on
French, which is usually harder than English), but
not comparable to standard supertagging results be-
cause (for the sake of psycholinguistic plausibility)
we employed a generative incremental LM as ba-
sis while Bladier et al. (2019) used a bidirectional
model. Overall, the scores we achieved with these
first experiments are quite promising.

6 Discussion and Conclusion

Summary. In this paper, we presented an alterna-
tive formalization of construction grammar guided
by linguistic and psycholinguistic plausibility.

In particular, incremental extension based on
frequencies of constructions is a novel way to for-
malize the inheritance and underspecification un-
der usage-based tenets: The selection of schematic
constructions is distributed over multiple words,
facilitated by the the network of constructions and
reflecting the predictability of constructions at each
point in the incremental derivation.

Also, the results of our preliminary implemen-
tation of PLCxTAG, extracted lexicon and the su-
pertagger, serve as a proof of concept. We are
hopeful that future implementation of PLCxTAG
will pave the way for quantitative psycholinguistic
evaluation of the tenets of construction grammar.

Future directions. We are currently building a
PLCxTAG parser which we will use to quantify
the processing difficulty in a way similar to (Dem-
berg et al., 2013; Demberg-Winterfors, 2010) for
comparison with reading time data.

To this end, we are in the process of modifying
the extraction and supertagging implementation to

include extension trees and a delay mechanism,
as well as designing the parallel parsing scheme
that decides how to combine the trees returned by
the supertagger. Concerning extension trees, the
idea is to start with the supertags extracted in the
way proposed here and train our supertagger on
it. Based on the predicted supertags, we will then
decompose some of the extracted gold supertags
into smaller supertags and extension trees.

For psycholinguistic evaluation, we plan to use
a corpus annotated with reading time data such as
that presented in Frank et al. (2013) and evaluate
along the lines of Mielczarek et al. (2025).

In addition, there are some aspects of the formal-
ism that might require further discussion and im-
provement. For instance, we have yet to see which
of the strategies sketched in Section 5 works bet-
ter for constructions with co-anchors. In this con-
text, the evaluation on psycholinguistic data will
be taken into consideration. Also, there are some
syntactic phenomena beyond the current formaliza-
tion. For example, the use of only substitution and
sister adjunction restricts the generative capacity of
PLCxTAG in such a way that phenomena of long-
distance dependencies cannot be adequatly treated.
Second, we did not explicitly model semantic rep-
resentation of constructions. Note, however, that
our supertagger produces semantic representations
of lexical anchors and, implicitly in its activation
vectors, also of schematic constructions.

Finally, we are planning to extend PLCxTAG to
other languages, in particular German and French,
where we already have experience with TAG-based
supertag extraction (Bladier et al., 2019). Ideally, in
the long run, we would like to apply the framework
also to a typologically broader set of languages
such as Japanese.
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A Appendix: Annotation of nodes as
head, argument and adjunct

As is the case in previous attempts to extract LTAG
from the PTB, we exploited the original PTB tags
including function tags to mark nodes of trees as
head, argument and adjunct.

A.1 Head rules
For the identification of heads, we followed the gen-
eral procedure described in Collins (1999), where
two head percolation tables are used, one for most
tags and another for NP.

Still, we have modified both tables (cf. Tables
1 and 2). In particular, three major changes were
made to the table for most tags.

Firstly, MD, TO and IN have been removed from
the head candidates, since modal auxiliaries, the in-
finitive marker “to” and complementizers (labeled
as IN along with prepositions) are to be adjuncts.

Secondly, -PRD is added as the candidate, since
it indicates the existence of accompanying copula-
tive verb like ‘be’ or ‘seem’. In those cases, these
verbs are to be adjuncts, even though they are la-
beled as full verb. That is why -PRD is placed
higher in priority than tags for full verbs.

Thirdly, WHNP, WHPP, WHADVP, WHADJP
and DT are removed from the candidate list for
SBAR.

A.2 Argument/adjunct rules
After annotating the heads, we marked the remain-
ing nodes as either argument or adjunct. Our rules
for arguments and adjuncts are inspired by Collins
(1997), but there are important changes to the orig-
inal procedure.

Collins (1997) marks only the following as argu-
ment, while marking all else as adjunct:

(a) 1. NP/SBAR/S under S
2. NP/SBAR/S/VP under VP
3. S under SBAR
if without any of the following function

tags: -ADV, -VOC, -BNF, -DIR, -EXT,
-LOC, -MNR, -TMP, -CLR and -PRP

(b) the first child following the head under PP

This procedure, however, is highly problematic
for numerous cases of coordination (especially
when no CC or CONJP is involved) and for PP
nodes with three or more children, as is exempli-
fied in Fig. 14. In the left-hand side example, two

Parent From Priority list
ADJP L NNS QP NN $ ADVP JJ

VBN VBG ADJP JJR NP
JJS DT FW RBR RBS
SBAR RB

ADVP R RB RBR RBS FW
ADVP TO CD JJR JJ IN
NP JJS NN

CONJP R CC RB IN
FRAG R
INTJ L
LST R LS :
NAC L NN NNS NNP NNPS NP

NAC EX $ CD QP PRP
VBG JJ JJS JJR ADJP
FW

PP R IN TO VBG VBN RP
FW

PRN L
PRT R RP
QP L $ IN NNS NN JJ RB DT

CD QP JJR JJS
RRC R -PRD VP NP ADVP

ADJP PP
S L -PRD VP S SBAR ADJP

UCP NP
SBAR L S SQ SINV SBAR

FRAG
SBARQ L SQ S SINV SBARQ

FRAG
SINV L -PRD VBZ VBD VBP

VB VP S SINV ADJP
NP

SQ L -PRD VBZ VBD VBP
VB VP SQ

UCP R
VP L -PRD VBD VBN VBZ

VB VBG VBP VP ADJP
NN NNS NP

WHADJP L CC WRB JJ ADJP
WHADVP R CC WRB

WHNP L WDT WP WP$
WHADJP WHPP
WHNP

WHPP R IN TO FW

Table 1: Head table for most phrasal tags, the 2nd
column gives the search order (starting from L(eft) or
R(ight))
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From Candidate list
R NN
L NNP NNPS
R NNS NX JJR PRP
L NP
R $ ADJP PRN
R CD
R JJ JJS RB QP

Table 2: Head table for parent tag NP

S children are coordinated by a semicolon labeled
as :, where the first S is already labeled as head
due to the head rule described in Table 1. In this
case, the latter S would be marked as argument of
the former, which it is not. The second example
shows an instance where the annotator placed D
and N immediately below PP without intermediate
NP, resulting in D being marked as argument and
N as adjunct.

PP

NDP-H

S

S:S-H

Figure 14: Problematic examples from the PTB.

Therefore, for (a), when candidate nodes are
coordinated, we only choose the left-most one, and
for (b), we decided to use finer-grained conditions,
depending on the number of PP’s children.

In addition to these, we decided to mark all the
nodes with some function tags like -SBJ as argu-
ment.

The resulting rules are:

(a) 1. NP/SBAR/S under S
2. NP/SBAR/S/VP under VP
3. S under SBAR
if without any of the following function

tags: -ADV, -VOC, -BNF, -DIR, -EXT,
-LOC, -MNR, -TMP, -CLR and -PRP

&
i. if not coordinated
or
ii. if the left-most coordinated element

(b) 1. the non-head child under a PP with two
children

2. the first NP child under a PP with three
or more children

(c) nodes with one of the following function tags:
-DTV, -BNF, -LGS, -PUT, -SBJ, -CLF and
-CLR

B Appendix: Tagset reduction

Tagset reduction was done by collapsing tags ac-
cording to Tables 3 and 4.

Original tags Reduced tag
JJ JJR JJS A
RB RBR RBS WRB Adv
DT PDT WDT PRP$ WP$ D
CD NN NNS NNP NNPS
PRP WP EX $ #

N

AUX MD VB VBP VBZ
VBN VBD VBG

V

Other POS tags (unchanged)

Table 3: Tagset reduction for POS tags

Original tags Reduced tag
ADJP WHADJP AP
ADVP WHADVP ADVP
NP NAC NX QP WHNP NP
PP WHPP PP
S SQ SBAR SBARQ SINV S
Other phrasal tags (unchanged)

Table 4: Tagset reduction for phrasal tags

C Appendix: Training of the supertagger

C.1 Model architecture

We modified GPT2PreTrainedModel (Radford
et al., 2019) from the transformers library (Wolf
et al., 2019) by adding the second linear classi-
fication head. The overall loss function was the
mean of two cross entropy functions, one for each
classifier.

C.2 Hyperparameters used in the training

We used the Trainer class from transformers library
to train the model. See Table 5 for values chosen
for the hyperparameters used in the training.
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hyperparameter value
learning rate 2e-05

number of epochs 5
weight decay 0.01

train batch size 8
evaluation batch size 8

seed 42
betas for ADAMW (0.9,0.999)

epsilon for ADAMW 1e-08

Table 5: Hyperparameters of supertagging
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Abstract

Chinese verb-resultative complement construc-
tion (VRCC), constitute a distinctive syntactic-
semantic pattern in Chinese that integrates
agent-patient dynamics with real-world state
changes; yet widely used benchmarks such as
CLiMP and ZhoBLiMP provide few minimal-
pair probes tailored to these constructions.
We introduce ZhVrcMP, a 1,204 pair dataset
spanning two paradigms: resultative com-
plement presence versus absence, and verb–
complement order. The examples are drawn
from Modern Chinese and are annotated for lin-
guistic validity. Using mean log probability
scoring, we evaluate Zh-Pythia models (14M-
1.4B) and Mistral-7B-Instruct-v0.3. Larger Zh-
Pythia models perform strongly, especially on
the order paradigm, reaching 89.87% accuracy.
Mistral-7B-Instruct-v0.3 shows lower perplex-
ity yet overall weaker accuracy, underscoring
the remaining difficulty of modeling construc-
tional semantics in Chinese.

1 Introduction

Chinese verb-resultative complement con-
structions (VRCC) stand out as one of the distinc-
tive and challenging features in syntax and seman-
tics. They feature a complex interplay of elements
like agent-patient dynamics, resultative states, and
real-world state changes. Any syntactic or seman-
tic mismatch in these constructions can sharply re-
duce sentence acceptability (often marked with *),
as it diminishes the likelihood of such events occur-

ring in reality. For illustration, example (a) shows
a clear relation between agent and patient. The
agent“I (我)”performs the action“broke (打)”
on the patient “vase”, which causes the state
change“up (碎)”and yields a complete resulta-
tive event. The physical properties of the patient
constrain the result: a vase can plausibly become
“broke up (碎)”but not“into two pieces (断)”,

so (b) is well formed in syntax but infelicitous in
meaning. VRCC also respect event order, causing
action must come first and the result must follow,
so (c) violates this sequence and is semantically un-
acceptable. Capturing VRCC requires balancing
the individual semantics of components with their
overall integration, which poses significant hurdles
for grammatical annotation, semantic parsing, and
broader NLP applications.

a. 我打碎了花瓶。
wŏ dă suì le huāpíng
I broke up the vase.

b. *我打断了花瓶。
wŏ dă duàn le huāpíng
I broke the vase into two pieces.

c. *我碎打了花瓶。
wŏ suì dă le huāpíng
I up broke the vase.

Beyond computational capacity and data
scale, the capability of language models to han-
dle complex grammatical structures significantly
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impacts their performance in ‘understanding’ and
generating natural language. The minimal pair
(MP) method, a foundational linguistic paradigm
for testing human language aptitude, has been
widely adopted to evaluate language models (LMs)
(Xiang et al., 2021; Song et al., 2022; Someya and
Oseki, 2023; Warstadt et al., 2023; Capone et al.,
2024; Liu et al., 2024). This method generates sen-
tence pairs differing in a single grammatical fea-
ture (e.g., word order, morphology, syntax) to as-
sess model comprehension of specific grammatical
phenomena. An effective LM should assign higher
acceptability probabilities to grammatically and se-
mantically valid sentences in MPs.

With advantages in rigorous variable control,
scalable automated design, cross-lingual applica-
bility, and prompt-interference immunity, MPs-
based benchmarks exist for multiple languages,
including Chinese-specific CLiMP (Xiang et al.,
2021), SLING (Song et al., 2022), and ZhoBLiMP
(Liu et al., 2024).

Although these datasets excel in broad syn-
tactic paradigm coverage, they lack in-depth ex-
ploration of linguistic phenomena through a con-
structional lens as well as semantic minimal pair
design. Poor differentiation between formal and
functional competencies leaves model comprehen-
sion of semantic relations unaddressed (Mahowald
et al., 2024), weakening evaluation interpretability.

CLiMP covers five VRCC paradigms (51000
pairs) but relies solely on complement alteration,
with non-random sampling and limited variation
compromising validity. In contrast, SLING ad-
dresses 38 linguistic phenomena, but omits explicit
VRCC. ZhoBLiMP includes partial VRCC in its 14
verb phrase paradigms (14×300 pairs) but lacks a
dedicated design and has severely restricted lexis.

To fill this gap, we present ZhVrcMP, a
MP dataset for Chinese VRCC, comprising two
paradigms and 1,204 total MPs. Words in ZhVr-

cMP are linguistically selected from the Mod-
ern Chinese, with partial lexicon adaptation from
ZhoBLiMP (Section 3). We tested two types of lan-
guage models on ZhoBLiMP, our benchmark for
assessing how well these models handle Chinese
grammar through pairs of sentences with only one
grammatical or semantical difference. The first
is Zh-Pythia, a set of models adapted for Chinese
based on the Pythia framework (Liu et al., 2024),
with sizes ranging from 14 million to 1.4 billion
parameters (a measure of each model’s complexity
and capacity). The second is Mistral-7B-Instruct-
v0.3, a leading model that has been specially ad-
justed to follow user instructions effectively; it uses
a Transformer design with a 32,768 vocabulary.
(Section 4).

Results are detailed in Section 5, along with
the part of ZhVrcMP, and model evaluation scripts.

2 Related Work

2.1 Verb-Resultative Complement
Construction in Chinese

VRCC, a major subtype of Chinese verb–com-
plement patterns, has the form V + RC where
the complement encodes the resultant state caused
by the event. This tight coupling of lexical se-
mantics and causation makes VRCC an informa-
tive minimal-pair testbed for evaluating LMs’syn-
tactic–semantic processing(Marvin and Linzen,
2018; Kuribayashi et al., 2024).

Construction grammar (CxG)’s form-
meaning pairing principle guides the design of
minimal pairs (MPs) to probe language models’
(LMs) capabilities in semantic role labeling and
constructional structure recognition (Weissweiler
et al., 2023). As reviewed in recent computa-
tional syntheses (Doumen et al., 2024), these
principles are operated through unsupervised
learning methods (e.g., word embedding clus-
tering) for automatic VRCC identification and
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association-based algorithms (e.g., the ΔP metric)
for selecting representative MPs (Dunn, 2022).
By association-based methods we mean corpus
measures that quantify the strength of pairing
between verbs and resultative complements, such
as ΔP, PMI, and log-likelihood (Stefanowitsch
and Gries, 2003; Dunn, 2024). In this paper we
construct ZhVrcMP via controlled grammatical
manipulations and manual validation rather than
corpus-based association scores, although the two
approaches are complementary.

Cognitive studies show that VRCC process-
ing involves real-time structure-meaning mapping,
with type-shifting complements prolonging model
inference (Xue et al., 2021). Thus, VRCC’s
markedness (e.g., grammaticality constraints) and
semantic subtypes (e.g., resultative/stative) enable
controlled MPs to assess LMs’grammaticality
judgment and low-frequency construction learning
(Someya and Oseki, 2023; Warstadt et al., 2023).

2.2 Construction Grammar in Evaluation of
Language Capabilities of LMs

CxG grounds LM research through its form-
meaning pairing principle, which in turn allows
for addressing traditional models’ failure to cap-
ture implicit constructional information in Chi-
nese VRCC (Zhan, 2017). For instance, Weiss-
weiler (2023) demonstrates that Transformer self-
attention aligns with CxG’s gestalt cognition,
thereby enabling more effective encoding of con-
structional knowledge and ultimately improving
recognition of Chinese VRCC.

These CxG-inspired LM approaches (e.g.,
Tseng (2022)’s 17.6% accuracy boost in struc-
tured tasks) enhance low-frequency construction
learning. Despite their importance for LM as-
sessment, the acquisition of constructional knowl-
edge still lacks standardized benchmarks. Existing
models focus on form-meaning pattern extraction

(Dunn, 2023) and verb argument structure learning
(Dominey, 2005; Alishahi and Stevenson, 2008),
which form the basis for MP design in VRCC eval-
uation.

3 Data

ZhVrcMP includes two paradigms: resulta-
tive complement presence/absence (Para 1) and
verb-complement order inversion (Para 2) with
602 MPs each and 1,204 in total. Curated from
the authoritative grammar book Modern Chinese
(Huang and Li, 2012), which provides comprehen-
sive explanations and examples of Chinese syntax,
it adapts the lexicon from ZhoBLiMP. Linguists
annotated noun/verb/complement features, gener-
ated matching lists (3.1). MPs were automatically
generated using an algorithm and manually vali-
dated afterwards (3.2).

3.1 Minimal Pairs Generation

3.1.1 Data Sources

As mentioned above, ZhVrcMP sources two
main datasets:

1. examples from Modern Chinese (pp.78–
83);

2. the lexicon of ZhoBLiMP.
For Modern Chinese sentences, we parsed

components into nouns, verbs, and resultative
complements, systematically identifying all verb-
complement pairings to ensure dataset richness in
capturing VRCC syntactic-semantic relationships.

3.1.2 Vocabulary

ZhVrcMP’s noun lexicon has 342 entries with
POS, subcategory, gender, animacy, and number
annotations. The verb set includes 53 verbs an-
notated for compatible resultative complements,
subject/object subtypes, transitivity, and animacy
constraints, matched with 66 unique complements.
Using a “subject + verb + complement + (aspect
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marker了) + object” structure, a Python script gen-
erated 24,000+ MPs. To minimize unnecessary
variation in subjects (which would increase gener-
ation workload without adding evaluative value), ,
“张三 (Zhang San)” was fixed as the sole subject
for consistent evaluation.

3.2 Manual Validation

Two annotators with a background in linguis-
tics conducted a double-blind verification of lex-
ical annotations and the automatically generated
MPs, yielding an initial inter-annotator agreement
rate of 62.6%. After revising 99 pairs (adding indi-
rect objects, aspect markers, etc.) and re-verifying,
602 sentence pairs were selected for each cate-
gory with a 98% agreement rate (Table 1). We
binary-labeled all sentences as GOOD if they were
grammatically and semantically well-formed, or as
BAD if they differed minimally from the GOOD
sentences in one aspect, making them grammati-
cally or semantically invalid. Chi-square tests con-
firmed statistical equivalence of auxiliary features
across label groups (all 𝑝 > 0.05), demonstrating
no significant association between exogenous fea-
ture distributions and VRCC to isolate the core test
variable (Table 2).

4 Models and Methods

We evaluated Zh-Pythia (14M-1.4B) and
Mistral-7B-Instruct-v0.3 (4.1) using mean log
probability to compare GOOD/BAD sentence
probabilities (4.2).

4.1 Models

We evaluated two models: Zh-Pythia (from
the ZhoBLiMP study) and Mistral-7B-Instruct-
v0.3. Zh-Pythia consists of 20 Chinese-focused
Transformer models, trained from scratch on 3B
tokens with GPT-NeoX architecture and a Chi-
nese tokenizer to analyze scaling effects on Chi-

nese linguistic phenomena in ZhoBLiMP. Mistral
is a commercial 7B-parameter English model op-
timized for instruction tasks, pre-trained without
Chinese adaptation (Table 3).

The models were selected for their contrasting
attributes: Zh-Pythia is a Chinese-specific, scal-
able design evaluated on ZhoBLiMP, while Mis-
tral features a fixed-scale, English-oriented archi-
tecture.

4.2 Evaluation Methods

To evaluate the model, we devised a score
based on the mean log probability 𝑃𝑀𝐿 .

𝑃𝑀𝐿 =
log 𝑃𝑚(𝛾)

𝑛𝛾
(1)

In (1), 𝑃𝑀𝐿 is the mean log probability, 𝑙𝑜𝑔𝑃𝑚(𝛾)
is the mean log probability of model 𝑚 for 𝛾, 𝑛𝛾 is
the sentence count in 𝛾.

Based on the mean log probability obtained
above, for each pair set p, we calculated the evalu-
ation score via (2).

𝑆(𝑝) = 1
|𝑝 |

∑
𝑔,𝑢∈𝑝

1[0,+∞)
(
log

𝑃𝑀𝐿 (𝑔)
𝑃𝑀𝐿 (𝑢)

)
(2)

In (2), 𝑆(𝑝) is the score for pair set 𝑝, |𝑝 |
is the pair count, and 𝑔, 𝑢 represent the GOOD
and BAD sentences, respectively. An indicator
function counts the number of valid ratios where
𝑃ML(𝑔)/𝑃ML(𝑢) > 1 (i.e., the model assigns
higher probability to the GOOD sentence), and this
count is then averaged across pairs to measure the
model’s ability to capture linguistic capabilities.

Finally, we computed perplexity via mean
log probability to quantify model prediction uncer-
tainty, where lower values indicate better data fit.

𝑃𝑃𝐿 = 𝑒−𝑃𝑀𝐿 (3)

𝑃𝑀𝐿 is the mean log probability obtained
above. 𝑒−𝑃𝑀𝐿 converts the log probability to per-
plexity, a standard metric for assessing LM perfor-
mance.
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Para 1 Para 2
Number 602 602

GOOD
张三摔破额头。

Zhāng Sān shuāi pò é tóu
Zhang San fell and broke his forehead.

张三搞错观点。

Zhāng Sān gǎo cuò guāndiǎn
Zhang San got the wrong point.

BAD
*张三摔额头。

Zhāng Sān shuāi é tóu
Zhang San fell his forehead.

*张三错搞观点。
Zhāng Sān cuò gǎo guāndiǎn

Zhang San wrong got the point.

Table 1: ZhVrcMP paradigms and example minimal pairs. Para 1 tests resultative complement presence versus
absence; Para 2 tests verb–complement order. Each paradigm contains 602 minimal pairs (1,204 total). GOOD is
grammatical and semantically plausible; BAD differs only in the targeted constructional feature and is unacceptable
(marked with *).

Feature χ² 𝒑-value Conclusion
AM 0.013 0.910 Indep
CL 0.001 0.972 Indep
IO 0.066 0.797 Indep

PASS 0.066 0.797 Indep
MOD 0.639 0.424 Indep

Table 2: Chi-Square Test for Auxiliary features in ZhVr-
cMP. AM: Aspect Marker, CL: Classifer, IO: Indirect
Object, PASS: Passive Voice, MOD: Modifier. Inde-
pendence is abbreviated as Indep.

Models Zh-Pythia Mist

Parameters
14M, 70M, 160M,

410M, 1.4B
7B

Table 3: Evaluation LMs. Mist indicates Mistral-7B-
Instruct-v0.3.

5 Results

Results for Zh-Pythia and Mistral-7B-
Instruct-v0.3 in the two paradigms are presented
in Tables 4, 5, 6. In general, the correct evaluation
counts of the models cluster between 400-570
pairs, with scores ranging from 60 to 95, showing
a relatively wide range. The perplexity sheds
light on the uncertainty of the models in VRCC
processing. Although overall scores are high,

indicating a notable uncertainty in distinguishing
VRCC, substantial differences in perplexity be-
tween GOOD and BAD sentences allow effective
differentiation.

5.1 Paradigm Results

In Table 4, we analyze performance as a func-
tion of model size (number of parameters). In Para
1, Zh-Pythia shows a positive parameter-scaling
trend: the number of correctly judged pairs and the
mean score both rise with increasing model size.
In Para 2, we observe no clear parameter-scaling
effect; performance fluctuates slightly across sizes.
Overall, Para 2 outperforms Para 1, suggesting
that verb–complement order inversion is easier
for these models than resultative-complement pres-
ence/absence. Performance peaks at 160M (574
correct pairs; mean score 95.19) and declines for
larger models, indicating non-monotonic (inverse)
scaling beyond 160M. We hypothesize this may
relate to training budget or regularization rather
than an inherent property of Transformers; order
sensitivity can often be captured by local attention
patterns, whereas presence/absence relies more on
lexical compatibility.

148



Zh-Pythia Mist Human
Parameter 14M 70M 160M 410M 1.4B 7B

Para 1 414 487 500 499 517 382 590
Para 2 522 558 574 560 566 504 590
Overall 468 522.5 537 529.5 541.5 443 590

Table 4: Correct Evaluation Numbers of all LMs and human on ZhVrcMP. Human indicates linguistics experts
annotation results.

Zh-Pythia Mist Human
14M 70M 160M 410M 1.4B 7B

Para 1 68.77 80.90 83.06 82.89 85.88 63.46 98.00
Para 2 86.57 92.54 95.19 92.87 93.86 83.58 98.00
Overall 77.67 86.72 89.13 87.88 89.87 73.52 98.00

Table 5: Percentage Score of all LMs and human on ZhVrcMP

Parameter Para 1 Para 2 Overall
GOOD BAD GOOD BAD GOOD BAD

14M 1931.78 2866.34 1928.92 4583.57 1930.35 3724.96
70M 1512.07 2690.21 1511.60 4389.68 1511.84 3539.95
160M 1277.36 2080.77 1278.03 4246.92 1277.70 3163.85
410M 1468.29 2759.91 1469.66 4339.49 1468.98 3549.7
1.4B 2115.22 3902.21 2115.75 6672.02 2115.49 5287.12
7B* 520.36 760.97 524.48 753.70 522.42 757.34

Table 6: Perplexity of all LMs on ZhVrcMP. 7B indicates Mistral-7B-Instruct-v0.3.

5.2 Model Results

Zh-Pythia demonstrates superior perfor-
mance with smaller parameter sizes compared
to Mistral-7B-Instruct-v0.3 (Table 5). Despite
Mistral’s larger parameters, its correct evalu-
ation counts and scores trail behind Zh-Pythia,
particularly in Para 1. However, Mistral ex-
hibits significantly lower perplexity values than
Zh-Pythia across both paradigms (Table 6). This
duality suggests that while Zh-Pythia’s parameter
——scaling efficiency aligns more closely with
VRCC, Mistral’s larger model capacity enhances
confidence in distinguishing grammatical and

ungrammatical sentences, as reflected by its lower
perplexity. The contrasting trends in accuracy
and perplexity underscore the interplay between
training data relevance and model architectural
inductive biases, where Mistral’s Transformer
design excels in capturing sequence dependencies,
thereby reducing perplexity.

6 Conclusion

This paper has introduced ZhVrcMP, a
Chinese verb-resultative construction dataset, to
assess LMs’ semantic-grammatical comprehen-
sion. Comprising 1,204 minimal pairs across two
paradigms, we have evaluated Zh-Pythia (14M–
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1.4B) and Mistral-7B-Instruct-v0.3. The models
excel more at verb-complement order than resul-
tative complement presence/absence. Zh-Pythia
shows parameter-performance correlation in the
latter, peaking at 160M for the former. Mistral lags
behind Zh-Pythia, especially in resultative comple-
ment tasks. Both models trail human performance,
highlighting that construction-semantic processing
still has room to improve.
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Abstract

The usage-based constructionist (UCx) ap-
proach to language posits that language com-
prises a network of learned form-meaning
pairings (constructions) whose use is largely
determined by their meanings or functions,
requiring them to be graded and probabilis-
tic. This study investigates whether the inter-
nal representations in Large Language Models
(LLMs) reflect the proposed function-infused
gradience. We analyze representations of
the English Double Object (DO) and Prepo-
sitional Object (PO) constructions in Pythia-
1.4B, using a dataset of 5000 sentence pairs
systematically varied by human-rated prefer-
ence strength for DO or PO. Geometric anal-
yses show that the separability between the
two constructions’ representations, as mea-
sured by energy distance or Jensen-Shannon
divergence, is systematically modulated by
gradient preference strength, which depends
on lexical and functional properties of sen-
tences. That is, more prototypical exemplars
of each construction occupy more distinct re-
gions in activation space, compared to sen-
tences that could have equally well have oc-
cured in either construction. These results pro-
vide evidence that LLMs learn rich, meaning-
infused, graded representations of construc-
tions and offer support for geometric measures
for representations in LLMs.

1 Introduction

A central tenet of usage-based constructionist
(UCx) approaches is that our knowledge of lan-
guage consists of a structured inventory of con-
structions — conventionalized pairings of form
and function at varying levels of complexity and
abstraction (Goldberg, 2006). The framework
posits that language is learned from experience,
with contexts and frequencies of use shaping dy-
namic ”ConstructionNets” (Goldberg, 2024) in

the minds of speakers. Grammaticality is not a bi-
nary state but a continuum of acceptability, an ob-
servation supported by work in experimental and
computational work on language (Francis, 2022;
Gibson and Fedorenko, 2013; Hu et al., 2024).

Here we focus two English constructions, the
Double Object (DO) construction (e.g., She gave
the boy the book) and the Prepositional Object
(PO) alternative (She gave the book to the boy).
We build on a long-standing and widespread fo-
cus in linguistics on the combination of infor-
mation structure and lexical factors that speak-
ers use to choose between the DO and PO con-
structions: (e.g., Bresnan et al., 2007; Goldberg,
1995; Green, 1974; Levin, 1993; Oehrle, 1976;
Wasow and Arnold, 2003). In particular, the re-
cipient argument in the DO strongly tends to be
already under discussion and expressed by a def-
inite word (often a pronoun) or short phrase; the
transferred entity in a DO, on the other hand, is
within the focus domain and is more often ex-
pressed by an indefinite noun phrase, which can be
a longer phrase. These information structure prop-
erties partially emerge from the fact that the DO
construction is used to convey real or metaphori-
cal transfer to an animate entity, and animate enti-
ties are more likely to be topical in discourse (peo-
ple often talk about people), while the transfered
entity is more likely to be in the focus domain
(for a degree of dialect variation see Bresnan and
Nikitina, 2009).

The PO construction has been argued to be a
subcase of a much broader “caused-motion” con-
struction (Goldberg, 1995, 2002) that can convey
a change of location as well as transfer of pos-
session (e.g., She kicked the ball to him/the wall).
This idea is supported by recent computational
work offering a tool for analyzing word mean-
ings in different contexts (Ranganathan et al.,
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2025) using interpretable semantic features (Chro-
nis et al., 2023). Ranganathan et al. (2025) report
that the features associated with word embeddings
vary systematically, depending on whether a given
word appears in the DO or PO. In particular, fea-
tures related to personhood are stronger when the
same word, e.g., London is the recipient of the DO
(e.g., She sent London the painting), while fea-
tures related to location are stronger when Lon-
don appears in the PO (e.g., She sent the painting
to London).

Verbs’ lexical biases also play a role in whether
people prefer the DO or PO. The verb give is
more common in the DO construction, and in fact
give accounts for roughly 40% of all DO tokens
(e.g., Goldberg et al., 2004). On the other hand,
a set of Latinate (i.e., fancy-sounding) verbs re-
sist the DO in favor of the PO (Gropen et al.,
1989; Ambridge et al., 2012; Goldberg, 2019).
For instance, the verbs transfer, explain, and do-
nate rarely occur in the DO, despite their highly
compatible meanings; instead, each verb is biased
toward the PO construction. Lexical biases can
be quite particular and specific; for instance, the
Latinate verb guarantee, bucks the tendency for
fancy-sounding words to resist appearing in the
DO: Guarantee strongly prefers the DO. Thus, a
nuanced account of how such lexical factors are
learned is required (e.g., Goldberg, 2011, 2019;
Ambridge et al., 2012). Indeed, computational
work has found that the differences in information
structure between the DO and PO are useful in
LLMs’ learning of lexical biases (Misra and Kim,
2024).

As LLM representations are learned through
exposure to natural language texts, there is an op-
portunity to investigate whether massive distribu-
tional learning can give rise to representations that
reflect principles of the UCx approach. Recent
work has assessed how accurately LLMs can clas-
sify or distinguish argument structure construc-
tions (e.g. Huang, 2025; Bonial and Tayyar Mad-
abushi, 2024), but less is known about how con-
structions are represented or their underlying ge-
ometry. Our work addresses this gap by shifting
the focus from classification accuracy to an anal-
ysis of underlying representational geometry.

We hypothesize that representations of the DO
and PO constructions should be more distinct to
the extent that instances’ typical lexical and func-
tional properties are more prototypical instances

of the respective constructions. We test this by
asking whether collections of instances of the DO
and PO that include typical functional features are
more easily separable than collections of instances
that are prototypical of neither, even though each
sentence is unambiguous syntactically (either a
PO or DO).

More specifically, we ask: Does the geomet-
ric distinction between the representations of the
DO and PO increase, as measured by either en-
ergy distance or Jensen-Shannon Divergence, as
the functional factors associated with DO and PO
more closely align with their respective syntactic
expressions?

Stimuli sentences come from the DAIS (Dative
Alternation and Information Structure) dataset,
which includes 5, 000 English pairs of DO and
PO sentences (Hawkins et al., 2020). Across
DO/PO pairs, several factors are systematically
varied along the dimensions recognized to distin-
guish the two constructions. Here we use human
preference strengths, also from DAIS, toward one
or the other construction, to analyze the hidden
states of Pythia-1.4B (Biderman et al., 2023).

Both energy distance (Rizzo and Székely,
2016) and Jensen-Shannon divergence (JSD) (Fu-
glede and Topsoe, 2004) are used to measure the
separability of entire clouds of representations, at
different layers of Pythia-1.4B. The preferred ver-
sion (DO, PO, or either) of each sentence pair in
the DAIS corpus was binned, according to the de-
gree of preference toward the DO or PO, to be de-
scribed in Methods and Results.

Results reveal a sophisticated geometric encod-
ing of constructions in which lexical and func-
tional factors improve the distinction between
the DO and PO. In this way, LLM representa-
tions are consistent with key principles of the
UCx approach, including gradiently distinguish-
able function-infused grammatical patterns, inter-
pretable as clusters in geometric space.

2 Methods

Dataset and Model: As noted, the DAIS dataset
includes 5000 pairs of sentences, one in the DO
and one in the PO, while systematically varying
the length and definiteness each postverbal ar-
gument across pairs. Two hundred main verbs
also vary across pairs, including verbs standardly
treated as both ‘alternating’ and ’non-alternating’
(Levin, 1993). Importantly, DAIS also includes
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Figure 1: Projection into 2-dimensions of mean-pooled and normalized representations of the Double-Object
(DO, in orange) and Prepositional Dative Object (PO, in black) constructions. Points represent sentences from the
DAIS corpus, binned as follows: A) Instances of the DO and PO that are well-suited to the lexical and functional
factors of their respective constructions as determined by human preferences. B) Instances of the DO and PO, as
determined by syntax only, as their lexical and functional properties do not favor either construction.

human ratings of how strongly they prefer one
construction over the other, for each combination
of verb and arguments. Participants used a slider
to indicate a preference for the DO (one end) or
PO (other end) or neither (midpoint) (Hawkins
et al., 2020).

We use these human preference ratings to
partition sentences into five tiers based on the
mean preference strength. We combined sen-
tences from both ends of the scale to create 5
bins, ranging from: (1) the top 10% of sentences
with the strongest preference for one or the other
construction, to (5) those sentences judged to be
in the middle of the scale (equally non-biased
toward either construction). A sample collection
of DO sentences that vary from strong DO-bias
(1) to little bias toward either DO or PO (5) are
provided below:

DO biased
ˆ (1) Maria asked him some questions.
| (2) Bob lobbed her a tennis ball.
| (3) Juan shuttled the team something.
| (4) Alice threw a woman a book.
| (5) Michael took the woman the blanket.
DO or PO

An equal number of PO sentences were included
in each of the same bins, correspondingly ranging
from strongly PO-biased (1) to equi-biased (5),

according to the human preferences in DAIS.
From the publicly available pretrained Pythia-

1.4B model, we extracted mean-pooled and
normalized state representations for each sen-
tence. We analyzed representations from all
24 layers, reducing them to 150 principal com-
ponents, which captured 88.01% of the total
variance (averaged across model layers). Com-
mon benchmarks suggest retaining components
that explain 70%–90% of the total variance
(Jolliffe, 2011), and 88.01% sits comfortably
within this range, suggesting that a large majority
of the structure in the data is retained, while a
smaller portion that is more likely to reflect noise
was discarded. We normalized the activations
so that they all exist on a unit hypersphere S149.
Finally, we deployed the following analyses.

Preference strength was treated as an ordinal
variable with five levels: 1 (10% most strongly
biased) to 5 (10% most equi-biased). That is, level
(1) includes sentences that strongly preferred
the DO and sentences that strongly preferred the
PO, while level (5) included sentences that were
roughly equi-biased toward either DO or PO.
Bins were used rather than a continuous factor for
visualization purposes.

To measure the separability in representational
space for each tier of bias strength, we em-
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ployed two different measures, Energy Distance
and Jensen-Shannon divergence. Energy dis-
tance, E(X,Y ), is a statistical distance between
the probability distributions of two random vec-
tors, X and Y , in a metric space (Cramér, 1928).
It is simply based on the expected Euclidean dis-
tances between their elements. Given two sam-
ples from our PCA-reduced representations, X =
{x1, . . . , xm} and Y = {y1, . . . , yn}, where each
xi, yj ∈ R150, the squared energy distance is esti-
mated as:

E2(X,Y ) =
2

mn

m∑

i=1

n∑

j=1

∥xi − yj∥−

1

m2

m∑

i=1

m∑

j=1

∥xi − xj∥ − 1

n2

n∑

i=1

n∑

j=1

∥yi − yj∥

where ∥ · ∥ is the Euclidean norm. Energy dis-
tance is zero if and only if the distributions are
identical; it is sensitive to differences in both the
location and the shape of distributions, making it a
robust measure of overall geometric separation in
the model’s representation space. We calculated
the energy distance between the distributions of
the constructions on S149 layer by layer.

A more sensitive measure of distributions is
Jensen-Shannon Divergence (JSD), which mea-
sures the relationship between distributions in
high-dimensional space (Menéndez et al., 1997).
To use JSD, we first estimated the probability
distributions of both constructions P (vDO) and
Q(vPO), in the 150-dimensional PCA space. Fol-
lowing (Conklin, 2025), we next generated a set
of k = 1000 anchor vectors, A = a1, a2, . . . , ak,
by sampling from a uniform distribution on S149.
The vector corresponding to each individual sen-
tence v was then assigned to the anchor vector
nearest to it, based on cosine similarity. This ef-
fectively partitions the hypersphere into k Voronoi
cells. This technique, based on vector quantiza-
tion, yields two discrete probability distributions,
P̂ and Q̂, which are k-dimensional vectors where
the i-th element represents the proportion of vec-
tors from each set assigned to anchor ai. Jensen-
Shannon divergence is then computed as:

JSD(P̂∥Q̂) =
1

2
DKL(P̂∥M) +

1

2
DKL(Q̂∥M)

where M = 1
2(P̂ + Q̂) and DKL is the Kullback-

Leibler divergence. This method avoids informa-

tion loss from projecting onto any single axis to
offer a more holistic comparison of distributions
(Conklin, 2025). Since the sampled anchor vec-
tors are probabilistic, we averaged across 20 ran-
dom seeds to get stable JSD scores.

3 Results

Our analysis reveals that graded bias strength for
one construction over a paraphrase systematically
shapes the geometry of construction representa-
tions across the model architectures. In particular,
the model assigns representations that are more
distinct when the constructions are more clearly
differentiated, when instances are more strongly
biased toward the construction used. This is the
case for both energy distance and JSD, as each
shows a clear and consistent stratification by the
tiers of preference strength (Figure 2 and 3). At
nearly every layer, the Top 10% strongest prefer-
ence tier exhibits the greatest geometric distance,
followed in order by the other tiers, down to the
ambiguous baseline. As is clear in Figure 1, with
sentence vectors projected onto two dimensions
for visualization purposes, DO and PO sentences
that conform better to the DO or the PO, respec-
tively (left panel), are more distinctive than sen-
tences that could nearly as easily be paraphrased
by the other construction (right panel).

Because energy distance and JSD are based on
very different analyses, we cannot expect their
qualitative patterning to align. In fact, energy
distance follows a convex trajectory, slightly dip-
ping in the mid-layers before rising sharply (Fig-
ure 2) In contrast, JSD shows divergence increas-
ing sharply and remaining high (Figure 3). Yet the
overall pattern showing more distinctiveness be-
tween DO vs. PO sentences when sentences that
are more biased toward either varient compared
with sentences that are relaitvely un-biased is evi-
dent according to both energy distance (Figure 3)
and JSD (Figure 2). We take this to indicate that
the finding is robust and not an artifact of a single
metric.

Scaling Analysis across Pythia Model Suite. To
test whether our findings are specific to the 1.4B
parameter model or reflect a more general prop-
erty of transformer architectures, we replicated
our full analysis pipeline — including the energy
distance, high-dimensional JSD with correlation
of mean cosine similarity tests — across the mod-
els in the Pythia suite (from 70M to 6.9B parame-
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Figure 2: Layerwise Energy Distance between DO and
PO representations, stratified by tiers binned by degree
of bias. The plot shows a consistent ordering by bias,
with more prototypical instances of the two construc-
tions being more separable.

ters). Results confirm that our central findings are
robust across model scales. We consistently ob-
serve the geometric stratification by degree of bias
so that preference strength remains a significant
predictor of representational distance. A detailed
report of these scaling law analyses, with code to
generate plots, is in the supplementary materials.

4 Discussion

Our results provide compelling computational ev-
idence for a core principle of the usage-based
constructionist approach: that grammatical repre-
sentations are graded and sensitive to semantic-
pragmatic fit. The clear stratification in our
geometric analyses demonstrates that LLMs de-
velop representations whose geometric proper-
ties are highly consistent with the probabilistic,
usage-based categories posited by the UCx ap-
proach. This geometric entanglement of form
and function resonates with the core tenets of
the UCx approach. The energy distance reflects
the distinctiveness of the two constructions spa-
tially in regions of the model’s representation
space. This extends previous work that has fo-
cused on the model’s ability to classify construc-
tions categorically (Huang, 2025; Bonial and Tay-
yar Madabushi, 2024) by showing more fine-
grained, graded geometric structure, dependent on
lexical and functional factors.

Future work is needed to better understand the
distinct qualitative patterns across layers when en-
ergy distance and JSD are compared. We note that
the JSD measure, which is more nuanced but per-
haps less intuitive, appears to distinguish the con-

Figure 3: A high-dimensional measure of Distribu-
tional Separability (JSD) Across layers (with k = 1000
anchor points, averaged over 20 random seeds). Strat-
ification is evident: tiers that include more biased sen-
tences of either DO or PO are more separable into dis-
tinct constructions. This plot reinforces the finding
from the energy distance analysis, though with differ-
ent layer-wise dynamics.

structions particularly well: JSD is bounded be-
tween 0 and log(2) (≈ 0.693) (Lin, 1991), and the
distinction between the constructions in the most
biased tier approaches this limit at 0.6. Yet be-
cause the two metrics are based on quite differ-
ent calculations, so we do not attempt to compare
them directly.

5 Conclusion and future directions

The current work demonstrates that the geome-
try of an LLM’s internal representations directly
reflects the graded function-infused bias toward
one or another linguistic construction, where bi-
ases are recognized to be conditioned on lexi-
cal and functional factors. We have shown that
the model’s representations of constructions are
systematically organized by their distinctiveness.
This work bridges the gap between the theoretical
principles of the usage-based constructionist ap-
proach and the empirical realities of modern NLP,
suggesting that LLMs learn a rich, dynamic, and
meaning-infused model of grammar. Our findings
open a promising new direction for future work;
we are currently using these geometric insights
to guide an investigation aimed at isolating the
specific computational circuit(s) within the model
that are responsible for encoding verb bias in the
dative alternation, using tools like causal media-
tion analysis from Mechanistic Interpretability.
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Abstract
This paper introduces a usage-based frame-
work that models argument structure anno-
tation as nearest-neighbor classification over
verb–argument structure (VAS) embeddings.
Instead of parsing sentences separately, the
model aligns new tokens with previously ob-
served constructions in an embedding space
derived from semi-automatic corpus annota-
tions. Pilot studies show that cosine similarity
captures both form and meaning, that nearest-
neighbor classification generalizes to dative al-
ternation verbs, and that accuracy in locative
alternation depends on the corpus source of ex-
emplars. These results suggest that analogical
classification is shaped by both structural sim-
ilarity and corpus alignment, highlighting key
considerations for scalable, construction-based
annotation of new sentence inputs.

1 Introduction

Verbs provide a crucial interface between syntax
and semantics, typically determining both the na-
ture of the event or action described by a clause and
the number and type of participants the clause con-
tains—a configuration known as argument struc-
ture. For example, the verb give denotes an act of
possession transfer and therefore requires three ar-
guments: an AGENT (Paul), a RECIPIENT (me),
and a THEME (a book). These may be realized syn-
tactically as the Double Object construction, as in
Paul gave me a book. At the same time, proponents
of construction-based syntax have observed that
verbs may be mismatched to their syntactic con-
texts in ways that alter the meaning and valence of
the verb. For example, while creation verbs like
paint and draw do not intrinsically express acts
of transfer, they can be used to implicate actual
or intended transfer in sentences like I drew her
a picture. Such examples suggest that argument-
structure patterns themselves can convey event
structures traditionally attributed to verbs alone
and, in turn, may influence the verb’s meaning and
selectional properties (Goldberg, 1995; Michaelis,
2004).

To obtain argument structures from natural lan-
guage, most NLP systems rely on automatic Se-
mantic Role Labeling (SRL) and constituency pars-
ing. SRL identifies argument spans and assigns
semantic roles (Màrquez et al., 2008; Gildea and Ju-
rafsky, 2002), while constituency parsing extracts
hierarchical phrase structures (Marcus et al., 1993).
However, these two components are often modeled
separately, leading to cascading errors: syntactic
misparses can degrade SRL accuracy. Recent ap-
proaches integrate syntactic information into neu-
ral SRL models (Strubell et al., 2018; Zhou et al.,
2020; Fei et al., 2021), and BERT-based architec-
tures frame SRL as span classification without ex-
plicit syntactic features (Shi and Lin, 2019). Mean-
while, high-accuracy constituency parsers like the
Berkeley Neural Parser (Kitaev and Klein, 2018)
continue to be widely used in such pipelines.

Yet despite their strong performance, these sys-
tems are optimized for SRL as a classification
task and maintain a verb-centered view of argu-
ment structure. Even models that integrate syn-
tax typically do so only to improve SRL perfor-
mance. Moreover, most SRL datasets, such as
PropBank and VerbNet, rely on verb-specific ar-
gument frames, which limit generalization across
constructions. Arguments introduced by construc-
tions—rather than verbs—are often overlooked.
For instance, in “kick the ball into the room,” the
directional PP into the room is typically treated as
an adjunct, despite fulfilling a core semantic role
(Goal) in a Caused-Motion construction. As a re-
sult, these models fall short of capturing the full
range of construction-based argument structures
observed in natural language.

This paper introduces a usage-based alternative
that models argument structure through analogical
matching against previously observed VAS patterns.
Instead of parsing a sentence and mapping its ele-
ments via fixed templates, our model compares the
sentence to a library of VAS exemplars and selects
the best match in embedding space. This nearest-
neighbor approach treats argument structure as a

158

https://creativecommons.org/licenses/by/4.0/


product of linguistic experience, and contextual
inference, rather than static verb valency.

The remainder of this paper is organized as fol-
lows: Section 2 reviews Construction Grammar-
based approaches to argument structure annotation;
Section 3 introduces our model; Section 4 details
the methodology, including data curation and anno-
tation; Section 5 reports pilot studies; and Section 6
concludes with discussion and future directions.

2 Related Work

Resources grounded in Construction Grammar
(CxG) aim to annotate argument structures that
arise not only from lexical valency but also from
constructional licensing. Kyle and Sung (2023)
introduce the first argument structure construc-
tion (ASC) treebank, manually annotating verb-
argument structures following CxG principles.
While valuable, the treebank covers only a small
set of constructions, limiting its generalizability.

Perek and Patten (2019) explore the empirical
identification of constructions using syntactic n-
grams extracted from the British National Corpus.
They cluster these “treelets” by distributional simi-
larity and manually select a linguistically meaning-
ful subset. This work lays a data-driven foundation
for construction identification in English but re-
quires extensive manual intervention and remains
a work in progress.

Computational frameworks like Fluid Construc-
tion Grammar (FCG) (Beuls and Van Eecke, 2023)
offer a cognitively motivated architecture for rep-
resenting argument structure via learned form-
meaning pairings. FCG supports both parsing and
production, modeling the dynamic invocation of
constructions during language use. However, de-
spite its expressive power, FCG relies on hand-
engineered constructions and operates primarily
in simulation environments or controlled domains.
It lacks scalable interfaces with large corpora or
pretrained models. As a result, while FCG demon-
strates the theoretical utility of construction-based
approaches, it is not yet suitable for automatically
annotating verb-argument structures in real-world
corpora. Because of this limitation, we continue to
seek scalable, data-driven alternatives.

3 Our Model

This project introduces a usage-based, analogy-
driven framework for annotating VAS in natural
language. Drawing on exemplar-based approaches

to grammar (Bybee, 2013), the model treats argu-
ment structure annotation as a nearest-neighbor
retrieval task grounded in analogical matching
(Gentner, 1983, 2010). Given a sentence containing
a target verb, it selects the most likely structure by
comparing the verb’s contextual embedding to a set
of previously observed, type-level verb-argument
structure embeddings. In essence, it asks: “Which
known pattern does this usage most closely resem-
ble?”

Rather than assuming each verb is tied to a fixed
valency frame, the model is built on the idea that
argument structures generalize across verbs. For
example, the structure associated with give, as in
She gave him a book, may serve as an exemplar for
annotating bequeath, as in She bequeathed him a
book. Such generalizations are achieved through
analogical matching: the model ranks known struc-
tures by their cosine similarity to the target usage,
offering plausible annotations even for novel or
infrequent verbs.

Each verb-argument structure in the model is
represented as an embedding derived from actual
corpus attestations. These type-level embeddings
are stored and compared against token-level em-
beddings extracted from new input sentences. The
top-ranked structures—those most similar in both
form and meaning—are returned as candidate an-
notations. This ranked list supports both automatic
labeling and human-in-the-loop annotation, func-
tioning as an assistant that provides interpretable
and transparent suggestions.

4 Methodology

This section outlines the steps used to develop our
model, from data selection and annotation to the
construction of a semantic space of verb-argument
structures (VAS). We divide the methodology into
three components: (1) data curation, (2) verb-
argument structure annotation, and (3) construction
of the VAS space.

4.1 Data Curation

Corpus Selection. We use a subset of the
BabyLM Project Gutenberg corpus (Warstadt et al.,
2023), which contains written English texts from
books in the public domain. Our goal is not exhaus-
tive annotation but the development of a represen-
tative VAS space from high-quality language data.
We sample 51,411 sentences for analysis.
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Data Filtering. To focus on clause-level pred-
icates, we filter the data using spaCy (Honnibal
et al., 2020). We retain only sentences where the
main verb is the syntactic ROOT and has a nomi-
nal subject (NSUBJ). This reduces the dataset to
30,139 sentences. We further exclude malformed
or fragmentary sentences, yielding a final dataset
of 23,396 well-formed sentences.

4.2 Verb-Argument Structure Annotation
Initial semantic-syntactic auto-annotation. We
begin by automatically annotating each verb-
argument structure with syntactic phrase types and
semantic roles. Semantic roles are assigned using
SemParse (Gung, 2020), which maps predicates to
VerbNet classes and extracts PropBank-style argu-
ments; these are then converted to VerbNet roles
using the mappings in Kipper-Schuler et al. (2008).
Syntactic categories are obtained from the Berke-
ley Neural Parser (Kitaev and Klein, 2018), from
which we extract the highest syntactic projection of
each argument. These initial annotations are used
as a base for further revision.

Construction-Based Revision. Following prin-
ciples in Construction Grammar (Goldberg, 2006;
Michaelis, 2012), we revise the initial annotations
to reflect arguments introduced not only by the
verb’s lexical valency but also by larger construc-
tions. For example, in the sentence She kicked
the ball into the room, the directional phrase into
the room is labeled as a Goal argument—not as
an adjunct—because it is licensed by the Caused-
Motion construction rather than by the verb kick
alone. These construction-based revisions ensure
that the final annotations more accurately capture
the full range of argument structure patterns ob-
served in natural usage.

4.3 Constructing the VAS Space
Embedding Extraction. Each verb-argument
structure instance is represented as a contextual-
ized embedding extracted from BERT (Devlin et al.,
2019), using layer 7 (Chronis and Erk, 2020). Em-
beddings are grouped by VAS type and averaged to
yield a type-level embedding.

Linguistic Experience Space. The resulting
VAS space serves as a structured repository of lin-
guistic experience. Each type-level embedding en-
codes the distributional and constructional proper-
ties of a verb-argument structure as observed in cor-
pus data. Given a new sentence, the model retrieves

the most similar structure in the space using cosine
similarity. This usage-based approach reflects how
speakers interpret novel utterances by analogizing
to familiar patterns encountered in prior language
use.

5 Pilot Studies

This section reports three pilot studies. The first ex-
amines what cosine similarity between verb embed-
dings captures. The second and third test how well
the model can classify unseen verb tokens using a
small set of precomputed structure embeddings.

5.1 Pilot 1: What Does Cosine Similarity
Capture?

The first pilot study examines what cosine similar-
ity between verb token embeddings captures, since
this similarity metric underlies our method for se-
lecting candidate structures. Understanding what it
reflects—surface form (i.e., syntactic realization),
relational meaning (i.e., argument structure roles),
or both—is essential for evaluating the validity of
our analogical classification approach.

We test this using the verb bequeath, which alter-
nates between the Prepositional Dative and Dou-
ble Object constructions. For each form, we com-
pare its embedding to three minimally altered sen-
tences, varying only the verb while holding the sur-
rounding context constant. This isolates the verb’s
syntactic and semantic contribution as the source
of variation in cosine similarity.

Double Object variant:
The widow bequeathed the church her property.
<NP1Agent, NP2Recipient, NP3Theme>

• The widow gave the church her property.
(form and meaning) → cosine similarity:
0.7541

• The widow gave her property to the church.
(meaning only) → cosine similarity: 0.7243

• The widow considered the church her property.
(form only) → cosine similarity: 0.5481

Prepositional Dative variant:
The widow bequeathed her car to the church.
<NP1Agent, NP2Theme, PPRecipient>

• The widow gave her car to the church. (form
and meaning) → cosine similarity: 0.7753

• The widow gave the church her car. (meaning
only) → cosine similarity: 0.7119
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• The widow drove her car to the church. (form
only) → cosine similarity: 0.5962

In both constructions, the sentence sharing both
form and meaning with the target had the highest
similarity, while form-only matches scored lowest.
Meaning-only matches consistently ranked in be-
tween. This pattern indicates that cosine similarity
in our embedding space captures both syntactic
and semantic similarity, with a stronger bias to-
ward meaning. These results support the use of
cosine similarity for analogical classification and
align with the usage-based view that novel utter-
ances are understood through semantic alignment
with familiar constructions.

5.2 Pilot 2: Nearest-Neighbor Classification
Accuracy on Dative Alternation Verbs

To test our model’s classification accuracy, we
evaluated whether unseen verb tokens could be
correctly assigned argument structure labels by
comparing their embeddings to five precomputed
VAS embeddings of give. We tested both within-
verb generalization—predicting new give tokens
drawn from COCA—and cross-verb generaliza-
tion—predicting an unseen verb bequeath from
COCA.

5.2.1 Experimental Setup
We manually annotated five distinct VAS types
for give from the Gutenberg corpus (see Ap-
pendix A.1). Each structure combined specific
semantic roles and phrase types and served as a
prediction template.

The test set included 40 sentences from COCA:
20 with give and 20 with bequeath, each evenly
split between the Double Object and Prepositional
Dative constructions. Each verb token was embed-
ded using BERT (layer 7) and matched to the most
similar give structure embedding based on cosine
similarity.

5.2.2 Results and Discussion
Table 1 shows that the model achieved high accu-
racy across both within-verb and cross-verb con-
ditions. For give, which appeared in the training
corpus (Gutenberg), the model correctly predicted
all 10 Double Object tokens and 9 out of 10 Prepo-
sitional Datives from the test set (COCA). For
bequeath, which was unseen during training, the
model correctly classified all 20 tokens.

These results suggest that our model can gen-
eralize both to new uses of familiar verbs and

to entirely new verbs that share similar construc-
tions. The success of cross-verb classification, es-
pecially for a rare verb like bequeath, indicates
that the precomputed structure embeddings of give
encode transferable, construction-level informa-
tion. This supports our central hypothesis: verb-
argument structure annotation can be modeled
as a nearest-neighbor classification task in a se-
mantically structured space.

Verb Argument Structure Accuracy

give
Double Object 100% (10/10)
Prepositional Dative 90% (9/10)

bequeath
Double Object 100% (10/10)
Prepositional Dative 100% (10/10)

Table 1: Nearest-neighbor classification accuracy for
give and bequeath using give structure embeddings.

5.3 Pilot 3: Nearest-Neighbor Classification
Accuracy on Locative Alternation Verbs

We next tested our model on the verb spray, which
alternates between the Caused-Motion (CM) con-
struction (e.g., He sprayed the paint onto the wall)
and the Theme-Applicative (TA) construction (e.g.,
He sprayed the wall with paint). This alternation
provides an ideal case study because it involves two
competing argument structure frames that are both
frequent and semantically transparent, yet distinct
in terms of syntactic realization.

Experimental setup. We assembled 100 tokens
of spray, balanced between 50 CM and 50 TA to-
kens. Of these, 20 CM and 30 TA tokens were
drawn directly from COCA, and each was paired
with an altered counterpart in the alternate construc-
tion (e.g., a TA token such as Pinocchio sprays
Puss with water was paired with its CM variant
Pinocchio sprays water to Puss). This procedure
yielded a balanced dataset where every naturally at-
tested token was matched with a constructed coun-
terpart, ensuring equal representation of both con-
structions.

Two VAS type embeddings served as classifiers.
For the CM frame, we used the put pattern (He
put the money into the pocket), averaged from 66
CM put tokens in Gutenberg. For the TA frame,
we used the cover pattern (He covered his beard
with his hands), averaged from 50 TA tokens in
COCA.1 Both put and cover serve as prototypical

1We did not use the TA cover pattern from Gutenberg due
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exemplars of their respective constructions, making
them suitable analogical anchors for classification.

Results with Gutenberg put. When paired
against the COCA cover embedding, the Guten-
berg put embedding produced an accuracy of 0.690
and a macro F1 of 0.662 (Table 4). Predictions
were heavily skewed toward the TA category: of
100 spray tokens, 79 were classified as TA, yielding
an F1 of 0.760 for TA but only 0.563 for CM. The
full confusion matrix is shown in Table 2.

Gold ARGST Predicted: TA Predicted: CM

TA 49 1
CM 30 20

Table 2: Confusion matrix for spray prediction using
Gutenberg put (CM) vs. COCA cover (TA).

This imbalance suggested that the skew might
not be due to structural similarity alone, but in-
stead to corpus mismatch: both spray and the TA
source (cover) came from COCA, while the CM
source (put) came from Gutenberg. To test this
speculation, we repeated the experiment using a
CM put embedding drawn from COCA rather than
Gutenberg.

Results with COCA put. Substituting 50 CM put
tokens from COCA yielded stronger performance:
accuracy rose to 0.860 and macro F1 also reached
0.860 (Table 4). Predictions were more balanced,
with F1 scores of 0.865 for TA and 0.854 for CM.
The corresponding confusion matrix is shown in
Table 3.

Gold ARGST Predicted: TA Predicted: CM

TA 45 5
CM 9 41

Table 3: Confusion matrix for spray prediction using
COCA put (CM) vs. COCA cover (TA).

Discussion. Taken together, the results summa-
rized in Table 4 suggest that analogical classifi-
cation may be affected by the corpus where the
source patterns are drawn. When sources and tar-
gets were drawn from different corpora (Gutenberg
vs. COCA), predictions skewed heavily toward the
COCA source. When both sources were drawn
from COCA, predictions became more balanced
and overall accuracy improved. Although these

to its limited size (n = 13).

findings are preliminary, they indicate that corpus
alignment could interact with structural similarity
in shaping analogical predictions. Future work
will test this more systematically across additional
verbs, constructions, and corpora.

CM-put (Gut.) +
TA-cover (COCA)

CM-put (COCA) +
TA-cover (COCA)

Accuracy 0.690 0.860
Macro F1 0.662 0.860
F1 (TA) 0.760 0.865
F1 (CM) 0.563 0.854

Table 4: Summary of nearest-neighbor prediction per-
formance for spray.

6 Conclusion

We presented a usage-based model that operational-
izes argument structure annotation as a nearest-
neighbor classification task over verb–argument
structure (VAS) embeddings. By aligning new
sentences with previously encountered construc-
tions in a multidimensional embedding space, the
model reflects how speakers interpret novel expres-
sions—not by parsing syntax and semantics sep-
arately, but by recognizing patterns grounded in
prior linguistic experience.

Our pilot studies illustrate both the promise and
the challenges of this approach. Pilot 1 showed that
cosine similarity captures differences in both form
and meaning, with a stronger bias toward meaning.
Pilot 2 demonstrated that nearest-neighbor clas-
sification can model argument structure in dative
alternation verbs, and together with Pilot 3, showed
that a single VAS type embedding can support accu-
rate prediction across verbs. Pilot 3 further scaled
up to locative alternation verbs and revealed that
accuracy also depends on corpus source: predic-
tions were more accurate when sources and targets
came from the same corpus. These findings suggest
that analogical classification is shaped not only by
structural similarity but also by corpus alignment,
pointing to key considerations for future large-scale
work.

The framework is designed for continuous refine-
ment: new structure types and attestations can be
added over time, allowing it to evolve alongside lin-
guistic theory and empirical data. This scalability
supports interpretable annotation and underscores
the value of high-quality, construction-based analy-
sis—even in the era of large embedding models.
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Appendix

A.1 Verb-Argument Structure Types for give
Below are the five verb-argument structure types of
give used in the classification model, each accompa-
nied by an illustrative sentence from the Gutenberg
corpus:

1. <NP1Agent, NP2Recipient, NP3Theme>
They gave him an opportunity of speaking
more, and therefore he thought himself bet-
ter than the rest.

2. <NP1Agent, NP2Recipient,
S[QUE+]Theme>
Simonetta gave her mother what was in-
dispensable for household expenses and
managed the rest herself.

3. <NP1Agent, NP2Theme, PPRecipient>
He should have given the deer to the woman.

4. <NP1Agent, NP2Theme, PPBeneficiary>
With the same humanity which they had shown
in the case of Jogues, they gave a generous
ransom for him, supplied him with clothing,
kept him until his strength was in some degree
recruited, and then placed him on board a
vessel bound for Rochelle.

5. <NP1Agent, NP2Theme>
[...] the magician gives the order for prepara-
tions.
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Abstract

Sequence to Sequence models struggle at
compositionality and systematic generalisation
even while they excel at many other tasks.
We attribute this limitation to their failure
to internalise constructions—conventionalised
form–meaning pairings that license productive
recombination. Building on these insights, we
introduce an unsupervised procedure for min-
ing pseudo-constructions: variable-slot tem-
plates automatically extracted from training
data. When applied to the SCAN dataset, our
method yields large gains out-of-distribution
splits: accuracy rises to 47.8% on ADD JUMP
and to 20.3% on AROUND RIGHT without
any architectural changes or additional super-
vision. The model also attains competitive per-
formance with ≤ 40% of the original training
data, demonstrating strong data efficiency. Our
findings highlight the promise of construction-
aware preprocessing as an alternative to heavy
architectural or training-regime interventions.

1 Introduction

Compositionality is the principle that the meaning
of a complex expression is determined by the mean-
ings of its parts and the rules used to combine them
(Fodor and Pylyshyn, 1988; Marcus, 2003; Partee
et al., 1990). It enables systematic generalisation:
the ability to understand and produce novel combi-
nations of familiar elements, a hallmark of human
language competence.

Despite the impressive empirical performance
of sequence to sequence models such as RNNs,
LSTMs, and Transformers, studies have consis-
tently found that they struggle with tasks requir-
ing compositional generalisation (Lake and Baroni,
2018; Hupkes et al., 2020; Keysers et al., 2020).
When faced with inputs that combine known primi-
tives in unseen ways, these models frequently fail
to extrapolate correctly.

Cognitive and Construction Grammar treat con-
structions as form–meaning pairs composed of con-
ventionalised components that combine with lexi-
cal items (Goldberg, 1995; Langacker, 1987; Croft,
2001). For successful communication, speakers
must have access to these conventionalised con-
structions shared within their linguistic community.
The degree of conventionalisation varies across
construction types: for example, idiomatic expres-
sions like “kick the bucket” are fully fossilised
and resist internal modification, whereas partially
filled constructions such as “the Xer the Yer” con-
tain open slots that can be flexibly filled to pro-
duce complete surface forms (Fillmore et al., 1988;
Goldberg, 2006).

Inspired by this notion, we propose that mod-
elling constructions is essential to solving the prob-
lem of compositionality. We choose the SCAN
dataset - a canonical testbed for evaluating compo-
sitionality in neural models - to demonstrate our ap-
proach. We introduce a simple yet effective method
of mining pseudo-constructions and show that mod-
els trained on segmented data achieve significant
improvements over standard baselines on SCAN’s
ADD JUMP and AROUND RIGHT splits.

Furthermore, we demonstrate strong data ef-
ficiency: by leveraging the compositional struc-
ture, our method requires substantially less data
to achieve competitive performance, especially on
simpler splits. Our results suggest that carefully
exposing compositional patterns during training
can yield robust improvements without resorting to
complex interventions.

2 Related Work

There have been a number of benchmarks and
tasks to evaluate whether modern NLP methods
including deep neural networks such as RNNs (El-
man, 1990), LSTMs (Hochreiter and Schmidhuber,
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1997) and Transformers (Vaswani et al., 2017) ex-
hibit compositional behaviour. SCAN (Lake and
Baroni, 2018), COGS (Kim and Linzen, 2020) ,
CFQ (Keysers et al., 2020), PCFG (Hupkes et al.,
2020) and similar benchmarks focus on sequence
prediction tasks where input sequence must be pro-
cessed in a compositional manner to yield the cor-
rect sequence on the target side.

They showed that the models do not generalise
systematically: when confronted with new combi-
nations of words or phrases that were absent from
the training data, their performance breaks down.
Subsequent studies on a variety of datasets (Li and
colleagues, 2021; Sinha et al., 2019; Liška et al.,
2018), have reported similar findings. Informed by
these limitations, recent work has led to multiple
methods to improve compositional generalisation
abilities of neural network models.

Multiple studies have focused on disentangling
syntax and semantics - (Russin et al., 2019) in-
troduced a dedicated syntactic channel boosts
SCAN accuracy dramatically , separating prim-
itive–function pathways pushes performance to
near-perfect levels (Li et al., 2019; Jiang and
Bansal, 2021). Rather than separating syntax and
semantics, some studies have focused on syntactic
guidance. (Hupkes et al., 2019; Baan et al., 2019;
Kim et al., 2021; Zanzotto et al., 2020).

Data-centric approaches improve composition-
ality by augmenting the training corpus with sys-
tematically recombined examples: GECA (An-
dreas, 2020), automatically mined lexical symme-
tries (LEXSYM; Akyürek and Andreas, 2022), and
grammar-based generators such as CSL (Qiu et al.,
2022) all substantially cut error rates on SCAN,
COGS, and CLEVR. Herzig et al. (2021) insert a
reversible or lossy intermediate representation be-
tween the input and the target program, doubling
accuracy on CFQ MCD splits and adding 15–20
points on text-to-SQL.

Treating compositionality as a transferable skill,
Meta learning approaches (Zhu et al., 2021; Lake,
2019; Lake and Baroni, 2023) push transformers
beyond 70 % accuracy on the hardest SCAN and
COGS splits.

Apart from this, several studies have proposed
significant modifications to the neural network ar-
chitecture (Csordás et al., 2022; Huang et al., 2024)
and neural–symbolic designs such as NMN, MAC,
NLM, LANE, program-synthesis grammars, and
the Neural-Symbolic Recursive Machine (Andreas

et al., 2017; Hudson and Manning, 2018; Dong
et al., 2019; Liu et al., 2022; Nye et al., 2020; Li
et al., 2022) which achieve (near-)perfect composi-
tional generalisation on datasets like SCAN, COGS
and CFQ.

While many of these approaches achieve near-
perfect accuracy in datasets like SCAN and COGS,
they either require data augmentation, which likely
translates into training bigger models for a longer
time, or they propose drastic architectural changes
which have not been proven to scale beyond these
benchmarks. Our method does not employ data
augmentation or complex architectural changes.
Our aim is show that taking insights from Cog-
nitive Grammar and the notion of Constructions
leads to building models more capable of composi-
tional generalisation.

Recent work on integrating Construction Gram-
mar (CxG) with neural models has been encourag-
ing: fine-tuning BERT on construction-annotated
corpora sharpens its encoding of construction
identity and slot fillers (Tayyar Madabushi et al.,
2020), a Mandarin CxLM leverages more than ten-
thousand schemata to boost cloze accuracy (Tseng
et al., 2022). Yet no study has directly shown that
construction-aware training itself improves system-
atic compositional generalisation on classic out-of-
distribution tests and bridging that gap remains a
challenge.

3 Data

Introduced by (Lake and Baroni, 2018), SCAN con-
tains pairs of simple navigation commands with
action sequences; primitives like “jump” map to
“I JUMP”, while modifiers such as “left”, “right”,
“opposite”, and “around” compose these primitives
into longer actions.

The original paper showed that models excel on
a random split yet falter on novel combinations.
In the ADD JUMP split, models see the primitive
“jump” during training but must execute composed
forms (e.g., “jump twice”) at test time. Loula et al.
(2018) extended this with the AROUND RIGHT
split: training includes “walk left”, “walk right”,
“jump around left”, and so on, while testing requires
generalising to “jump around right”, forcing the
model to learn that “around” modifies directions
and that “left” and “right” are symmetric.

We focus on improving the accuracy for both
these splits.
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4 Approach

Definition (Pseudo-construction). A pseudo-
construction is a partially specified template in-
duced from training data, containing fixed words
alongside one or more slots represented by place-
holders (e.g., or W n). Unlike fully convention-
alised constructions, pseudo-constructions are de-
rived automatically and capture recurring structural
patterns that can generalise to novel inputs when
the slots are filled with appropriate lexical items.

4.1 Mining Pseudo-constructions
A SCAN train or test set consists of both a source
file, which consists of commands (“jump”) and a
target file which consists of actions (“I JUMP”).
Given a SCAN split, we take the source file of the
training set, and follow a series of steps to obtain
partially filled pseudo-constructions.

• Extracting Candidates: For every sentence
in the train source file, we extract spans of
up to length of 4 tokens and add them to
the candidate list. We also generate masked
spans in which one or more non-consecutive
words are replaced by the the token “ ”, ef-
fectively forming a slot in a partially filled
pseudo-construction. The candidates are then
ranked according to their probabilities.

• Beam Decoding: We use beam search to seg-
ment an input sentence into the best scoring
sequence of pseudo-constructions and words.
Test source files are not used for mining
pseudo-constructions. They are segmented
only using the ones induced from the training
set.

• Encouraging Alignment with Target: Par-
tially filled pseudo-constructions like ‘
around twice” are advantageous because the
same template applies for any fully filled vari-
ant - a simple word replacement on the target
side works well. However, simple masking
also produces “look left ” which produces
widely different targets for different values of

and . Consider,

look around left → I TURN LEFT I LOOK
I TURN LEFT I LOOK I TURN LEFT
I LOOK I TURN LEFT I LOOK

look opposite left → I TURN LEFT
I TURN LEFT I LOOK

To discourage picking candidates like the
latter one, we compute an alignment dis-
tance between the candidate and its equiv-
alent on the target side. For each candi-
date P , gather the set of source sentences
S(P ) = {s1, s2, . . . , sn} in which the pattern
occurs, with each source sentence si paired to
a target sentence ti. For every si ∈ S(P ),
calculate its Levenshtein (edit) distance to
every other sj (j ̸= i) in the same set and
select the nearest neighbour, NN(si)—the
source sentence that minimises this distance.
Let (ti, tj) denote the target sentences aligned
with (si,NN(si)).

Define

∆i = |len(ti) − len(tj)|

as the absolute difference in their word counts.
The resulting misalignment score (MS) for
pattern P is the average of these differences:

MS(P ) =
1

|S(P )|

|S(P )|∑

i=1

∆i.

A lower misalignment score indicates that
source sequences are more aligned to the tar-
get sequences. A pseudo-construction has a
low misalignment score when swapping dif-
ferent words into its slots still produces target
sentences that look much the same. We add
this score as a penalty to the beam search to
pick candidates which are more aligned.

Once the source files (train and test) are seg-
mented, we prepare the data for the next stage. For
every sentence in the source files, we replace the
underscores with slot tokens such as W n where n
refers to the slot number. We save the mapping
between the slot tokens and the original words.

The SCAN data consists singleton rules such as
jump → I JUMP. We treat this as a bidirectional
lexicon. Whenever a token in a target sentence
appears in the lexicon, we lookup the source word
and then replace it with the associated slot token.
For example:

4.2 Training
We use the sequence to sequence transformer archi-
tecture as the base model for training purposes, and
use the JoeyNMT toolkit (Kreutzer et al., 2019)
to train all the models. The model architecture
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has an encoder and a decoder each with 4 layers
and 4 attention heads with embedding size of 256
and the feed forward layer with the size of 1024.
The models are trained for 30 epochs using the
NOAM scheduler (Vaswani et al., 2017). Prior to
evaluation, we swap back the slot tokens predicted
sequence through the mapping saved earlier.

5 Results

The performance on both the splits (ADD JUMP,
AROUND RIGHT) is significantly better than the
baseline transformer (1) which indicates that we
have succeeded in encoding a degree of generali-
sation through the pseudo-constructions. Overall,
they capture reusable structure absent from the flat
surface strings, enabling the model to generalise
compositionally.

6 Data Efficiency

Compositionality theory posits that exploiting com-
positional structure enables grasping abstract pat-
terns from far fewer training examples than treat-
ing data only at the surface level (Chomsky (1957),
Chomsky (1965), Fodor and Pylyshyn (1988)). We
test this by training models with smaller samples
of the SCAN splits.

After segmentation of the training source file,
each sentence is transformed into a series of
pseudo-constructions in such a way that multiple
sentences might fall into the same resultant
sentence type.
look opposite left twice and walk twice → (
W 1 opposite W 2 twice ) and (W 3
thrice)
jump opposite right twice and run twice → (
W 1 opposite W 2 twice ) and (W 3
thrice)

To assess the data efficiency of our method we
constructed sentence type–balanced training sub-
sets, retaining every sentence type but varying the
per-type quota k ∈ {1, 3, 5, 10, 25}. This produces
monotonic subsamples ranging from 5 % to 60
% of the original corpus while guaranteeing full
coverage. (Table 1).

On the ADD JUMP split, with only k = 10
examples per type—approximately 39 % of the full
training data—the model attains 40.7 % accuracy,
not far from the 47.8 % trained on entire set.

For the AROUND RIGHT at the same k = 10
mark the model reaches merely 9.4 %, less than
half of the 20.4 % full-data accuracy, and increas-

Split k / type Acc. (%) Size %
Around Right 1 2.77 741 5

3 5.98 2,042 13
5 8.66 3,166 21
10 9.38 5,423 36
25 10.18 9,175 60
Full 20.73 15,225 100

Add Jump 1 12.79 666 5
3 20.50 1,972 13
5 29.44 3,178 22
10 40.69 5,660 39
Full 47.81 14,670 100

Table 1: Accuracy as the training set is reduced to k
examples per type.
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Figure 1: Accuracy versus percentage of full training
data for the AROUND RIGHT and ADD JUMP SCAN
splits.

ing to k = 25 ( 60 %) yields only a marginal gain
to 10.2 %. This pronounced gap reflects the split’s
higher compositional complexity: mastering the
nested “around DIR” construction with repetition
operators may require substantially more evidence
than the shallow “add jump” pattern.

The pseudo-construction bias confers strong
sample-efficiency benefits on syntactically sim-
ple splits (ADD JUMP), but this may not scale
to harder generalisation problems (AROUND
RIGHT).

7 Conclusion

While we define pseudo-constructions opera-
tionally as automatically mined templates, they
can be seen as computational approximations to
Construction Grammar’s notion of convention-
alised form–meaning pairings. Unlike fully fos-
silised or community-shared constructions, pseudo-
constructions are data-driven and context-specific,
yet they capture structural regularities that support
compositional generalisation. Thus, while our pri-
mary aim is methodological, the results also lend
indirect support to the constructionist hypothesis
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that access to reusable schematic patterns is crucial
for systematic generalisation. We leave a fuller
exploration of their linguistic plausibility and theo-
retical integration to future work.

A deeper look into errors showed us that our
method for finding pseudo-constructions can make
several mistakes. For instance, while at first sight
“turn around right” and “walk around right” seem
to follow the same pattern, their corresponding out-
puts can vary significantly - this can lead to confu-
sion and failure if the word “turn” is masked away.

We call for more robust approaches into finding
constructions in text and for future work into deeper
integration of construction processing into neural
models.
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Emre Alp Akyürek and Jacob Andreas. 2022. Lexsym:

Discovering and exploiting lexical symmetries for
compositional generalization. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (ACL).

Jacob Andreas. 2020. Good-enough compositional data
augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2017. Neural module networks. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Joost Baan, Dieuwke Hupkes, and Willem Zuidema.
2019. Inspecting the inductive biases of rnns with
attentive guidance. In Proceedings of the 2019 Work-
shop on Analyzing and Interpreting Neural Networks
for NLP (BlackboxNLP).

Noam Chomsky. 1957. Syntactic Structures. Mouton,
The Hague.

Noam Chomsky. 1965. Aspects of the Theory of Syntax.
MIT Press, Cambridge, MA.

William Croft. 2001. Radical Construction Grammar:
Syntactic Theory in Typological Perspective. Oxford
University Press, Oxford, UK.
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Abstract

We present CoGS-NLI, a Natural Language
Inference (NLI) evaluation benchmark test-
ing understanding of English phrasal construc-
tions drawn from the Construction Grammar
Schematicity (CoGS) corpus. This dataset of
1,500 NLI triples facilitates assessment of con-
structional understanding in a downstream in-
ference task. We present an evaluation bench-
mark based on the performance of two lan-
guage models, where we vary the number and
kinds of examples given in the prompt, with
and without chain-of-thought prompting. The
best-performing model and prompt combina-
tion achieves a strong overall accuracy of .94
when provided in-context learning examples
with the target phrasal constructions, whereas
providing additional general NLI examples
hurts performance. This evidences the value
of resources explicitly capturing the semantics
of phrasal constructions, while our qualitative
analysis suggests caveats in assuming this per-
formance indicates a deep understanding of
constructional semantics.

1 Introduction
This research addresses the challenge of how we
determine what computational systems know of a
language; specifically, we focus on the large por-
tion of the English language in which meaning goes
beyond the sum of lexical parts—phrasal construc-
tions. Whereas our past NLP tools were developed
and therefore grounded in some form of grammat-
ical theory (e.g., phrase structure or dependency
parsing), LLMs lack grounding in linguistic the-
ory. Instead, their development is based on the
encoder-decoder architecture, which was originally
designed for sequence-to-sequence tasks, specif-
ically translation (Bahdanau et al., 2016). This
dichotomy impedes methods for evaluating LLMs,
as their performance on meta-linguistic tasks, such
as semantic role labeling, which previously served

Premise I had brushed my hair smooth.
Hypothesis I had smooth hair because

I brushed it.
Relation Entailment

Table 1: CoGS-NLI example for a premise including
the Resultative cxn; inferring the entailment relies upon
recognition of the constructinoal semantics.

as benchmarks for the individual components in an
NLP pipeline, are poor predictors of LLM fluency
on downstream applications.

Although LLMs lack theoretical grounding, eval-
uation of language proficiency benefits from anal-
ysis through a particular theoretical lens, which
enables one to hypothesize the appropriate formal
units of a language and the way in which meaning
is associated with those formal units. We leverage
Construction Grammar (CxG) to analyze language
(specifically English) as a set of constructions (cxn),
or pairings of meaning and form at any structural
level, including morphemes, lexemes, and phrases.
As a usage-based linguistic theory, CxG provides
an experimentally-validated framework for how
speakers acquire language and generalize knowl-
edge of frequently heard cxns to totally creative
and novel instantiations (e.g., Tomasello (2009);
Johnson and Goldberg (2013)). CxG research
demonstrates that speakers attribute meaning
to special syntactic templates (phrasal cxns)—
meaning that goes beyond that of the individ-
ual lexical items alone; CoGS-NLI allows us to
evaluate if LLMs also attribute the appropriate
meaning to phrasal cxns.

We leverage Construction Grammar Schematic-
ity (CoGS) corpus instances (Section 2) as the
premises in the subsequent development of a com-
prehensive dataset of 1500 Natural Language Infer-
ence (NLI) triples (see Table 1), which serves as
a downstream test of functional understanding of
cxns (Section 3). We benchmark performance on

172

https://creativecommons.org/licenses/by/4.0/


this task with two models (GPT-3.5-turbo, GPT-4o),
and demonstrate that including examples with con-
structional premises in few-shot prompting boosts
performance to reach a top-end accuracy of .94
(Section 4).1 This shows first that resources ex-
emplifying the target constructional semantics are
beneficial to performance, and second that con-
structional premises do not pose a problem for
state-of-the-art models in this task. However, there
is qualitative evidence that tempers the conclusion
that models must grasp constructional semantics
in order to perform successfully on the task (Sec-
tion 5). We close with recommendations for future
steps in evaluating constructional understanding
(Section 6).

2 Related Work
Related work in the area of evaluating LLMs
through the lens of CxG fall broadly into two types
of research: i. testing for LLM recognition and
classification of certain cxns; and ii. testing for
LLM functional understanding

In the first area, Tayyar Madabushi et al. (2020)
demonstrated that a variety of base and fine-tuned
BERT models are able to distinguish between sen-
tences that instantiate a particular cxn and those
that do not. Li et al. (2019) recreate a psycholin-
guistic test in which models of varying sizes are
tested for their ability to group sentences by se-
mantic similarity, where some sentences include
the same cxn (e.g., Caused-motion), and others
involve different cxns but semantically similar lex-
ical verbs (e.g., sneeze, burp). The authors find
that while the smallest language model with 1 mil-
lion parameters, MiniBERTas (Pérez-Mayos et al.,
2021), groups the sentences according to lexical
semantics, the largest model with 30 billion pa-
rameters, RoBERTa (Liu et al., 2019), groups sen-
tences according to constructional semantics. Of
particular relevance to this research, Bonial and
Tayyar Madabushi (2024a) develop the initial test
set of corpus examples of cxns later released as the
CoGS corpus, and test larger models (GPT-3 and
4) for recognition of sentences containing a cxn.
The authors find a clear trend demonstrating that
the models can recognize substantive cxns with
some fixed words (e.g., Much-less), but have in-
creasing difficulty recognizing cxns of increasing
schematicity or variability.

1The evaluation data subset, prompts, and outputs
can be found here: https://github.com/melissatorgbi/
from-form-to-function

Overall, the research in the first area demon-
strates that while models can recognize and classify
some cxns, more abstract cxns present a problem
for recognition. Furthermore, studies of recogni-
tion and classification do not directly demonstrate
whether or not LLMs are proficient users of the
cxns of a language; i.e. whether or not the models
“understand” the constructional semantics.

Thus, we emphasize the importance of the sec-
ond area of research, which aims to test LLM
functional understanding of cxns in a downstream
task. Both Weissweiler et al. (2022) and Zhou et al.
(2024) set up evaluations of formal recognition
of cxns as well as semantic understanding of the
Comparative-correlative and Causal-excess cxns
respectively. In both cases, the authors find that
models are able to distinguish the cxns, but perform
poorly on tests of semantic understanding in the
form of downstream questions. Similarly, Scivetti
et al. (2025a) finds that smaller-scale LLMs are sen-
sitive to the formal properties of the Let-alone cxn,
but reflect no sensitivity to the semantic properties,
again in a set of downstream questions testing for
understanding.

3 Dataset Development
NLI is a task in which a premise is presented fol-
lowed by a hypothesis, and the task is to determine
if the hypothesis i. must be true given the premise
(entailed); ii. may or may not be true given the
premise (neutral); iii. cannot be true given the
premise (contradicted). We base our task guide-
lines on the Stanford NLI (SNLI) corpus, which
was developed to test semantic representations, as
the authors consider understanding entailment and
contradiction to be fundamental to natural language
understanding (Bowman et al., 2015). NLI has
since been adopted as a relatively common test of
semantic understanding with several community
evaluations (e.g., Marelli et al. (2014); Lee et al.
(2024)). As a result, there is widespread availabil-
ity of NLI data on the web, and it is a relatively
common benchmark for LLMs. This also influ-
enced our choice—as there is abundant data on
LLM performance for the NLI task, we can distin-
guish baseline abilities of models on this task from
performance on the constructional variant (Sarlin
et al., 2020; Raffel et al., 2020; Wei et al., 2022).

We draw our premises from the corpus instances
of the 10 cxn types in CoGS (Bonial and Tay-
yar Madabushi, 2024b); there are about 50 unique
corpus instances of each cxn type, giving us about
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500 unique premises. The cxns in CoGS vary in
schematicity (how many words of constructional
slots are substantive/fixed or schematic/variable),
which enables us to test constructional understand-
ing for fixed-word cxns in which meaning is con-
sistently associated with a particular form, as well
as variable-word cxns, in which meaning is asso-
ciated with templatic syntactic patterns (such as
the DITRANSITIVE: The student [noun phrase]
handed [verb] the teacher [noun phrase] a book
[noun phrase]—i.e., NP V NP NP). A listing of all
cxns and example NLI triples from CoGS-NLI is
given in Appendix B, Table 4.

One native English speaker (and author of this
paper) with an undergraduate degree in Linguistics
(but no training in CxG specifically) was given a
spreadsheet of the CoGS premises and asked to pro-
duce 3 NLI triples—an entailed, neutral, and con-
tradicted hypothesis for each premise; thus, the cor-
pus totals 1500 triples associated with 500 unique
premises. We provide guidelines adapted from
SNLI definitions of the relations. The NLI author
selected triples to create in any order desired to pre-
vent getting stuck on more difficult cases. Depend-
ing on the length and complexity of the premise, the
hypotheses could take several minutes to process,
or come to the author immediately. Overall, the
development of the CoGS-NLI corpus was done
over the course of a year to prevent fatigue and
degraded quality.

We conducted several quality checks of the
CoGS-NLI corpus by comparing agreement on
the assigned relation of subsets of data (totaling
441 NLI instances) across three annotators (and
authors of this paper) against the author’s origi-
nally assigned relation. Percentage agreement on
the initial set of triples ranged from 71-80%, or
.55-.70 when measured as Cohen’s κ, indicating
substantial agreement. All disagreements were re-
visited, and a second author reworded the hypothe-
ses. Agreement on the reworded hypotheses then
reached 89%, or .84 Cohen’s κ, indicating very
strong agreement equal to the published agreement
of individual annotators with respect to gold rela-
tion for SNLI.

4 Evaluation Experiments
4.1 Methodology
We provide a performance benchmark by testing
models on the same subset of the data that was eval-
uated for human agreement. Specifically, we hold
out 50 instances for in-context learning and use

Setting IC Data GPT-3.5 GPT-4o
0-shot None 0.74 0.89
1-shot CoGS-NLI 0.78 0.91
3-shot CoGS-NLI 0.83 0.94
1-shot SNLI 0.70 0.89
3-shot SNLI 0.69 0.90

Table 2: Evaluation results, reported in accuracy, on the
CoGS-NLI dataset. “IC Data" refers to the type of data
used as in-context examples.

the remaining 391 instances as the test set. The in-
context learning examples were randomly chosen
where each example contains a single premise with
a neutral hypothesis, entailment hypothesis and
contradiction hypothesis. The in-context learning
examples provided are paired with target phrasal
cxns in the test set in order to provide clear exam-
ples of the phrasal constructional semantics within
the NLI task.

We evaluate GPT-4o-2024-05-13 and GPT-3.5-
turbo-0125 models; these models were chosen as
representatives of LLM capabilities due to their
large size. The temperature is set to 0 to minimize
randomness in the model outputs.

We compared results for six different prompt
variations, with and without explicitly prompting
for Chain of Thought (CoT). We report results
for our best-performing prompt, provided in full
in Appendix A. We also experimented with 0-
shot through 3-shot learning, with two different
sources of examples: held-out examples from the
CoGS-NLI dataset and selected examples with full-
sentence premises from the SNLI corpus. We con-
duct this comparison in order to determine if the
constructional examples boost performance, or if
general SNLI examples are sufficient. Note that
the CoGS-NLI examples include the target phrasal
cxns included in the evaluation, providing clear
examples of how these cxns should be interpreted
with respect to the NLI task. While the SNLI ex-
amples also include cxns of English, they do not
include the target phrasal cxns of CoGS.

4.2 Results
Results are reported in Table 2. We see a 5-point
boost in performance in the 3-shot setting with
constructional examples and achieve a top-end per-
formance of 94% accuracy from GPT-4o. We do
not see an equivalent boost in GPT-4o performance
in the 3-shot setting with general SNLI examples.
The constructional examples are even more helpful
for GPT-3.5, where 3-shot outperforms zero-shot
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Premise 1
Constance squeezed her way
down the platform looking for
the first-class carriages.

Hypothesis Constance waited in line
for the first-class carriages.

Relation Gold: Contradiction;
GPT-4o: Neutral

Premise 2 The 23 frantically scrambled to
the rear of the sub.

Hypothesis The 23 were calm at the rear of
the sub.

Relation Gold: Contradiction;
GPT-4o: Contradiction

Table 3: Premise 1 exemplifies an error for the most
frequently mis-analyzed cxn (Way-manner). Premise
2 (Intransitive-motion) exemplifies a hypothesis with
information outside of the constructional semantics that
cues the contradiction (i.e. “frantically” vs. “calm”.)

by 9 points. Notably, the 3-shot setting with SNLI
examples actually hurts performance by 5 points.

5 Discussion
Given that the CoGS developers found that mod-
els were able to recognize and classify substantive
cxns (with fixed words) with much greater accuracy
than schematic cxns (with no fixed words and only
variable syntactic-semantic slots) (Bonial and Tay-
yar Madabushi, 2024a), we also assessed if there
were performance differences in CoGS-NLI for
those cxns classed as fully fixed/substantive, par-
tially fixed, or fully variable/schematic. In con-
trast to the earlier findings, we do not find a no-
table difference in performance based upon the
schematicity level of the cxn in the premise (see
Appendix B Table 5 for performance results sep-
arated by phrasal cxn type). However, when we
analyze distinct cxns, GPT-4o achieves the high-
est accuracy on the fully variable Resultative cxn
(see Table 1) and the lowest accuracy on the par-
tially variable Way-manner cxn. We provide an
error case in (Premise 1) of Table 3. The stronger
performance that we see on schematic cxns like
the Resultative in the functional understanding NLI
task may relate to the frequency of the cxn—LLMs
may be better at “understanding” more frequent
cxns with greater representation in pretraining data,
and the fully schematic argument structure cxns of
CoGS are also some of the most frequent cxns of
English. We begin to explore this question further
in ongoing research (Scivetti et al., 2025b).

The performance of both models on the CoGS-

NLI dataset is comparable to performance on
SNLI (Ye et al., 2023; OpenAI et al., 2024);
thus, we can conclude that including constructional
premises does not pose a significant challenge in
this task. We note two intertwined limitations in
drawing the strong conclusion that these models
therefore have a functional understanding of the
semantics of the cxn. First, in the NLI task gener-
ally, models may rely on spurious features (e.g., the
number of tokens) of the premise and hypothesis to
solve the task without actually understanding the
constructional semantics (Gururangan et al., 2018).
Second, the hypotheses may probe other aspects
of meaning of the premise outside of the construc-
tional semantics. Premise 2 in Table 3 provides an
example where the hypothesis includes the modi-
fier “calm” which contradicts the modifier “franti-
cally” in the premise, but bears no relation to an
understanding of the Intransitive-motion construc-
tional semantics. Taken together, these limitations
mean that NLI task solvability generally, including
that of CoGS-NLI, may be correlated with features
outside of a deep semantic understanding.

Thus, on the whole, our results demonstrate that
while constructional resources are needed for boost-
ing performance on downstream tasks in which
language includes phrasal cxns (note that this is
not rare—argument structure cxns are some of the
most common phrasal cxns of English), more pre-
cise probing evaluations are needed for assessing
constructional understanding.

We take steps to craft hypotheses that more pre-
cisely target the constructional semantics in Scivetti
et al. (2025b). This research also leverages a sub-
set of the CoGS corpus for premises in setting up
an NLI evaluation of constructional understand-
ing; however, unlike the present research, we semi-
automatically generate the NLI triples by lever-
aging templates for the neutral, contradicted and
entailed hypotheses across all instances of a given
cxn type. We note that the templatically generated
NLI triples may inadvertently simplify the task by
consistently patterning different types of hypothe-
ses. In contrast, CoGS-NLI enables testing under-
standing through NLI while leveraging free-form,
human-authored triples. Together, CoGS-NLI and
the templatically-generated NLI dataset of Scivetti
et al. (2025b) provide complementary evaluation
resources.
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6 Conclusions & Future Work

The evaluation of constructional information en-
coded in LLMs has been approached in several
ways. A significant limitation of early methods,
such as probing internal model weights, is that
discovering the presence of constructional informa-
tion encoded in weights does not guarantee it is
functionally utilized. While prompting allows us
to observe how models interact with cxns, meta-
linguistic tasks that test an LLM’s ability to identify
sentences as instances of the same cxn measure a
classificatory skill, not whether the model can make
use of that cxn’s meaning to solve a problem.

Our work directly addresses this gap by focus-
ing on the functional application of constructional
knowledge. To this end, we created an NLI dataset
where premises are carefully selected to feature
specific cxns. Our results show that including ex-
amples with constructional premises does boost
performance, indicating a value to constructional
resources like CoGS-NLI. While our results sug-
gest that current models can often correctly solve
this task, we recognize that the NLI task does not
always isolate the exact semantic meaning carried
by the cxn itself. Therefore, in our ongoing and
future work we are developing more targeted evalu-
ations to verify that an LLM’s reasoning is guided
by the precise meaning conveyed by a grammatical
cxn (Scivetti et al., 2025b).

Furthermore, any claim about an LLM’s under-
standing must contend with recent findings that
their performance relies on “context-directed ex-
trapolating from training data priors” (Tayyar Mad-
abushi et al., 2025). Therefore, to genuinely test a
model’s reasoning capabilities, it is not enough to
evaluate it on problems for which priors readily ex-
ist in model training data. A systematic evaluation
must present novel scenarios with minimal or non-
existent priors, forcing the model to demonstrate
inherent ‘reasoning’ or ‘understanding’ rather than
relying on statistical shortcuts. We will continue to
leverage CxG as a formalism for targeting language
that is creative and novel, but readily understand-
able by people in order to support such systematic
evaluation.
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A Prompts

The following prompt was the best performing vari-
ation, achieving .94 accuracy with gpt-4o.

Prompt 1:
"You are the world’s best annotator. You are tasked
with annotating a triple for Natural Language In-
ference. You must determine the inference relation
between the Premise and the Hypothesis by select-
ing one of three numerical codes that reflect the
relationship:
0 – Entailment: The Hypothesis is definitely true
given the Premise.
1 – Neutral: The Hypothesis may or may not be
true given the Premise.
2 – Contradiction: The Hypothesis cannot be true
given the Premise.
Output a single numerical value between 0 and 2
inclusive, corresponding to the associated relation."

B CoGS-NLI Constructions: Examples &
Results by Construction

We provide a listing of all ten cxns included in
CoGS-NLI, along with example NLI triples, in Ta-
ble 4. We then provide performance results across
individual cxn types in Table 5.
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Construction Premise, Hypothesis Relation

Much-less
P: When my dad catches swarms sometimes he doesn’t even wear
a veil, much less a bee suit. Entailment
H: When my dad handles swarms, he sometimes wears a veil.

Let-alone
P: None of these arguments is notably strong, let alone conclusive.

Contradiction
H: All of the given arguments are strong and conclusive.

Way-manner
P: As she felt her way forward, suddenly a knight on horseback
galloped past her. Neutral
H: She was moving forward when a knight on horseback
almost ran her over.

Comparative-
correlative

P: The fewer things we make the more sustainable we are.
Entailment

H: We are more sustainable if we make fewer things.
Causative-
with

P: The waiter filled her glass with white wine.
Neutral

H: She ordered the white wine in a glass.

Conative
P: He nibbled at the filet, then ate ravenously.

Contradiction
H: He took big bites of the filet, then slowed down.

Ditransitive
P: They threw me a surprise party.

Contradiction
H: They forgot to give me a surprise party.

Caused-
motion

P: The MiG-25 fired an AAM at the Predator.
Neutral

H: The MiG-25 tried to hit the Predator.

Intransitive-
motion

P: Armed troops marched to the substations and turned
the power back on. Entailment
H: The power was turned back on by armed troops that
marched to the substations.

Resultative
P: He ate himself sick.

Entailment
H: He felt wick from eating.

Table 4: One example for each of the ten phrasal cxns included in CoGS-NLI. Note that premises are drawn directly
from CoGS, and CoGS-NLI contributes three hypotheses for each premise: one entailed, one contradicted, and one
neutral.
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Setting IC Data Construction GPT-3.5 GPT-4o
0-shot None Let-alone 0.79 0.92

Way-manner 0.58 0.79
Comparative- correlative 0.60 0.70
Causative- with 0.83 0.94
Conative 0.69 0.88
Caused- motion 0.78 0.92
Intransitive- motion 0.78 0.91
Resultative 0.80 0.94

1-shot CoGS-NLI Let-alone 0.83 0.92
Way-manner 0.64 0.79
Comparative- correlative 0.57 0.73
Causative- with 0.85 0.93
Conative 0.88 0.91
Caused- motion 0.81 0.97
Intransitive- motion 0.74 0.94
Resultative 0.79 0.94

3-shot CoGS-NLI Let-alone 0.67 0.92
Way-manner 0.79 0.85
Comparative- correlative 0.67 0.87
Causative- with 0.89 0.94
Conative 0.90 0.94
Caused- motion 0.83 0.97
Intransitive- motion 0.86 0.97
Resultative 0.80 0.98

1-shot SNLI Let-alone 0.79 0.92
Way-manner 0.52 0.88
Comparative- correlative 0.60 0.73
Causative- with 0.78 0.93
Conative 0.69 0.86
Caused- motion 0.69 0.92
Intransitive- motion 0.78 0.93
Resultative 0.67 0.91

3-shot SNLI Let-alone 0.62 0.92
Way-manner 0.58 0.85
Comparative- correlative 0.63 0.67
Causative- with 0.78 0.93
Conative 0.71 0.91
Caused- motion 0.67 0.92
Intransitive- motion 0.72 0.96
Resultative 0.68 0.92

Table 5: Evaluation results, reported in accuracy, on the CoGS-NLI dataset for the best performing prompt for each
individual construction. “IC Data" refers to the type of data used as in-context examples.
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Abstract
We probe large language models’ ability to
learn deep form-meaning mappings as defined
by construction grammars. We introduce the
ConTest-NLI benchmark of 80k sentences cov-
ering eight English constructions from highly
lexicalized to highly schematic. Our pipeline
generates diverse synthetic NLI triples via tem-
plating and the application of a model-in-the-
loop filter. This provides aspects of human val-
idation to ensure challenge and label reliability.
Zero-shot tests on leading LLMs reveal a 24%
drop in accuracy between naturalistic (88%)
and adversarial data (64%), with schematic pat-
terns proving hardest. Fine-tuning on a sub-
set of ConTest-NLI yields up to 9% improve-
ment, yet our results highlight persistent ab-
straction gaps in current LLMs and offer a
scalable framework for evaluating construction-
informed learning.

1 Introduction and Motivation

Human intelligence is often attributed to our ca-
pacity for language — and, in particular, our abil-
ity to generalize abstract, compositional meaning
from surface structure (Pinker, 2003). Construc-
tion Grammar (CxG) (Goldberg, 1995; Croft, 2001;
Tayyar Madabushi et al., 2020) (See also Section
2) formalises this by treating linguistic knowl-
edge as form-meaning pairings — constructions
— that range from single words to complex syntac-
tic frames. Understanding whether large language
models (LLMs) acquire such abstractions remains
a fundamental question at the intersection of lin-
guistics and artificial intelligence.

In CxG, each construction pairs a convention-
alised form with an associated meaning. The form
is the syntactic configuration, possibly including
fixed lexical items, while the meaning is provided
by the construction as a whole rather than from
the individual lexical items. For example, the Re-
sultative construction has the form Noun Phrase

Model Constr.
Semantics

Constr.
Distinction

Prior work (Scivetti et al., 2025)
GPT-4o 0.88 0.58
GPT-o1 0.90 0.46
Llama 3 70B 0.74 0.52
Human 0.90 0.83

This work
Llama-3.1-8B

(baseline)
0.57 0.33

Llama-3.1-8B
(fine-tuned)

0.66 0.39

Table 1: Comparison of model performance on construc-
tional (constr.) understanding. The top section, with
results from prior work Scivetti et al. (2025), shows that
LLMs struggle with the constructional distinction task
compared to the human baseline. The bottom section
presents our results, showing that this shortcoming per-
sists despite fine-tuning. See Section 6 for full results.

(NP), Verb (V), Noun Phrase (NP), Adjective (ADJ)
and the meaning “the action described by the verb
causes the object to enter the state described by the
adjective” (Goldberg, 1992). In “She hammered
the metal flat,” the state ‘flat’ is the result of the
hammering event, a meaning supplied by the Re-
sultative.

While each construction has a specific form, dif-
ferent constructions can share the same syntactic
structure. For instance, the Depictive construction
also uses the NP V NP ADJ form but has a distinct
meaning (Goldberg and Jackendoff, 2004). In the
Depictive, the adjective describes the state of the
noun during the action of the verb, not as a result of
it. This is illustrated by the example, “A famous em-
peror buried scholars alive.” Here, ‘alive’ describes
the state of the scholars while they were being
buried; crucially, the act of burying did not cause
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Construction Premise Hypothesis Label

Resultative Through
effort, the
gardener
cultivated
the garden
lush.

The gar-
dener
worked hard
to create
a vibrant
outdoor
space.

Entailment

Caused Motion The ma-
gician
levitated the
rabbit into
the hat.

The magi-
cian placed
the rabbit on
the table.

Contradiction

Causative With In no time,
the magician
had filled
the audito-
rium with
applause.

The ma-
gician
performed
in different
auditori-
ums.

Neutral

Table 2: Examples drawn from the ConTest-NLI train-
ing set, with one instance of each NLI label from distinct
constructions.

them to become alive. This distinction highlights
how syntactically identical sentences can convey
vastly different meanings based on the underlying
construction.

Recent evaluation work (Scivetti et al., 2025),
which used the downstream task of Natural Lan-
guage Inference (NLI) to create a test of the func-
tional understanding of LLMs, reveals that while
LLMs can correctly interpret an entrenched con-
struction like the Resultative even with unusual
lexical items, their generalization ability is lim-
ited. Specifically, when presented with creative
instances of a less entrenched construction like
the Depictive, LLMs tend to overgeneralize and
assign the meaning of the more frequent, or en-
trenched, Resultative construction. Indeed they
overgeneralise to such an extend that they show
a performance drop of over 40% on on this task,
when compared to the original task of interprating
the meaning of entrenched constructions. These
findings are summarized in Table 1. This failure to
use lexical and pragmatic cues to resolve syntac-
tic ambiguity, a task at which native speakers can
perform quite easily, demonstrates that the mod-
els’ grasp of abstract meaning remains brittle and
overly dependent on statistical patterns rather than
a robust, human-like linguistic competence.

While Scivetti et al. (2025) identify this short-
coming, they leave the reasons for this specific
failure to future work. Therefore, this work aims to
answer this question by examining the model’s ex-
pertise with the task. Specifically, we hypothesize

and investigate if training the model on explicit
NLI examples will help the model better ‘under-
stand’ creative, less entrenched constructions in
the presence of a more frequent distractor. A
positive result would offer a clear-cut path to im-
proving these models’ understanding, whereas a
negative result would point to a more fundamental
issue that needs to be addressed.

To this end, this paper introduces ConTest-
NLI (Constructional Test Natural Language In-
ference), a scalable dataset designed to evaluate
whether LLMs internalize the semantics of linguis-
tic constructions or rely solely on surface heuristics.
ConTest-NLI specifically targets systematic gener-
alization across unseen verbs, arguments, and con-
structions. This provides a scalable way to inform
LLMs of specific construction examples, allowing
a new control for deeper research into semantic
understanding of linguistic theory.

One key empirical finding is that LLMs fail
to generalize constructional semantics across
syntactically identical but semantically distinct
constructions. For example, models trained to
detect entailment violations in the Resultative con-
struction show no improved performance on the
Depictive construction, despite their shared syntax.
This lack of transfer reveals that current models
do not acquire construction-general semantics, but
instead overfit to narrow instantiations.

To test our hypothesis at scale, we use a semi-
automated pipeline that facilitates generation of
synthetic constructional NLI triples: ConTest-NLI.
Example data is shown in Table 2. Our pipeline
leverages syntax-informed template generation of
eight core constructions and model-in-the-loop fil-
tering to identify deceptive false positives.

We compare ConTest-NLI to two existing CxG
benchmarks from Scivetti et al. (2025): the manu-
ally curated Construction-NLI (CxN-NLI), and the
more challenging Construction-NLI-Distinction
(CxN-NLI-Distinction), which introduces false
positives that share syntax but diverge in seman-
tics. While those datasets offer excellent linguistic
control, they remain small and difficult to scale.
ConTest-NLI complements them by enabling con-
trolled experiments across a broader constructional
space, yielding more robust insights into model
generalization.

We fine-tune small-scale LLMs (LLaMA 3.1 8B
Instruct, Mistral 8B Instruct) on ConTest-NLI ex-
amples and evaluate their performance across both
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seen and unseen constructions. While models im-
prove (≤9pp) on the trained construction, their fail-
ure to generalise — especially to constructions with
shared syntactic structure — suggests a fundamen-
tal limitation in semantic abstraction.

ConTest-NLI is thus shown to be useful for eval-
uating systematic language understanding in LLMs,
bridging the scale of automated generation with the
precision of theoretical linguistics. In our experi-
ment, we use ConTest-NLI to gather direct empiri-
cal evidence that shows, without further architec-
tural or training innovations, LLMs do not acquire
transferable constructional semantics — highlight-
ing a key divergence from human-like generaliza-
tion.

2 Related Work

CxG is a linguistic theory that positions construc-
tions — form-meaning pairings — as the funda-
mental units of language. A construction, as de-
fined within this framework, is any linguistic pat-
tern whose meaning is not fully predictable from
its individual components (Goldberg, 1995; Croft,
2001; Tayyar Madabushi et al., 2020).

Further cognitive and usage-based studies within
CxG emphasize that humans generalize construc-
tional meanings from frequency of exposure and
exemplar experiences. Psycholinguistic research,
notably by Bencini and Goldberg (2000), showed
that participants’ interpretations of sentence mean-
ings significantly reflect constructional semantics
rather than just verb meanings alone. In their ex-
periment, participants grouped sentences primarily
by the underlying constructional meaning, demon-
strating that constructions themselves carry cogni-
tive reality independent of specific lexical content
(Kaschak, 2007; Goldberg et al., 2007).

This perspective is particularly relevant for eval-
uating language comprehension in computational
models. Recent computational linguistic research
leverages CxG to systematically assess language
understanding in large language models. Studies
such as those by Tayyar Madabushi et al. (2020)
and Scivetti et al. (2025) illustrate how CxG pro-
vides a robust theoretical grounding to create tar-
geted, semantically-rich evaluations for LLMs.
These studies specifically demonstrate the utility
of construction-based Natural Language Inference
(NLI) tasks, highlighting significant limitations of
LLMs in generalizing abstract constructional se-
mantics when faced with novel linguistic contexts

or minimally represented constructions (Bonial and
Tayyar Madabushi, 2024).

Thus, CxG not only provides insights into human
linguistic competence but also offers a rigorous
toolset for probing and understanding the bound-
aries of true semantic generalization in language
models — a foundational concern of contemporary
NLP research.

Also, constructional semantics provide a con-
trolled yet diverse linguistic testbed. Constructions
vary significantly in their schematicity — from
highly substantive, lexically fixed forms, such as
the Let-alone construction, to more abstract and
schematic patterns such as Resultative or Caused-
motion constructions (Bonial and Tayyar Mad-
abushi, 2024; Scivetti et al., 2025). Evaluations
across this spectrum enable systematic testing of
LLMs’ capacity for abstract semantic generaliza-
tion. Crucially, previous computational studies
demonstrate that while LLMs may perform well on
lexically anchored constructions due to frequency
and memorization, their performance substantially
deteriorates when faced with more schematic and
less frequent constructions (Weissweiler et al.,
2022; Scivetti et al., 2025).

Despite the promise of construction grammars
as a diagnostic for true semantic generalization, ex-
isting computational CxG evaluations remain nar-
rowly focused, limited in scale, or insufficiently
controlled. This project fills that gap by introduc-
ing a semi-automated pipeline that combines high-
variance templating to produce large-scale CxG
evaluation data.

3 ConTest-NLI Dataset Development

ConTest-NLI is designed as a scalable, high-
variance training resource for probing whether
LLMs can learn and generalise the semantics of
English constructions beyond rote lexical recall. It
forms the centrepiece of a broader multi-corpus
strategy, enabling both in-domain fine-tuning and
rigorous, out-of-distribution testing. This is essen-
tial: single-source datasets are prone to heuristic
exploitation, whereas orthogonal axes — synthetic
vs. natural, fluent vs. adversarial — allow us to
pinpoint exactly where generalisation succeeds or
fails.

We adopt the eight English constructions from
Scivetti et al. (2025), spanning the substantive–
schematic continuum (e.g., Let-alone vs. Resul-
tative). Construction details and examples are pro-
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vided in Appendix A. Each construction is instan-
tiated by ≥10,000 examples, generated from ≥8
canonical templates varying surface order, clause
type, and optional modifiers.

3.1 Template Engineering
For each construction, we hand-crafted 8–12 canon-
ical skeletal templates encoding the obligatory syn-
tactic positions and any construction-specific func-
tion words (e.g., “The more X, the more Y” for
the Comparative Correlative). These templates are
designed to maximise controlled diversity: varying
word order, clause type, voice (active/passive), ad-
junct position, and optional modifiers ensures that
no single surface pattern dominates.

Lexical slots are populated from “mid-
frequency” lemmas (20–60th percentile in
BookCorpus) to reduce overlap with model pre-
training data. We further expand these lists using
WordNet synonyms, hyponyms, and antonyms,
while explicitly excluding the top 10,000 Common
Crawl tokens and any lexemes whose semantics
would trivially satisfy the inference (e.g., moved
in a Caused-Motion frame). Controlled adver-
bial pools (manner, time, frequency, intensity)
and automated morphological inflection via
lemminflect add stylistic variation without
altering truth-conditional content. Examples of
templates and their instantiations are provided in
Table 3, and templates for all constructions are
provided in Appendix B.

Construction Example Template / Instantiation

RESULTATIVE “The [agent] [verb] the [patient] [end-
state]” → The chef chopped the carrots
thin

CAUSED-
MOTION

“X [verb] Y into Z”→ They rolled the log
into the river

CAUSATIVE-
WITH

“X filled C with S”→ The artist filled the
gallery with vibrant paintings

LET-
ALONE

“Even getting X to [verb] was tough, let
alone Y”→ Even getting the robot to suc-
ceed was tough, let alone the knapsack

Table 3: Sample templates and instantiations from the
ConTest-NLI generation pipeline. Note that template
filling results in some semantic infelicity, such as the
Let-alone comparison of a robot and a knapsack.

3.2 Example Generation
Each premise sentence is paired with three hypothe-
ses labelled entailment (E), neutral (N), or contra-
diction (C), with labels assigned via construction-
specific generation rules grounded in formal seman-

tics. For example, a CAUSATIVE-WITH premise
The artist filled the gallery with vibrant paintings
yields:

• (E) The gallery contained vibrant paintings

• (C) The gallery was empty of any paintings

• (N) The artist painted in a nearby studio

This approach ensures that all examples are flu-
ent and natural-sounding, while still requiring the
model to attend to the construction’s form-meaning
pairing to make the correct inference.

3.3 Manual Analysis
We conducted manual analysis to ensure the qual-
ity of the dataset along two dimensions: (i) the
generated constructions are indeed members of the
specified construction type, and (ii) the established
relation for each NLI triple is accurate. We ran-
domly sampled 100 instances of our dataset, bal-
anced across neutral, entailment, and contradiction
relations. One author and native English speaker,
trained in linguistics and CxG, provided a binary
rating for (i) and (ii), and where the author dis-
agreed with the relation provided, gave a corrected
NLI relation. The result of this analysis was that
99/100 instances were judged to be instances of
the specified construction type, and 94/100 NLI
instances were judged to have the correct relation.
This indicates the overall high quality of the devel-
oped dataset.

However, the manual analysis further revealed
two limitations of the synthetic NLI triples. First,
the data in the sample were relatively repetitive.
While we expect repetitions of the premise with
unique hypotheses representing different entail-
ment relations to the premise, we found that the
hypotheses themselves were also somewhat repeti-
tive, sometimes differing only in a single word (e.g.,
“tree trunk” vs. ”tree bark” or adding “might”). Sec-
ond, judging the entailment relation was somewhat
trivial for many triples, given that entailed hypothe-
ses were sometimes near-verbatim repetitions of
the premise, whereas contradicted hypotheses often
leveraged a single lexical item of opposite seman-
tics to a counterpart in the premise. We note that
manual development of NLI triples can also lead
to the same limitations.

3.4 Dataset Splits
We enforce a deterministic 70/15/15 train/dev/test
split within each construction. Crucially, the split is
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lexeme-held-out: any verb lemma appearing in the
test set for a given construction is entirely absent
from its train and dev sets. This protocol is ap-
plied consistently across all ConTest-NLI variants
and related evaluation sets (CxN-NLI, CxN-NLI-
Distinction), ensuring that improvements can be
attributed to constructional abstraction rather than
memorisation of specific lexical fillers.

Each construction is balanced across the three
NLI labels, yielding 4,000 triples per construction
and a total of 32,000 examples. The class balance
ensures that macro-accuracy remains an unbiased
measure of model performance.

4 Fine-Tuning Method

We use a small variety of base models for our fine-
tuning experiments: Llama-3.1-8B-Instruct and
Mistral-8B-Instruct. These models, both with ap-
proximately 8.1 billion parameters, have a decoder-
only transformer architecture that has already un-
dergone instruction tuning, making them proficient
at following natural language prompts. Their rel-
atively modest size allows for experimentation on
single GPU setups, while their strong zero-shot
baseline performance on tasks like NLI ensures
that any observed gains from fine-tuning are both
conservative and meaningful. We provide hyperpa-
rameters in Appendix C, full fine-tuning details in
Appendix D, and training regimes in Appendix E.

5 Evaluation Framework

To rigorously assess our hypothesis that targeted
fine-tuning yields systematic constructional under-
standing a comprehensive evaluation framework is
employed. This framework specifies the core met-
rics for NLI tasks, outlines the use of diagnostic
benchmarks to guard against overfitting and ensure
generalization, and details essential controls and
sanity checks to validate the genuineness of ob-
served performance gains. Our primary metric to
measure success is macro-accuracy. A statistically
significant improvement of over 5% accuracy over
a model’s baseline evaluation (before fine-tuning)
would be sufficient for us to accept our hypothesis.

5.1 Diagnostic Benchmarks

To ensure that improvements are not merely task-
specific overfitting but represent genuine, trans-
ferable gains in understanding, performance on
diagnostic benchmarks is critical. For this pur-
pose we use Scivetti et al. (2025) the previously

Model Setting CxN-NLI CxN-NLI-Distinction

LLAMA-3.1-8B baseline 57 33
fine-tuned 66 39

Mistral-8B baseline 49 36
fine-tuned 63 37

GPT-4o baseline 88 64
3-shot ICL 91 65

Table 4: Results across CxN-NLI and CxN-NLI-
Distinction benchmarks using baseline and ConTest-
NLI fine-tuned models or in-context-learning (ICL) ex-
amples from ConTest-NLI.

described CxN-NLI and CxN-NLI-Distinction
datasets. These benchmarks feature out-of-
distribution compositional tasks that involve the
eight constructions targeted in fine-tuning; how-
ever, they are hand-crafted to test semantic under-
standing of the constructions.

If a model exhibits consistent performance
across all of our datasets, yet remains consistent in
these diagnostic benchmarks, we can confidently
claim the model has improved on constructional
usage; however, has not improved on the true un-
derstanding of the construction.

6 Results and Discussion

ConTest-NLI demonstrated systematic gains across
the CxN-NLI evaluation set; however, showed no
improvements at semantic understanding of the
CxN-NLI-Distinction dataset. Results are summa-
rized in Table 4.

Ultimately, this shows model reasoning is done
on surface-cues of constructions, rather than true
constructional understanding. Critically, we know
this is fundamentally different from human reason-
ing, where we are able to grasp the semantics of
constructions instead of just surface-cues.

Notably, the Llama-3-8B-Instruct model, when
fine-tuned on ConTest-NLI, showed a significant
increase in accuracy on the CxN-NLI: from 57%
to 66%. The Mistral-8B-Instruct model, with
ConTest-NLI fine-tuning, saw performance rise
from 49% to 63%. These improvements com-
fortably exceeded the hypothesized +5 percentage
point threshold.

These ConTest-NLI results illustrate that fine-
tuning on natural-sounding premises yields in-
domain accuracy gains — key evidence that LLMs
can internalize form-meaning mappings and struc-
tures when they encounter sufficiently varied,
human-plausible NLI examples.
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6.1 Error Analysis

We provide full error analysis in Appendix F. The
six examples outlined in Table 8, each drawn from
a different construction in the ConTest-NLI training
set, illustrate the central weakness our paper identi-
fies: the model’s reliance on surface-level lexical
and syntactic cues rather than robust, construction-
general semantic reasoning. In each case, the
model either (a) overfit to familiar lexical frames
without integrating their semantic consequences,
(b) failed to connect constructional form to the
entailments it licenses (e.g., way-manner imply-
ing location change, resultatives implying caused
state), or (c) ignored clear scalar or negation cues
when they appeared in less frequent or slightly var-
ied contexts. That these errors occur across all
eight constructions — rather than being isolated to
a single form — reinforces our quantitative finding:
fine-tuning improved in-domain recognition but
did not instill transferable, abstract constructional
understanding.

6.2 Summary and Discussion

The fine-tuned model’s improvement over the base
model was 6% — above the 5% bar for the CxN-
NLI evaluation set, but notably smaller than the
gains on the CxN-NLI-Distinction dataset. This
discrepancy implies that while the model does in-
ternalise certain abstract features of the construc-
tions, a portion of the performance boost stems
from adaptation to the repeated surface patterns
and lexical distributions encountered during fine-
tuning.

7 Future Work and Conclusions

Our investigation demonstrates that explicitly
grounding LLM supervision in CxG yields mea-
surable gains in systematic generalization, yet also
exposes persistent limits of current models’ abstrac-
tion capabilities. By fine-tuning small-scale LLMs
on a CxG-informed corpus — ConTest-NLI — we
show that targeted constructional supervision de-
livers substantial improvements (9% on existing
CxG-NLI benchmarks), but that these gains attenu-
ate on out-of-distribution and adversarial challenge
items (CxN-NLI-Distinction dataset). These find-
ings carry two broader implications for cognitive
modeling.

First, our results suggest that, unlike human
learners who extract and re-apply abstract form-
meaning pairings across lexemes and structures,

LLMs continue to rely on residual surface cues
even after targeted fine-tuning. This divergence
highlights the need for cognitive models of learn-
ing to account for both exemplar-driven acquisition
and the development of schematic templates, of-
fering a new benchmark against which to evaluate
theories of human grammatical abstraction.

Second, the semi-automated pipeline we intro-
duce — combining model-in-the-loop adversar-
ial filtering and human validation — provides a
scalable methodology for instilling constructional
knowledge in models. Integrating such CxG-
grounded datasets into training regimens can drive
more robust semantic generalization, informing fu-
ture architectures that more closely mirror human-
like compositional reasoning.
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A Constructions of Focus

The constructions that we develop training data and
test on are detailed in Table 5.

B ConTest-NLI Templates

Causative-With • Prompt: Describe a situa-
tion where something causes a place or
thing to have a new feature or quality.
Example: The party filled the room with
laughter and music.

• Prompt: Write about an action that
makes an object filled or loaded with
something else.
Example: She packed the suitcase with
clothes for the trip.

• Prompt: Imagine someone causing a
change by adding something to a space.
Describe it.
Example: They stocked the pantry with
canned goods before the storm.

Caused-Motion • Prompt: Write about some-
one making something move to a new
place.
Example: He pushed the broken car into
the garage.

• Prompt: Describe an action that results
in an object being relocated somewhere.
Example: She threw the ball across the
yard.

• Prompt: Tell a short story where an ac-
tion causes an object to end up some-
where else.
Example: The wind carried the leaves
onto the porch.

Comparative-Correlative • Prompt: De-
scribe a situation where two things
change together — as one increases or
decreases, so does the other.
Example: The more he practiced, the
better he became at playing the piano.

• Prompt: Write a sentence showing how
more or less of one thing affects another
thing.
Example: The less she slept, the
grumpier she got.

• Prompt: Imagine a cause-and-effect re-
lationship where two actions or qualities
are linked. Explain it.
Example: The more it rained, the faster
the river rose.

Conative • Prompt: Write about someone try-
ing to interact with an object but not nec-
essarily succeeding fully.
Example: He tugged at the door, but it
wouldn’t budge.

• Prompt: Describe an action where a per-
son touches or tries to affect something
without completely changing it.
Example: She tapped at the microphone
to check if it was working.

• Prompt: Imagine someone fiddling with
or attempting to do something to an ob-
ject — describe it.
Example: He poked at the firewood, try-
ing to get the flames to grow.

Intransitive Motion • Prompt: Describe a
person, animal, or thing moving from
one place to another.
Example: The cat wandered into the
kitchen.

• Prompt: Write about a movement where
the focus is on someone or something
changing location.
Example: The children raced down the
hill.

• Prompt: Tell a short story about a jour-
ney or movement from one place to an-
other.
Example: The balloon drifted across the
blue sky.

Let-Alone • Prompt: Describe a situation
where something is already hard or un-
likely — and an even harder thing is even
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Construction Example Sentence

LA (Let Alone) I can’t knit a scarf, let alone sew a quilt.
CC (Comparative Correlative) The faster you run, the sooner you tire.
CWT (Caused Motion with Theme) She filled the bucket with sand.
CON (Conative) The boxer punched at the heavy bag.
WAY (Way Construction) She danced her way to fame.
IM (Intransitive Motion) The children ran into the park.
CM (Caused Motion) They rolled the log into the river.
RES (Resultative) He hammered the metal flat.

Table 5: Eight challenge constructions ordered from most lexically substantive (top) to most schematic (bottom).
Each example instantiates the construction in context.

less likely.
Example: He couldn’t finish a page of
his homework, let alone the entire assign-
ment.

• Prompt: Write about two related actions
or qualities, where the second is even
more extreme than the first.
Example: I can barely manage to jog a
mile, let alone run a marathon.

• Prompt: Imagine someone struggling
with one task — and an even harder task
is even more impossible. Describe it.
Example: She had trouble cooking
pasta, let alone baking a soufflé.

Resultative • Prompt: Describe an action that
causes something to change its state or
condition.
Example: He wiped the counter clean.

• Prompt: Write about an event where
someone does something that makes an
object end up different than before.
Example: She hammered the metal flat.

• Prompt: Tell a story where an object
transforms because of someone’s ac-
tions.
Example: They painted the walls bright
yellow.

Way-Manner • Prompt: Describe someone
making progress by doing an action re-
peatedly or in a special way.
Example: He elbowed his way through
the crowded hallway.

• Prompt: Write about someone moving
through space by performing an activity

along the way.
Example: She laughed her way down
the mountain trail.

• Prompt: Imagine someone reaching a
destination while doing something un-
usual — describe it.
Example: They danced their way to the
front of the stage.

C Hyperparameters

Hyperparameters and justifications are given in Ta-
ble 6.

D Fine-Tuning Details

Given the size of our labeled fine-tuning data, full
fine-tuning of all model parameters would be com-
putationally expensive, prone to overfitting, and
very inflexible for our experiments. Therefore, we
employ LoRA; This approach significantly miti-
gates the risk of overfitting on smaller, highly struc-
tured datasets like ours.

LoRA modules (rank r=16, scaling factor α=32,
dropout p=0.05) are specifically injected into the
attention layers and multi-layer perceptron projec-
tions of layers 12 through 20 of the Llama-3-8B-
Instruct model.

Layers 12-20 in a 32-layer transformer model,
such as Llama 3.1 8B, are roughly in the middle of
the network. Prior research shows that middle and
upper-middle layers often encode a mix of syntac-
tic and semantic abstractions - ideal for adapting
models to semantic tasks like NLI, especially for
constructional generalization (Liu et al., 2019).

We also note that training is conducted using
mixed-precision, with weights in BFLOAT16 and
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Parameter Value Justification
temperature 0.8 maximises lexical variety without destabil-

ising syntax
max tokens 500 covers premise + three hypotheses with

margin
rare-lemma seed list 5 376 nouns/verbs/adjectives reduces overlap with pre-training corpora

Table 6: Generation parameters and their justification.

activations in INT8, to further reduce memory foot-
print and improve training efficiency. Additional
fine tuning hyperparameters are found in Table 7.

E Training Regimes

To systematically investigate how and where con-
structional knowledge is acquired and represented,
three distinct training regimes are employed. These
regimes are designed to disentangle the effects of
weight updates, classifier head architecture, and
dataset characteristics.

Shared-Head: Updates the model with a single
shared three-way NLI head for all construc-
tions. This is the canonical regime, testing if
a unified representation can be learned across
all constructions.

Per-construction Heads: Updates the model with
8 independent NLI heads (one per construc-
tion). This explores whether separate, special-
ized classifier heads better capture construc-
tional nuances.

In-Context Few-Shot: No weights are updated.
Predictions are made via prompting (8-shot).
This baseline tests learning from examples in
context, without training.

All fine-tuning regimes are run for a maximum
of 5 epochs over the training data. By comparing
performance across these regimes, we can draw
more nuanced conclusions: for example, if the
Shared-Head regime significantly outperforms In-
Context Few-Shot, it suggests that explicit weight
updates are beneficial. The Per-construction Heads
condition offers insights into the potential modu-
larity of learned constructional knowledge. This
comprehensive experimental design ensures that
claims about improved constructional understand-
ing are robust and well-substantiated.

F Full Error Analysis

The examples extracted and displayed in table 8
each illustrate a distinct type of model failure iden-
tified in our study.

In the Conative and Way-manner cases, the
model recognised the action but failed to apply
constructional entailments — ongoing effort should
contradict “gave up”, and the Way construction im-
plies location change. The Caused-motion and Re-
sultative examples show that the model often con-
flates transformation events with generic processes,
ignoring the causative semantics that the construc-
tion encodes. The Let-alone example reveals a
missed scalar inference, treating “barely managed”
as isolated from the second clause. Finally, the
Intransitive-motion case highlights a negation cue
failure, where “without a destination” was incor-
rectly aligned with a positive statement due to lex-
ical overlap. Across constructions, these failures
demonstrate that improvements from fine-tuning
largely reflect memorisation of surface patterns
rather than abstraction of form–meaning pairings.
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Optimizer and Hyperparameters

Optimizer AdamW
β1 0.9
β2 0.999
ϵ 1e− 8

Regularization and Early Stopping

BookCorpus in minibatches 33% (for anti-forgetting)
BookCorpus loss weight 0.25
Label smoothing (NLI heads) 0.1
Gradient clipping (max norm) 1.0
Weight decay (LoRA matrices) 0.01

Table 7: Hyperparameters from fine-tuning experiments

Construction Premise Hypothesis Gold Label Model Label

Conative The carpenter repeatedly
hammered at the stubborn
nail.

The carpenter gave up try-
ing to fix the nail.

Contradiction Neutral

Way-manner The detective elbowed his
way to the front of the
crowded room.

The detective stayed at the
back of the room.

Contradiction Neutral

Caused-
motion

The artist painted the mu-
ral into a vibrant master-
piece.

The artist worked on the
mural for a week.

Neutral Entailment

Let-alone He barely managed to tie
his shoelaces, let alone
complete the marathon.

He found tying his
shoelaces easy.

Contradiction Neutral

Intransitive-
motion

Without a destination, the
traveler wandered through
the forest.

The traveler had a clear
destination in mind.

Contradiction Entailment

Resultative A few strikes were enough:
the blacksmith hammered
the iron flat.

The iron became flat. Entailment Neutral

Table 8: Examples of failed NLI cases from the ConTest-NLI training set.
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Abstract

In this paper, we apply the lens of Construction
Grammar to provide linguistically-grounded
evidence for the recently introduced view of
LLMs that moves beyond the ‘stochastic parrot’
and ‘emergent Artificial General Intelligence’
extremes. We provide further evidence, this
time rooted in linguistic theory, that the capabil-
ities of LLMs are best explained by a process of
context-directed extrapolation from their train-
ing priors. This mechanism, guided by in-
context examples in base models or the prompt
in instruction-tuned models, clarifies how LLM
performance can exceed stochastic parroting
without achieving the scalable, general-purpose
reasoning seen in humans. Construction Gram-
mar is uniquely suited to this investigation, as
it provides a precise framework for testing the
boundary between true generalization and so-
phisticated pattern-matching on novel linguis-
tic tasks. The ramifications of this framework
explaining LLM performance are three-fold:
first, there is explanatory power providing in-
sights into seemingly idiosyncratic LLM weak-
nesses and strengths; second, there are empow-
ering methods for LLM users to improve per-
formance of smaller models in post-training;
third, there is a need to shift LLM evaluation
paradigms so that LLMs are assessed relative
to the prevalence of relevant priors in training
data, and Construction Grammar provides a
framework to create such evaluation data.

1 Introduction

Understanding how Large Language Models
(LLMs) solve complex tasks is a critical yet un-
settled question, and the field remains divided be-
tween two primary viewpoints. One perspective
characterizes LLMs as ‘stochastic parrots,’ which
do little more than generate statistically probable
outputs based on their training (Bender et al., 2021;
Bender and Koller, 2020; Mitchell and Krakauer,

2023). The opposing view contends that with suf-
ficient scale in parameters and data, LLMs ex-
hibit ‘emergent reasoning’ (Brown et al., 2020a;
Wei et al., 2022b; Srivastava et al., 2023a), a phe-
nomenon claimed to be ‘sparks of Artificial Gen-
eral Intelligence’ (AGI) (Bubeck et al., 2023).

Our recent work (Tayyar Madabushi et al.,
2025b) has sought to bridge this divide with an al-
ternative framework.1 Rather than viewing LLMs
as either ‘stochastic parrots’ or as possessing ad-
vanced, human-like reasoning, we contend that the
capabilities and limitations of these models are
best explained by context-directed extrapolation
from their training priors. In our framework, the
necessary context is supplied by in-context learn-
ing examples for base models, or directly by the
prompt for instruction-tuned models.

This position paper first summarizes the frame-
work proposed in Tayyar Madabushi et al. (2025b)
(Section 2). We then present our working defi-
nition of reasoning and generalization while pro-
viding linguistic examples of the generalization
of constructions (Section 3). We discuss the two
prevalent views of LLM capabilities along with
evidence from CxG rsearch for and against each
view. First, we explore stochastic parroting and
present evidence of LLM success in solving diffi-
cult, non-memorizable problems that require more
than next-token prediction (Section 4). Second, we
explore the possibility of AGI, where we present re-
search demonstrating that models are incapable of
completing certain tasks that are trivial for humans
(Section 5). This pattern, we will argue, suggests a
specific shortcoming in what is termed ‘advanced
reasoning.’ We then present new evidence from
Construction Grammar (CxG) that substantiates
this view (Section 6) and provides insights into the
limitations of the more extreme, alternative views.

1Mentions of our past research have been de-anonymized
after double-blind review and paper acceptance.
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From this foundation, we turn to the problem
of evaluation. We argue that even though LLMs
have mastered many superficial linguistic elements,
sound linguistic theory provides the necessary tools
to test their deeper reasoning (Sections 7, 8). Specif-
ically, we demonstrate how the principles of CxG
can be used to design precise tests that probe the in-
herent capabilities of these models, and we suggest
extensions informed by usage-based theories.

2 Context-Directed Extrapolation from
Training Priors

In the framework of context-directed extrapolation,
an LLM makes use of the entire prompt context
to generate its output. This process is straightfor-
ward in base models, which are trained exclusively
on the next-token prediction objective. For base
models, the input prompt provides the sequence
context from which the most probable subsequent
token is generated. However, dealing with the more
common models, which are additionally trained
to follow instructions (instruction-tuned models),
the instructions in the prompt establish a semantic
context. This context is then used to extrapolate
from relevant priors acquired during pre-training,
as opposed to treating the prompt merely as a token
sequence.

Specifically, for base models, while there is wide
debate over how LLMs function, their capabilities
and their ability to truly generalize, their capacity
for in-context learning (ICL) is an indisputable
fact (Brown et al., 2020b; Olsson et al., 2022). ICL
is an ability of LLMs to learn a new task on the fly,
simply by being given a few examples within the
prompt. To illustrate this, Tayyar Madabushi et al.
(2025b) use the example of a modified addition
task. In this task, when provided with the input
prompt:

1 + 3 = 5; 7 + 12 = 20; 8 + 3 =

LLMs, trained only on the next token prediction
task, can infer the novel pattern (a+ b+ 1) from
the examples and produce the correct, non-obvious
answer of 12.

In Tayyar Madabushi et al. (2025b), we derive
the notion that ICL is a method of solving tasks by
extrapolating from pre-training priors from a con-
vergence of several distinct theories. We note that
research consistently supports this view, whether
by directly linking ICL to the distributions in pre-
training data (Chan et al., 2022; Hahn and Goyal,

2023), or by explaining it through frameworks like
Bayesian inference (Zhang et al., 2023; Xie et al.,
2021) and Probably Approximately Correct (PAC)
learning (Li et al., 2023b). This conclusion is re-
inforced by other studies that liken ICL to fine-
tuning (Dai et al., 2023) or show that it can im-
plicitly perform gradient descent, a process linked
to meta-learning (Akyürek et al., 2023; Li et al.,
2023a; Zhang et al., 2024; Von Oswald et al., 2023).
Ultimately, we argue that regardless of the specific
mechanism, all existing research indicates that ICL
fundamentally relies on priors from pre-training
data, with the in-context examples serving to guide
the model toward the relevant priors needed for the
task at hand.

2.1 Context-Directed Extrapolation in Base vs
Instruction-Tuned Models

A critical observation is that LLMs trained solely
on next-token prediction (i.e. base models) are by
construction nothing more than sequence comple-
tion engines. However, these base models cannot
solve tasks that require abstract reasoning without
being provided with examples through in-context
learning (ICL) (Lu et al., 2023). Consider, for in-
stance, the following logical deduction problem
from the Big-Bench benchmark:

Question: On a shelf, there are five
books: a gray book, a red book, a pur-
ple book, a blue book, and a black book.
The red book is to the right of the gray
book. The black book is to the left of the
blue book. The blue book is to the left
of the gray book. The purple book is the
second from the right.

Targets: ‘The gray book is the leftmost.’:
0; ‘The red book is the leftmost.’: 0; ‘The
purple book is the leftmost.’: 0; ‘The
blue book is the leftmost.’: 0; ‘The black
book is the leftmost.’: 1

Base models fail on such reasoning tasks when pre-
sented without examples, however, they can solve
this task when presented with a prompt that in-
cludes examples. Central to our augment is the fact
that, instruction-tuned models can solve this task
without examples based purely on a description of
the task (Lu et al., 2023).

Context-directed extrapolation from training
data priors offers a unifying framework to explain
both the capabilities and, importantly, the limi-
tations of LLMs: In base models, the in-context
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examples provide the context direction to allow the
model to infer and solve the relevant task at hand.
In instruction-tuned models, however, the process
of instruction tuning allows the models to interpret
the semantic context of the prompt without explicit
examples, and similarly direct extrapolation. We
contrast our framework with that of stochastic par-
roting in Section 4.1.

2.2 Extrapolation and Grounding
An important implication of context-directed ex-
trapolation is that it allows for a limited form of
grounding. By this we do not mean that models
achieve grounding in the human sense of connect-
ing language to embodied experience. Rather, be-
cause the mechanism involves extrapolating from
priors activated by the prompt, information that
is not explicitly present in surface form can nev-
ertheless become available to the model. For ex-
ample, when confronted with a nonce verb whose
definition is provided in the prompt, the model
can project that meaning into novel contexts and
apply it productively. Indeed, this same process
allows models to respond effectively in tasks such
as the Sally–Anne test (Wimmer and Perner, 1983),
enabling models to succeed on certain Theory of
Mind evaluations that would be inaccessible to
‘stochastic parroting’ (Kosinski, 2024).

This is categorically different from stochastic
parroting. A purely parroting mechanism cannot
accommodate genuinely novel input that falls out-
side its memorized distribution. The fact that LLMs
can extend prompt-based definitions, apply abstract
patterns, and generate context-appropriate interpre-
tations indicates that extrapolation yields access
to extrapolatable information that is not reducible
to surface statistics. In this sense, context-directed
extrapolation provides a pathway to limited ground-
ing, albeit one constrained by the priors in training
data and the context supplied at inference time.

2.3 A Mechanistic Basis for Context-Directed
Extrapolation

To understand the underlying mechanics of this
capability in LLMs, in Tayyar Madabushi et al.
(2025b), we first point to the foundational work of
Olsson et al. (2022), who systematically showed
that LLMs could complete abstract patterns with
random tokens (e.g., given a sequence [A][B]...[A],
LLMs correctly respond with [B]). While this com-
pellingly refutes the ‘stochastic parrot’ notion by
suggesting an algorithmic capability, we introduce

a crucial caveat from recent research (Niu et al.,
2025): this pattern-matching ability degrades sig-
nificantly as the tokens become less frequent in the
pre-training data. This finding demonstrates that
even this seemingly abstract skill is fundamentally
tethered to the model’s training priors.

We then argue that this powerful, data-dependent
pattern-matching ability is the same core mech-
anism that allows LLMs to solve more complex
tasks via ICL. This view is substantiated by ev-
idence showing that ICL remains effective even
when the labels in the examples are manipulated,
such as being flipped between positive and negative
or replaced with entirely unrelated words like ‘Foo’
and ‘Bar’ for a sentiment classification task (Wei
et al., 2023). Therefore, in Tayyar Madabushi et al.
(2025b), we conclude that ICL, while impressive,
is a sophisticated but ultimately constrained pro-
cess. We argue that because its operation is always
guided by the user-provided examples and bound
by the limits of its training data, it fails to meet
the requirements for advanced, generalizable rea-
soning. In this setting, the model never gains true
‘agency,’ as its performance is always a function of
the input, preventing it from making the leap from
guided pattern-matching to unguided, human-like
cognition.

3 Construction Grammars and
Generalization

In this section, we outline our definition of human-
like reasoning and provide insights into such rea-
soning in linguistic settings from CxG. Follow-
ing our work in Tayyar Madabushi et al. (2025b),
we embrace a definition of advanced reasoning
that requires mastery and understanding of knowl-
edge taken from one set of members instantiating
a class, and then generalization and application of
that knowledge to a novel set of items. In terms of
CxG, constructions (defined as pairings of mean-
ing and form at any level—morphological, lexical,
phrasal (Goldberg, 2003; Hoffmann and Trousdale,
2013)) should be thought of as classes, and mem-
bers are certain instantiations or realizations of that
construction/class. Psycholinguistic evidence from
child language acquisition demonstrates that chil-
dren acquire frequently-heard constructions first
and initially only use the member instantiation that
they have heard (Tomasello, 2009). For example,
a child’s first Resultative construction will likely
involve the high-frequency verb “make” along with
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other lexical items the child is frequently exposed
to: “Mommy made me mad.” An ‘understanding’
of this construction is achieved when a speaker can
recognize the similarity of other instantiations of
this construction, which generally involve some
kind of verb of change-of-state semantics within
the structure (e.g., “Berries turned me blue!”). True
generalization of the construction requires abstract-
ing and applying knowledge of the construction
from heard instantiations to novel items—in this
example, novel instantiations of the phrasal con-
structions where the individual lexical items have
likely not been experienced within that construc-
tion before: e.g., “The dog barked me awake.”

Over the next sections, we will discuss the more
extreme viewpoints of LLM performance as ei-
ther “stochastic parrots” or advanced general intel-
ligence. In each section, we will close with rele-
vant research from CxG. Our review of work on
CxG will reveal a mixed picture: models can make
the required generalization in some instances, but
fail in others. However, based on our framework
of context-directed extrapolation, these seemingly
contradictory performances become explainable.

4 LLMs are NOT Stochastic Parroting

While the ‘Stochastic Parrots’ paper from Bender
et al. (2021) rightly identifies the risks of bias prop-
agation in large-scale models, its claim that these
models merely generate the next most likely to-
ken is demonstrably false, as we will show. We
define stochastic parroting as the mechanism of
generating the precise statistically most likely next
token given the immediate input sequence. In this
view, an instruction is merely more text to be com-
pleted. In the following sections we contrast this
view, with our view that LLMs solve tasks using
context-directed extrapolation from training priors.

4.1 Stochastic Parroting vs. Context-Directed
Extrapolation

Functional Commonalities. From the perspec-
tive of the performance of base models, there is
no functional difference between context-directed
extrapolation and stochastic parroting. Base mod-
els consistently fail tasks such as the one described
in Section 2.1 when presented without examples.
One can argue that the examples simply form a
long context, where the correct answer is the most
probable sequence completion. This makes both
theories appear to describe the same mechanism:

the model completes a given sequence based on
statistical patterns. Consequently, the two views
are indistinguishable when analyzing this alone.

Most LLMs in wide use, such as public chat
models, undergo instruction fine-tuning after their
initial pre-training so they can ‘understand’ and
follow instructions presented within their prompts
(Wei et al., 2022a). This additional training, how-
ever, complicates their evaluation. It becomes diffi-
cult to tell whether a model’s success on a new task
is a sign of genuine emergent reasoning or simply
a consequence of its training on similar tasks.

This issue was explored in a systematic study
by Bigoulaeva et al. (2025), who fine-tuned over
90 models and demonstrated that the performance
of instruction-tuned models is strictly correlated
with that of base models. This suggests a single
underlying mechanism is at play in both. Building
on this, in Tayyar Madabushi et al. (2025b), we
argue that this mechanism is context-directed ex-
trapolation from pre-training data. We propose that
instruction-tuning simply allows the model to per-
form the same kind of extrapolation from a natural
language prompt, rather than needing the explicit
in-context examples that base models require.

Functional Difference. The functional differ-
ence between these two views becomes apparent
with instruction-tuned models. A base model, pro-
vided with enough examples, generates the cor-
rect output because it becomes the most proba-
ble completion of that long sequence. In contrast,
the context-directed extrapolation view posits that
instruction-tuning enables a different mechanism.
It allows the model to interpret an instruction not
as a literal sequence to be continued, but as a di-
rective to construct an implicit context for a task.
This allows the model to activate relevant priors
(just as examples do for base models) from its pre-
training data to perform the task specified by the
prompt, rather than simply completing the text
of the prompt itself. Critically, the evidence for
this distinction is that instruction-tuned models can
solve the logical deduction (and similar) problems
presented in Section 2.1 without any examples (Lu
et al., 2023). This phenomenon cannot be explained
by stochastic parroting, but is directly accounted
for by context-directed extrapolation.

This distinction becomes even more stark in
tasks involving novel words, as this eliminates the
model’s ability to rely on pre-existing statistical
associations. The Winodict benchmark (Eisensch-
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los et al., 2023), for instance, modifies Winograd
schemas by replacing a critical verb with a nonce
word defined within the prompt. Consider:

The verb ‘to plest’ means to be scared
of... The city councilmen refused the
demonstrators a permit because they
plested violence.”

To correctly resolve the pronoun “they,” the model
cannot use any stored knowledge about the word
“plest.” It must parse the definition provided in the
prompt and apply that meaning to the sentence. The
success of models on this task provides compelling
evidence that the model is not merely predicting a
statistically likely token, but is using the in-prompt
definition to build a context and reason accordingly.
The ability of LLMs to successfully solve this task
is directly explained by context-directed extrap-
olation as it allows models to extropolate mean-
ing from context. In contrast, a pure stochastic
parroting mechanism based on predicting the next
likely token along cannot account for this ability.
As discussed previously, unlike base models (Sec-
tion 2), instruction-tuned models succeed on tasks
such as logical deduction without explicit exam-
ples (Section 4.1), a result that cannot be explained
by stochastic parroting. The Winodict benchmark
illustrates this distinction especially clearly. By re-
placing a key verb with a nonce word defined only
within the prompt, the task prevents the model from
relying on stored associations. Yet models are still
able to resolve the pronoun correctly by project-
ing the definition into novel contexts (Section 6), a
behavior that cannot be accounted for by a purely
stochastic parroting mechanism. Indeed, mecha-
nistic studies exploring ‘induction heads’ further
support this view (Section 2.3). In what follows,
we turn to CxG research relating to the notion of
stochastic parroting.

4.2 CxG & Stochastic Parroting

There is relevant research demonstrating first that
information on certain constructions is present in
pre-training data, such that models may rely on
stochastic parroting to provide the impression of
proficiency with the constructions of the language.
Tayyar Madabushi et al. (2020) probe a variety
of BERT-based models for access to knowledge
of several constructions proposed in Dunn (2017).
In this work, Tayyar Madabushi et al. (2020) test
BERT models on their ability to distinguish sen-
tences that are instances of a given construction

from those that are not. Alongside the base model,
the authors trained several BERT “clones” with
additional exposure to constructional information,
varying the frequency of constructions during pre-
training so that some clones saw high-frequency
items and others saw low-frequency ones. The
expectation was that clones trained on rarer con-
structions would benefit most, since such items
were unlikely to appear often in the original pre-
training data. However, the results showed little im-
provement over the base BERT model, leading the
authors to conclude that constructional knowledge
was already accessible to BERT. It is worth noting,
though, that the constructions targeted were iden-
tified in a data-driven way using the methods pro-
posed by Dunn (2017), and typically involved fixed
lexical items. More schematic phrasal patterns,
such as argument structure constructions (Gold-
berg, 1992), were not included. As a result, it is
plausible that the constructions tested were already
present in the base model’s pre-training corpus at
sufficient frequencies to allow strong performance
through context-directed extrapolation rather than
deeper generalization.

In Bonial et al. (2025), we provide evidence from
Multi-Word Expression (MWE) constructional tem-
plates, which demonstrate that LLM abilities must
go beyond stochastic parroting. While it is ex-
pected that the conventional meanings of common
MWEs such as “spill the beans” (meaning to tell a
secret) would be encoded in LLMs, we show that
they can use in-context learning and a single ex-
ample to teach models entirely novel MWEs, such
as “winking at pringles” (meaning to indulge in
frivolity). Not only can the models explain the
meaning of a new (non-verbatim) usage of the
novel MWE, GPT-4o is able to answer targeted
questions about the new usage, for example that
“a meeting where everyone is winking at a bunch
of chips” is probably not a productive use of time.
Thus, this research demonstrates that ICL in the
form of a definition of the novel MWE and sin-
gle usage example facilitates performance that can-
not be dismissed as stochastic parroting, as these
novel MWEs are guaranteed not to be found in pre-
training data. Table 1 presents further examples
from this work.

5 LLMs are also NOT AGI

On the other end of the spectrum, some research
argues that models, when scaled up, gain abilities
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MWE Definition & Example Novel Usage GPT4o Interpretation Annotator Interpretation

Expression: to send one’s LLM
(instead)
Meaning: Not worth one’s time.
Usage: There’s no way I’m at-
tending that meeting, I’ll proba-
bly send my LLM

The bank teller
seems to have
sent his LLM to
work today.

The statement means that the
bank teller seems disengaged or
inattentive, implying they are
not putting in effort or paying at-
tention, as if they had metaphor-
ically ‘sent their LLM’ to do
their job instead of being present
themselves.

Annotator 1: The bank teller
is not putting effort into their
work, relying on rote memoriza-
tion of their tasks, thereby mak-
ing many mistakes and poten-
tially misunderstanding some of
their interactions.

Expression: dance with the
deer
Meaning: to have a deep and
meaningful conversation, espe-
cially about something one is
passionate about.
Usage: When they were plan-
ning their research, they often
danced with the deer.

I don’t think
they were danc-
ing with the
same herd of
deer, possibly
not even the
same species.

The statement implies that the
individuals involved were hav-
ing deep and meaningful conver-
sations, but their passions, ideas,
or perspectives were signifi-
cantly different—perhaps even
fundamentally incompatible. It
suggests a lack of alignment in
their discussions or goals.

Annotator 1: Although all par-
ties are interested and passionate
about their topic of conversation,
they have not reached common
ground as to what the underly-
ing meaning and implications of
what the others are saying.

Table 1: Sample evaluation results from Bonial et al. (2025), in which we tested the ability of LLMs to generalize
to novel MWEs, given and defined in the first column. Note that models could not have been exposed to these
specific MWEs during pretraining, yet the interpretation of the novel usage (second column) is quite similar to that
of human annotators.

akin to high-level human reasoning (Brown et al.,
2020b; Wei et al., 2022b; Srivastava et al., 2023b;
Lu et al., 2024; Wei et al., 2024).

In Tayyar Madabushi et al. (2025b), we argue
that high-level reasoning is demonstrated only
when a model solves tasks it was not explicitly
trained for, distinguishing genuine cognitive appli-
cation from simpler forms of understanding (Krath-
wohl, 2002). In line with Chollet (2019), we note
that a model trained solely to master a single task
such as chess, even to a superhuman level, does
not exhibit the kind of reasoning that matters here,
since it is not generalizing knowledge to a truly
new domain. To make this distinction precise, here
and in Tayyar Madabushi et al. (2025b), we adopt
the framework of Krathwohl (2002), a revision of
Bloom’s original taxonomy of educational objec-
tives (Bloom et al., 1956), which defines advanced
reasoning as the ability to apply and extend knowl-
edge beyond familiar instances to novel contexts.

To argue that LLMs are not performing advanced
reasoning, we point to two key shortcomings: mod-
els’ tendency for hallucination and their failure
on seemingly simple tasks. First, LLM halluci-
nations—outputs that are not aligned with real-
ity—are cited as a major piece of evidence against
advanced reasoning (Huang et al., 2025). We
argue this phenomenon should not be confused
with human confabulation, as there is no evidence
for LLM agency (Lu et al., 2024), and these er-
rors can be traced to the model defaulting to sta-

tistical patterns from its training data when the
prompt’s context is insufficient (Hanneke et al.,
2018). Second, we highlight that LLMs often
fail at tasks that are trivial for humans (Nezhu-
rina et al., 2025). For instance, even top models
perform poorly on clinical psychology faux-pas
tests compared to children (Shapira et al., 2023),
and they are significantly outperformed by non-
expert humans in simple AI planning domains like
Blocksworld (Valmeekam et al., 2023).

5.1 CxG & Advanced Reasoning

From a constructional perspective, Li et al. (2022)
probe models of varying sizes for access to knowl-
edge of purely schematic argument structure con-
structions, including DITRANSITIVE, RESULTA-
TIVE, CAUSED-MOTION, and REMOVAL construc-
tions. In their design, the authors adopt a sorting
task where both human participants and models are
asked to judge sentence similarity. The dataset is
deliberately constructed so that the constructions
under investigation are expressed through a range
of lexical verbs. Importantly, the verbs chosen to in-
stantiate different constructions belong to overlap-
ping semantic classes—for instance, verbs such as
cut and slice. This setup allows them to test if par-
ticipants and models cluster sentences on the basis
of verb meaning, as traditional generative grammar
would suggest, or if they recognize the broader con-
structional pattern. The findings reveal a sharp di-
vergence depending on model scale. MiniBERTas
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(Warstadt et al., 2020), a model with only one mil-
lion parameters, aligns sentences primarily by verb-
level semantics, whereas the much larger RoBERTa
model (30B parameters; (Liu et al., 2021)) instead
groups them in line with constructional semantics.
While the authors do not point to this as evidence
of advanced reasoning per se, they do conclude that
larger models perform like native speakers while
smaller models perform more like second language
learners. However, we emphasize that these results
can also be interpreted as larger models success-
fully extrapolating from pre-training priors that the
smaller models do not have.

Additional studies using CxG highlight similar
limits to the reasoning abilities of LLMs. Weis-
sweiler et al. (2022a) examine the Comparative-
correlative construction (e.g., The higher you fly,
the harder you fall) as a test case for whether mod-
els can capture both its syntactic properties and
its associated semantic meaning. Their methodol-
ogy first targets the syntax by evaluating whether
models can reliably recognize instances of the
construction in natural corpus data and in con-
trolled, synthetic examples. On this task, sev-
eral BERT-based models perform well, success-
fully identifying and discriminating the construc-
tion. Such results are not unexpected given that
the Comparative-correlative includes fixed lexical
items in key structural positions. The crucial ques-
tion, however, is whether models can also handle
the semantics of the construction. To probe this,
the authors evaluate performance on a downstream
task that requires reasoning about the correlational
meaning encoded by the construction. Here the
models perform poorly, especially on nonce words,
with accuracy barely above chance, indicating that
while BERT-based models can recognize the formal
template of the Comparative-correlative, they fail
to grasp its interpretive content. We highlight that
this failure on nonce words is, yet again, indicative
of context-directed extrapolation. Similar research
evaluating both formal recognition and semantic
interpretation of the Causal-excess construction un-
derscores this finding—models can pick out the
construction but perform poorly on semantic under-
standing tests in the form of downstream questions
(Zhou et al., 2024).

6 CxG & Context-Directed Extrapolation

In Bonial and Tayyar Madabushi (2024a), we find
that even the largest models available at the time

(GPT-3.5 and GPT-4) are restricted to recogniz-
ing substantive constructions (with fixed words),
whereas schematic constructions (without fixed
words) elude recognition of either form or mean-
ing. In that research, we collect and leverage
the CoGS dataset (Bonial and Tayyar Madabushi,
2024b), which includes approximately 500 corpus
instances of 10 different phrasal constructions of
varying schematicity (i.e. some constructions are
fully fixed words, while others are argument struc-
ture constructions with no fixed words). The cor-
pus includes relatively frequent constructions, but
is limited to instantiations of those constructions
that are not the most frequent, entrenched instanti-
ations. For example, the Ditransitive construction
instances do not include usages with the verb “give,”
which is the most frequent verb to instantiate this
construction: “He gave me a book.” Instead, CoGS
Ditransitives include only cases where the lexical
semantics of the instantiating verb do not inher-
ently include transfer semantics: “He poured her a
martini.” In other words, the constructions in CoGS
have high type frequency, but these particular in-
stantiations have relatively low token frequency.
Nonetheless, the fixed words of the substantive
constructions facilitate tapping into the appropriate
pre-training data in order to recognize the construc-
tion (but not necessarily a deeper understanding,
as suggested by (Weissweiler et al., 2022b)). In
contrast, although the schematic argument struc-
ture constructions are the most fundamental con-
structions of the English language with very high
type frequency (Goldberg, 1992), the models are
not able to apply generalized formal and semantic
properties of the construction to novel instantia-
tions. This suggests that models can extrapolate
to a point to account for relatively infrequent, cre-
ative instantiations of constructions, but the level
of generalization required for recognizing the struc-
tural slots and associated semantics of argument
structure constructions is beyond model abilities.

Similarly, Scivetti et al. (2025a) find that the
“human-scale” BabyLM demonstrates strong for-
mal knowledge of the Let-alone construction, but
no understanding of the associated scalar seman-
tics. Further experiments on the templated evalu-
ation dataset first remove all Let-alone construc-
tions from pre-training data, as well as filtering
all related constructions (e.g., Much-less). The
authors find that this does not change BabyLM per-
formance on formal recognition of the construction.
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The authors then remove all individual “let” and
“alone” tokens from pre-training, and this signifi-
cantly degrades performance on formal recognition,
leading us to conclude that the model is drawing
on compositional, lexical information of the indi-
vidual words as opposed to the form of the phrasal
construction as a whole. Thus, this research under-
scores the notion that generalizing the semantics
associated with syntactic slots of a construction
eludes models, and casts further doubt on whether
or not even the formal features learned by mod-
els are generalized at the constructional level or
limited to lexical, collocational features.

In Scivetti et al. (2025b), we provide further evi-
dence of both the extrapolation abilities of LLMs
when it comes to constructions, as well as the lim-
its of their generalization abilities. We leverage a
subset of the CoGS dataset described previously,
specifically using corpus constructional usages as
the premises for Natural Language Inference (NLI)
triples in which templates are leveraged to semi-
automatically generate entailed, neutral, and con-
tradicted hypotheses. In leveraging an NLI task,
we test downstream, functional understanding of
the CoGS constructions, which again are of rela-
tively high type frequency (e.g., Ditransitive: “he
gave me a book”) but the instantiations of those
constructions are relatively low token frequency
(e.g., Ditransitive: “he poured her a martini”). In-
terestingly, although we found that models failed to
recognize more schematic constructions in Bonial
and Tayyar Madabushi (2024a), in our subsequent
NLI research (Scivetti et al., 2025b), we find that
the largest models available (GPT-4 and 4o) per-
form comparably on the constructional NLI and
Stanford NLI, ostensibly demonstrating that the
models are able to draw inferences correctly over
the constructional premises.

In Scivetti et al. (2025b), we then conduct follow-
on experiments where the models are evaluated
on a new set of NLI triples involving schematic
constructions that are not the high type-frequency
constructions of CoGS but are formally indistin-
guishable. For example, the Depictive construc-
tion (e.g., “She bought the apples fresh”) has the
same syntactic slots as the Resultative (e.g., “She
hammered the metal flat”), but distinct semantic
roles associated with the slots. We then test the
same models on NLI triples involving the formally
identical but semantically distinct premises, and
find that model performance drops substantially.

We posit that this research therefore demonstrates
the limits of extrapolation as opposed to true gen-
eralization of the meaning of constructions. The
strong performance on the original CoGS premises
shows that models can effectively extrapolate from
pre-training data, which is ample for these high
type-frequency constructions. However, the degra-
dation in performance on the formally identical
but semantically distinct premises shows that be-
cause models are extrapolating from the higher-
frequency constructions, they will perform the task
(incorrectly) according to those priors when faced
with lower-frequency constructions that the model
seems unable to distinguish.

Finally, in the second set of results from Bonial
et al. (2025), we extend this line of evidence. We
show that while LLMs can learn and use entirely
novel MWEs when definitions are provided in the
prompt (as discussed in Section 4.2, see also Table
1), performance degrades when models are asked
to reason across multiple MWEs at once. For ex-
ample, given novel MWE definitions for “drown
the cables” (an invented MWE defined as to sever
or overwhelm communication) and “dance with the
deer” (to have a deep, meaningful conversation),
the models were evaluated for their ability to reason
about the semantic interaction of the two MWEs
in a novel usage involving both MWEs. Human
annotators were able to do this consistently, but
even advanced models like GPT-o1 and GPT-4o
faltered. This demonstrates the limits of context-
directed extrapolation, which enables models to
extend clear, explicit definitions to new usages (as
shown in this work for single MWE), but that the
mechanism struggles once the links between con-
structions become less direct.

7 Discussion and Implications

Context-directed extrapolation explains LLM be-
havior as the use of priors activated by prompt
context. Because of this, the very same capability,
such as apparent Theory of Mind, will be observed
when the relevant priors are strong, but absent or
much weaker when priors are sparse. The same
holds for grounding: it will appear when relevant
information is easily extrapolatable from context
and fail when it is not. This means that evaluation
must carefully distinguish between cases where
models are simply drawing on rich priors and cases
where success would require true human-like gener-
alization. Counterfactuals are ideal for making this
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distinction, since they force the model to reason
beyond memorized or extropable priors, and LLMs
consistently fail on such tests despite succeeding
on superficially similar ones (Wu et al., 2024).

For decades NLP research sought to build
pipelines around symbolic templates and formal
reasoning systems. Over time the pipeline itself be-
came an end goal. LLMs now shift this landscape
by allowing us to fill templates more easily and
then use established resources, such as AMR (Ba-
narescu et al., 2013; Bonial et al., 2018) or frame
semantics (Fillmore et al., 2012), to support reason-
ing processes in systematic, verifiable ways (e.g.,
Tayyar Madabushi et al. (2025a)). Given that mod-
els continue to struggle with more advanced reason-
ing tasks, it is increasingly important to see them
as an interface between the complexity of language
and downstream formal reasoning rather than as
reasoning systems themselves.

CxG is a particularly strong testbed for this view.
It allows us to probe the line between semantics and
syntax and to see where models succeed because
of exposure to canonical patterns of language and
where they fail to generalize. Because there is al-
ready extensive evidence of how humans learn and
extend constructions (e.g., Tomasello (2009)), CxG
provides the right framework to compare human
generalization against model extrapolation and to
identify the precise gaps that remain. Usage-based
theories of learning, such as Frame Semantics (Fill-
more et al., 2012), can also be incorporated into the
design of systems. We need an interface between
the lexical, surface form of text and the higher-
level structures of meaning, and LLMs get us part
of the way there by exploiting priors in context.
Usage-based theories can then provide the concep-
tual tools to take us the rest of the way, enabling
a more systematic connection between linguistic
form, meaning, and true human-like generalization.

In sum, LLMs offer a powerful but incomplete
bridge between raw text and meaning. Their
strengths lie in exploiting priors through context,
but their limitations highlight the need for theo-
retical frameworks that go further. Usage-based
approaches such as CxG provide exactly this. By
combining the empirical reach of LLMs with the
conceptual depth of usage-based theory, we can
move toward a more systematic account of how
form and meaning connect, and build systems that
move towards human-like generalization.

8 Conclusions & Recommendations

The ‘stochastic parrots’ versus ‘sparks of AGI’ de-
bate has become a roadblock to clarity in LLM
performance and avenues to advance performance.
This paper offers a more productive, middle-ground
theory, providing a theoretically-grounded argu-
ment for context-directed extrapolation from train-
ing priors. The implications of this are significant:
it provides a coherent explanation for the seem-
ingly idiosyncratic and unpredictable strengths and
weaknesses of LLMs, demystifying phenomena
like hallucinations and, as we have detailed, clarify-
ing their contradictory performance on CxG tasks.

Second, it suggests that meaningful improve-
ments can be achieved not just through scale, but
through better methods of directing this extrapo-
lation via prompting and fine-tuning. This under-
standing demands that we re-evaluate how we im-
prove language models. The prevailing paradigm,
which chases unpredictable ‘emergent’ abilities by
scaling up models and data, is not the only way
forward. Our work suggests a more principled ap-
proach: focusing on the ‘context’ and ‘priors’ of
the reasoning equation to achieve significant perfor-
mance gains. This shift opens exciting new avenues
for research beyond a simple reliance on scale. It
points toward a more sustainable path to innova-
tion, focused on augmenting models in novel ways,
such as by equipping them with external memory.

Finally, and most urgently, our work demands
a paradigm shift in how we evaluate LLMs. To
genuinely measure a model’s reasoning, we must
move past benchmarks that might be tainted by
training data or that only test for simple extrap-
olation. The goal should be to assess a model’s
ability to generalize and apply knowledge, not just
to understand or remember it (in terms of Bloom’s
taxonomy (Bloom et al., 1956)). We therefore rec-
ommend a new focus on out-of-distribution evalua-
tion, using grounded linguistic theory like CxG for
language tasks. By testing models on examples that
are grammatically valid but highly unlikely to be
in the training data, such as formally identical but
semantically distinct constructions, we can clearly
distinguish between true generalization and mere
pattern-matching.

Taken together, these recommendations call for a
shift from chasing scale to building a linguistically
principled science of evaluation and improvement,
where CxG and related usage-based theories play a
central role.
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Abstract

This paper presents a pilot study of metaphors
of motion in African American literary lan-
guage (AALL) in two sub-corpora of novels
published in 1920-1925 and 1926-1930. It as-
sesses the effectiveness of Dunn’s (2024) un-
supervised learning approach to computational
construction grammar (c2xg) as a basis for
searching for constructional metaphors, a pur-
pose beyond its original design as a grammar-
learning tool. This method is chosen for its
statistical orientation and employed without
pre-trained models to minimize bias towards
standard language; its output is also used to
choose a target search term. Focusing on
the verbal phrase ‘come to’, the study ana-
lyzes argument-structure constructions that in-
stantiate conceptual metaphors, most promi-
nently experiencer-as-theme (e.g., ‘he came to
know’) and experiencer-as-goal (e.g., ‘thoughts
came to her’). The evaluation compares c2xg
coverage against a manually annotated set of
metaphors and examines the uniformity of
metaphor types extracted. Results show that
c2xg captures 52% and 63% of metaphoric
constructions in the two sub-corpora, with vari-
ation in coverage and uniformity depending on
the ambiguity of the construct. The study under-
scores the value of combining computational
and manual analysis to obtain outcomes that
are both informative and ethically aware when
studying marginalized varieties of English.

1 Introduction

Developments in Construction Grammar (CxG),
Conceptual Metaphor (CMT), Natural Language
Processing (NLP), and the study of African Ameri-
can English (AAE) call for linguistic inquiry that
goes beyond the vernacular (AAVE) and uses com-
putational tools to explore the construal of the
African American experience in metaphoric con-

structions.1 Accordingly, this paper documents the
initial phase of a longitudinal study of metaphors
of motion in the literary language of African Amer-
ican novels published between 1920 (Harlem Re-
naissance) and 1975 (Black Arts). Here the data
consists of novels from 1920-1925 and 1926-1930.
Given that a marginalized variety should be studied
without bias toward dominant varieties of English,
Dunn’s (2024) unsupervised learning approach to
computational construction grammar (henceforth
c2xg) is considered a suitable candidate for such
a project because it can learn a CxG grammar with-
out prior training or pre-existing biased models.
However, in addition to the ethical criteria, the
grammar it generates must be assessed for its effec-
tiveness in searching for constructional metaphors,
a purpose beyond its original design as a grammar-
learning tool. The evaluation compares its cover-
age against a manually annotated set of metaphors
and examines the uniformity of metaphor types
extracted.

The paper focuses on argument structure con-
structions containing metaphoric usages of ‘come
to’ whose meaning is distinguished by constraints
on pairing and positioning of arguments. The re-
sults show that most such constructions in the cor-
pus are experiencer-as-theme (e.g., ‘he came to
know/realize/think’) and experiencer-as-goal (e.g.,
‘thought/suspicion/love came to her’), along with
idioms such as ‘come to think of it’, and ‘what is
coming to you’.

2 Background

Study of AAE began with a focus on African Amer-
ican Vernacular English (Labov, 1972), but has
come to include African American Standard En-
glish, African American Middle Class English,

1Some use the term Language instead of English, thus
AAE and AAVE are also referred to as AAL and AAVL,
respectively.
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African American Church Language, and various
regional and demographic varieties (Bloomquist
et al., 2015). The study of the language of African
American literature has mainly focused on the rep-
resentation of vernacular speech (Holton, 1984;
Bailey, 1965; Williamson, 1970; Minnick, 2010;
Green, 2002). Moreover, CMT based studies in
African American literature have focused on a sin-
gle work or a single author (Levinson, 2012; Men-
sah, 2011). This project focuses on the entirety of
the language of literary works, a variety of AAE
described as African American Literary Language
(AALL). The language of novels is of interest be-
cause it evolved over time in two aspects: the rep-
resentation of vernacular speech in dialogue, and
the integration of vernacular forms into narration
(Wideman, 1977). To approach AALL without as-
sumptions, the study uses c2xg’s unsupervised
learning to discover metaphoric constructions that
characterize AALL (Dunn, 2024).

3 Data

The data consists of the literary corpus and the
output of the c2xg Python package. The corpus
consists of novels from a list curated by the His-
tory of Black Writing Project (The Project on the
History of Black Writing, 2024, 1987). For each
time period (1920-1925 and 1926-1930) the works
are narrowed down to ten based on the availability
of the digital text and a strong element of realism
which allows one to access metaphors that construe
the African American experience.2 The 1920-1925
sub-corpus contains 573,113 tokens and 1926-1930
contains 654,918. For each sub-corpus, a CxG
grammar is generated using c2xg’s Python imple-
mentation (Dunn, 2025). The CxG grammars are
the generated from a single round of learning using
the default parameters based on 500,000 words of
each sub-corpus. Each grammar is a list of com-
putationally derived constructions that can be aug-
mented with examples from the corpus which are
instantiations of the construction. These are re-
ferred to as examples in the c2xg documentation
and they are henceforth referred to as c2xg exam-
ples to distinguish them from standard numbered
linguistic examples listed in the paper. In this study
c2xg is run to list all of the c2xg examples from
which each construction are derived.

2This eliminates works of satire and historical fiction.

4 Methodology

Given the status and history of marginalization of
the language being studied, the methodology pri-
oritizes minimizing algorithm and human bias. To
minimize algorithm bias, it uses the unsupervised
learning of c2xg instead of language models and
POS taggers that are skewed towards dominant va-
rieties of English (Jørgensen et al., 2016; Hovy and
Prabhumoye, 2021; Ziems et al., 2022) ; in addi-
tion, c2xg is run without any of its pre-trained
models. To mitigate human bias, the target motion
verb is chosen based on its frequency within the
corpus and the metaphoric meanings it exhibits in
the output of c2xg. The frequency is calculated
from a word frequency list containing various in-
flections of ‘come’ (i.e., ‘come’, ‘comes’, ‘came’,
‘coming’, ‘comin’, and ‘comin’́).

Although ‘go’ is more frequent than ‘come’ in
the corpus, the latter is chosen because in the
c2xg examples the verbal phrase ‘come to’ ex-
hibits greater metaphoric variety in terms of argu-
ment structure. Metaphoric uses of ‘go to’ mainly
consist of ‘X going to Y’ constructions in which
subject X intends to take action Y (e.g., ‘I’m going
to quit’, ‘she was going to sleep’). On the other
hand, ‘come to’ exists in a variety of metaphoric
schematic (e.g., ‘X comes to Y, Y=VP or NP: ‘he
came to love’, ‘he came to a decision’) and id-
iomatic (e.g., ‘come to think of it’) constructions.

In order to assess the usefulness of c2xg for
finding constructional metaphors two data sets are
created. First, for each sub-corpus, an evaluation
set is created using verb-based search (i.e., ‘come
to’). The results of the search are manually format-
ted to create a set of key-word-in-context (KWIC)
entries where each ‘come to’ construction is anno-
tated. Second, the evaluation sets are searched us-
ing corresponding c2xg examples (e.g., ‘come to
love’) to create a pairs of search terms and matches
(i.e., c2xg example and corresponding KWIC en-
try). The result is a retrieved set for each sub-
corpus. These two sets are the basis for measuring
coverage and uniformity.

4.1 Evaluation Set
The corpus is searched for ‘come to’ construct
(‘come to’, ‘came to’, ‘coming to’, ‘comin to’,
‘comint́o’, ‘coming to’, and ‘comes to’) to cre-
ate a set of KWIC entries. Each ‘X comes to
Y’ construction is delimited and marked accord-
ing to its type: experiencer-as-theme, experiencer-
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c2xg Example KWIC Entry
[’came’, ’to’, ’know’] Avey and my real relation to her, I

thought I [came to know]+Verb.

[’came’, ’to’, ’realize’] And although Peter [came to realize
it]+Verb later it was many years before
he told her so.

Table 1: c2xg examples and corresponding annotated KWIC entries.

as-goal, goal-as-physical-part (e.g., ‘A determined
look came to his face.’), other metaphor, and non-
metaphor. Furthermore, the theme and goal in the
construct are given semantic labels to distinguish
them from other types of arguments (e.g., in ‘come
to love’, the goal ‘love’ is labeled as ‘Verb’, and in
‘peace came to her’, the theme ‘peace’ is labeled as
‘State’).

4.2 Retrieved Set
The c2xg examples containing the various inflec-
tions of ‘come to’ are used to search the evaluation
set. The search terms and matching results are
paired to form the retrieved set. Table 1 shows a
sample of entries; the ‘+’ is shorthand annotation
to mark experiencer-as-theme constructions.

4.3 Coverage and Uniformity
The results of the these two steps are used to
evaluate coverage and uniformity. Coverage is
the percentage of metaphoric constructions in the
evaluation set that are found in the retrieved set
(metaphors retrieved/metaphors identified).
Uniformity is measured for c2xg examples that
retrieve more than one result, and is the percentage
of result sets that contain the same type of
metaphor (uniform/uniform + varied). It
is measured after the result set of each c2xg
example is assigned a label. A result set consisting
of one match is single and not part of the measure.
Otherwise, if a result set has multiple matches
which consist of the same metaphor type, it
is uniform; otherwise, it is varied. These two
measures indicate the usefulness of c2xg for
locating metaphoric constructs.

5 Results and Analysis

Although the goal of this study is to assess coverage
and uniformity, such a discussion is informed by an
overview of the linguistic findings in the evaluation
set. The first subsection gives an overview of the
metaphoric constructions identified and annotated

in the evaluation set. The second subsection pro-
vides an account of the coverage and uniformity.

5.1 Metaphoric Constructions
The main linguistic findings consist of the
experiencer-as-theme and experiencer-as-goal
schematic constructions that also include idioms.
These constructions constitute the majority of the
metaphors in the verb-based search results: 71.34%
in 1920-1925 and 81.01% in 1926-1930.3 In
experiencer-as-theme, the experiencer is the theme
because it is the subject of ‘come to’ and it can
be a character (1a), group (1b), or general referent
in the novel (1c). The experience it undergoes is
construed with the conceptual metaphor CHANGE

OF MENTAL STATE IS CHANGE OF LOCATION.
The goal argument is realized through verbs fea-
turing mental verbs or the verb ‘be’, and nominals
denoting a state, event, or result.

(1) a. Peter came to realize it later
b. the cubs came to know him
c. handwriting all had come to know
d. he came to think it possible that
e. having come to understand
f. he had come to feel

The verbs convey cognition or perception such
as ‘realize’, ‘know’, ‘think’, ‘understand’, and feel
(1a-1f). The verb ‘think’ is also part of the idiom
‘come/came to think of it’ in which the experiencer
can be implicit (2a) or explicit (2b). Other mental
verbs include verbs of emotion such as ‘love’ (3a)
and ‘hate’ (3b). Another notable verb is ‘be’ which
introduces a state or result (4).

(2) a. Come to think of it they were ...
b. How’d you come to think of it?

3These results are calculated over example types (unique
sequences of one or more tokens), as the same example in-
stance may occur under multiple constructions, and some con-
structions are duplicates that yield identical sets of example
instances.
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(3) a. Just how I came to love her ...
b. We might come to hate each other

(4) a. you might come to be ashamed of me
b. puzzled by how they came to be there

Nominals of state or result in experiencer-as-
theme include idiomatic (5a-5c) and compositional
(5d-5f) constructs. In ‘came/coming to himself’
(5a-5b) the experiencer and the goal may seem to
be the same, but this analysis considers ‘himself’
to refer to an ideal state of sound judgment that
the experiencer had to arrive at. ‘Came to’ does
not have an explicit goal, but the experiencer is
understood to regain (arrive to) consciousness (5c).

(5) a. he came to himself
b. coming to himself
c. when he comes to there’ll be no ...
d. came to the conclusion
e. she had come to the parting of the ways
f. what we are coming to

(6) a. thoughts of his condition came to her
b. suspicion had come to her
c. the desires ... which had come to her
d. the peace which had come to her

In experiencer-as-goal, the goal can be a charac-
ter, part of a character (e.g., ears, mind), or thought
(e.g., ‘her reception of him’). The theme mostly
consists of mental phenomena such as thoughts
(6a), perceptions (6b), desires (6c), and psycholog-
ical states 6d. The c2xg examples often do not
contain the theme (‘X’ in ‘X came to Y’). For ex-
ample, the construct ‘visions of Lida came to him’
is extracted with the c2xg example ‘Lida came to
him’. c2xg examples containing a fully formed
‘X came to him/her’ extract non-metaphoric con-
structs such as ‘she/he came to him/her’.

Although in general the goal in experiencer-as-
goal refers to broad, external, and passive men-
tal phenomena, there are a few instances where
they refer to states or results which are the goal in
experiencer-as-theme constructions. For example,
the state ‘senses’ is the theme in (7a) whereas it is
the goal in (7b). A similar example for the result
‘decision’ is found in (7c) and (7d).

(7) a. Then her senses came to her.
b. Just wait till you come to your senses!
c. A swift decision came to her.
d. before she could come to any decision

5.2 Coverage and Uniformity
c2xg example-based search has a total coverage of
51.79% and 62.5%. Table 2 shows a more detailed
breakdown for each type of metaphor. It is evi-
dent that the individual coverage for each of these
two constructions are not consistent across the cor-
pora. Experiencer-as-theme has higher coverage
in 1920-1925 whereas experiencer-as-goal’s cov-
erage is higher in 1926-1930. Certain metaphors
are not extracted due to frequency of the search to-
ken sequence on the c2xg examples. For example,
the phrase ‘came to her’ appears 13 times in 1920-
1925, 7 of which are metaphors; in 1926-1930, it
appears 42 times, 37 of which are metaphors. As a
result, ‘came to her’ is represented in the grammar
of 1920-1925 and not in 1926-1930.

Table 3 summarizes the measure of uniformity
across metaphor types and non-metaphors. For the
experiencer metaphors (-as-theme and -as-goal),
uniform sets have almost double the uniformity
in 1920-1925 compared to 1926-1930 (93% vs
42%). This is partially explained by the size
of the result set: on average, a c2xg exam-
ple that matches more than one result extracts
4.85 in 1920-1925, and 9 in 1926-1930. The
c2xg examples that account for the majority of
the varied results are incomplete phrases such as
‘come to the’ and ‘come to her’. In the case of
‘the’, the type of metaphor is determined by what
follows, resulting in experiencer-as-theme (8a),
experiencer-as-goal (8b), and other metaphors (8c
and 8d). In the case of ‘her’, the pronoun can
be objective (9a) (experiencer-as-goal) or posses-
sive (9b) (experiencer-as-theme), but possessive
does not necessarily predict the type of metaphor
(experiencer-as-goal).

(8) a. she ... came to the conclusion
b. sorrow ... come to the singers
c. she had come to the parting of the ways
d. the ... pessimist ... came to the front

(9) a. the thought had come to her
b. reluctant to come to her journey’s end
c. phrases of thanks came to her mind

These preliminary observations of coverage and
uniformity show that the evaluation of a tool like
c2xg can inform how it is used and what is ex-
pected of it. In the case of coverage, one can expect
c2xg to reduce the problem space by learning con-
structions of higher frequency, and a larger sample
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Period Source Experiencer Goal is Other Totalas Theme as Goal Physical Part Metaphor

1920-1925
c2xg 34 24 0 9 69
Corpus 56 56 6 39 157
Coverage 61% 43% 0% 23% 43%

1926-1930
c2xg 21 59 3 8 91
Corpus 48 80 5 25 158
Coverage 44% 74% 60% 32% 58%

Table 2: Frequencies of ‘come to’ metaphors extracted by verb vs. c2xg examples.

Period Source Experiencer Goal is Other Non-
as Theme as Goal Physical Part Metaphor Metaphor

1920-1925
Single 28 6 0 2 45
Uniform 13 4 0 3 23
Varied 1 0 0 2 1
Uniformity 93% 100% 0% 60% 96%

1926-1930
Single 15 3 0 3 79
Uniform 5 2 0 0 32
Varied 7 6 1 5 14
Uniformity 42% 25% 0% 0% 70%

Table 3: Uniformity of metaphoricity in result sets extracted by c2xg examples.

size may ensure that key metaphors are not omitted.
In the case of uniformity, c2xg examples consist-
ing of incomplete phrases may reduce uniformity,
but also may increase variety. Thus, the goals of the
project would determine whether such phrases are
used in the search process or whether they would
need to be manually expanded in order to ensure
greater uniformity in the results.

6 Conclusion

This paper described an ongoing-research project
that is in its initial phases. It outlined a process
for the use and evaluation of c2xg which was
used to establish a statistical basis to identify po-
tential metaphoric constructions. The metaphor
analysis and argument structure analysis were fully
manual. However, the process of extracting poten-
tial metaphors was done both computationally and
manually which allowed for c2xg to be evaluated
for uses beyond its intended purposes.

The main contribution of this study was insights
on how the output of c2xg affects the extraction
of metaphoric constructions so that it can be used
in a manner that serves a project’s objectives. Still,
the usefulness of its data was not exhausted. Addi-
tional c2xg runs and rounds of learning are nec-
essary, and there remains analysis of the computa-

tionally derived constructions and their translation
into human-legible argument structure CxNs.

In the context of studying marginalized varieties
of English, the unsupervised learning approach of
c2xg presents a relatively safe start. However,
given the presence of General American English
(GAE) in the data encountered, at least for the pe-
riod observed (1920-1930), there may be potential
for the use of existing English NLP tools whose
output can be monitored and evaluated so that they
can be modified or that their output can be used in a
manner that is less biased. The mindful and vigilant
interplay between the computational and manual
analysis of constructions and metaphor analysis is
key for obtaining outcomes that are informative
and ethically aware.
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