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Introduction

Sarvesh Soni, Dina Demner-Fushman

Four shared tasks were organized as part of the BioNLP 2025 Workshop. These tasks are designed to
advance the state of the art in biomedical natural language processing by providing a platform to foster
innovative solutions to challenging problems in the field. Specifically, the tasks addressed: (1) validating
the similarity of research goals between scientific articles (SMAFIRA), (2) evaluating the factual accura-
cy of generative models (ClinlQLink), (3) generating evidence-grounded answers from electronic health
records (ArchEHR-QA), and (4) producing lay summaries of biomedical and radiology texts (BioLay-
Summ). Collectively, these shared tasks foster the development and benchmarking of innovative methods
for information retrieval, knowledge assessment, question answering, and summarization in biomedicine.

A total of 35 papers were submitted across the four tasks, with participants detailing a range of novel
approaches and systems. As is typical with shared task tracks, the majority of submissions were accepted,
resulting in 34 papers being included in the proceedings.

We provide a brief overview of each shared task below:

1. SMAFIRA

The SMAFIRA task addresses the challenge of assessing the similarity of research goals between biome-
dical articles, a crucial step in identifying alternatives to animal experiments. Participants were provided
with a set of reference scientific articles from PubMed, each representing an animal study within a spe-
cific disease domain, along with a set of twenty candidate articles retrieved from PubMed. The task
involved validating the candidate articles either automatically, with systems of the participants’ choice,
or manually, using the SMAFIRA web tool. Validation involves comparing titles and abstracts to assess
the degree of similarity in research goals using a three-point scale: similar, uncertain, or not similar.
This collaborative annotation effort aims to produce a high-quality dataset for benchmarking automated
methods and supporting the broader adoption of non-animal research approaches.

2. ClinIQLink

The ClinlQLink task aims to evaluate the ability of generative language models to produce factually
accurate medical information. Participants were tasked to submit models that can answer a diverse set
of clinically relevant questions, spanning fundamental concepts in procedures, conditions, diagnostics,
and pharmacology, at the level expected of a General Practitioner. Using a novel, expert-curated dataset
of atomic question-answer pairs, the task assesses both closed- and open-ended responses, employing
scoring metrics to measure knowledge retrieval and penalize factual inaccuracies. Beyond benchmarking
the current capabilities of generative models, the task provides insights into the origins and types of
hallucinations exhibited by state-of-the-art language models in medical contexts.

3. ArchEHR-QA

The ArchEHR-QA task targets the challenge of generating accurate, evidence-grounded answers to pa-
tients’ health-related questions using information from electronic health records (EHRs). Participants
were provided with realistic patient questions, clinician-interpreted version of the questions, and corre-
sponding clinical note excerpts. The objective is to develop systems that generate concise, professional
responses that are explicitly supported using citations to relevant sentences from the clinical notes. Sy-
stem outputs are evaluated using two main criteria: factuality, which measures the precision and recall
of cited evidence against manually annotated ground truth, and relevance, which assesses the quality and

ii



appropriateness of the generated answer text compared to ground truth. This task aims to advance re-
search on supporting clinicians in efficiently addressing patient inquiries, while ensuring that responses
remain accurate, contextually appropriate, and grounded in real clinical evidence.

4. BioLaySumm

The BioLaySumm task focuses on the challenge of making complex scientific information accessible to
non-expert audiences. The task comprises two main subtasks. In one, participants were given biomedical
scientific articles and tasked to develop systems to produce readable, informative summaries suitable
for the general public, with an additional subtask requiring the integration of external knowledge to
fill information gaps for lay readers. In the second, participants were tasked to translate professional
radiology reports into layman’s terms, with an additional multi-modal subtask involving the generation
of lay summaries directly from medical images. This task aims to benchmark current approaches and
foster the development of systems that support more inclusive and effective biomedical communication.

We remain deeply grateful to all shared task participants, to the authors who submitted papers, and to
the reviewers (listed under Program Committee) who provided thorough and thoughtful reviews for the
submissions, often under tight timelines. The quality of work submitted continues to rise, and we are
indebted to the outstanding members of our Organizing Committee, whose careful assessments have
been instrumental in identifying research ready for presentation and in advising authors where further
experiments and analyses could strengthen their contributions.

As in previous years, we look forward to a productive workshop and to the new collaborations and
research directions it will inspire. We are confident that these efforts will help our community continue
to advance public health and well-being, as well as contribute meaningfully to both basic and clinical
research.
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Approach to Patient Question Answering for Top Factuality
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Ane G Domingo-Aldama, Aitziber Atutxa, Josu Goikoetxea, Ander Barrena
HiTZ Center - Ixa, University of the Basque Country UPV/EHU
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Abstract

This work presents three different approaches
to address the ArchEHR-QA 2025 Shared Task
on automated patient question answering. We
introduce an end-to-end prompt-based baseline
and two two-step methods to divide the task,
without utilizing any external knowledge. Both
two step approaches first extract essential sen-
tences from the clinical text—by prompt or sim-
ilarity ranking—, and then generate the final
answer from these notes. Results indicate that
the re-ranker based two-step system performs
best, highlighting the importance of selecting
the right approach for each subtask. Our best
run achieved an overall score of 0.44, ranking
8th out of 30 on the leaderboard, securing the
top position in overall factuality.

1 Introduction

The increasing volume of patient messages re-
ceived through online patient portals has become
a significant source of clinician burden, high-
lighting the need for effective automated support.
In this context, ArchEHR-QA 2025: Grounded
Electronic Health Record Question Answering
Shared Task (Soni and Demner-Fushman, 2025b)
focuses on the automatic generation of answers to
patient-submitted health-related questions, lever-
aging evidence extracted from their Electronic
Health Records (EHRs). The objective of the task
is to develop systems capable of producing co-
herent and evidence-grounded responses, thereby
assisting clinicians in managing patient commu-
nication more efficiently. In this paper, we de-
scribe three different approaches to address the
task, present our system design, and analyze its
performance on the shared dataset. All the code
is publicly available at: https://github.com/
hitz-zentroa/ArchEHR-ArgHiTZ.

* This authors contributed equally.
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2 Related Work

Question answering (QA) is a widely used task
for evaluating Large Language Models (LLMs),
leading to extensive research in both general and
domain-specific contexts (Yan et al., 2024). In
the medical domain, several benchmark datasets
have emerged, like PubMedQA (Jin et al., 2019),
which features yes/no/maybe questions derived
from biomedical abstracts, and MedMCQA (Pal
et al., 2022), which contains multiple-choice med-
ical questions. Broader QA tasks, such as Se-
mantic Question Answering (SQA), use datasets
like BioASQ-QA (Krithara et al., 2023), for open-
domain biomedical questions. More recent work
(Ben Abacha et al., 2019, 2021) has moved to-
ward patient-centered QA, developing systems that
can automatically respond to patient questions us-
ing evidence from clinical notes, while evaluating
the quality of such responses. The ArchEHR-QA
shared task builds on this direction by introducing
a real-world challenge that aims to respond real pa-
tient inquires, relying on their EHRs’ information.
In this work, we propose and compare multiple
strategies to address this task without relying on
external medical knowledge, offering insights into
effective subtask decomposition for clinical QA.

3 Data

In this work, we focus on approaches that require
neither additional fine-tuning nor large-scale train-
ing, but instead rely on a single example to per-
form the task. Hence, we exclusively utilize the
dataset provided for the task (Soni and Demner-
Fushman, 2025a), which comprises 20 develop-
ment (dev) documents with patients concerns re-
garding a specific procedure or treatment they have
undergone, along with their corresponding EHRs—
derived from MIMIC-III (Johnson et al., 2016) and
MIMIC-IV (Johnson et al., 2023) databases. These
resources are used to generate responses that di-

BioNLP 2025 Shared Tasks, pages 1-10
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rectly address the patients’ concerns.

Each instance contains the patient’s narrative,
annotated spans capturing the core question, a tech-
nical reformulation, the full EHR, and a sentence-
by-sentence breakdown of the EHR with their IDs.
A separated file is also provided for the dev set
with an essential, supplementary or not-relevant
relevance classification for each sentence. Our ap-
proaches leverage the patient’s concern, the techni-
cal question, and the classified EHR sentences.

4 Models

For response generation, we utilized the Aloe (Gu-
rurajan et al., 2024) , Mistral (MistralAl, 2025) ,
and Gemma (Team, 2024) models, as well as, two
bigger models for comparison with the task given
baseline: Aloe 70B and Llama 3.3 70B (MetaAl,
2024) . Additionally, we implemented similarity-
based approaches, leveraging different re-ranking
models such as Jina (JinaAl, 2024) , BAAI BGE
(Li et al., 2023; Chen et al., 2024) and Alibaba
GTE (Zhang et al., 2024) .

5 Evaluation

The evaluation focuses on the two main objectives
of the task: detection of the essential sentences and
creation of the response paragraph. To evaluate
them, the first step is to check if the responses
adhere to the required format: a maximum of 75
words (excluding IDs), and each sentence must end
with at least one ID enclosed in vertical bars and
separated by comas (e.g., |11 or 12,3]), followed by
a line break. If the answer is longer than 75 words,
the output is truncated to that limit.

To evaluate the essential sentence detection (Fac-
tuality) Precision, Recall and F1-Scores are used.
The metrics are calculated in two ways: consid-
ering only essential sentences (Strict) and consid-
ering both essential and supplementary sentences
(Lenient). The generation of the response argu-
ment (Relevance) is evaluated comparing the gener-
ated text with the essential sentences and the ques-
tion using the following metrics: BLEU, ROUGE,
SARI, BERTScore, AlignScore and Medcon.

6 Approaches

The goal of this shared task is to provide an ade-
quate answer to the patients’ health concerns, while
citing the source of information—namely, the spe-
cific sentence(s) of their EHR. To tackle this chal-
lenge, we propose three distinct approaches and

systematically compare their performance on the
dev set in terms of both the quality of the generated
answers and the relevance of the cited evidence.

6.1 Baseline End-to-End

As a baseline, we test various prompts combining
role prompting—guiding the model to respond as
an specific person, in this case a doctor—and Chain
of Thought (CoT)—outlining the reasoning steps it
must follow before giving the final response—with
the models in Section 4 to generate responses in the
required format. The final prompt used is shown in
Appendix A.1. Each model receives the patient’s
full concern, its reformulation into a technical ques-
tion, the EHR annotated with sentence IDs, and a
one-shot input-output example. We enforce format-
ting through instructions and light post-processing
to fix minor errors.

Table 1 shows that the smaller Aloe Beta (8B)
model outperforms larger models in both Factuality
and Relevance. Although Gemma achieves the best
Relevance score, Aloe (8B) remains the overall best
option, despite still having room for improvement.

Overall Scores

Model Overall Relevance Factuality
Aloe 8B 0.388 0.312 0.464
Mistral 7B 0.364 0.327 0.402
Gemma 2 9B 0.353 0.366 0.340
Llama 3.370B  0.340 0.328 0.352
Aloe 70B 0.371 0.332 0.410

Table 1: Results for the end-to-end with post-process
approach in different models. Best results in bold.

Since 70B models show no clear improvement
over smaller ones and are computationally costly,
we exclude them from other experiments. Manual
quality checks also reveal that Gemma, despite its
higher Relevance, underperforms significantly in
Factuality and requires more post-processing, so it
is also discarded.

6.2 Two Step Approaches

Based on the baseline results and limitations, we
decide to take two-step approaches in order to split
the tasks for the models and reach better perfor-
mance. On the first step we decide which are the
essential sentences to respond the patient’s con-
cern, by prompting techniques (Section 6.2.1.1) or
using a similarity-based re-ranker for the provided
sentences (Section 6.2.1.2). On the second step,
those considered sentences are rephrased to build



a proper response by prompts and are cited corre-
spondingly following the post-process explained
on Section 6.2.2.

6.2.1 First Step
6.2.1.1 Prompting to Extract Essentials

In the first approach to identify essential sentences,
we leverage a large language model (LLM) using
two different techniques, experimenting with sev-
eral prompting strategies.

Extract list of essential sentences: This tech-
nique consists of prompting the model to generate a
list of IDs of the essential sentences given the list of
all the sentences of the clinical note. This method
leverages the model’s ability to comprehend the
clinical question and utilize the sentences as con-
textual information to produce an accurate list of
IDs. As the input, we use the patient narrative, the
clinician question and the clinical note sentences.

Determine essentials individually: In this
method, we evaluate each sentence individually
to determine whether it should be classified as es-
sential or not. The prompt instructs the model to
determine if the information contained in a clinical
note sentence is essential for accurately answering
the patient’s question. To simplify the task, the
model is required to respond with a binary "Yes"
or "No", reducing the complexity of the output and
potentially improving reliability.

We initially employed a basic prompt for each
method, which yielded suboptimal results. To im-
prove response accuracy, we subsequently intro-
duced a role-based prompt design by assigning the
model the role of a medical expert. Additionally,
we incorporated a CoT prompting strategy and one-
shot and few-shot prompting techniques, providing
the model with concrete examples to guide its re-
sponses. An overview of all prompt configurations
is provided in Appendices A.2 and A.3.

To evaluate the quality of the generated lists, we
focused solely on the strict metric, prioritizing the
F1 score. The results of these two techniques are
shown in Table 2 for extracting the list directly and
Table 3 for individual technique.

6.2.1.2 Re-ranker to Extract Essentials

Our second approach is inspired by the typical
RAG architecture, using a similarity based rank-
ing model to identify which of the retrieved text
chunks—the clinical notes’ sentences—are more

Strict

Model Prompt type Prec. Rec. Fl1
basic 040 0.26 0.31
role-based 052 049 0.50
Aloe 8B ot 047 038 042
+ one-shot 048 045 046
Aloe 70B  role-based 0.52 030 0.38
Mistral 7B role-based 055 042 048

Table 2: Results across models and prompt types to
extract essential notes for the first step, using a prompt
to generate the essential lists directly.

Strict
Model Prompt type Prec. Rec. Fl
basic 0.32 035 033
role-based 0.38 0.58 0.46
Aloe 8B ot 033 0.62 044
+ few-shot  0.35 043 0.39
Aloe 70B  role-based 0.52 0.19 0.28

Table 3: Results across models and prompt types to
extract essential notes individually in the first step.

relevant given a query—a combination of the pa-
tient’s narrative and the clinician’s question. We
leverage this method as it aligns with the task’s
goal of identifying the sentences of the clinical text
that are relevant to answer the patient’s query.

To determine sentence relevance, we rely on the
output scores provided by the reranker and estab-
lish a threshold. Sentences with scores above it are
labeled as essential, while those below are consid-
ered not-relevant. The optimal threshold is deter-
mined by computing the ROC curve and selecting
the point that maximizes the Youden index, which
allows us to identify the threshold that provides the
best trade-off between true positive and false pos-
itive rates. However, a potential limitation of this
method is that the threshold is determined based
on the dev set and may not generalize well to the
test set if the data distribution is different.

Strict Lenient
Model Prec. Rec. F1 Prec. Rec. F1
Jina 0.427 0.717 0.535 0.547 0.672 0.603
Alibaba 0422 0.681 0.521 0.552 0.651 0.597
BAAI 0.507 0.507 0.507 0.587 0.429 0.495

Table 4: Precision, Recall, and F1-score for each rerank-
ing model in the task of identifying essential sentences.

Table 4 shows the results obtained by different
reranker models in predicting essential sentences



Overall Scores Strict Lenient
Data Approach Overall Relevance Factuality Macro-F1 Micro-F1 Macro-F1  Micro-F1
End-to-End 0.388 0.312 0.464 0.464 0.464 0.550 0.529
Dev  Two-Step Prompting  0.385 0.265 0.504 0.518 0.504 0.547 0.511
Two-Step Re-Ranker  0.421 0.285 0.558 0.566 0.558 0.645 0.626
End-to-End 0.367 0.325 0.408 0.451 0.408 0.463 0.418
Test Two-Step Prompting  0.366 0.281 0.452 0.474 0.452 0.493 0.458
Two-Step Re-Ranker  0.440 0.276 0.605 0.585 0.605 0.619 0.621

Table 5: Best results of Relevance and Factuality of the three approaches in dev and test sets: Section 6.1 approach
using Aloe (8B), two-step prompting approach using Aloe (8B) in both steps (Section 6.2.1.1) and two-step re-ranker
approach leveraging Jina and Aloe (8B) for each step (Section 6.2.1.2). Best results in bold.

on the dev set. As shown in the table, the different
models achieve similar F1-scores, with the Jina
model obtaining the highest F1-score among them.

6.2.2 Second Step

After extracting essential sentences, we prompt
a model to generate a response addressing the pa-
tient’s concerns using only those sentences, without
citations. Following the strategy used in Section
6.1, one example is shown, but based solely on the
extracted essentials rather than the full EHR.

The generated response is then post-processed to
(1) meet a 75-word limit and (2) add citations. For
the first, the given response is split into sentences,
and we do a selection to stay within the word limit.
For the second, we match them to their most sim-
ilar essential sentence of the first step, based on
similarity scores. Citations are added accordingly,
capping the number per sentence for balance. Title-
like sentences from the first step are excluded in
this step. Therefore, this process preserves—and
often improves—the F-Score of the first step, while
ensuring a coherent, well-cited response. We lever-
age Aloe (8B) to get the response since it seems to
be the best model in previous steps. Table 5 shows
the results after performing the second step.

7 Discussion

After obtaining the dev and fest results (Table 5), it
becomes evident that the best-performing strategy
is the two-step approach with a reranker for essen-
tial sentence extraction, while the prompt-based
two-step variant does not improve end-to-end over-
all results.

This suggests that more critical than merely di-
viding the task into smaller and simpler subtasks,
is the choice of an appropriate method for each
subtask. In this case, using a reranker to extract
the most relevant sentences of the EHR for the pa-
tient’s question proves to be more effective than

the prompting-based selection.

Additionally, all three of our approaches surpass
the organizers’ zero-shot baseline, which achieves
overall scores of 0.359 and 0.307 on the dev and
test sets, respectively, despite relying on a signifi-
cantly larger model (Llama 3.3 70B). This further
supports our conclusion in Section 6.1 that larger
models do not necessarily outperform smaller ones
in complex tasks requiring not only medical ex-
pertise but also argumentative, summarization, and
rewriting skills. Notably, our best run achieves
an overall score of 0.44, ranking 8™ out of 30 on
the test leaderboard and obtaining the top position
in overall Factuality, even though it does not rely
on external knowledge. Nonetheless, our three
systems—particularly the two-step ones—exhibit
certain limitations in Relevance, suggesting that al-
ternative methods could be explored in future work
to improve the response drafting process.

8 Conclusions

This work presents three approaches to respond
to patient inbox messages using only the patient’s
concern, its technical reformulation, and the corre-
sponding EHR. Our methods accurately generate
responses and identify relevant information sources
in the given text without relying on external data.
Furthermore, we find that splitting the task into
smaller, targeted subtasks improves performance
when each is addressed with tailored methods. Fu-
ture work may explore alternative response formu-
lations to enhance clarity and improve the relevance
score. In conclusion, we demonstrate that accurate
message response is achievable without training
data or external information.
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Limitations

In this work we leverage several Instruct models,
as well as, one and few-shot prompting techniques.
Due to the lack of training samples, we do not ex-
tend the prompt examples and neither perform any
finetuning. Additionally, in the two-step systems,
there is still room for improvement in order to en-
hance the Relevance overall score—for instance,
by trying text-to-text models like TS5 (Raffel et al.,
2020). In this work we focus on techniques that uti-
lize only the available data, therefore Information
Retrieval methods such as Retrieval Augmented
Generation (RAG) are not employed, even though
they could be beneficial given the limited data avail-
able. We leave these methods for future work.
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A Prompts

A.1 End-to-End Prompt

{

"system”: "You are a Medical Report Assistant. Your role is to generate a
coherent paragraph that answers a patient's question using only the
information you consider relevant from the patient's medical record. You
will receive as input:\nl. A narrative of the patient.\n2. The patient's
question reformulated by a doctor.\n3. The medical record with the necessary

information to answer the patient concern.\n\nYour task is to produce a
paragraph answer that:\n- Rephrases and integrates the information from the
provided notes without copying them verbatim.\n- Selects only the sentences
you deem relevant to answer the question (do not use sentences that do not
add value to the answer).\n- Clearly cites the sentence numbers that
contributed to each sentence in your response, with the citation placed
immediately after the sentence enclosed in vertical bars (e.g., |1]| or
[2,3]).\n- Does not repeat or omit any sentence that you consider relevant,
and does not invent any additional sentences.\n- Contains a maximum of 75
words in total.\n- Strictly adheres to the following format: each sentence
on a new line with its citation; no additional text or explanations.{
example_case }\n\nEnsure your final output strictly follows this format: one
sentence per line with its corresponding citation, using the provided
sentences you consider relevant (without any repetition or addition), and
the total output does not exceed 75 words.\n\n- Ensure clarity, brevity, and

accuracy in your response. Here goes an example:\n\nExample Input:\nCase:
0\nPatient Narrative:\nTook my 59 yo father to ER ultrasound discovered he
had an aortic aneurysm. He had a salvage repair (tube graft). Long surgery /

recovery for couple hours then removed packs. why did they do this surgery
?2?2?? After this time he spent 1 month in hospital now sent home.\n\
nReformulated Question:\nWhy did they perform the emergency salvage repair
on him?\n\nClinical Notes:\n1: He was transferred to the hospital on
2025-1-20 for emergent repair of his ruptured thoracoabdominal aortic
aneurysm. 2: He was immediately taken to the operating room where he
underwent an emergent salvage repair of ruptured thoracoabdominal aortic
aneurysm with a 34-mm Dacron tube graft using deep hypothermic circulatory
arrest. 3: Please see operative note for details which included cardiac
arrest x2. 4: Postoperatively he was taken to the intensive care unit for
monitoring with an open chest. 5: He remained intubated and sedated on
pressors and inotropes. 6: On 2025-1-22, he returned to the operating room
where he underwent exploration and chest closure. 7: On 1-25 he returned to
the OR for abd closure JP/ drain placement/ feeding jejunostomy placed at
that time for nutritional support.\n\n8: Thoracoabdominal wound healing well

with exception of very small open area mid wound that is @lcm around and
1/2cm deep, no surrounding erythema. 9: Packed with dry gauze and covered w/
DSD.

\n\nAnswer :\nHis aortic aneurysm was caused by the rupture of a thoracoabdominal
aortic aneurysm, which required emergent surgical intervention. |1]|\n He
underwent a complex salvage repair using a 34-mm Dacron tube graft and deep
hypothermic circulatory arrest to address the rupture. |2|\n The extended
recovery time and hospital stay were necessary due to the severity of the
rupture and the complexity of the surgery, though his wound is now healing
well with only a small open area noted. |8|\n\n Now the REAL CASE:\n",

"user"”: "Answer to the patient using the following inputs: Case: {id}\n\nPatient

Narrative: {patient_narrative}, \n Reformulated Question: {clinician_question
J\n Clinical Notes: \n{note_excerpt} \n\nNow write the output paragraph based
solely on the sentences you consider relevant to answer the question. Your
output must:\n- Use only the sentences that you consider relevant from the
provided text without repeating any sentence.\n- Contain a maximum of 75 words
.\n- Include the citation (sentence number(s) used) immediately after each
sentence, within vertical bars.\n- Follow exactly the format described: one
sentence per line with its citation, and no additional text. Your final output
must be the answer paragraph only, with no extra explanation or text."”,

"assistant”: "Answer:"




A.2 Prompts to Extract List of Essentials
A.2.1 Role-Based Prompt

{

"system”: "You are a medical expert.\nYou are given:\n\nA patient narrative

written by a family member or caregiver.\n\nA clinical question derived from
the narrative.\n\nA list of numbered clinical notes from the patient's

medical record.\n\nYour task is to identify which of the clinical notes are
essential for answering the clinical question.\nReturn only the numbers of
the essential notes in a comma-separated list.\nDo not explain your
reasoning. Just return the list.",

"user": "Patient Narrative:\n {patient_narrative}\n\nClinical Question:\n {
clinical_question} \n\nClinical Notes:\n {sentences}”

A.2.2 CoT Prompt

{
"system”: "You are a medical expert with extensive experience in clinical
natural language processing, specializing in extracting key information from
clinical notes to answer medical questions. Your deep clinical knowledge
and expertise in the healthcare domain enable you to identify critical data
points from complex medical texts.\n\nTask: You will be provided with the
patient narrative and the clinical question, and a set of clinical notes (
each sentence is assigned a unique ID). Your goal is to identify only the
sentences that contain critical information needed to answer the clinical
question.\n\nInstructions:\n1. Internally, perform a detailed step-by-step
analysis (chain-of-thought) of the clinical question and each clinical note.
Evaluate each sentence for key information, context, and relevance.\n2.
Select only the sentences that contain essential information to answer the
question.\n3. Return only the IDs of those sentences, without including any
additional text or explanation.\n\nOutput Format:\nA list of the relevant
sentence IDs, separated by commas.\n\nReminder: Use your internal chain-of-
thought to reason through the task, but do not display any of that reasoning
in your final output. Simply provide the final answer as the list of IDs."”,
"user": "Patient Narrative:\n {patient_narrative}\n\nQuestion:\n {
clinical_question} \n\nClinical Notes:\n {sentences}”

A.2.3 CoT + One-Shot Prompt

{
"system”: "You are a medical expert with extensive experience in clinical
natural language processing, specializing in extracting key information from
clinical notes to answer medical questions. Your deep clinical knowledge
and expertise in the healthcare domain enable you to identify critical data
points from complex medical texts.\n\nTask: You will be provided with the
patient narrative and the clinical question, and a set of clinical notes (
each sentence is assigned a unique ID). Your goal is to identify only the
sentences that contain critical information needed to answer the clinical
question.\n\nInstructions:\n1. Internally, perform a detailed step-by-step
analysis (chain-of-thought) of the clinical question and each clinical note.
Evaluate each sentence for key information, context, and relevance.\n2.
Select only the sentences that contain essential information to answer the
question.\n3. Return only the IDs of those sentences, without including any
additional text or explanation.\n\nOutput Format:\nA list of the relevant
sentence IDs, separated by commas.\n\nReminder: Use your internal chain-of-
thought to reason through the task, but do not display any of that reasoning
in your final output. Simply provide the final answer as the list of IDs.\n
\nHere is an example of the output:\n\nPatient Narrative:\nTook my 59 yo
father to ER ultrasound discovered he had an aortic aneurysm. He had a
salvage repair (tube graft). Long surgery / recovery for couple hours then
removed packs. why did they do this surgery????? After this time he spent 1
month in hospital now sent home.\n\nClinical Question:\nWhy did they perform
the emergency salvage repair on him?\n\nCinical notes: \nl: He was
transferred to the hospital on 2025-1-20 for emergent repair of his ruptured
thoracoabdominal aortic aneurysm. 2: He was immediately taken to the
operating room where he underwent an emergent salvage repair of ruptured
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thoracoabdominal aortic aneurysm with a 34-mm Dacron tube graft using deep
hypothermic circulatory arrest. 3: Please see operative note for details
which included cardiac arrest x2. 4: Postoperatively he was taken to the
intensive care unit for monitoring with an open chest. 5: He remained
intubated and sedated on pressors and inotropes. 6: On 2025-1-22, he
returned to the operating room where he underwent exploration and chest
closure. 7: On 1-25 he returned to the OR for abd closure JP/ drain
placement/ feeding jejunostomy placed at that time for nutritional support.
8: Thoracoabdominal wound healing well with exception of very small open
area mid wound that is @l1cm around and 1/2cm deep, no surrounding erythema.
9: Packed with dry gauze and covered w/DSD.\n\nAnswer:\nList of essential
clinical notes::: 1, 2, 8",

"user": "Patient Narrative:\n {patient_narrative}\n\nClinical Question:\n {
clinical_question} \n\nClinical Notes:\n {sentences}"”

A.3 Prompts to Extract Essentials Individually
A.3.1 Role-Based Prompt

{

"system”:"You are a medical expert.\nYou are given:\n\nA patient narrative

written by a family member or caregiver.\n\nA clinical question derived from
the narrative.\n\nA single clinical note extracted from the patient4AZs

medical record.\n\nYour task is to determine whether the information in the
clinical note is essential to accurately answer the clinical question.\
nRespond with only one word: Yes or No.",

"user": "Patient Narrative:\n {patient_narrative}\n\nClinical Question:\n {
clinical_question}\n\nClinical Note:\n {sentences}"

A.3.2 CoT Prompt

{

"system”: "You are a medical expert with extensive experience in clinical
natural language processing, specializing in analyzing clinical notes to
assess patient conditions. Your deep clinical knowledge enables you to
accurately interpret and evaluate medical narratives.\n\nTask: You will be
provided with the patient narrative, the clinical question and a clinical
note of the patient's clinical history. Your goal is to determine whether
the clinical note contains sufficient and relevant information to answer the

question.\n\nInstructions:\n1. Internally, perform a detailed step-by-step
analysis (chain-of-thought) of the clinical question and the clinical note.\
n2. Decide whether the clinical note provides a clear answer to the question
.\n3. Return only \"Yes\"” if the note contains sufficient evidence to answer
the question, or \"No\” otherwise.\n\nOutput Format:\nA single word: Yes or
No\n\nReminder: Use your internal chain-of-thought to reason through the
task, but do not include any explanation or reasoning in the output. Only
return Yes or No.",

"user": "Patient Narrative:\n {patient_narrative}\n\nClinical Question:\n {
clinical_question} \n\nClinical Note:\n {sentences}”

A.3.3 CoT + Few-Shot Prompt

{

"system”: "Role:\nYou are a medical expert with advanced expertise in clinical
natural language processing (NLP). You specialize in analyzing unstructured
clinical notes to extract medically relevant information and evaluate
patient narratives. Your clinical acumen allows you to understand complex
medical language and determine whether a given note contains sufficient
evidence to answer specific clinical questions.\n\nTask:\nGiven a clinical
note and a clinical question, determine whether the clinical note contains
enough explicit and relevant information to confidently answer the question
.A\n\nInstructions:\n1. Internally, conduct a detailed chain-of-thought
analysis to interpret the clinical question and assess the content of the
note.\n2. Judge whether the clinical note includes clear, sufficient, and
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directly relevant information that supports and answers the question. Ignore
any notes or phrases that are non-informative or purely structural, such as
headers (e.g., \"Brief Hospital Course:\") or general section labels
without medical content.\n3. Return only one word based on your internal
reasoning:\n - \"Yes\” 3AT if the note contains clear evidence to answer
the question.\n - \"No\"” 3AT if the note lacks sufficient or relevant
evidence to confidently answer the question.\n\nOutput Format:\nRespond with
a single word only: Yes or No. Do not include any reasoning or explanation
in your response.\n\nExample:\n\nPatient Narrative:\nTook my 59 yo father to
ER ultrasound discovered he had an aortic aneurysm. He had a salvage repair
(tube graft). Long surgery / recovery for couple hours then removed packs.
Why did they do this surgery? After this time he spent 1 month in hospital
now sent home.\n\nClinical Question:\nWhy did they perform the emergency
salvage repair on him?\n\nClinical Notes & Answers:\nHe was transferred to
the hospital on 2025-1-20 for emergent repair of his ruptured
thoracoabdominal aortic aneurysm.\nAnswer: Yes\n\nHe was immediately taken
to the operating room where he underwent an emergent salvage repair of
ruptured thoracoabdominal aortic aneurysm with a 34-mm Dacron tube graft
using deep hypothermic circulatory arrest.\nAnswer: Yes\n\nPlease see
operative note for details which included cardiac arrest x2.\nAnswer: No\n\
nPostoperatively he was taken to the intensive care unit for monitoring with
an open chest.\nAnswer: No\n\nHe remained intubated and sedated on pressors
and inotropes.\nAnswer: No\n\nOn 2025-1-22, he returned to the operating
room where he underwent exploration and chest closure.\nAnswer: No\n\nOn
1-25 he returned to the OR for abd closure JP/ drain placement/ feeding
jejunostomy placed at that time for nutritional support.\nAnswer: No\n\
nThoracoabdominal wound healing well with exception of very small open area
mid wound that is @lcm around and 1/2cm deep, no surrounding erythema.\
nAnswer: Yes\n\nPacked with dry gauze and covered w/DSD.\nAnswer: No",

"user": "Patient Narrative:\n {patient_narrative}\n\nClinical Question:\n {

clinical_question} \n\nClinical Note:\n {sentences}”

A.4 Prompt for Second Step Argumentation Creation

{

"assistant”:

"system”:"You are a medical expert specializing in clinical natural language

processing. Your task is to generate an answer to a patientdAZs health-
related question based only on the information provided in the clinical
notes. Write a short, medically sound answer that either paraphrases or
argues or summaries using the key phrases from the notes. The response must
not exceed 75 words. Focus only on the clinical notes provided. Your output
must be a single, focused paragraph of 75 words or fewer A4AT never exceed
this limit. Give only the answer, without any additional information or
explanations.”,

"user": "Patient Narrative:\n {patient_narrative}\n\nClinical Question:\n {

clinical_question} \n\nClinical Notes:\n {sentences}”,

nn
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Abstract

In response to the ArchEHR-QA 2025 shared
task, we present an efficient approach to pa-
tient question answering using small, pre-
trained models that are widely available to the
research community. Our method employs
multi-prompt ensembling with models such as
Gemma and Mistral, generating binary rele-
vance judgments for clinical evidence extracted
from electronic health records (EHRs). We
use two distinct prompts (A and B) to assess
the relevance of paragraphs to a patient’s ques-
tion and aggregate the model outputs via a ma-
jority vote ensemble. The relevant passages
are then summarized using a third prompt (C)
with Gemma. By leveraging off-the-shelf mod-
els and consumer-grade hardware (1x RTX
5090), we demonstrate that it is possible to im-
prove performance without relying on resource-
intensive fine-tuning or training. Additionally,
we explore the impact of Chain-of-Thought
(CoT) prompting and compare the performance
of specialized versus general-purpose models,
showing that significant improvements can be
achieved through effective use of existing mod-
els.

1 Introduction

Responding to patient inquiries via patient por-
tals is a major contributor to clinician workload,
and automating this process using electronic health
records (EHRs) could significantly reduce that bur-
den. The ArchEHR-QA shared task (Soni and
Demner-Fushman, 2025b) challenges participants
to generate answers grounded in clinical evidence
extracted from EHRs, requiring both accurate rele-
vance detection and effective summarization. Sub-
missions are evaluated on Factuality (how well an-
swers cite annotated evidence sentences) and Rel-
evance (how well they align with gold-standard
“essential’ notes) using metrics such as Citation F1,
BLEU, ROUGE, SARI, BERTScore, AlignScore,
and MEDCON. The final score averages strict Fac-
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tuality and aggregated Relevance metrics. Baseline
scores on Codabench were generated using LLaMA
3.370B in a zero-shot setting, prompted to produce
citation-containing answers; invalid responses (e.g.,
overly long or missing citations) were regenerated
up to five times.

We address this challenge by breaking the task
into two main subtasks: paragraph relevance classi-
fication and summarization. First, we classify the
relevance of clinical paragraphs to the patient’s
question using a multi-model approach. Then,
we generate a summary of the most relevant para-
graphs to answer the query. Our method employs
two pre-trained models, Gemma 3 27B (Gemma
Team, 2025) and Mistral 3.1 Small 24B (Mistral
Al, 2025b), to assess relevance and summarize the
relevant passages. We experimented with a vari-
ety of models and prompting strategies, including
Chain-of-Thought (CoT), and explored different
configurations of the majority vote ensemble to
optimize model performance.

A key aspect of our approach is the use of off-
the-shelf models and consumer-grade hardware (1x
RTX 5090), avoiding the need for fine-tuning or
training from scratch. By focusing on smaller,
more accessible models, we show that strong per-
formance can be achieved with minimal computa-
tional overhead. Our experiments further demon-
strate that carefully designed prompt engineering
and ensemble methods can enhance performance
effectively, making the approach both practical and
scalable. While larger models may yield further
gains in real-world deployments, our work high-
lights the untapped potential of lightweight setups
for clinical question answering.

2 Related Work

Prompt-based methods have shown that LLMs
can achieve strong performance across diverse
tasks without fine-tuning. Techniques such as CoT

BioNLP 2025 Shared Tasks, pages 11-21
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prompting improve performance on a range of tasks
(Wei et al., 2022; Kojima et al., 2022). Further
strategies like self-consistency decoding improve
CoT outputs by aggregating multiple reasoning
paths (Wang et al., 2023, 2024). Prompt ensem-
bling, using diverse prompts with majority voting,
has been shown to improve reliability (Yang et al.,
2023), and further analysis on compound systems
has been made (Chen et al., 2024).

In the medical domain, recent studies show that
general purpose LLMs can be competitive with spe-
cialized models when guided by carefully designed
prompts (Nachane et al., 2024; Russe et al., 2024;
Sivarajkumar et al., 2024).

Our system builds on this line of work by using
a multi-prompt ensemble strategy with Gemma 3
(27B) and Mistral 3.1 Small (24B), relying solely
on prompt engineering and avoiding fine-tuning.

3 Method

3.1 Paragraph Relevance Assessment

Each instance from the dataset (Soni and Demner-
Fushman, 2025a) provides a clinical note both as
continuous text and as a list of indexed paragraphs,
which must be cited in the final answer; in our ex-
periments, we use only the paragraph-indexed for-
mat. Additionally, each instance includes a patient-
authored question and a corresponding clinician-
formulated question. We found that using the pa-
tient question for paragraph relevance classifica-
tion introduces more false positives, so we rely
exclusively on the clinician question, a refined and
focused version of the original, for relevance assess-
ment. The patient question is instead used during
the summarization subtask to better reflect natural
inquiry phrasing.

3.1.1 Individual Model Performance

We first prompted models to classify the relevance
of the entire list of paragraphs in a single pass.
While their explanations were often coherent, the
final outputs frequently included incorrect indices
or mismatched list lengths that didn’t align with
their own reasoning. To address this, we reformu-
lated the task as a binary classification problem: the
model is given the full list and asked whether a spe-
cific paragraph (identified by index) is relevant to
the clinician’s question. This approach significantly
improved both consistency and interpretability.
Prompt selection followed two strategies: (1)
manual trial-and-error and (2) suggestions from
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Gemini 2.5 Pro, chosen for its availability via
Google Al Studio and generous usage limits that
enabled extensive testing. Table 5 highlights some
of our strongest prompt engineering results. Along-
side prompt design, we also varied sampling tem-
perature (ranging from 0.1 to 1.0) based on guid-
ance from model developers and the open-source
community (DeepSeek Al, 2024; Unsloth Team,
2025; Mistral Al 2025a).

Model Quantization Overall Factuality Prompt Used

gemma3-27b-it Q6 56.04 A
mistral-small-3.1-24b Q8 54.08 A
gemma3-12b-it Q8 52.03 C
gemma2-9b-it Q8 52.00 D
phi4 Q8 51.08 D
phi4-ol il Q6_K 50.00 A
deepseek-llama-8b Fl16 44.44 D
phi4-QwQ Q8 40.89 D
phi4-mini-it Q8 40.26 A
deepseek-qwen-32b Q6_K 30.24 D
all-relevant* - 48.76 -
baseline (LLaMA 3.3 70B) - 43.10 -

Table 1: Best overall factuality scores on the dev
dataset. Prompt labels (A-D) refer to variants described
in the Appendix A. The all-relevant baseline assumes all
paragraphs are relevant. A list of more detailed scores
is available in Appendix C.

The variation in temperature settings may affect
the reproducibility of certain scores. To address
this, in subsequent experiments we fix the temper-
ature at 0.1, a value that provides stable and re-
producible outputs while maintaining performance
comparable to the best results observed.

We did not observe significant performance
gains from models fine-tuned on medical data
(WhyHow.AI Team, 2024; mradermacher, 2025a,
2024a), with most yielding only marginal
improvements over the baseline (Table 2).
Additional experiments with models such as
OpenBiolLLM-L1ama3-70B (i1-IQ3_XXS) (mra-
dermacher, 2024b), Med-Chatbot-R1-Qwen-7B
(F16) (mradermacher, 2025¢), and
ClinicalGPT-R1-Qwen-7B-EN-preview (F16)
(mradermacher, 2025b) were similarly unpromis-
ing. These models often failed to follow the
required Yes/No output format, even without
chain-of-thought prompting, making rule-based
evaluation via regex unreliable. While output
post-processing with another LLM is a possible
workaround, we deemed it unnecessarily complex
for the scope of this task.

3.1.2 Impact of Chain-of-Thought Prompting
We observe that chain-of-thought (CoT) prompting
generally improves performance, as shown in Ta-
ble 3. However, its effectiveness varies depending



Model Quantization Overall Factuality

PatientSeek Q4_K_M 45.48
BioMistral-MedMNX F16 42.96
DeepSeek-R1-Distill-Llama-8B-Medical-Expert F16 44.39

Table 2: Overall factuality scores on the dev dataset for
a few medical finetuned models using prompt A.

on the model. In our implementation, we intro-
duce CoT reasoning using the following instruc-
tion: "Create a chain of thought to determine if the
paragraph is relevant to answering the question.
Put your reasoning between <think> and </think>
tags."

While larger models such as
gemma3-27b-it (Gemma Team, 2025) and
mistral-small-3.1-24b (Mistral AI, 2025b)
benefit significantly from CoT prompting, smaller
models, particularly those in the phi family
(Abdin et al., 2024; LM Studio Community, 2025),
sometimes fail to complete the task reliably. In
many cases, these models generate only reasoning
text within the ‘<think>‘ tags without producing
a final answer. We observed similar behavior
in other small variants of LLaMA and Mistral,
suggesting that limited context handling or weaker
instruction-following may hinder CoT execution
in compact models. To maintain consistency in
automatic evaluation, if a model output could not
be parsed using regular expressions to extract a
valid binary answer, we defaulted to treating the
paragraph as not relevant.

Model Quantization No CoT CoT
gemma3-27b-it Q6 4548  48.67
mistral-small-3.1-24b Q8 41.05  52.22
phi4 Q8 51.08 5132
phi4-mini-it Q8 2949  38.69

Table 3: Comparison of factuality scores on the dev
dataset with (prompt A) and without (prompt D) chain-
of-thought (CoT) prompting.

3.1.3 Ensembling Model Performance

To improve robustness, we ensemble predictions
using simple majority voting, selecting the most
frequent Yes/No label per paragraph. To balance
performance and efficiency, we limit ensembles to
three models and treat different prompt configura-
tions for the same model as distinct components.
We explored various model-prompt combinations
(Appendix B), with our best-performing ensemble
shown in Figure 1. While overall factuality scores
are useful, we prioritized confusion matrices when
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selecting ensembles, as they better reveal false pos-
itive and false negative trade-offs.

gemma3-27b-it Q6 (Prompt A) mistral-small-3.1 Q8 (Prompt A)

64

175

94 2 199 40

150

Yes
Predicted

mistral-small-3.1 Q8 (Prompt B) Ensemble

91

89 65

No Yes
Predicted

Figure 1: Confusion matrices for the best-performing
ensemble and its constituent models.

3.2 Summarization

The summarization subtask requires (1) generat-
ing a coherent, concise answer from selected para-
graphs and (2) citing the source paragraph(s) for
each sentence. Instead of decoupling these, we
adopt a unified approach where the model gener-
ates citations inline, avoiding the need for external
alignment.

In our experiments, Gemma (Gemma Team, 2025)
and Mistral (Mistral Al, 2025b) were the most re-
liable at handling complex summarization prompts.
Gemma stood out for its consistent adherence to the
required format, or outputs that were easily cor-
rected via postprocessing, making it our primary
choice. Using the same models for both relevance
classification and summarization also helped maxi-
mize GPU parallelism on our RTX 5090 by reduc-
ing the number of concurrently loaded models.

We tested Mistral (Mistral Al, 2025b) as a cor-
rection layer for Gemma’s (Gemma Team, 2025)
outputs, but observed only a minor readability im-
provement (+0.02), with inconsistent results. More-
over, Mistral frequently exceeded the 75-word
constraint and resisted shortening even in multi-
turn settings.

A consistent challenge for Gemma (Gemma Team,
2025) was maintaining citation coverage under
tight length limits. To comply, it sometimes
dropped relevant content, typically omitting one
relevant paragraph for every 3-5 irrelevant ones
removed.



To better enforce the 75-word limit, we imple-
mented a multi-turn prompting strategy: after an
initial response (often 80+ words), we re-prompted
with explicit instructions to shorten. Curiously, in-
stead of trimming toward the limit, the model often
produced much shorter summaries (typically 40-50
words), indicating that it is capable of brevity but
defaults to verbosity unless guided. We allowed up
to three retries, though this cap was never reached
in evaluation.

When relevance classification yielded fewer than
three paragraphs, we used the full paragraph set to
ensure sufficient context.

To evaluate the impact of relevance filtering,
we conducted an ablation study using the best-
performing summarization prompt. Summaries
generated from the full paragraph set scored 45.6,
while those using only the filtered paragraphs
reached 48.1, confirming that relevance assessment
contributes positively to final summarization qual-

ity.
3.3 Postprocessing

Instead of enforcing strict formatting in the prompt,
we correct inconsistencies through regex-based
postprocessing. Gemma (Gemma Team, 2025),
for instance, often misplaces citations, adds extra
spaces, or cites the question itself. To let the model
focus on content, we fix these issues afterward by
grouping adjacent citation markers, removing inter-
nal whitespace, and relocating misplaced citations
to sentence ends. This lightweight pipeline im-
proves formatting while preserving the summary’s
meaning.

3.4 Final Scores

Method Dev Test
Factuality Relevance | Factuality Relevance

our approach 60.4 35.8 53.8 327

baseline 43.1 28.7 33.6 27.8

Table 4: Scores overview on both the dev and test
datasets.

Our approach substantially improves both factu-
ality and relevance over the baseline (Table 4). On
the test set, we observe a +20.2 Factuality and +4.9
Relevance gain, demonstrating the robustness and
generalization of our method beyond the dev set.
The code used to generate the test submission can
be found on GitHub. !

ITest Submission Generation Source Code.
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3.5 Error Analysis

We identified eight sentences misclassified by all
models, revealing unanimous relevance assessment
failures, six false positives, where irrelevant content
was marked as relevant, and two false negatives,
where relevant sentences were wrongly dismissed.

In the false-negative cases, models typically
judged that the sentences lacked a clear link to
the question or were too general. For example, in
Case 6 (“Why did they find out later that he had
fungal pneumonia?”’), the statement “Initially in
the 160s, but has improved with fluids” was dis-
missed for lacking an explicit connection. In Case
16 (“Could her back pain and dizziness be concern-
ing for a stroke?”), the suggestion ““You can take
the oxycodone for a short time and follow up with
Dr. ___” was seen as generic advice rather than a
direct answer.

Conversely, the six false-positive cases involved
irrelevant sentences incorrectly identified as rele-
vant. These errors often stemmed from chain-of-
thought reasoning, in which the models associated
the current sentence with earlier contextual infor-
mation. The presence of medical terminology or
explanatory language appeared to bias the models
toward overestimating relevance. These findings
suggest that the models may overly rely on surface-
level cues such as technical vocabulary or narrative
structure when determining relevance.

4 Conclusion

Our contribution to the ArchEHR-QA 2025 shared
task presents a resource-efficient approach to clin-
ical question answering from EHR data, show-
ing that strong performance is achievable with-
out fine-tuning or specialized hardware. Using
multi-prompt ensembling across pre-trained mod-
els like Gemma and Mistral on consumer-grade
GPUs, we improved the robustness and accuracy of
paragraph relevance identification over individual
models. Our modular two-stage pipeline (filtering
relevant evidence before summarization) proved
effective, with relevance assessment clearly im-
proving final answer quality. The approach relies
on careful prompt engineering, combining Chain-
of-Thought reasoning and majority vote aggrega-
tion. While there is still room for improvement,
our results demonstrate the promise of prompt-
based methods with accessible LLMs as a scalable,
cost-effective solution for clinical QA, especially
in resource-limited settings.


https://github.com/DragosGhinea/UNIBUC-SD-at-BioNLP-ArchEHR-QA-2025

Limitations

While our approach demonstrates promising re-
sults, several limitations should be acknowledged.

Firstly, our study primarily focused on relatively
small, accessible models (up to 27B parameters)
due to our emphasis on resource efficiency and
consumer-grade hardware (1x RTX 5090). Al-
though we show strong performance is achievable
under these constraints, it is likely that larger, state-
of-the-art models could yield further improvements,
albeit at significantly higher computational cost.
The use of quantized models, necessary for fitting
them onto our hardware, might also introduce a
minor performance degradation compared to full-
precision versions.

Secondly, the performance of our system relies
heavily on prompt engineering. While effective,
identifying optimal prompts required considerable
experimentation (manual trial-and-error and as-
sistance from Gemini 2.5 Pro). The sensitivity
to prompt wording means that adapting the sys-
tem to different QA formats or clinical contexts
might require further prompt tuning. Additionally,
Chain-of-Thought prompting, while beneficial for
the larger models tested, proved less reliable for
smaller models, indicating limitations in their rea-
soning capabilities or instruction following.

Thirdly, the evaluation was conducted on the
specific dataset provided for the ArchEHR-QA
2025 task. The generalization performance of our
prompts and ensemble strategy on different EHR
datasets or in real-world clinical deployment re-
mains to be validated.

Fourthly, while our summarization component
using Gemma generally adhered to formatting
requirements, it sometimes struggled with strict
length constraints and citation completeness on the
first pass, necessitating multi-turn prompting and
postprocessing steps. This indicates potential brit-
tleness in complex instruction following for the
summarization task.

Finally, our internal development and optimiza-
tion efforts disproportionately focused on maxi-
mizing the automatic factuality score. While en-
suring factual grounding is critical, this narrow
focus meant that other important automatic met-
rics provided by the shared task (BLEU, ROUGE,
BERTScore, AlginScore, MEDCON), received
comparatively less attention during model and
prompt selection. Consequently, the system’s per-
formance across these diverse dimensions of qual-
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ity may be underdeveloped relative to its factuality
performance. Furthermore, a complete assessment
of the system’s clinical utility, relevance, and over-
all correctness ultimately requires evaluation by
domain experts in a practical setting.
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A Prompts

This section outlines the prompt structure used dur-
ing our experiments. All prompts follow the Ope-
nAl API format, with each prompt represented as

a list of message objects.

For paragraph relevance assessment, we typi-
cally separate the main instruction, the question,
and the list of paragraphs into distinct message
objects, as shown below.

messages = [

{

"role": "user”,

"content”: f"{prompt}”
}’
{

"role": "user”,

"content”: f"Question: {q}"
}'
{

"role": "user”,

"content”: f"List of paragraphs: {1}"
}

The prompt variable is the component we vary
most frequently across experiments. The q and
1 variables consistently represent the clinician-
derived question and the list of paragraphs, respec-
tively. Each paragraph in the list is formatted as:
#{i} - "{s3}", where i is the paragraph ID and s
is the paragraph content.

For summarization, we use a single message
object with the role "user”, applying a prompt,
referred to as Prompt Z, crafted through a combi-
nation of manual trial and error and refinements
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suggested by Gemini 2.5 Pro. The variables en-
closed in curly braces within Prompt Z are sub-
stituted with their respective values, as done for
the paragraph relevance assessment prompts. The
full content of Prompt Z is included in the list of
prompts below.

A.1 Prompt A

This prompt was selected after several manual iter-
ations, relying on intuitively designed instructions.

You will receive a clinical question inter-
preted from a patient’s question and a list of
paragraphs extracted from a clinical note.

The questions are asked through the patient
portal by patients.

Create a chain of thought to determine if
the paragraph is relevant to answering the question.
Put your reasoning between <think> and </think>
tags.

Is the paragraph number %paragraph-number%
(indexed from O0) relevant to answering the
question?

The paragraph does not need to give a full answer,
but should be relevant in formulating the answer.
Give a Yes or No answer.

A.2 PromptB

This prompt uses a different message structure
than the one previously described and can be
found in the GitHub source code. It was generated
by Gemini 2.5 Pro when asked to refine an
arbitrary prompt (e.g., Prompt A) with the goal of
maximizing performance.

*Role:** You are an expert clinical information
analyst specializing in evaluating text relevance
using Mistral models.

**Context:** You will be provided with a
clinical question (derived from a patient’s query
via a patient portal) and a list of numbered
paragraphs extracted from a clinical note.

**Goal:** Determine if a *specific* para-
graph from the list is relevant to answering the
provided clinical question.

**Definition of Relevance:** A paragraph
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is relevant if it contains information that helps
answer, contributes to answering, or is directly
related to the topic of the question. It does *not*
need to provide the complete answer on its own.

**Task Instructions:**

1. You will receive the Clinical Question and the
full List of Paragraphs first.

2. Then, you will be asked to evaluate a *specific*
paragraph, identified by its number (0-indexed).

3. Focus your analysis *exclusively* on the
content of the specified paragraph number. Do not
base your relevance decision on other paragraphs
in the list.

4. Generate a step-by-step Chain of Thought (CoT)
reasoning process to justify your decision. Clearly
explain *why* the specified paragraph is or is
not relevant based on the question’s topic and the
paragraph’s content.

5. Enclose your entire Chain of Thought reasoning
securely within ‘<think>‘ and ‘</think>* tags.

6. Immediately following the closing ‘</think>*
tag, provide your final answer as *only* "Yes" or
"No".

**Qutput Format:**

<think>

[Your detailed step-by-step reasoning comparing
the specific paragraph’s content to the question’s
requirements, focusing only on the specified
paragraph.]

</think>

[Yes or No]

A.3 Prompt C

Same as Prompt A but we don’t specify the source
of the questions.

You will receive a clinical question inter-
preted from a patient’s question and a list of
paragraphs extracted from a clinical note.

Create a chain of thought simulating a doc-
tor’s (that needs to provide a response) thinking to
determine if the paragraph is relevant to answering
the question.

Put your reasoning between <think> and </think>
tags.

Is the paragraph number %sentence-number%
(indexed from 0) relevant to answering the



question?

The paragraph does not need to give a full answer,
but should be relevant in formulating the answer.
Give a Yes or No answer.

A4 PromptD
Same as Prompt A, but without chain of thought.

You will receive a clinical question inter-
preted from a patient’s question and a list of
paragraphs extracted from a clinical note.

The questions are asked through the patient
portal by patients.

Is the paragraph number %paragraph-number%
(indexed from O0) relevant to answering the
question?

The paragraph does not need to give a full answer,
but should be relevant in formulating the answer.
Give a Yes or No answer.

A.5 Prompt E

Another recommendation from Gemini 2.5 Pro.

*Role:** You are an expert clinical information
analyst. Your purpose is to evaluate the relevance
of clinical note paragraphs to patient questions.

**Context:** You will receive:

1. A **Clinical Question** from a patient.

2. A **¥List of Paragraphs** (0-indexed) from a
clinical note.

3. A specific **Paragraph Number** to evaluate.

**Goal:** Determine if the *specified para-
graph* (identified by its number) is relevant for
answering the Clinical Question.

**Definition of Relevance:**

* A paragraph is relevant if its content *directly
addresses, contributes to answering, or is topically
related* to the Clinical Question.

* When evaluating the specified paragraph,
consider its *intrinsic content* primarily.

* Also, consider its *contextual value*: Does it
provide essential background for another relevant
paragraph? Is it the *most* relevant piece of
information available, even if only weakly related,
especially if other paragraphs are irrelevant?

**Instructions: **
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1. **Analyze the Request:** Understand the Clini-
cal Question and review all provided paragraphs to
grasp the overall context.

2. **Focus on the Target:** Concentrate your
relevance analysis on the *specific* paragraph
number provided in the final user request.

3. **Perform Chain-of-Thought (CoT) Reason-
ing:** Generate a step-by-step reasoning process
detailing your evaluation.

* Start by stating the paragraph number being
evaluated.

* Summarize the core information in the specified
paragraph.

* Compare this information directly against the
Clinical Question.

* Explicitly discuss *how™* or *why* it is (or isn’t)
relevant.

* If applicable, briefly mention its contextual
role (e.g., "This paragraph provides context for
paragraph X," or "While weakly related, it’s the
only paragraph mentioning Y topic").

* Conclude your reasoning with a clear statement
about the relevance of the *specified paragraph*.
4. **Enclose Reasoning:** Place your *entire*
step-by-step reasoning within ‘<think>‘ and
‘</think>* tags. **Crucially, there should be NO
text before the opening ‘<think>‘ tag and NO text
between the closing ‘</think>‘ tag and the final
Yes/No answer.**

5. **Provide Final Answer:** Immediately
following the closing ‘</think>‘ tag, output *only*
the word "Yes" or "No" indicating the relevance of
the *specified paragraph*.

**Qutput Format:**

<think>

[Step-by-step reasoning analyzing the specified
paragraph’s relevance to the question, considering
context as defined above.]

</think>

[Yes or No]

A.6 PromptZ

**Goal:** Create a concise ( 70 words) answer for
the **Clinical Question** using *only* the infor-
mation present in the **Relevant paragraphs**.

The questions are asked through a patient
portal.

**Patient Question:**
{patient_question }



**Clinical Question (Derived from patient
question):**
{question}

**Relevant paragraphs (with 1-based indices):**
{formatted_relevant_paragraphs}

**Citation style**:  Paragraph’s index be-
tween | | symbols. For example: I11 or 12,7] or
11,2,3,4] or 15,7,9. Citations must be comma
separated.

**Output Detail**:

- The sentences in the generated answer may be
supported using one, multiple, or none (unsup-
ported) of the paragraphs from the clinical note.

- The unsupported sentences in the answer may be
ignored during the quantitative evaluation.

- The answers should be in the professional register
to better match the contents of the clinical notes.
Simplification of answers to lay language is
assumed to be performed later and is not the focus
of this task.

- The generated answer should be limited to 75
words, which roughly correspond to 5 sentences.
This is based on our observations from the baseline
experiments and existing literature supporting that
a paragraph-long answer is preferred by users.

- There are no limitations to the number of note
sentences cited.

You need to answer the patient’s question,
but do not take the information provided in it for
granted and do not refer to it in your answer.

The answer should sound natural and be a coherent
response to the question.

Do not add any additional information beside the
answer such as "Your summary: ".

**Your answer should be a summary of the infor-
mation in the relevant paragraphs you found, with
few sentences, and more like a long paragraph.**

A.7 Other Prompts

We do not list all the prompts generated by Gemini,
as they are largely similar, differing only in mi-
nor adjustments aimed at reducing false positives
and/or false negatives to better balance the model’s
behavior.
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B Ensembling

We try different ensembling strategies, justified by
various scores obtained by individual models.

B.1 Candidate one

The best overall factuality ensemble overall, but
with a bit worse confusion matrix than the chosen
one. Excellent balance of top performance, high
precision diversity, and balanced size/generation
diversity.

gemma3-27b-it Q6 (Prompt A) mistral-small-3.1 Q8 (Prompt A)
8- 36 8 74 64
° v
2 2
= =
s
2 94 2 199 40

150

125

No Yes No Yes
Predicted Predicted
100

gemmaz2-9b-it Q8 (Prompt D) Ensemble

True

64

Yes No Yes
predicted L _________| Predicted _________ 1

Figure 2: Ensemble candidate one.

B.2 Candidate two

Combines the best Gemma with both the high-
precision and high-recall Mistral variants, maxi-
mizing Mistral architectural presence. Solid score
with balanced stats.

gemma3-27b-it Q6 (Prompt A) mistral-small-3.1 Q8 (Prompt A)

$- 36 102 $ 74 64

True

40

Yes

Predicted

mistral-small-3.1 Q8 (Prompt E) Ensemble L5

True

Predicted

Figure 3: Ensemble candidate two.



B.3 Candidate three

An example of a high overall factuality score

(56.359) with a slightly worse confusion matrix.

gemma3-27b-it Q6 (Prompt A)

True

No Yes
Predicted

gemma3-27b-it Q6 (Other Prompt2)

o
9- 8
o
S
=
2 66
o Yes
Predicted

Figure 4: Ensemble candidate three.

B.4 Candidate four

gemma3-27b-it Q6 (Other Prompt)

True

True

This is yet another example where ensembling con-
tributes to more robust predictions, although it does
not yield the strongest overall performance among

our configurations.

gemma3-27b-it Q6 (Prompt A)

True

No Yes
Predicted

mistral-small-3.1 Q8 (Prompt E)

g 40
No Yes

Predicted

True

Figure 5: Ensemble candidate four.

phi4-o1 Q8 (Prompt A)

True

True

175

150

125

100

True

True

B.5 Candidate five

Three models finetuned on clinical data.

Mistral-MedMNX F16 (Prompt A)

o Yes
Predicted

...-Llama-8B-Medical-... F16 (Prompt A) 1

Predicted

True

True

PatientSeek Q4_K_M (Prompt A)

o Yes
Predicted

Ensemble

Figure 6: Ensemble candidate five.
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C Detailed Factuality Scores

The detailed scores of the best overall factuality models.

Lenient Strict
Model Overall Factuality Score | Micro F1  Micro Recall  Micro Precision  Macro FI  Macro Recall Macro Precision | Micro F1  Micro Recall  Micro Precision  Macro FI  Macro Recall  Macro Precision
gemma3-27b-it 56.044 63.614 69.841 58.407 61.791 70.745 63.075 56.044 73913 45.133 55379 74.500 49.222
mistral-small-3.1-24b 54.085 63.054 67.725 58.986 60.287 68.528 64.799 69.565 44.240 50.427 68.236 48.340
gemma3-12b-it 52.029 60.851 75.661 50.890 58.600 76.511 52.008 78.986 38.790 50.977 80.806 38.964
gemma2-9b-it 52.000 51.372 54.497 48.585 46.155 57.725 52.634 65.942 42925 46.656 65.486 46.112
phi4 51.075 55.792 62.434 50.427 47918 64.843 47.594 68.841 40.598 42.178 67.028 36.809
phid-ol 50.000 60.422 68.254 54.202 56.766 68.274 57.243 68.116 39.496 47.773 67.972 43.843
deepseek-llama-8b 44.444 46.729 39.683 56.818 43.082 44511 58.599 43.478 45455 38.962 45.528 40.402
phid-QwQ 40.892 42.500 35979 51.908 35.067 34.888 44.154 39.855 41.985 34.895 37778 37.061
phid-mini-it 40.260 41.783 39.683 44.118 36.879 41.867 49.449 44.928 36.471 33.520 40.722 37.782
deepseck-gwen-32b 30.244 28.906 19.577 55.224 23.980 20.194 42943 22464 46.269 24.650 21.250 38.402
all-relevant*® 48.763 61.264 100.000 44.159 60.352 100.000 45.404 100.000 32243 48.484 100.000 33.060
baseline (LLaMA 3.3 70B) 35.900 39.200 27.000 71.800 46.500 38.900 78.500 32.600 63.400 49.400 47.100 70.300

Table 5: Scores on the dev dataset. The all-relevant baseline assumes all paragraphs are relevant.
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Abstract

The increasing volume of patient messages via
electronic health record (EHR) portals has con-
tributed significantly to clinician workload. Au-
tomating responses to these messages can help
alleviate this burden, but it is essential to en-
sure that the generated responses are grounded
in accurate clinical evidence. As part of the
ArchEHR-QA 2025 BioNLP ACL shared task,
we explore unsupervised methods for gener-
ating patient question responses that are both
contextually accurate and evidence-backed. We
investigate three novel approaches: zero-shot
prompting, clustering-based evidence selection,
and attention-based evidence attribution, along
with a hybrid model that combines cluster-
ing and attention. Our methods do not re-
quire model fine-tuning and leverage the in-
herent structure of the input data to identify the
most relevant supporting evidence from clinical
notes. Our best-performing approach, which in-
tegrates clustering and attention, demonstrates
a substantial improvement in factuality over
baseline zero-shot methods, highlighting the
potential of unsupervised strategies for enhanc-
ing the clinical utility of large language models
in EHR contexts.

1 Introduction

Electronic health record (EHR) systems have im-
proved physicians’ ability to document and track
patient care over time. They also facilitate dig-
ital communication, allowing patients to engage
with their health goals beyond in-person visits.
However, the rise in patient messaging has unin-
tentionally added to clinician workload (National
Academies of Sciences et al., 2019).

Large language models (LLMs) have been pro-
posed as tools to automatically answer patient ques-
tions. However, mere generation is not sufficient;
responses must be grounded in clinical evidence
from patients’ medical records to ensure accuracy
and reliability (Lin et al., 2003). The ArchEHR-QA
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2025 BioNLP ACL shared task (Soni and Demner-
Fushman, 2025b) aims to develop systems that can
generate such grounded answers using information
extracted from EHRs. Thus, the task is to generate
an answer to a patient’s question and include the
sentences (or sentence identifiers) from the source
note as supporting evidence for the answer.

The problem of evidence attribution has received
much attention recently, and can be categorized
as follows: direct LLM attribution, post-retrieval
generation, and post-generation attribution. Some
approaches prompt the LLM to directly generate
attribution within its responses. However, (Zuc-
con et al., 2023) investigates ChatGPT’s ability to
attribute directly using prompting strategies and
found that the attributions was partially correct
around 50% of the time and only present 14% of
the time demonstrating its unreliability. Other ap-
proaches attempt to retrieve relevant external in-
formation and prompt an LLM to incorporate said
information during generation. However, citations
for these approaches were present only 50% of the
time (Gao et al., 2023). Finally, (Liu et al., 2023)
investigates the quality of citations generated by
mainstream generative search engines that incor-
porate citations post-generation. It was found that
only 51.5% of generated sentences were fully sup-
ported and that 74% of the citations supported their
associated sentences (Liu et al., 2023). Clearly, cur-
rent methods to attribute are lacking in consistency
and relevance of LLM text attribution.

As with many clinical machine learning tasks,
this challenge provides limited data - only 20 train-
ing and development questions with corresponding
medical records. To address the data scarcity, we
propose two novel unsupervised methods that do
not require fine-tuning or alignment of LLMs. This
paper examines two approaches individually and
in combination. The first uses clustering to identify
the most relevant clinical evidence for a given ques-
tion, narrowing the context for LLM input. The

BioNLP 2025 Shared Tasks, pages 22-26
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second employs an attention-averaging augmented
generation method, where the LLM generates a re-
sponse freely, and attention weights are used post
hoc to attribute evidence sources. We also evalu-
ate a combined approach and compare all methods
against a baseline that prompts the LLM without
any augmentation.

2 Methods

2.1 Dataset

The dataset (Soni and Demner-Fushman, 2025a)
is adapted from the Medical Information Mart for
Intensive Care (MIMIC) corpus (Johnson et al.,
2016) by the organizers of the ArchEHR-QA
2025 BioNLP ACL shared task (Soni and Demner-
Fushman, 2025b). It consists of patient-inspired
questions paired with relevant clinical note excerpts
from MIMIC, forming "cases." Each excerpt is pre-
annotated, with sentences labeled as "essential,"
"supplementary," or "not relevant" for answering
the question. Sentences are numbered to serve
as citations in generated responses. A physician-
paraphrased version of the patient’s question is also
provided. The development set includes 20 cases,
while the test set contains 100.

2.2 Evaluation

Evaluation is based on two metrics - Factuality
and Relevance - and their average. Factuality is
measured using precision, recall, and F1 score be-
tween the system-selected citations and the gold-
standard "essential" evidence. Relevance compares
the generated response to a paragraph combin-
ing the question and essential evidence text, using
BLEU, ROUGE, SARI, BERTScore, AlignScore,
and MEDCON. Evaluation scripts are provided by
the challenge organizers.

2.3 Method details

We propose three methods for answer generation
and evidence attribution, and compare them to a
baseline provided by the shared task organizers,
which prompts an LLLM to answer questions. The
first method uses clustering to identify relevant
citations based on sentence groupings. The sec-
ond leverages transformer attention to attribute evi-
dence to each generated sentence. The third com-
bines both approaches, using clustering to guide
attention-based attribution. Details of each method
are provided below. All experiments were run on
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a NVIDIA RTX A6000 GPU. We release the code
that is necessary to reproduce our experiments'.

Zero and few-shot baselines: The baseline was
performed by the organizers of the ArchEHR com-
petition that involves prompting LLaMa 3.3 70B
(Al@Meta, 2024) on the test set in a zero-shot fash-
ion. The model is prompted to generate answers
that included citations. If a response was invalid
(e.g., exceeding the word limit or lacking valid ci-
tations), the prompt was retried up to five times to
obtain a valid output. Additionally, we explored in-
cluding multiple examples in the prompt (few-shot)
but this lead to significant performance degradation
on the development set.

Clustering-based method: First, every clini-
cal note sentence and the concatenated patient and
physician versions of the question are converted
into embeddings. Embeddings are obtained using
an encoder LLM via HuggingFace’s transformers
feature extraction API (Wolf et al., 2020). Em-
beddings are provided per token, so the token em-
beddings for each sentence are averaged to get an
overall embedding for the given sentence. These
embeddings are then clustered into two clusters
using the agglomerative clustering algorithm from
sci-kit learn (Pedregosa et al., 2011). The clusters
are then parsed to identify the cluster containing
the question embedding vector. The clinical sen-
tences that are a part of this cluster are assumed to
contain the most relevant evidence to answer the pa-
tient’s question. These clinical sentences are used
as input to the LLM prompt, which is prompted to
answer the patient question given the selected con-
text. Post-generation, the clinical sentences utilized
are cited at the end of the LLM response without
precisely attributing each output sentence to a clin-
ical sentence. This is unlike the attention-based
and hybrid approaches which precisely cite clinical
note segments to each output sentence. An exam-
ple is included in the prompt to demonstrate to the
model how detailed its response should be without
restrictions on formatting responses.

Attention-based model: This method leverages
transformer attention scores to attribute generated
text to specific sentences in the source clinical note.
We hypothesize that the average attention between
generated output and input sentences can serve as
a signal for source attribution. All questions and
evidence entries are input to an LLM. An example
is provided in the prompt to demonstrate to the

"https://github.com/rsethi2 1/loyola_archehr_2025.git



model how detailed its response should be. This
example, however, does not give restrictions on
how responses to be formatted. Post-generation,
attention outputs are analyzed. For each output sen-
tence, an average attention score is computed with
regards to each evidence entry; i.e. if there were n
evidence entries, there will be n computed average
attention scores for each output. To obtain atten-
tion scores for averaging, we parse the attention
matrix from the LLLM after determining the token
indices of output sentences and each evidence en-
try. Details on how the indexed attention matrix is
utilized to compute average scores can be found in
the source code.

All computed evidence entry attention scores
for each output are converted to z-scores, and en-
try scores exceeding a threshold are considered
supporting evidence, which is then appended to
the corresponding output sentence. The z-score
selection enables selection of only the most signif-
icantly attended evidence entries or alternatively
no citations if all z-scores are below a threshold,
which makes this attribution factually robust. This
process is repeated for all output sentences in the
LLM response. Key hyperparameters include the
LLM model, prompt format, z-score threshold, and
chosen attention layers.

Hybrid model: The final method combines clus-
tering and attention-based approaches. The LLM is
first prompted with evidence selected via clustering,
and its output is then processed using the attention-
based attribution workflow. This hybrid method
tests whether clustering can guide the LLM’s atten-
tion toward the most relevant evidence, potentially
improving the identification of essential informa-
tion compared to using either method alone.

Methods not included in the final submission:
Other methods were experimented with early in the
competition, including retrieval augmented gener-
ation (RAG), few-shot prompting, encoder-based
evidence selection, supervised-fine tuning, selec-
tion of evidence based on similarity to output post-
generation using BERTScore, and others. However,
the best performing methods were finalized for sub-
mission using the development set and described
above.

2.4 Experiments

All models are implemented using HuggingFace
(Wolf et al., 2020) and PyTorch (Paszke et al.,
2019). We use Llama-3.1-8B-Instruct (Al@Meta,
2024) and we conduct all experiments on 8
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NVIDIA RTX A6000 GPUs. All hyperparameters
are tuned on the development set.

For the clustering approach, the dmis/biobert
v1.1 (Lee et al., 2020) was selected against other
embedding models. Agglomerative clustering
with number of clusters of 2 was selected from
SkLearn’s clustering module (Pedregosa et al.,
2011). The options for clustering algorithms in-
cluded KMeans, Agglomerative, and DBSCAN.
Number of clusters was varied between 2 and 3
representing the categories that the evidence en-
tries were labeled as (essential vs not relevant or
essential vs supplementary vs not relevant).

For the attention approach, selection of attention
layers was treated as a hyperparameter. The at-
tention layers kept varied by case, where attention
layer outputs were compared sequentially using co-
sine similarity and only the attention output layers
that differed the most from the previous attention
layer was kept for averaging. The hyperparame-
ter was whether to perform this selection or not.
For the development set, dropping attention layers
was selected for and applied to the test cases. The
selected for z-score threshold was 0 from the fol-
lowing options 1.64 (average attention score signif-
icantly greater than 95% of other attention scores),
1 (significantly greater than 85%), and O (signifi-
cantly greater than 50%).

All methods are evaluated on the development
set using the scoring script provided by the orga-
nizers of the competition.

3 Results and Discussion

Experiment Factuality Relevance Average
Zero-Shot 43.10 28.70 35.90
Clustering 50.56 32.38 41.47
Attention 54.11 31.81 42.96
Clustering + Attention  58.64 33.37 46.00

Table 1: Development set overall factuality, overall rel-
evance, and overall scores for all methods. Zero-shot
is the baseline approach attempted by the organizers of
the competition.

The results of our performance evaluation on the
development set are presented in Table 1. The best-
performing method is the hybrid approach, Clus-
tering combined with Attention, which improves
the factuality score from a baseline of 43.10 to
58.64. The attention-based method alone achieves
a score of 54.11, while the clustering-only method
yields 50.56. These results suggest that the model’s



Experiment Factuality Relevance Average
Zero-Shot 33.60 27.80 30.70
Clustering + Attention  57.35 30.36 43.85

Table 2: Test set overall factuality, overall relevance, and
overall scores for best method and zero-shot. Zero-shot
is the baseline approach implemented by the organizers
of the competition.

attention matrix can effectively highlight the infor-
mation the LLM prioritizes when generating each
sentence, contributing to a nearly 10-point increase
in factuality. By leveraging attention, LLMs can
generate more accurate outputs without relying on
complex formatting or explicit instructions, while
also enabling real-time evidence integration during
generation.

Additionally, combining clustering with atten-
tion further improved the factuality score by 4
points over using attention alone. This indicates
that selecting relevant evidence through clustering
before passing it to the LLM helps the model focus
more effectively on the most pertinent informa-
tion when answering patient questions, leading to
higher factuality.

In terms of relevance, the greatest improvement
over the zero-shot baseline came from combining
clustering and attention, resulting in a nearly 5-
point gain. This likely stems from more accurate
evidence selection.

The best-performing approach, clustering com-
bined with attention, was evaluated on the test set
and compared to the organizer’s zero-shot base-
line. It maintained similar average scores for both
factuality and relevance, showing no significant
performance drop and achieving comparable gains
over the baseline as seen on the development set.
Notably, this unsupervised method using an 8B
LLM outperformed a 70B LLM, offering substan-
tial savings in computational cost, time, and train-
ing resources. Curating clinically oriented train-
ing datasets is both time-consuming and resource-
intensive, making them difficult to obtain. Our re-
sults demonstrate that unsupervised methods can ef-
fectively enhance the factuality of LLM-generated
responses in clinical settings.

4 Conclusion

Automating responses to patient questions using
EHR data holds significant potential for reducing
clinician workload and improving patient care. In
this work, we demonstrated that integrating unsu-
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pervised approaches like clustering and attention-
based evidence attribution with large language
models (LLMs) can significantly enhance the factu-
ality and relevance of generated responses without
requiring extensive model fine-tuning or alignment.
Our hybrid method, combining clustering and atten-
tion, outperformed traditional zero-shot baselines,
highlighting the value of leveraging context struc-
turing and attention analysis for more accurate clin-
ical responses. Importantly, our findings show that
relatively small LLMs (8B parameters) can outper-
form much larger models (70B parameters) when
appropriately guided, offering substantial cost and
efficiency advantages in real-world clinical applica-
tions. Future work could further refine these meth-
ods by incorporating more sophisticated context se-
lection strategies, leveraging multimodal data, and
exploring more interpretable attention mechanisms
to ensure even higher levels of clinical trustworthi-
ness and reliability.

5 Limitations

Most experiments were performed utilizing LLMs
with 8B parameters or less due to memory con-
straints. Furthermore, only 20 development / train-
ing examples were provided for experimentation.
Although these examples labeled the evidence en-
tries that were essential to incorporate in the answer
the experimented approaches generate, there were
no associated example answer outputs.
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Abstract

In this paper, we present our submission to
the ArchEHR-QA 2025 shared task, which fo-
cuses on answering patient questions based on
excerpts from electronic health record (EHR)
discharge summaries. Our approach identifies
essential sentences relevant to a patient’s ques-
tion using a combination of few-shot inference
with the Med42-8B model, cosine similarity
over clinical term embeddings, and the Med-
CPT cross-encoder relevance model. Then,
concise answers are generated on the basis of
these selected sentences. Despite not relying
on large language models (LLMs) with tens
of billions of parameters, our method achieves
competitive results, demonstrating the potential
of resource-efficient solutions for clinical NLP
applications.

1 Introduction

Responding to patient messages through EHR por-
tals is increasingly recognized as a burden for clin-
icians (Budd, 2023). To alleviate this problem, the
BioNLP 2025 ArchEHR-QA shared task (Soni and
Demner-Fushman, 2025b) challenges participants
to automatically answer patients’ questions using
the content of their EHRs. The task requires iden-
tifying essential information from an excerpt of a
clinical discharge summary and using it to generate
accurate and relevant answers.

One of the main limitations of the shared task is
the absence of training data, reflecting real-world
deployment settings where hospitals often lack the
resources to curate and annotate large datasets. In-
stead, participants are given a small development
set consisting of 20 cases. Each case includes a pa-
tient’s question, a clinician-paraphrased version of
the question, and an excerpt of the discharge sum-
mary segmented into sentences. The ground-truth
annotations identify the sentences essential for an-
swering the question. The final test set comprises
100 similar cases, but without access to ground
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truth annotations. For a detailed description of the
dataset, see Soni and Demner-Fushman (2025a).

Furthermore, healthcare institutions are limited
in using external services due to privacy restrictions
and, at the same time, cannot easily integrate large-
scale LLMs with tens of billions of parameters on-
premise due to hardware requirements (Jiang et al.,
2023). Therefore, in this submission, we explore
approaches that avoid reliance on massive LLMs,
focusing instead on lightweight and interpretable
components.

Our method combines multiple signal sources to
detect essential sentences relevant to the patient’s
question, including few-shot inference with the
Med42-8B model (Christophe et al., 2024), cosine
similarity over clinical term representations, and
cross-encoder models trained on clinical pair rel-
evance. The selected sentences are then used to
generate a concise answer. !

2 Related Work

Clinical NLP research has been supported by sev-
eral large collections of clinical and biomedical
texts, such as MIMIC (Johnson et al., 2023) and
PubMed (Canese and Weis, 2013). Not only do
these datasets serve as the foundation for various
shared tasks aimed at extracting relevant informa-
tion for specific cases or questions, such as the
BioASQ Challenge (Tsatsaronis et al., 2015), the
TREC Clinical Trials Track 2022 (Roberts et al.,
2022), or the ArchEHR-QA 2025, the task we in-
vestigate in this paper. In addition to many ap-
proaches to biomedical information retrieval, one
notable example is the MedCPT model (Jin et al.,
2023), which compares embedding representations
of abstract articles with those of input queries.
Other notable clinical datasets include n2c2
(Henry et al., 2019), from which the emrQA Ques-

'Source code available at https://github.com/lanzv/
CUNI-a-at-ArchEHR-QA-2025

BioNLP 2025 Shared Tasks, pages 27-40
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tion Answering dataset (Pampari et al., 2018) is
derived. This dataset was used by Lanz and Pecina
(2024) to study paragraph retrieval using models
such as Clinical BERT (Alsentzer et al., 2019) and
BioBERT (Lee et al., 2019), both of which are
pre-trained on English clinical and biomedical text.

In addition, several clinically pre-trained
decoder-based language models were introduced
to address a wide range of clinical tasks, in-
cluding BioMistral (Labrak et al., 2024), Med42
(Christophe et al., 2024), or Meditron 3 (Sallinen
et al., 2025). However, recent findings (Dada et al.,
2025; Lanz and Pecina, 2025) suggest that clinical
pretraining is not always essential and that multilin-
gual or general-domain pretraining may be equally
or even more beneficial for certain clinical tasks.

3 Methodology

The methodology follows the structure of the
shared task, which has two steps: essential sen-
tence retrieval followed by answer generation.

* Essential Sentence Retrieval: In this stage,
we iterate over all annotated sentences in the
clinical documents and compare them with
the clinical question (formulated by clinicians,
not patients) to retrieve sentences that are es-
sential to answer the question. This step is
evaluated using the Factuality score, defined
as the micro-averaged F1 score of correctly
predicted essential sentences.

* Answer Generation: Based on prior predic-
tions, we concatenate the retrieved essential
sentences into a compact answer, limited to
75 words - an empirically optimal length (Lin
et al., 2003; Jeon et al., 2006) and the evalu-
ation cut-off point for the shared task. This
stage is scored using the mean of automatic
similarity metrics comparing the generated
compact answer with gold essential sentences:
BLEU (Papineni et al., 2002), ROUGEL-
sum (Lin, 2004), SARI (Xu et al., 2016),
BERTScore (Zhang et al., 2020), AlignScore
(Zha et al., 2023), and MEDCON (wai Yim
et al., 2023) - collectively referred to as the
Relevance score.

The final overall evaluation measure averages the
Factuality and Relevance scores.
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3.1 Essential Sentence Retrieval

We explore several approaches that model different
aspects of sentence essentiality for clinical ques-
tion answering. Each method aims to determine
whether a given sentence contains essential infor-
mation to answer a question formulated by a clini-
cian.

Max Cosine Similarity. This method assumes
that if a sentence contains terms similar to those
in the question, it is more likely to be essential.
However, to avoid the influence of stop words and
general-domain terms, we focus exclusively on
clinical terminology.

First, we use a SciSpaCy model en_core_sci_sm
(Neumann et al., 2019) to extract clinical terms
from both the sentence and the question. Then, for
each pair of clinical terms (one from the sentence,
one from the question), we compute the cosine
similarity of their embeddings using Clinical BERT.
The maximum cosine similarity among all such
pairs is taken as the sentence’s relevance score.

We apply a threshold to retrieve sentences that
are then considered essential. Following Lanz and
Pecina (2025), we also test mBERT instead of Clin-
ical BERT to compare domain-specific and multilin-
gual pretraining. We refer to the resulting methods
as MCS-C and MCS-M, based on ClinicalBERT
and mBERT, respectively.

MedCPT Cross-Encoder. Lexical similarity
may not capture semantic relevance when different
terms convey similar meanings. To address this,
we use the MedCPT Cross-Encoder, trained for
biomedical information retrieval on PubMed. It
takes a sentence—question pair as input and outputs
a similarity score, which we threshold to determine
the essentiality. We refer to this approach as Med-
CPT FS (Full Sentences).

To reduce noise, we also experiment with fil-
tering non-clinical content using the SciSpaCy ex-
traction model. Both sentences and questions are
reduced to comma separated clinical terms before
being inputted into MedCPT. This variant is de-
noted as MedCPT CT (Clinical Terms).

Sentence Relevance with Med42-8B. Due to
clinical privacy constraints, externally hosted mod-
els such as ChatGPT (OpenAl, 2025) cannot be
used with MIMIC data — a common limitation in
clinical NLP. This requires a secure, local deploy-
ment, which is often infeasible in hospitals due to
limited infrastructure. As deploying large models



is impractical in such settings, we focus on smaller
and more efficient models suitable for local use.

Furthermore, the lack of training data implies
the use of zero- or few-shot methods. Therefore,
we use Med42-8B, a compact, instruction-tuned
model that has undergone preference optimization
for interactive tasks. Our few-shot prompt includes
synthetic examples generated by GPT-40 - each
with a patient question, candidate sentence, answer
(or None), and justification. Importantly, we ensure
that no data from the shared task are included in the
few-shot generation process. Otherwise, we could
not use the dev set for a fair validation-based com-
parison of approaches before evaluating the best
approach on the final test set. And while it might
seem appealing to use real data - or at least data
closely resembling it, such as using some of dev set
examples as few-shot prompts - this would not only
be methodologically incorrect, but also impractical:
the dev set is already so small that we must preserve
it entirely for validation purposes. Furthermore, we
cannot share shared task data with third-party ser-
vices. Therefore, we rely on synthetic examples
generated by GPT-40 shown in Appendix D.

The confidence score for each prediction is com-
puted from the token-level softmax probabilities of
the model’s output, covering both the answer and
its justification. If the model generates None as the
answer, the confidence is set to 0.0. The scores
obtained within each patient case are normalized
by dividing by their total sum; If the sum is 0.0
(that is, all values are zero), no normalization is
applied. We refer to this model as SR Med4?2.

Context-aware Relevance with Med42-8B. Pre-
vious approaches assessed sentences in isolation,
but clinical text often relies on earlier context for
full meaning. For example, a sentence “In that
case, notify the cardiology team.” is only rele-
vant to the question “What should be done if the
patient develops chest pain?”, if we know “that
case” refers to chest pain, illustrating the need for
context-aware relevance.

To incorporate this, we propose CAR Med42,
which applies Med42-8B with the full summary
of discharge. Few-shot prompts, generated via
GPT-40, include a clinical context, patient ques-
tion, candidate sentence from the context, binary
answer (Yes/No), and justification.

As before, a No prediction yields a score of 0.0,
while a Yes prediction uses the model’s generation
probability as the relevance score (and again, if
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possible, scaling is applied). Importantly, no shared
task or clinical data was shared with ChatGPT -
only synthetic examples were used. A complete
few-shot example is provided in Appendix E.

3.2 Answer Generation

Once the essential sentences are retrieved, they are
used to construct the final answer. The goal is to
provide a direct response while ensuring that the
answer stays under the 75-word limit.

First, each essential sentence is compressed in-
dividually. We prompt the Med42-8B model in
a few-shot setting (with examples generated by
GPT-40) to generate a concise direct answer us-
ing the essential sentence as context. If the model
cannot generate an answer, the sentence is short-
ened with a second few-shot prompt, also with
Med42-8B, focusing on compressing the sentence
while preserving its content. The corresponding
prompt templates are shown in Appendix F and
Appendix G, respectively.

After processing all the essential sentences, we
concatenate them into a single answer. If the result
exceeds the 75-word limit, we iteratively shorten
the longest processed sentences using the second
few-shot prompt until the word count is within
bounds. In rare cases where this process stalls
(i.e., no length reduction after two iterations), we
remove the last word from the longest sentence and
attempt compression again.

Conversely, if the final answer is significantly
shorter than the limit, we gradually replace the
most concise processed sentences with their origi-
nal, longer, essential sentence forms. This ensures
that the answer contains as much relevant informa-
tion as possible while remaining easy for patients
to understand.

4 Results

The sentence retrieval methods we proposed re-
turn confidence scores rather than binary decisions.
Although SR Med42 and CAR Med42 explicitly
assign a confidence score of 0.0 when the Med42
model predicts that a sentence is not essential, we
still need to apply a threshold to convert the scores
into final binary decisions. Thus, we first optimize
threshold values on the development set and then
apply the optimal thresholds to the test set for eval-
uation.

Although tuning thresholds on the development
set of only 20 cases may raise concerns about over-
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Figure 1: Micro F1, precision, and recall scores across varying confidence thresholds A for four essential sentence
retrieval methods. Only sentences with a model confidence score greater than or equal to A are considered essential.

fitting, each case contains multiple sentences, re-
sulting in hundreds of sentence-level evaluations.
This yields a sufficiently informative signal to
guide threshold selection, even if it may not guar-
antee a globally optimal setting. Crucially, since
the threshold is fixed before any test data are seen,
the validity of the final test evaluation remains un-
affected.

4.1 Threshold Optimization on Dev Set

To identify optimal threshold values for each
method, we perform a sweep over a range of thresh-
old values and analyze the resulting precision-recall
trade-offs. As shown in Figure 1, higher thresh-
olds improve precision but reduce recall, limiting
F1 performance. In fact, F1 scores often do not
significantly exceed the baseline for retrieving all
sentences as essential.

In the Max Cosine Similarity results, we observe
that, while MCS-C achieves higher F1, MCS-M
obtains better precision. Similarly, in the MedCPT
Cross-Encoder results, both MedCPT FS and Med-
CPT CT follow similar trends, with the clinical-
term-filtered variant (MedCPT CT) performing
slightly better. Based on this, we prioritize Med-
CPT CT in subsequent experiments, as filtering
non-clinical content helps reduce noise. However,
for Max Cosine Similarity, neither model clearly
dominates.

Given the findings that clinical pretraining does
not always help (Dada et al., 2025; Lanz and
Pecina, 2025), in the SR Med42 and CAR Med42
approaches, we experimented with replacing the
Med42-8B model with its base non-medical alterna-
tive, Llama3-8B (Grattafiori et al., 2024). However,
despite similar trends in the precision, recall, and
F1 curves, the general-domain Llama3-8B lags be-
hind Med42-8B (see Figure 4). Therefore, we rely
on the Med42-8B model in these approaches.
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Method Overall Factuality Relevance
Ensemble-C  48.6 56.8 40.5
Ensemble-M  49.0 58.6 394

Table 1: Factuality F1 (Fact), Relevance (Rel) metrics,
and their mean Overall score of the two approaches,
Ensemble-M and Ensemble-C, measured on the dev set.

Method F1 | Precision Recall
All Sentences | 48.8 32.2 100.0
MCS-C 50.6 37.9 76.1
MCS-M 48.9 32.6 97.8
MedCPTFS | 51.6 38.0 80.4
MedCPT CT | 51.8 44.3 62.3
SR Med42 48.8 32.2 100.0
CAR Med42 | 48.8 32.2 100.0
Ensemble-C 56.8 53.2 60.9
Ensemble-M | 58.6 52.3 66.7

Table 2: Comparison of F1, Precision, and Recall across
methods for essential sentence retrieval.

Since each method captures different aspects of
sentence essentiality, we explore combining them
in ensemble models. A sentence is retrieved as
essential if at least one of the selected methods
assigns it a score above its respective threshold.

We define two ensembles:

¢ Ensemble-C: combines MCS-C, MedCPT
CT, SR Med42, and CAR Med42

¢ Ensemble-M: combines MCS-M, MedCPT
CT, SR Med42, and CAR Med42

We then perform a grid search for combinations
of thresholds to maximize F1 in the development
set (see Appendix A).

Table 2 summarizes the best F1 scores achieved
by each method, including the baseline where all
sentences are considered essential. The ensemble
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Figure 2: Contribution of individual models within
Ensemble-C (top) and Ensemble-M (bottom), show-
ing for each method the number of predicted essential
sentences. Bars decompose into: red (unique wrong pre-
dictions), orange (wrong and also predicted as wrong by
at least one other submethod), blue (correct and unique
contribution), and green (correct, but also predicted cor-
rectly by at least one other submethod).

methods clearly outperform the individual models.
To assess the robustness of these results, we esti-
mate the variability of the F1 scores using bootstrap
resampling over the input examples. This involves
repeatedly sampling subsets of the data with re-
placement and re-computing the F1 score on each
sample. The resulting distributions yield estimated
means and standard deviations of 56.23 £ 3.91 for
Ensemble-C and 58.64 + 3.29 for Ensemble-M,
indicating that both ensembles consistently outper-
form the baselines in the resampled data.

Figure 2 visualizes the contribution of each
method within the ensemble approaches to the fi-
nal prediction of essential sentences. The figure
shows that MedCPT-CT is the most dominant con-
tributor. Interestingly, MCS-M plays a much more
significant role in Ensemble-M than MCS-C does
in Ensemble-C. However, the ratio of correctly
and incorrectly predicted sentences remains similar
across all methods.

Ours (7th)

Organizers' Baseline

0 10 20 30 40 50 60
Score

Figure 3: Automatic evaluation on the test set. Our
method ranks 7th out of 30 submissions.

The final test set results for the ensemble meth-
ods are shown in Table 1. Additional Relevance
subscores are reported in Table 3 in Appendix B.
While Ensemble-M achieves the highest Factual-
ity score, Ensemble-C performs slightly better in
Relevance. Overall, Ensemble-M is the stronger
method, and we select it as our final approach for
evaluation on the test set.

4.2 Final Test Set Results

Our final system achieved a score of 44.6 on the
test set, placing us 7th out of 30 participating teams
(see Figure 3). These automatically evaluated re-
sults show that our ensemble-based approach is
competitive, despite not using LLMs with ten bil-
lion or more parameters.

5 Conclusion

In this work, we presented our submission to the
ArchEHR-QA 2025 shared task. We focused on
identifying essential sentences for answering a
given patient’s question. Based on these predicted
sentences, we generated the final compact answer.
We combined a few-shot Med42-8B model with co-
sine similarities of clinical terms and the MedCPT
cross-encoder scores.

Our results are reasonable and competitive, even
without using LLMs with tens of billions of param-
eters, which are not easily integrable into hospital
environments. Furthermore, although replacing the
domain-specific Med42-8B model with the general-
domain Llama3-8B led to a slight drop in perfor-
mance, it still suggests that domain-specific pre-
training provides a modest benefit. However, in the
cosine similarity approach, mBERT performs simi-
larly to ClinicalBERT. This highlights that general-
purpose multilingual models can still be competi-
tive in clinical tasks.



Limitations

No training data and a small validation set limit
the development of the model. The notion of an
“essential sentence” is loosely defined and open to
interpretation. Our study is limited to English, and
few-shot prompts were generated using ChatGPT,
which may introduce bias and produce examples
that are not fully accurate or tailored to our task.
Finally, automatic evaluation may not fully reflect
the correctness and clinical validity of the answer.
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B Relevance Scores on Dev Set

Method ‘ BLEU ROUGELsum SARI BERTScore AlignScore MEDCON
Ensemble-M 7.1 29.5 66.9 34.9 55.0 429
Ensemble-C 7.5 31.0 66.3 36.5 59.6 42.0

Table 3: All relevance scores of Ensemble-M and Ensemble-C approaches measured on the dev set.
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Figure 4: Comparison of sentence retrieval and context-aware relevance performance using Med42-8B vs. Llama-
8B. Each chart shows results for one task-model pair, highlighting the impact of replacing Med42-8B with a
general-domain Llama-8B model.

D Essential Sentence Retrieval — Few-Shot Prompt for Sentence Relevance Med42

You are a clinical assistant. Given a context and a question, extract only the
essential information from the context that is necessary to answer the question.
If no information is relevant, respond with "None”. Also provide a short
explanation for your answer.

Context: The patient has a history of hypertension and presents with progressive
shortness of breath. BNP levels are elevated. Physical examination reveals
bilateral rales and mild pedal edema.

Question: What information is essential from this context for answering the question

"What is causing the patient’s breathing difficulty?”

Answer: elevated BNP, bilateral rales, mild pedal edema

Reason: These are all indicators of congestive heart failure, which likely explains
the breathing difficulty.

Context: The patient is a 45-year-old male with a history of allergic rhinitis. He
was seen in allergy clinic and placed on a regimen of nasal corticosteroids and
antihistamines. No new triggers identified. Symptoms are seasonal and well-
controlled.

Question: What information is essential from this context for answering the question

"What is the most likely cause of the patient’s anemia?”

Answer: None

Reason: The context is entirely focused on allergic rhinitis, with no hematologic
data or symptoms of anemia.

Context: The patient completed a dental cleaning and X-rays showed mild periodontal
disease. Oral hygiene habits were discussed, and the patient agreed to floss
daily. No pain or bleeding reported. No antibiotics were prescribed.

Question: What information is essential from this context for answering the question

"What medications are responsible for the patient’s elevated INR?"

Answer: None

Reason: There is no mention of any anticoagulants or medications that affect
coagulation in the context.

Context: Patient underwent knee replacement two years ago. Reports occasional
clicking sensation but no pain. X-ray shows proper implant positioning.

34




Question: What information is essential from this context for answering the question
"Is the knee replacement causing complications?”
Answer: occasional clicking sensation, no pain, proper implant positioning
Reason: Clicking may suggest minor mechanical noise but no signs of complications
given the lack of pain and good positioning.

Context: Complains of weight loss and fatigue over the past 3 months. Labs show iron
deficiency anemia. Colonoscopy reveals a 2 cm mass in the ascending colon.
Question: What information is essential from this context for answering the question

"What might explain the patient’s fatigue?”
Answer: iron deficiency anemia, 2 cm mass in ascending colon
Reason: Chronic blood loss from the mass could explain anemia and fatigue.

Context: The patient underwent cataract surgery on the right eye and reports
improved vision. Post-op evaluation showed clear lens placement and normal
intraocular pressure. No inflammation noted. Scheduled for left eye surgery in
two months.

Question: What information is essential from this context for answering the question

"Why did the patient develop shortness of breath?”

Answer: None

Reason: The context is limited to ophthalmologic findings and does not mention any
pulmonary or cardiovascular symptoms.

Context: Denies smoking, alcohol, or drug use. Family history positive for lung
cancer in both parents. Works in construction for 25 years without respiratory
protection.

Question: What information is essential from this context for answering the question

"What are the patient’s risk factors for lung cancer?”

Answer: family history of lung cancer, 25 years in construction without respiratory
protection

Reason: Occupational exposure and genetics increase risk even without smoking.

Context: Admitted for severe epigastric pain. Has history of NSAID use for chronic
back pain. Labs show decreased hemoglobin. Endoscopy confirms a gastric ulcer.
Question: What information is essential from this context for answering the question

"What is the likely cause of the gastrointestinal bleeding?”
Answer: NSAID use, gastric ulcer, decreased hemoglobin
Reason: NSAIDs are known to cause gastric ulcers, which can lead to bleeding.

Context: No prior psychiatric history. The patient has been irritable and withdrawn
for the past month. Sleep has decreased to 3 hours/night. Appetite remains
normal.

Question: What information is essential from this context for answering the question

"Are there signs of depression?”
Answer: irritability, social withdrawal, decreased sleep
Reason: These are common symptoms associated with depressive disorders.

Context: The patient had a colonoscopy last week, which revealed three polyps that
were removed. Pathology is pending. The patient denies abdominal pain, nausea,
or changes in bowel habits. Family history is negative for colorectal cancer.

Question: What information is essential from this context for answering the question

"Why is the patient experiencing chronic fatigue?”

Answer: None

Reason: The context is focused on GI screening and doesn’t include symptoms, labs,
or findings that would explain fatigue.

Context: Presents with left arm weakness and facial droop for 45 minutes. Symptoms
resolved prior to arrival. CT scan shows no acute infarct. History of atrial
fibrillation.

Question: What information is essential from this context for answering the question

"What might have caused the neurological symptoms?”

Answer: transient symptoms, atrial fibrillation

Reason: AFib can cause transient ischemic attacks, which present with stroke-like
symptoms that resolve.

Context: Mother reports that her child, aged 3, has not yet started speaking in full
sentences. Hearing test is normal. No social interaction issues observed.
Growth chart is appropriate.
Question: What information is essential from this context for answering the question
"Is there concern for developmental delay?”
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Answer: 3-year-old not speaking in full sentences
Reason: While social and hearing are normal, speech delay is suggestive of possible
developmental delay.

Context: Recent travel to sub-Saharan Africa. Developed intermittent fever and
chills on return. Blood smear reveals Plasmodium falciparum.
Question: What information is essential from this context for answering the question
"What is the likely cause of the patient’s fever?’
Answer: travel to sub-Saharan Africa, Plasmodium falciparum
Reason: These findings point to malaria as the likely cause of the fever.

Context: Complains of morning stiffness lasting more than 1 hour. Joints in both
hands are swollen and tender. Positive rheumatoid factor and anti-CCP antibodies

Question: What information is essential from this context for answering the question
"Is this likely to be rheumatoid arthritis?”
Answer: morning stiffness >1 hour, swollen/tender hand joints, positive RF and anti-
CCP
Reason: These clinical and serological findings are diagnostic of RA.

Context: A 65-year-old woman was referred to audiology due to recent hearing
difficulties. Audiogram showed moderate bilateral sensorineural hearing loss.
Hearing aids were recommended. No signs of vertigo or tinnitus were reported.

Question: What information is essential from this context for answering the question

"What led to the patient’s episodes of syncope?”

Answer: None

Reason: The context only contains auditory assessment and does not address
cardiovascular or neurologic causes.

Context: On insulin therapy. Skipped lunch due to meetings. Found diaphoretic and
confused. Glucose 42 mg/dL.

Question: What information is essential from this context for answering the question
"What explains the patient’s confusion?”

Answer: skipped lunch, insulin therapy, glucose 42 mg/dL

Reason: Hypoglycemia is likely due to missed meal with insulin use.

Context: Reports worsening shortness of breath over 2 weeks. Has COPD. Oxygen
saturation drops to 89% on ambulation. Chest X-ray shows no infiltrates.
Question: What information is essential from this context for answering the question
"What is likely contributing to the patient’s shortness of breath?”
Answer: COPD history, desaturation with ambulation
Reason: COPD with exertional desaturation is a common cause of dyspnea in such
patients.

Context: Diagnosed with hypothyroidism last year. Currently on levothyroxine.
Complains of fatigue and cold intolerance. TSH 9.2.
Question: What information is essential from this context for answering the question
"Why is the patient still symptomatic?”
Answer: hypothyroidism, TSH 9.2
Reason: Elevated TSH indicates under-replacement with levothyroxine.

Context: Denies any chest pain. Takes beta-blocker for hypertension. EKG reveals
bradycardia (HR 48 bpm). Patient feels fatigued.
Question: What information is essential from this context for answering the question
"What could explain the fatigue?”
Answer: beta-blocker use, bradycardia
Reason: Bradycardia from beta-blockers may result in reduced cardiac output and
fatigue.

Context: The patient was evaluated in the ophthalmology clinic due to complaints of
blurry vision. Examination showed no signs of diabetic retinopathy. Blood
pressure was within normal range. There were no neurological deficits noted.
Follow-up was scheduled in six months.

Question: What information is essential from this context for answering the question

"What is the underlying cause of the patient’s persistent headaches?”

Answer: None

Reason: The context only discusses ophthalmological findings and vision-related
complaints but contains no information about the cause of headaches.
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Context: Patient presented for a follow-up regarding their post-operative shoulder
surgery. Physical therapy was recommended and patient reports improvement in
range of motion. There are no signs of infection or complications. Sleep has
improved as well.

Question: What information is essential from this context for answering the question

"What factors contributed to the patient’s recent weight loss?”

Answer: None

Reason: The context only discusses orthopedic recovery and makes no mention of diet,

metabolism, or weight.

Context: The patient was brought in for confusion. No focal neurological deficits
noted. BUN and creatinine significantly elevated. Recently started lisinopril.
Question: What information is essential from this context for answering the question

"What could explain the altered mental status?”
Answer: elevated BUN/creatinine, started lisinopril
Reason: Acute kidney injury from ACE inhibitors may lead to uremic encephalopathy.

Context: 65-year-old with chronic low back pain. MRI shows mild degenerative disc
disease. No nerve compression.
Question: What information is essential from this context for answering the question
"Is surgery indicated?”
Answer: mild degenerative disc disease, no nerve compression
Reason: Conservative treatment is favored as no surgical lesion is present.

Context: During the dermatology consultation, the patient described new-onset skin
lesions. The rash appeared on the arms and back, non-pruritic and non-painful.
No signs of infection were noted. Biopsy was scheduled.

Question: What information is essential from this context for answering the question

"Why has the patient developed elevated liver enzymes?”

Answer: None

Reason: The context centers around dermatological symptoms with no hepatic or
metabolic findings provided.

Context: History of mechanical heart valve replacement. INR today is 5.2. No active
bleeding reported.
Question: What information is essential from this context for answering the question
"What explains the elevated INR?"
Answer: mechanical valve replacement
Reason: Patients require anticoagulation for valves, which can overshoot and elevate
INR.

Context: Breast mass noted on exam. Mammogram shows suspicious lesion. Biopsy
confirms ductal carcinoma in situ.
Question: What information is essential from this context for answering the question
"What is the diagnosis?”
Answer: ductal carcinoma in situ
Reason: Biopsy provides definitive diagnosis.

Context: Patient with ESRD on dialysis. Missed last two sessions. Complains of
generalized weakness. Potassium level is 6.8.
Question: What information is essential from this context for answering the question
"What is the likely cause of weakness?”
Answer: missed dialysis sessions, potassium 6.8
Reason: Hyperkalemia and uremia due to missed dialysis likely explain weakness.

Context: {Sentence}

Question: What information is essential from this context for answering the question
"{Question}"”

Answer:

Reason:

E Essential Sentence Retrieval — Few-Shot Prompt for Context-Aware Relevance Med42

You are a medical assistant helping a patient’s family member understand the
discharge summary. The family member asks a general question about the patient’s
condition or expected recovery. From the discharge summary, you are evaluating
whether a specific sentence is essential to help them understand what they truly
need to know - even if they didn’t ask about it directly.
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For each example, decide:

- Is the sentence important for answering the underlying concern in the question? (
Yes"” or "No")

- Briefly explain why or why not.

n

### Example 1

Context:

The patient was admitted with signs of dehydration and electrolyte imbalance
following several days of vomiting and diarrhea. Intravenous fluids and
potassium replacement were administered. He gradually regained strength and
tolerated oral intake by day 3. There were no signs of infection. Electrolyte
levels normalized. He was encouraged to maintain oral hydration and avoid NSAIDs

Discharge instructions included dietary recommendations. He is to follow up
with his primary care physician in one week. The patient lives alone and has
limited mobility. Transportation services were arranged for follow-up.

Patient’s Question: How long will it take for him to fully recover?

Sentence: "He is to follow up with his primary care physician in one week."”

Answer: Yes

Reason: The scheduled follow-up provides insight into the expected timeline of
recovery and monitoring, even though the patient didn’t explicitly ask about
appointments.

### Example 2

Context:

The patient presented with acute asthma exacerbation. She received nebulized
albuterol and corticosteroids in the emergency department. Oxygen saturation
improved over 24 hours. There were no signs of pneumonia. She was discharged
with a prescription for inhaled corticosteroids and a tapering dose of
prednisone. She was advised to avoid known triggers such as smoke or allergens.
Patient reported improved breathing at rest but slight shortness of breath
during activity. No further imaging was ordered. The pulmonologist will review
her progress in 10 days.

Patient’s Question: Is she okay to go back to work next week?

Sentence: "The pulmonologist will review her progress in 10 days.”

Answer: Yes

Reason: The timing of the specialist review is crucial for determining readiness to
return to work, even though the patient didn’t mention the appointment.

### Example 3

Context:

The patient was admitted for routine laparoscopic cholecystectomy. The surgery was
uncomplicated. Minimal intraoperative bleeding was noted. Postoperative pain was
managed with oral analgesics. Bowel function resumed within 24 hours. She
ambulated independently on post-op day 2. The surgical wound was clean and dry.
Discharge instructions advised avoiding heavy lifting for two weeks. Follow-up
scheduled with surgery clinic in 14 days. Patient was in good spirits and eager
to return to normal activities.

Patient’s Question: What should her recovery look like?

Sentence: "Discharge instructions advised avoiding heavy lifting for two weeks.”

Answer: Yes

Reason: The lifting restriction is an essential part of understanding the expected
recovery process, even if not directly requested.

### Example 4
Context:
{Discharge summary excerpt}

Patient’s Question: {Question}
Sentence: "{Sentencel}"”

Answer :

Reason:

F Answer Generation — Direct Answering Few-Shot Prompt
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You are a clinical assistant helping family members understand discharge summaries.
Your task is to answer questions based on long clinical sentences, which may include
irrelevant information.

Always provide a direct, natural answer that is as concise as possible.

Do not repeat or copy any part of the question in your answer.

Do not begin the answer with phrases like ’’Because...’’ or ’’XYZ was recommended
because...’’.

If no clear answer is possible, reply with: None

Question: What treatment did the patient receive for pneumonia?

Sentence: The patient was diagnhosed with pneumonia and treated with intravenous
antibiotics and oxygen therapy.

Answer: He was treated with antibiotics and oxygen therapy.

Question: Why is the patient taking insulin?

Sentence: Due to a recent diagnosis of type 2 diabetes, the patient was prescribed
insulin to manage blood sugar levels.

Answer: He was diagnosed with type 2 diabetes.

Question: What caused the patient’s shortness of breath?

Sentence: The patient’s shortness of breath was likely due to fluid accumulation in
the lungs caused by heart failure.

Answer: He had lung fluid from heart failure.

Question: What mobility assistance does the patient need?

Sentence: After hip surgery, the patient requires a walker and supervision while
moving.

Answer: He requires a walker and supervision.

Question: Why was a walking cane recommended to the patient?

Sentence: The patient’s vaccination record was updated during the follow-up visit,
including influenza and tetanus boosters.

Answer: None

Question: What complications occurred during the patient’s hospital stay?

Sentence: The patient experienced atrial fibrillation, transient confusion, and a
mild allergic reaction to antibiotics during admission.

Answer: He experienced atrial fibrillation, confusion, and an allergic reaction.

Question: {Question}
Sentence: {Sentence}
Answer :

G Answer Generation — Sentence Compression Few-Shot Prompt

You are a clinical assistant specialized in simplifying discharge summaries.

Your task is to take a long clinical sentence and rewrite it as a shorter, natural,
and concise sentence that preserves the essential clinical information.

Do not copy the entire sentence or use unnecessary detail. Keep it factual, clear,
and brief.

Sentence: The patient was admitted to the hospital due to a sudden episode of chest
pain that occurred while he was gardening.
Compressed: Admitted for sudden chest pain during gardening.

Sentence: Following the MRI scan, the patient was found to have a small herniated
disc at the L4-L5 level.
Compressed: MRI showed a small herniated disc at L4-L5.

Sentence: The patient has a medical history of hypertension, type 2 diabetes, and
chronic kidney disease stage 3.
Compressed: History includes hypertension, diabetes, and stage 3 kidney disease.

Sentence: She was prescribed albuterol inhaler to be used as needed for episodes of
shortness of breath.
Compressed: Prescribed albuterol for shortness of breath as needed.

Sentence: During his hospital stay, the patient developed a mild skin rash likely
due to a reaction to antibiotics.
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Compressed: Developed mild rash from antibiotics.

Sentence: The patient was advised to follow a low-sodium diet and monitor blood
pressure regularly at home.
Compressed: Advised low-sodium diet and home blood pressure monitoring.

Sentence: He lives alone but receives weekly assistance from his daughter with
groceries and medication management.
Compressed: Lives alone with weekly help from daughter.

Sentence: The patient’s vaccination record was updated during the follow-up visit,
including influenza and tetanus boosters.
Compressed: Received flu and tetanus boosters at follow-up.

Sentence: {Sentence}
Compressed:
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Abstract

Automatically answering patient questions
based on electronic health records (EHRS) re-
quires systems that both identify relevant ev-
idence and generate accurate, grounded re-
sponses. We present a three-part pipeline de-
veloped by WisPerMed for the ArchEHR-QA
2025 shared task. First, a fine-tuned BioClin-
icalBERT model classifies note sentences by
their relevance using synonym-based and para-
phrased data augmentation. Second, a con-
strained generation step uses DistilBART-Med-
Summary to produce faithful answers strictly
limited to top-ranked evidence. Third, we align
each answer sentence to its supporting evidence
via BiomedBERT embeddings and ROUGE-
based similarity scoring to ensure citation trans-
parency. Our system achieved a 35.0% over-
all score on the hidden test set, outperform-
ing the organizer’s baseline by 4.3 percent-
age points. Gains in BERTScore (+44%) and
SARI (+119%) highlight substantial improve-
ments in semantic accuracy and relevance. This
modular approach demonstrates that enforcing
evidence-awareness and citation grounding en-
hances both answer quality and trustworthiness
in clinical QA systems.

1 Introduction

As patient—portal adoption accelerates, message
volume now exceeds pre-pandemic levels; a longi-
tudinal study found a 55% rise in medical-advice
requests and 24% increase in daily inbox time for
physicians between 2019-2023 (Arndt et al., 2024).
Large Language Models (LLMs) can draft fluent
replies, yet uncontrolled hallucinations threaten pa-
tient safety (Nov et al., 2023; Biro et al., 2025). The
ArchEHR-QA 2025 shared task (Soni and Demner-
Fushman, 2025b) extends this trajectory by pairing
genuine portal questions with sentence-level evi-
dence annotations and requiring grounded answers.

This paper presents the submission by Wis-
PerMed, a three-part pipeline:

* BioClinicalBERT (Lee et al., 2019a) classifies
note sentences as essential, supplementary, or
not-relevant, with robustness improved via
synonym and paraphrase augmentation;

* DistiIBART-Med-Summary (Lewis et al.,
2019) generates an answer conditioned solely
on the top-ranked evidence and

* BiomedBERT (Gu et al., 2021a) embeddings
align each answer sentence to its most similar
evidence, yielding explicit citations.

2 Related Work

This section establishes the context for our multi-
component system that combines evidence classifi-
cation, answer generation, and citation alignment.

Electronic Health Record Question Answering.
Electronic Health Records (EHRs) contain valuable
patient information that can benefit both health-
care providers and patients. Giving patients ac-
cess to their EHRs can increase patient and physi-
cian trust, improve communication, strengthen the
physician—patient relationship, increase medication
adherence, and improve patient outcomes (Tapuria
et al., 2021). Question Answering (QA) systems on
patient-related data can assist clinicians in decision-
making and enable patients to better understand
their medical history (Bardhan et al., 2024). Un-
like general medical QA tasks that rely on cu-
rated knowledge sources (e.g., PubMed or med-
ical websites), EHR QA requires answer gener-
ation grounded in patient-specific records. This
introduces challenges in interpreting both informal
patient queries and domain-specific clinical text.

BioNLP 2025 Shared Tasks, pages 41-49
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Datasets. non Early progress relied on synthetic
corpora such as EMRQA (Pampari et al., 2018),
which repurposed i2b2 annotations (Ozlem Uzuner
et al., 2011) to create ~ 0.4 M evidence—answer
pairs. Work on structured records introduced MIM-
ICSQL for question-to-SQL generation on MIMIC-
III tables (Wang et al., 2020). To improve real-
ism and coverage, consumer-health resources like
MEDIQA-ANS (Savery et al., 2020) added question-
driven answer summaries, while MEDIQA-CHAT
captured full doctor—patient dialogues (Ben Abacha
et al., 2023). Recent benchmarks push modality
boundaries: EHRXQA integrates tabular EHR data
with chest-X-ray images for cross-modal reason-
ing (Bae et al., 2023). The ArchEHR-QA dataset
(Soni and Demner-Fushman, 2025a) extends this
trajectory by pairing genuine portal questions with
sentence-level evidence annotations and enforcing
grounded answers. The dataset is derived from
the MIMIC-III dataset (Johnson et al., 2016) and
comprises 120 patient cases (20 development, 100
test). Every case consists of a realistic patient ques-
tion, corresponding clinician-rewritten questions,
and annotated clinical note excerpts. Each clinical
note excerpt is segmented into sentences, which
are manually annotated as "essential", "supplemen-
tary", or "not-relevant" for answering the question.

Biomedical Language Models. Domain-specific
language models have revolutionized biomedical
NLP applications (Yang et al., 2023). While early
approaches fine-tuned general-domain models like
BERT (Devlin et al., 2019) on biomedical cor-
pora, research has demonstrated that pre-training
language models from scratch on biomedical text
yields substantial performance gains across various
tasks (Gu et al., 2021b). In the realm of medi-
cal text summarization, models like DistilBART-
Med-Summary'! have been developed to condense
clinical documents into concise summaries while
preserving essential information. These models are
trained on large-scale medical datasets and fine-
tuned to capture the specific linguistic characteris-
tics of clinical narratives.

BioBERT (Lee et al., 2019b), a domain-specific
model pretrained on large-scale biomedical cor-
pora, significantly outperforms general-domain
BERT on biomedical text mining tasks. Building
on this foundation, BiomedBERT (Gu et al., 2021a)
was trained solely on biomedical text from scratch

1https ://huggingface.co/Mahalingam/
DistilBart-Med-Summary, Last Accessed: 30.04.2025
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and achieved excellent results across multiple
biomedical NLP benchmarks. Bio_Clinical BERT
(Alsentzer et al., 2019) specializes further in clini-
cal text by initializing from BioBERT and training
on MIMIC notes, a database containing electronic
health records from ICU patients.

Data Augmentation In the medical domain, the
scarcity of annotated datasets poses a challenge to
the development of robust models. To address this,
data augmentation techniques have been employed
to artificially expand training datasets, thereby en-
hancing model generalizability and mitigating over-
fitting. In clinical contexts, leveraging domain-
specific resources such as the Unified Medical Lan-
guage System (UMLS) (Bodenreider, 2004a) and
WordNet (Miller, 1994) for synonym replacement
has proven effective in maintaining the integrity of
medical terminology during augmentation (Kang
et al., 2020; Shorten et al., 2021). Furthermore, the
use of LLMs like Gemini (Hoffmann et al., 2023)
to generate synthetic data have shown promise in
producing high-quality, diverse clinical text (Wang
et al., 2024), which is particularly beneficial for
tasks in low-resource settings.

3 Methods

WisPerMed adopts a three-part pipeline summa-
rized in Figure 1.

Sentence-level relevance classification. Each
clinical note sentence is encoded with BIOCLIN-
ICALBERT (Lee et al., 2019a). The model is
fine-tuned on the ArchEHR-QA development split
(batch size 8, 5 epochs, initial learning rate set
to 2 x 107% according to the default learning rate
scheduler from the transformers library (Wolf et al.,
2020)) to predict essential, supplementary, or ir-
relevant labels. The training data are expanded by
500%, to 100 cases, using: (1) synonym substi-
tution derived from UMLS (Bodenreider, 2004b)
and WordNet (Miller, 1994) and (2) paraphrase
generation with Gemini.

Answer generation. The evidence set, clinician-
rewritten question, and a fixed instruction prompt
are concatenated and passed to DistilBART-Med-
Summary. The prompt (refer to Listing 2 in Ap-
pendix 6) instructs the model to (i) restrict content
to the provided evidence. Decoding employs beam
search (Meister et al., 2020) (beam size 5, repeti-
tion penalty 1.2) and truncates the output to < 75
tokens, as required by the task limit. Only the first


https://huggingface.co/Mahalingam/DistilBart-Med-Summary
https://huggingface.co/Mahalingam/DistilBart-Med-Summary

75 tokens are included in the performance evalua-

tion.
&
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.

Clinical
note
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Answer Se
. q2Seq Answer
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Citation BiomedNLP-
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Figure 1: Workflow of the three-part pipeline. The
first stage performs relevance classification, identifying
sentences as essential, supplementary, or not-relevant
for answer generation. The second stage generates an
answer using the prioritized evidence. The final stage
adds explicit citations by linking each answer sentence
to its supporting evidence.

Citation alignment. Each answer sentence is em-
bedded with BIOMEDBERT (Gu et al., 2021a). Us-
ing Recall-Oriented Understudy for Gisting Evalu-
ation (ROUGE) score (Lin, 2004) calculations, we
link sentences in the answer to the most similar sen-
tences of the clinical notes. A similarity threshold
of 0.30 ensures that lower-scoring sentences are
tagged as unsupported. The selected citations are
then being added to the corresponding sentences in
the answer to maintain the task’s citation format.

Implementation. Models are trained and exe-
cuted with PyTorch 2.6.0 (Paszke et al., 2019) us-
ing Python 3.12.9 on a single Nvidia RTX 4080
Super (16GB). Source code is released under MIT
License.”

2https ://github.com/rtg-wispermed/ArchEHR-QA,
Last Accessed: 09.05.2025
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4 Evaluation

The metrics for evaluation are divided into fac-
tuality and relevance metrics. Factuality metrics
include Precision, Recall, and F1-score (Powers,
2020) in both micro and macro variations. In ad-
dition, all scores are measured in a strict (includ-
ing only sentences classified as "essential") and a
lenient (including sentences classified as "essen-
tial" and "supplementary") variation. The mean
of all factuality scores (Strict Citation F1 scores)
is the Overall Factuality score. Relevance metrics
include Bilingual Evaluation Understudy (BLEU)
(Papineni et al., 2002), ROUGE (Lin, 2004) and
System output Against References and against the
Input (SARI) (Xu et al., 2016). Semantic simi-
larity is measured with BERTScore (Zhang et al.,
2019). AlignScore (Zha et al., 2023) provides task-
agnostic factual consistency, and MEDCON (Med-
ical Concept Overlap (Yim et al., 2023)) captures
clinical concept agreement. The mean of all sur-
face metrics is the overall relevance score. Lastly,
the overall score is calculated by the mean of the
Overall Factuality score and the overall relevance
score.

5 Results and Discussion

Table 1 presents overall scores on the ArchEHR-
QA hidden test set. The approach by WisPerMed
improved upon the organizer’s baseline by ~ 4.3%.
Both the Overall Factuality and the overall rele-
vance improved by ~ 2.6% and ~ 6.1% respec-
tively.

Metric  WisPerMed Baseline DMIS Lab
Overall 35.0 30.7 53.7
OF 36.2 33.6 58.6
OR 33.9 27.8 48.8

Table 1: Comparison of Overall, Overall Factuality
(OF), and Overall Relevance (OR) scores for Wis-
PerMed, the organizer’s baseline and DMIS Lab

The three-part pipeline demonstrates consistent
improvements over the organizer’s baseline across
key relevance and factual accuracy metrics, as
shown in Table 2. Notably, it achieves a 44% rel-
ative improvement in BERTScore (29.5 vs. 20.5),
indicating superior semantic alignment with ref-
erence texts through contextual embeddings. The
119% improvement in SARI (61.0 vs. 27.8) high-
lights enhanced content preservation during text
simplification or rewriting tasks, even compared
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to DMIS Lab (36.7). While both systems show
comparable performance in UMLS-based concept
recognition (MEDCON), WisPerMed’s 3.5-point
gain in AlignScore (62.3 vs. 57.7) suggests bet-
ter factual consistency in clinical narratives. The
first-place team, DMIS Lab, achieved significantly
higher overall scores, indicating that there is still
headroom for improving our approach.

Metric WisPerMed Baseline DMIS Lab
BLEU 2.0 0.1 14.3
ROUGE-LSum 22.6 33.6 46.5
SARI 61.0 27.8 36.7
BERTScore 29.5 20.5 53.9
AlignScore 62.3 57.7 92.4
MEDCON 25.9 25.6 49.3

Table 2: Comparison of relevance metrics between Wis-
PerMed, organizers-baseline and DMIS Lab

Table 3 shows that our approach achieves con-
sistently higher recall and F1 scores than the or-
ganizer’s baseline across both strict and lenient,
micro-averaged settings, with strict recall (micro)
improving from 21.9 to 26.9 and strict F1 (micro)
from 33.6 to 36.2. These gains indicate a higher
ability to identify a greater proportion of relevant
information, reducing false negatives. On the other
hand the organizer’s baseline demonstrates higher
precision, indicating that our approach contains
more false positives. Overall, the metrics demon-
strate the focus on maximizing relevant coverage.

Metric WisPerMed Baseline DMIS Lab
Strict Precision (mic) 55.4 71.6 57.9
Strict Recall (mic) 26.9 21.9 59.3
Strict F1 (mic) 36.2 33.6 58.6
Lenient Precision (mic) 59.1 77.0 61.2
Lenient Recall (mic) 27.1 22.3 59.2
Lenient F1 (mic) 37.1 34.6 60.2
Strict Precision (mac) 54.0 77.4 62.1
Strict Recall (mac) 34.0 31.5 69.0
Strict F1 (mac) 37.7 39.0 61.2
Lenient Precision (mac) 59.5 83.0 66.6
Lenient Recall (mac) 339 30.8 67.1
Lenient F1 (mac) 39.9 39.9 63.2

Table 3: Comparison of strict and lenient (micro/-
macro) precision, recall, and F1 scores for WisPerMed,
organizers-baseline and DMIS Lab

Further experiments on the ArchEHR-QA de-
velopment set have been conducted to compare
three different sequence-to-sequence text genera-
tion models. Specifically, we chose three models
from huggingface: (1) Flan-T5 (Chung et al., 2022),
(2) BART-Large-CNN (Lewis et al., 2019) and (3)
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DistilBART-Med-Summary. The results (refer to
Table 4) indicate that both BART-models capture
medical concepts in their generated answer more
precisely compared to Flan-T5. While DistilBART-
Med-Summary achieves the highest Overall Fac-
tuality score due to its finetuning on medical data,
BART-Large-CNN can capture the relevance of
information with a higher precision. Another find-
ing is that Flan-T5 requires a detailed and specific
prompt to generate answers that adhere to task re-
quirements (see Listing 1). Both BART models, on
the other hand, perform well with a much simpler
prompt.

Model OF OR  Overall
Flan-T5 5492 29.63 42.27
BART-Large-CNN 64.04 52.69 58.36
DistilBART-M-S 7042 49.33 59.87

Table 4: Overall score, Overall Factuality (OF) and
Overall Relevance (OR), for each model

The impact of data augmentation was evaluated
on the ArchEHR-QA development set. The results
(refer to Table 5 in Appendix) demonstrate that
synonym augmentation can greatly improve the
model’s performance in every metric. Including
synthetic data generated by Gemini on the other
hand has minor impact on the performance metrics.

6 Conclusion

The three-part pipeline proposed by WisPerMed
system demonstrates that a modular, relevance-first
approach can deliver competitive performance on
ArchEHR-QA 2025 while retaining transparency.
The combination of BioClinicalBERT-based (Lee
et al., 2019a) sentence selection, answer genera-
tion with DistilBART-Med-Summary, and Biomed-
BERT citation alignment (Gu et al., 2021a) yielded
results that surpassed the organizers’ baseline and
maintained strong precision across strict and le-
nient settings. We demonstrated that models based
on BART (Lewis et al., 2019) are better suited for
grounded answer generation for EHR questions
compared to Flan-T5 (Chung et al., 2022) variants.
We further conclude that synonym augmentation
based on UMLS (Bodenreider, 2004a), and Word-
Net (Miller, 1994) can greatly improve the perfor-
mance of relevance classification.



Limitations

While the WisPerMed pipeline achieves a strong
improvement in the relevance metrics, several
weaknesses remain. Reliance on hard probabil-
ity thresholds in the relevance classifier caps cita-
tion recall at roughly 27%. Synthetic training data
generated via Gemini paraphrasing occasionally
alters medical meaning, introducing label noise
that propagates downstream. Because all models
are tuned on MIMIC style documentation, perfor-
mance may degrade when confronted with different
institutional note formats or specialty-specific jar-
gon. The ROUGE-score-based similarity method
for citation alignment may misassign identifiers
when multiple sentences are semantically simi-
lar. The decision to use BERT-based sequence-
to-sequence (seq2seq) models was made to min-
imize hardware requirements, enabling the three-
step pipeline to be trained on a single consumer
GPU, such as the Nvidia RTX 4080 Super (16GB).
However, our three-part pipeline could be outper-
formed by more demanding Retrieval-Augmented
Generation (RAG) approaches, which jointly opti-
mize retrieval and generation while explicitly link-
ing answers to sources, reducing citation errors.
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Listing 1: Flan-T5 Prompt

f"""Question: {question}

Context: {context}

Instructions:

1. Create a comprehensive, narrative
answer in paragraph form to the
question based STRICTLY on the
provided context sentences

2. Use complete sentences. Do NOT use
lists

3. Every sentence in your answer MUST be

directly supported by evidence from
the context

4. Minimize paraphrasing. Prefer using
exact phrases from the context for
medical terms, findings, and actions

5. The answer must not exceed 75 words

6. Preserve all medical terminology
exactly as it appears. Do not
simplify

7. Ensure clinical accuracy and a
professional tone

Answer :

nnn

Listing 2: BART-Large-CNN / DistilBART-Med-
Summary Prompt

(f"{context} Based on the text above,
answer the question: {question}\n”
f"Answer:")
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Metric No Aug. Synonym Aug. Synonym Aug. + Synth. Data

Strict Macro Precision 70.17 100.00 100.00
Strict Macro Recall 40.18 65.15 65.15
Strict Macro F1 49.08 75.84 75.84
Strict Micro Precision 71.64 100.00 100.00
Strict Micro Recall 34.78 53.62 53.62
Strict Micro F1 46.83 69.81 69.81
Lenient Macro Precision 75.17 100.00 100.00
Lenient Macro Recall 34.87 50.60 50.60
Lenient Macro F1 45.09 63.65 63.65
Lenient Micro Precision 77.61 100.00 100.00
Lenient Micro Recall 27.51 39.15 39.15
Lenient Micro F1 40.62 56.27 56.27
Overall Factuality Score 46.83 69.81 69.81
SARI 66.94 73.46 73.56
BLEU 2.74 3.81 3.85
BERTScore 36.06 43.96 43.68
ROUGE-1 30.88 36.89 36.89
ROUGE-2 23.48 31.45 31.67
ROUGE-L 22.65 25.57 28.99
ROUGE-Lsum 29.76 36.31 36.31
AlignScore 64.37 87.05 89.17
MedCon 38.81 49.85 49.85
Overall Relevance Score 33.87 39.38 39.35
Overall Score 40.35 54.60 54.58

Table 5: Scores for each augmentation type: No Augmentation, Synonym Augmentation, and Synonym Augmenta-
tion + Synthetic Data.
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Abstract

This paper presents the approach of our team
called heiDS for the ArchEHR-QA 2025 shared
task. A pipeline using a retrieval augmented
generation (RAG) framework is designed to
generate answers that are attributed to clini-
cal evidence from the electronic health records
(EHRs) of patients in response to patient-
specific questions. We explored various com-
ponents of a RAG framework, focusing on
ranked list truncation (RLT) retrieval strategies
and attribution approaches. Instead of using a
fixed top-k RLT retrieval strategy, we employ
a query-dependent-k retrieval strategy, includ-
ing the existing surprise and autocut methods
and two new methods proposed in this work,
autocut* and elbow. The experimental results
show the benefits of our strategy in producing
factual and relevant answers when compared to
a fixed-k.

1 Introduction

Electronic Health Records (EHRSs) are essential in
any healthcare system, serving as repositories of
the medical history of patients (Hiyrinen et al.,
2008). Since 2020, patient portals have increased,
resulting in more virtual communications between
patients and clinicians (Small et al., 2024). As a
result, responding to inquiries of patients has be-
come an important issue. Clinicians are reported to
spend around 1.5 hours each day managing approx-
imately 150 messages (patient questions) (Small
et al., 2024; Liu et al., 2024b). Thus, answering
patient-specific questions is a crucial task that relies
on information managed in EHRs.

Large Language Models (LLMs) can automate
answer generation for patient questions, as these
models are trained on extensive textual data (Liu
et al., 2024b). However, LLLMs are also prone to
hallucinations, that is, they may generate answers
not supported by a reliable source. This can un-
dermine user trust and potentially harm patients
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by giving incorrect advice (Huang et al., 2024b).
Therefore, attribution, i.e., linking elements of a
generated answer to sources, is critical to ensure
that every claim is grounded in medical evidence.

Attribution has gained significant attention
across various domains, such as the legal and med-
ical domains (Trautmann et al., 2024; Malaviya
et al., 2024). Li et al. (2023) outline three ap-
proaches for generating answers with attribution.
The first approach is direct model-driven attri-
bution, where an LLM generates answers with
their sources without using additional information.
This is accomplished by fine-tuning or training
the model to generate answers that include attri-
butions (Zhang et al., 2024; Patel et al., 2024;
Huang et al., 2024a). However, a common issue
with this approach is the hallucination of refer-
ences (Agrawal et al., 2024). The second approach
is known as post-retrieval attribution or retrieve-
and-read. It retrieves evidence relevant to a query,
generating an answer based on that evidence. The
LLM is prompted to reference the retrieved infor-
mation, thereby enforcing attribution (Menick et al.,
2022; Nakano et al., 2021; Sahinug et al., 2024;
Gao et al., 2023b). Post-generation attribution (Gao
et al., 2023a; Ramu et al., 2024; Cohen-Wang et al.,
2024) is the third approach, and it allows the LLM
to generate answers without prior attribution and
in a post-processing step map answer text back to
its sources.

The objective of the BioNLP Grounded Elec-
tronic Health Record Question Answering shared
task (ArchEHR-QA) (Soni and Demner-Fushman,
2025b) is to generate answers to patient questions,
considering clinical note excerpts and attributing
them with relevant evidence from the excerpts. Our
approach focuses on developing a pipeline for at-
tributed answer generation by employing a retrieval
augmented generation (RAG) framework. We ex-
perimented with different methods based on the
post-retrieval and post-generation attribution ap-
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August 1, 2025 ©2025 Association for Computational Linguistics



proaches on the ArchEHR-QA development set,
which are detailed in Section 2.

2 Pipeline Overview

Our proposed pipeline utilizes a RAG framework to
solve the ArchEHR-QA task. This task involves an-
swering health-related questions from patients and
providing attributions based on the patients’ clini-
cal notes. In this section, we introduce our different
methods, including the pipeline we submitted to
the ArchEHR-QA 2025 leaderboard. Section 2.1
provides information about the dataset used for the
shared task, followed by Section 2.2 describing
the baseline. Section 2.3 provides information on
our submitted pipeline, which is based on a sur-
prise (Bahri et al., 2023) Ranked List Truncation
(RLT) retrieval strategy. Finally, other methods
we experimented with (other than the baseline and
submitted pipeline) are outlined in Section 2.4.

2.1 Dataset

The dataset for the ArchEHR-QA 2025 shared
task, available on PhysioNet1 (Soni and Demner-
Fushman, 2025a), comprises 20 case studies in
the development (dev) set and 100 case studies
in the test set”. Each case study consists of a
hand-curated patient question, its corresponding
clinician-rewritten version (i.e., clinician question),
and excerpts from the patient’s clinical notes. See
Appendix A for an example of a case study from
the dev set and Appendix B for some statistics on
the clinical note excerpts. For every sentence in
a clinical note, a 1024 dimensional embedding is
computed using the BAAI/bge-large-en-v1.5°
model and stored in a FAISS index (Johnson et al.,
2019) for semantic search.

2.2 Our Baseline

While we experimented with various retrieval and
prompting strategies within the RAG framework,
our baseline follows a post-retrieval attribution ap-
proach. This involves prompting an LLM to gen-
erate answers based on both patient and clinical
questions, along with all sentences of the clinical
note excerpts from the case study. The decisions
made for the baseline and other pipelines proposed

1https://doi .org/10.13026/zzax-sy62 (accessed on
30th April 2025)

2All experiments described in Section 3 use the dev set.

3https ://huggingface.co/BAAI/bge-large-en-vi.
5 (accessed on 4th May 2025)
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in this work are supported by experiments that in-
clude

* a query that is constructed using both patient
and clinical questions instead of considering
only one of them (see Appendix D),

* a one-shot prompting approach instead of
zero-shot prompting (see Appendix E),

* different LLMs for answer generation with
attributions, which are LLaMA-3.3-70B* and
Mixtral-8x7B> (Dada et al., 2025; Kweon
et al., 2024), and

* a maximum number of 200 tokens generated
by the LLM (see Appendix F).

On the other hand, the organizers’ baseline used
the LLaMA-3.3-70B model in a zero-shot prompt-
ing approach, where the model is prompted to gen-
erate answers that include attributions. If a re-
sponse is invalid, e.g., exceeding the word limit
or lacking valid attribution, the model is again
prompted to generate an answer. This is repeated
up to five times to obtain a valid output.

2.3 Submitted Pipeline: Surprise Ranked List
Truncation (RLT) Retrieval Strategy

The pipeline we submitted for the shared task aligns
with baselines utilizing a post-retrieval attribution
approach. In this approach, for a query that com-
bines patient and clinical question, semantically
similar sentences from the excerpts of clinical notes
are retrieved. The similarity score between the
query and each sentence is computed using cosine
similarity. During retrieval, k represents the num-
ber of highest-scoring (top-k) sentences similar to
the query. Instead of using a fixed value for k,
our team employed a query-dependent-k selection
strategy based on the Ranked List Truncation (RLT)
method, referred to as “surprise”. This method de-
termines the number £k of sentences to consider
by first adjusting retrieval scores using general-
ized Pareto distributions from extreme value the-
ory (Pickands, 1975). It truncates a ranked list
using a score threshold, allowing for a variable
number of relevant sentences to be selected per
query (Meng et al., 2024). The selected sentences
and query are passed to the LLMs for answer gener-
ation, where the model generates an answer with at-
tribution explicitly referencing retrieved sentences
from a clinical note.

4ht’cps: //huggingface.co/meta-1lama/Llama-3.
3-7@B-Instruct (accessed on 4th May 2025)

5https: //huggingface.co/mistralai/
Mixtral-8x7B-v@.1 (accessed on 4th May 2025)
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Table 1: Retrieval performance on the development set under strict (essential only) and lenient (essential +
supplementary) variants. The Strategy and Variant columns list different retrieval strategies and their parameters.
Columns P, R, and F1 quantify precision, recall, and F1-score under both variants. The seven best approaches by
combined strict and lenient F1-scores (excluding the & = 54 row) are highlighted in bold.

Strategy Variant Strict Lenient
P R F1 P R F1
k=3 0.53 032 036 070 0.29 0.39
k=10 043 071 050 056 071 0.58
fixed-k k=15 0.38 0.81 049 051 0.82 0.60
k=20 0.35 0.89 049 047 0.88 0.59
k=54 033 1.00 049 045 1.00 0.60
fixed-k + re-rankers FlashRank (k =20,n» =10) 0.38 0.68 045 0.51 0.67 0.54
Cohere (k = 20,n = 10) 0.38 0.67 045 050 0.66 0.53
autocut — 0.58 022 027 068 021 028
autocutx* - 059 035 034 074 032 0.38
surprise — 036 064 042 048 0.62 049
elbow — 048 066 050 0.62 0.63 0.55

2.4 Other Methods

In this section, we outline various methods within
the RAG framework by varying its components,
namely retrieval strategies and attribution ap-
proaches, to assess their impact on performance.
We experimented with retrieval strategies other
than surprise, including fixed-k, fixed-k£ and re-
ranking, and query-dependent-k strategies like au-
tocut, autocut*, and elbow.

The Fixed-k strategy applies a fixed cut-off for
all query results, using common values of 3, 10, 15,
20, and 54. Fixed-% and re-ranking is a two-step
retrieval that first retrieves semantically k& similar
candidates based on a fixed cut-off. A relevance
score is assigned in the second step, selecting top-
n (where n < k) sentences using re-rankers like
flashrank (Damodaran, 2023) and cohere®. Auto-
cut’ limits candidate sentences based on disconti-
nuities in the computed similarity scores. It deter-
mines the first divergence from a straight decline,
excluding candidates beyond this point, although
it may struggle with uniformly decreasing scores.
In this work, we propose autocut*, a new cut-off
strategy that inspects how much each similarity
score decreases compared to the previous score,
automatically determining cut-offs based on signif-
icant changes without any manual adjustments. We
also introduce the elbow strategy adapted from the
elbow method in clustering to determine cut-offs by

®https://docs.cohere.com/docs/rerank-overview
(accessed on 4th May 2025)

"https://weaviate.io/developers/weaviate/api/
graphgl/additional-operators#autocut (accessed on
4th May 2025)
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s

plotting similarity scores and locating the “elbow’
where the transition from high to low relevance
occurs, again with no need for preset parameters.

Along with different retrieval strategies, post-
generation and post-retrieval attribution approaches
have also been tried. In post-generation attribu-
tion, after a model generates an answer, those re-
trieved sentences are identified that support each
answer sentence by measuring three similarity
types: lexical (ROUGE (Lin, 2004), BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005)), fuzzy (character-based matching), and se-
mantic (BERTScore (Zhang et al., 2020)). Each
similarity is assigned a weight w;, and a combined
score is calculated. If this score exceeds a prede-
fined threshold, the candidate sentence is attributed
to the generated sentence. This ensures that every
claim is explicitly grounded in some original clini-
cal evidence. Detailed setups and results on weight
and threshold settings are provided in Appendix G.

The post-retrieval attribution approach asso-
ciates sentence identifiers with each retrieved sen-
tence for attribution during answer generation.
Post-processing steps are applied to generated an-
swers to ensure that attributions are properly placed
and no irrelevant attributions occur.

3 Experiments

All experiments were conducted on Google Colab®
using a Tesla T4 GPU (12GB memory)°. For ac-

8ht’cps: //colab.research.google.com/ (accessed on
4th May 2025)

°Code for the proposed pipeline is available online: https:
//github.com/achouhan93/heiDS-ArchEHR-QA-2025
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Table 2: Pipeline evaluation on the development set under one-shot prompting, 200-token limit, and patient+clinician
query. Metrics: strict Precision (P), Recall (R), Fl-score (F1), overall relevance score in Relevance column, and
overall pipeline score in Overall column. The performance of the organizer baseline, our baseline, top three proposed

pipelines, and other experimented pipelines are listed here.

Retrieval Attribution Model P R F1 Relevance Overall
Organizer Baseline LLaMA-3.3-70B 0.63 0.33 043 0.29 0.36
Our Baseline LLaMA-3.3-70B 0.54 0.27 0.36 0.33 0.35
Top Three Proposed Pipelines
surprise Post-retrieval LLaMA-3.3-70B 0.62 0.26 0.37 0.35 0.36
elbow Post-retrieval LLaMA-3.3-70B  0.59 0.27 0.37 0.32 0.35
fixed-k = 15 Post-retrieval LLaMA-3.3-70B 0.59 0.25 0.35 0.34 0.35
Other Experimented Pipelines
fixed-k = 10 Post-retrieval LLaMA-3.3-70B  0.58 0.27 0.37 0.33 0.35
fixed-k = 10 Post-retrieval Mixtral-8x7B 0.27 0.15 0.19 0.29 0.24
fixed-k =15 Post-retrieval Mixtral-8x7B 028 0.15 0.19 0.29 0.25
fixed-k =20 Post-retrieval LLaMA-3.3-70B 0.51 0.28 0.36 0.35 0.35
fixed-k =20 Post-retrieval Mixtral-8x7B 030 0.14 0.19 0.28 0.24
fixed-k = 20 + FlashRank  Post-retrieval LLaMA-3.3-70B  0.52 0.22 0.31 0.34 0.33
fixed-k = 20 + FlashRank  Post-retrieval Mixtral-8x7B 022 0.12 0.15 0.28 0.22
autocut* Post-retrieval LLaMA-3.37B 0.57 0.14 0.23 0.32 0.27
autocut* Post-retrieval Mixtral-8x7B 044 0.12 0.18 0.27 0.23
surprise Post-retrieval Mixtral-8x7B 033 0.17 0.22 0.29 0.26
elbow Post-retrieval Mixtral-8x7B 043 0.15 0.22 0.29 0.26
fixed-k = 54 Post-generation LLaMA-3.3-70B 0.35 0.22 0.27 0.35 0.31

cessing LLMs, we used InferenceClient!'? from
the huggingface_hub library.

3.1 Evaluation Criteria

The development set provided by the organizers
includes clinical note excerpts annotated with sen-
tence numbers for attribution. Furthermore, each
sentence is labeled as “essential”, “supplementary”,
or “not-relevant”. Evaluation is carried out for two
variants, a “strict” variant (considering only “es-
sential” labels) and a “lenient” variant (consider-
ing both “essential” and “supplementary” labels).
Retrieval performance is measured by precision,
recall, and F1-score for each variant. The results
are shown in Table 1. We selected fixed-k (10, 15,
20), autocut*, surprise, and elbow for downstream
answer generation based on these metrics.

We used the official ArchEHR-QA evaluation
script for the overall pipeline evaluation to assess
factuality and relevance. Factuality is measured
by the precision, recall, and F1-score of cited ev-
idence versus ground-truth annotations computed
under both variants. Relevance compares gener-
ated answer sentences to the ground-truth essential

Ohttps://huggingface.co/docs/huggingface_hub/
v0.30.2/en/package_reference/inference_client
(accessed on 4th May 2025)
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sentences using BLEU, ROUGE, SARI (Xu et al.,
2016), BERTScore, AlignScore (Zha et al., 2023),
and MEDCON (Yim et al., 2023). The overall rele-
vance score is the average of these metrics, and the
final pipeline score is the mean of overall factuality
(strict variant F1-score) and overall relevance.

3.2 Comparative Pipeline Evaluation

Building on the ablations in Appendices D-F, we
fixed the query (patient + clinician question), one-
shot prompt, and 200-token limit, and evaluated
our pipeline with two LLMs, LLaMA-3.3-70B!!
and Mixtral-8x7B!2, under both post-retrieval and
post-generation attribution workflows. The results
are shown in Table 2.

Post-Retrieval Attribution Evaluation. We
paired each of our selected retrieval strategy
(fixed-k = 10, 15, 20; autocut*; surprise; elbow)
with each LLM and measured strict variant F1-
score and overall relevance. Table 2 shows that
LLaMA-3.3-70B combined with the surprise re-
trieval strategy achieves a strict F1-score of 0.37
and overall relevance of 0.35, making it our top

llhttps: //huggingface.co/meta-1lama/Llama-3.
3-70B-Instruct (accessed on 4th May 2025)

12https: //huggingface.co/mistralai/
Mixtral-8x7B-v@.1 (accessed on 4th May 2025)
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post-retrieval configuration, compared to the base-
lines.

Post-Generation Attribution Evaluation. Us-
ing a fixed-k of 54, we varied lexical/fuzzy/seman-
tic weights and threshold values for the LLaMA-
3.3-70B model. As shown in Table 5 in Ap-
pendix G, the optimal weighting (w1 = 0.0, w2 =
0.5, w3 = 0.5, threshold = 0.5) yields a strict F1-
score of 0.27 and overall relevance score of 0.35.
Although this setup performs best among post-
generation configurations, it underperforms relative
to the best-performing post-retrieval configuration.

3.3 Pipeline Performance Analysis

While our best-performing pipeline based on the
surprise retrieval strategy and post-retrieval attribu-
tion achieves a comparable overall score, it does
not outperform the organizer’s baseline. This out-
come can be because of the following factors:

* Prompt sensitivity of LLMs. Salinas and
Morstatter (2024) demonstrate that even a
small perturbation in prompts can cause
changes in an LLM’s output. Although the
organizer baseline and our best-performing
pipeline use the same model (LLaMA-3.3-
70B), the organizer baseline employs a zero-
shot prompt, whereas our pipeline uses a one-
shot prompt with stricter formatting and attri-
bution instructions for the model to follow.
These subtle prompt design choices could
have influenced the model’s ability to gen-
erate high quality answers with relevant attri-
butions.

Difference in context size. The development
set contains up to 54 clinical note excerpt sen-
tences per case study (see Figure 1b), allow-
ing the organizer baseline to input all sen-
tences to LLM as context, thus ensuring a
high recall. In contrast, our pipeline relies
on a query-dependent-k retrieval method to
select a smaller subset of sentences. This ap-
proach naturally reduces recall, as some rele-
vant content may not be retrieved, which thus
negatively impacts the overall score.

Despite not outperforming the organizer baseline
overall score, our pipeline design is motivated by
practical considerations for real-world applications.
While using all clinical note sentences is feasible
within the shared task environment, real-world ap-
plications can contain far more text. We consider
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including complete texts as often infeasible due
to LLMs input length constraints and degradation
in model performance due to irrelevant informa-
tion (Shi et al., 2023; Liu et al., 2024a). In such
settings, a retrieval step is required, and determin-
ing a fixed k that is suitable for all cases is time-
consuming. Query-dependent-k retrieval strategies
remove the need for manual k tuning by determin-
ing the cut-off point based on score distributions.
This allows the system to adapt to different types
of queries.

4 Conclusion and Discussion

This work explored various RAG framework com-
ponents for generating answers with attributions
to clinical note excerpts. Our research high-
lights that the best-performing pipeline employs
a post-retrieval attribution approach, utilizing the
“surprise” RLT strategy and the LLaMA-3.3-70B
model. We achieved a strict variant precision of
0.62 and recall of only 0.26, resulting in an F1-
score of 0.37. While this indicates that the model’s
attributions are often correct, it frequently over-
looks relevant evidence sentences. High selectivity
can be beneficial when false attributions are costly,
though it may omit important information. Addi-
tionally, query-dependent-k strategies like surprise,
elbow, and autocut* methods for different types of
queries in the dataset showed comparable perfor-
mance to fixed-k approaches.

Limitations

Despite the moderate performance of our proposed
pipeline, several limitations should be noted. In
the current implementation, no text pre-processing
is carried out for the clinical note excerpt sen-
tences before indexing in FAISS. Expanding med-
ical acronyms to their complete form or enrich-
ing texts with domain-specific interpretations be-
fore indexing could improve retrieval performance.
Due to the use of prompting, even with a low tem-
perature (0.001), there is non-determinism in the
generated responses, making exact score replica-
tion challenging despite fixed pipeline configura-
tions. Moreover, evaluating multiple large models
increases computational requirements and associ-
ated expenses, which may limit practical deploy-
ment unless the model size or budget is adjusted.
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A Example Case Study

Example Case: Patient and Clinician Questions
with Clinical Note

Patient Question:

Took my 59 yo father to ER ultrasound dis-
covered he had an aortic aneurysm. He had
a salvage repair (tube graft). Long surgery /
recovery for couple hours then removed packs.

time he spent 1 month in hospital now sent
home.

Clinician Question:
Why did they perform the emergency salvage
repair on him?

Clinical Note: 1: He was transferred to the
hospital on 2025-1-20 for emergent repair of
his ruptured thoracoabdominal aortic aneurysm.
2: He was immediately taken to the operat-
ing room where he underwent an emergent
salvage repair of ruptured thoracoabdominal
aortic aneurysm with a 34-mm Dacron tube
graft using deep hypothermic circulatory ar-
rest. 3: Please see operative note for details
which included cardiac arrest x2. 4: Postoper-
atively he was taken to the intensive care unit
for monitoring with an open chest. 5: He re-
mained intubated and sedated on pressors and
inotropes. 6: On 2025-1-22, he returned to
the operating room where he underwent explo-
ration and chest closure. 7: On 1-25 he returned
to the OR for abdominal closure, JP drain place-
ment, and feeding jejunostomy placed at that
time for nutritional support. 8: Thoracoab-
dominal wound healing well with exception
of very small open area mid-wound that is ap-
proximately 1cm around and 0.5cm deep, with
no surrounding erythema. 9: Packed with dry
gauze and covered with DSD.

B Dataset Statistics

The box plots representing the distribution of sen-
tences in clinical notes for development (dev) and
test sets (see Figure 1a and 1b) show that there is
a varying number of sentences present in different
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Figure 1: Distribution of the number of sentences per
clinical case in the test (a) and development (b) sets.

case studies with outliers (in the dev set case study,
No. 8 is having 54 sentences, and in the test set
case study, No. 73 is having 74 sentences).

Similarly, when the sentence length distributions
are plotted for the dev set and the test set (see Fig-
ure 2a and Figure 2b), the mean of sentence length
for both is nearly the same, around 15. However,
in the test set, case studies have sentences that are
double the length of sentences present in the dev
set.

C Prompt Templates for Clinical Answer
Generation

In this section, we provide the prompt templates
used for answer generation. Zero-shot and one-shot
prompts are designed for both post-retrieval and
post-generation attribution. Post-retrieval attribu-
tion guides the language model to generate answers
with inline citations, whereas post-generation attri-
bution focuses only on answer generation, followed
by a separate attribution step.
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Figure 2: Distribution of the sentence length in the test
(a) and development (b) sets.

C.1 Promptl
Zero-Shot Prompting for Post-Retrieval

Attribution Approach

You are a clinical response generation
system responsible for producing answers
to health-related questions using the
provided clinical note excerpts. Your
answer MUST be:

- **Accurate and Factual:** Grounded
STRICTLY in the provided clinical note
excerpts ONLY.

- **Neutral and Objective:** DO NOT
INCLUDE PERSONAL OPINIONS,
NOTES, IRRELEVANT, OR UNRE-
LATED comments.

- **Concise and Relevant:** INCLUDE
only clinically supported statements using
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the exact terminology found in the provided
clinical notes. Do not add any additional
interpretations or synonyms.

- **Third-Person Perspective:** Do not
address the reader directly.

- **Citation:** Each statement must be
supported by a NUMBERED CLINICAL
NOTE SENTENCE from the Clinical
Note Excerpts ONLY. The citation must
be placed strictly AT THE END of the
sentence. DO NOT insert citations within
the sentence or phrase. When citing a single
source, cite it as lidl. When a statement is
supported by multiple sources, combine
their IDs within a single pair of vertical
bars (e.g., lid, id, idl) with IDs separated by
commas and no extra vertical bars.

- **Mandatory Citation Inclusion:** AT
LEAST ONE SENTENCE in your answer
MUST include a citation from the provided
clinical notes.

**Inputs:**

1. **Clinical Note Excerpts:** Retrieved
sentences from the patient’s clinical record,
numbered.

2. **Patient Narrative Context:**
Additional context from the patient’s
perspective.

3. **Clinician Question:** The primary
question requiring an answer.

**Your Task:**

Generate a response based strictly on the
provided input. Follow the structured
format exactly, use only the exact terms
from the clinical note excerpts, and ensure
all citations are formatted consistently.

[Clinical Note Begin]
{note}
[Clinical Note End]

[Patient Narrative Context Begin]
{patient_narrative}
[Patient Narrative Context End]

[Clinician Question Begin]
{clinician_question}
[Clinician Question End]




Provide your structured answer below:

C.2 Prompt 2
One-Shot Prompting for Post-Retrieval

Attribution Approach

You are a clinical response generation
system responsible for producing answers
to health-related questions ...

[ ... TRUNCATED FOR BREVITY ... ]

**Example:**

If the clinician asks, "Why did they perform
the emergency salvage repair on him?", and
the note states:

1: He was transferred to the hospital on
2025-1-20 for emergent repair of his rup-
tured thoracoabdominal aortic aneurysm.
2: He was immediately taken to the
operating room where he underwent
an emergent salvage repair of ruptured
thoracoabdominal aortic aneurysm with
a 34-mm Dacron tube graft using deep
hypothermic circulatory arrest.

Then the response should be:

His aortic aneurysm was caused by the
rupture of a thoracoabdominal aortic
aneurysm, which required emergent
surgical intervention [1l. He underwent
a complex salvage repair using a 34-mm
Dacron tube graft and deep hypothermic
circulatory arrest to address the rupture I12I.
[ ... TRUNCATED FOR BREVITY ... ]

Provide your structured answer below:

C.3 Prompt3
Zero-Shot Prompting for Post-

Generation Attribution Approach

You are a clinical response generation
system responsible for producing answers
to health-related questions using the
provided clinical note excerpts. Your
answer MUST be:

- **Accurate and Factual:** Grounded
STRICTLY in the provided clinical note
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excerpts ONLY.

- **Neutral and Objective:** DO NOT
INCLUDE PERSONAL OPINIONS,
NOTES, IRRELEVANT, OR UNRE-
LATED comments.

- **Concise and Relevant:** INCLUDE
only clinically supported statements using
the exact terminology found in the provided
clinical notes. Do not add any additional
interpretations or synonyms.

- **Third-Person Perspective:** Do not
address the reader directly."

**nputs: **

1. **Clinical Note Excerpts:** Retrieved
sentences from the patient’s clinical record,
numbered.

2. **Patient Narrative Context:**
Additional context from the patient’s
perspective.

3. **Clinician Question:** The primary
question requiring an answer.

**Your Task:**

Generate a response based strictly on the
provided input. Follow the structured
format exactly, use only the exact terms
from the clinical note excerpts, and ensure
all citations are formatted consistently.

[Clinical Note Begin]
{note}
[Clinical Note End]

[Patient Narrative Context Begin]
{patient_narrative }
[Patient Narrative Context End]

[Clinician Question Begin]
{clinician_question}

[Clinician Question End]

Provide your structured answer below:




C.4 Prompt4

One-Shot Prompting for Post-Generation

Attribution Approach

You are a clinical response generation
system responsible for producing answers
to health-related questions ...

[ ... TRUNCATED FOR BREVITY ... ]

**BExample:**

If the clinician asks, "Why did they perform
the emergency salvage repair on him?", and
the note states:

1: He was transferred to the hospital on
2025-1-20 for emergent repair of his rup-
tured thoracoabdominal aortic aneurysm.
2: He was immediately taken to the
operating room where he underwent
an emergent salvage repair of ruptured
thoracoabdominal aortic aneurysm with
a 34-mm Dacron tube graft using deep
hypothermic circulatory arrest.

Then the response should be:

His aortic aneurysm was caused by the
rupture of a thoracoabdominal aortic
aneurysm, which required emergent
surgical intervention. He underwent a
complex salvage repair using a 34-mm
Dacron tube graft and deep hypothermic
circulatory arrest to address the rupture.

[ ... TRUNCATED FOR BREVITY ... ]

Provide your structured answer below:

D Query Formulation Experiment

We compared three query formulation approaches.
First, the patient’s question is used; second, the
clinician’s question is used; third, both patient and
clinician questions are considered. The setup for
an experiment is similar to the baseline (see Sec-
tion 2.2), i.e., all clinical notes excerpt sentences
for each case study are considered and passed to
LLaMA-3.3-70B (initially, the configuration is set
to a maximum token generation of 100 tokens and
zero-shot prompting). Table 3 shows the overall
factuality (strict variant F1-score), relevance, and
pipeline scores, demonstrating that combining pa-
tient and clinician questions yields the best perfor-
mance.
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Table 3: Query Formulation Results. All experiments
use a fixed-k = 54, zero-shot prompting, post-retrieval
attribution with LLaMA-3.3-70B model, and a maxi-
mum token limit of 100. Metrics: strict Precision
(P), strict F1 (F1), overall Relevance (R), and overall
pipeline score (O). The best variant is highlighted in
bold.

Query P F1 R (0]

Patient Question only 0.39 027 033 0.30
Clinician Questiononly 042 0.27 0.30 0.28
Patient + Clinician 044 030 0.33 0.31

E Prompting Approach Experiment

To assess the effect of the prompting approach, we
compared zero-shot and one-shot prompting ap-
proaches considering the LL.aMA-3.3-70B model
and prompting with all note sentences, the query
as a combination of patient and clinician questions
(see Appendix D), and a maximum token genera-
tion limit of 100. LLLMs generate answers based
solely on the provided query and instructions in a
zero-shot prompting approach, testing their inher-
ent understanding without examples. See Appen-
dices C.1 and C.3 for zero-shot prompts. In the
one-shot prompting approach, an example of the
desired output is provided alongside the query and
instructions, helping the model align its response
style. See Appendices C.2 and C.4 for one-shot
prompts. Table 4 shows the overall factuality (strict
variant F1-score), relevance, and pipeline score for
each approach. The one-shot prompt yielded higher
scores, leading us to select it for the baseline and
methods.

Table 4: Prompting Approach Results. All experiments
use fixed-k = 54, query (patient + clinical questions),
post-retrieval attribution with LLaMA-3.3-70B model,
and a maximum token limit of 100. Metrics: strict Preci-
sion (P), strict F1 (F1), overall Relevance (R), and over-
all pipeline score (O). The best variant is highlighted in
bold.

P F1 R o

0.44 030 033 031
056 034 033 033

Prompting Approach

zero-shot prompting
one-shot prompting

F Maximum Token Generation
Experiment

We experimented with the LLaMA-3.3-70B model
having maximum token generation limits of 100,



Table 5: Parameter Settings. Experiments use fixed-k = 54, query (patient+clinician question), one-shot prompting,
and post-generation attribution with LLaMA-3.3-70B model. Metrics: strict Precision (P), strict F1 (F1), overall
Relevance (R), and overall pipeline score (O). Different combinations of weights and thresholds are arranged in

descending order of performance, i.e., the best combination at the top.

w; wy wg T P F1 R Overall
00 05 05 05 035 0.27 035 0.311
03 04 03 04 034 027 035 0.307
03 03 04 04 032 026 035 0.306
02 04 04 04 028 025 035 0.300
05 05 00 03 030 026 034 0.300

200, and 300 tokens'? to determine their impact on
the pipeline’s overall performance. Table 6 shows
that a maximum number of 200 tokens achieved
the best balance of overall factuality (strict variant
F1-score) and relevance scores. Consequently, we
fixed the maximum number of tokens to 200 in all
experiments.

Table 6: Maximum Token Generation. All experi-
ments use fixed-k = 54, query (patient+clinician ques-
tion), one-shot prompting, and post-retrieval attribution
with LLaMA-3.3-70B model. Metrics: strict Precision
(P), strict F1 (F1), overall Relevance (R), and overall
pipeline score (O). The best variant is highlighted in
bold.

Maximum Tokens P F1 R (0)

100 056 034 033 0.33
200 054 034 033 0.34
300 051 030 033 0.32

G Post-Generation Attribution
Parameter Experiment

Experiments began from the answers generated
by LLaMA-3.3-70B with one-shot prompting and
fixed-k of 54 as a retrieval strategy. We then
performed a grid search over the three similarity
weights (w1, we, ws) and the attribution threshold
T to identify the combination that maximizes the
overall pipeline score, i.e., achieving higher strict
attribution F1-score without unduly sacrificing an-
swer relevance. Here, w1, ws, and w3 correspond
to the weights assigned to lexical, fuzzy, and se-
mantic similarity scores. Each weight was varied in
{0.1,0.2,...,1.0} under the constraint w; + wg +
w3 = 1, and thresholds 7" € {0.1,0.2,...,0.9}

13 Approximately corresponding to the organizer’s 75-word
guideline.
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were tested. We observed that very low thresh-
olds (0.1-0.2) led to over-attribution (nearly ev-
ery answer sentence is attributed with every re-
trieved sentence), whereas very high thresholds
(0.7-0.9) caused under-attribution (rarely answer
sentences are attributed with retrieved sentences).
Table 5 summarizes the top 10 configurations by
strict F1-score. The best-performing setting was
{w; = 0.0, we = 0.5, wg = 0.5} with T" = 0.5,
yielding a strict F1-score 0.27 and overall pipeline
score 0.31.



UniBuc-SB at ArchEHR-QA 2025: A Resource-Constrained Pipeline for
Relevance Classification and Grounded Answer Synthesis

Sebastian Balmus'?, Bogdan Dura'-?, and Ana-Sabina Uban'*

'Faculty of Mathematics and Computer Science, University of Bucharest
*National Institute for Research and Development in Informatics - ICI Bucharest
SHuman Language Technologies Research Center, University of Bucharest

Abstract

We describe the UniBuc-SB submission to the
ArchEHR-QA shared task, which involved gen-
erating grounded answers to patient questions
based on electronic health records. Our system
exceeded the performance of the provided base-
line, achieving a higher performance in gener-
ating contextually relevant responses. Notably,
we developed our approach under constrained
computational resources, utilizing only a sin-
gle NVIDIA RTX 4090 GPU. We refrained
from incorporating any external datasets, rely-
ing solely on the limited training data supplied
by the organizers. To address the challenges
posed by the low-resource setting, we leveraged
off-the-shelf pre-trained language models and
fine-tuned them minimally, aiming to maximize
performance while minimizing overfitting.

1 Introduction

The ArchEHR-QA shared task (Soni and Demner-
Fushman, 2025b) focuses on advancing automated
question answering systems that can generate
grounded responses using electronic health records
(EHRs). With the increasing use of patient portals,
clinicians are increasingly challenged by the vol-
ume of patient inquiries. Automating the response
process aims to reduce this workload by providing
quick and accurate answers to patients. The task
provides realistic patient queries along with clinical
notes, requiring the systems to generate answers
based on the EHR excerpts provided. This setting
not only tests the ability to handle limited data,
but also emphasizes the need for accurate medical
language understanding and effective information
retrieval.

Developing effective question answering (QA)
systems for the medical domain presents distinct
challenges, particularly when working with limited
data and computational resources. The develop-
ment dataset (Soni and Demner-Fushman, 2025a;
Johnson et al., 2023a,b) provided was relatively
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small, consisting of only 20 distinct medical cases,
while the test dataset consisted of 100 medical
cases. This data limitation increased the risk of
overfitting and restricted the potential for extensive
training. Additionally, the complexity of medi-
cal language requires systems to accurately inter-
pret nuanced terminology and context. To address
these challenges, we adopted a resource-efficient
approach, using a single NVIDIA RTX 4090 GPU
and adhering strictly to the provided dataset, with-
out incorporating any external data. Our system
leveraged pre-trained language models to compen-
sate for the data limitations, applying minimal fine-
tuning to adapt them to the medical QA task. This
strategy aimed to balance computational efficiency
with performance, allowing our system to effec-
tively generate grounded answers despite the small
dataset size. Our results demonstrate that even un-
der these constraints, our approach exceeded the
baseline, highlighting the effectiveness of strategic
model selection and fine-tuning in low-resource
settings.

The remainder of this paper is organized as fol-
lows. Section 2 discusses related work, focusing
on prior approaches to medical question answering
and low-resource NLP systems. Section 3 details
our system architecture, including data preprocess-
ing, model selection, and training procedures. Sec-
tion 4 presents the results of our system compared
to the baseline, accompanied by a thorough analy-
sis of its performance. Finally, Section 5 concludes
the paper by summarizing our findings, highlight-
ing limitations, and suggesting directions for future
work.

2 Related Work

Recent advancements in EHR question answering
(QA) systems have focused on improving infor-
mation retrieval accuracy while mitigating hallu-
cinations and enhancing interpretability. Bardhan

BioNLP 2025 Shared Tasks, pages 62—68
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et al. (2023) provide a comprehensive review of
EHR QA research, identifying the emrQA dataset
as the primary resource and emphasizing the need
for standardized evaluation metrics to facilitate con-
sistent benchmarking.

In response to the need for robust evaluation
frameworks, EHRNoteQA (Kweon et al., 2024)
was introduced as a benchmark designed to as-
sess Large Language Models (LLMs) on patient-
specific questions derived from MIMIC-IV (John-
son et al., 2023a) discharge summaries. The
dataset includes both open-ended and multiple-
choice questions and has been used to systemat-
ically evaluate 27 LLMs, highlighting the variabil-
ity in model performance across different question
types.

Addressing the challenge of querying structured
EHR data, quEHRYy (Soni et al., 2023) employs
natural language interfaces to translate clinician
queries into structured database queries, facilitat-
ing more intuitive data access and emphasizing
interpretability.

In the context of ensemble learning, Romero
et al. (2025) demonstrate that leveraging multi-
ple BERT-based encoders significantly improves
medication-related named entity recognition (NER)
across dosage, route, and strength attributes. This
approach aligns with our system design, which
employs multi-model architectures to capture com-
plementary error patterns.

Finally, Sohn et al. (2024) introduce RAG2, a
retrieval-augmented generation framework that pri-
oritizes rationale-driven query formulation and ev-
idence sampling to reduce hallucinations. Their
findings underscore the value of multi-pass an-
swer generation and rationale-centric retrieval, both
of which inform our system’s evidence-grounding
strategy.

3 System Description

Our system is structured as a modular pipeline
composed of three main components: preprocess-
ing, relevance classification and answer genera-
tion, as shown in Figure 1. The pipeline is de-
signed to process input data consisting of elec-
tronic health records (EHRs) and clinician ques-
tion, transforming them into structured data for
downstream processing. The preprocessing com-
ponent structures the input data, which is then fed
into the relevance classification module to identify
relevant sentences. The identified sentences are
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subsequently processed in the answer generation
module, which consists of three sequential steps:
generation, grounding, and post-processing. The
final output is a contextually grounded response
tailored to the question.

3.1 Preprocessing

The preprocessing stage structures raw data into a
format suitable for downstream tasks. Each med-
ical case is divided into sentences labeled as es-
sential, supplementary, or irrelevant based on their
relevance to the clinician’s query. The query is
incorporated as contextual input for relevance clas-
sification. Each record includes a case ID, sentence
ID, sentence text, query, and relevance label, ensur-
ing consistency in data handling.

To prevent data leakage, the dataset is split at
the case level, maintaining label distribution across
training and testing sets. Relevance labels are then
binarized, with essential and supplementary sen-
tences labeled as 1 and irrelevant sentences as 0,
simplifying the classification task.

3.2 Relevance Classification

The relevance classification component is responsi-
ble for identifying sentences within the input data
that are relevant or not to the clinician’s query. This
step is critical in filtering out irrelevant content and
ensuring that subsequent processing stages focus
solely on clinically pertinent information.

To accomplish this, we employ an ensem-
ble classifier composed of four pre-trained lan-
guage models. Each model is fine-tuned for bi-
nary relevance classification, distinguishing be-
tween relevant and irrelevant content. The se-
lected models include BERT! (Devlin et al., 2019),
Bio_ClinicalBERT? (Alsentzer et al., 2019), Blue-
BERT? (Peng et al., 2019), and MedEmbed* (Bal-
achandran, 2024). This combination allows us to
leverage both general-domain language understand-
ing through BERT and domain-specific medical
knowledge through the clinical and biomedical
models, ensuring that the classifier can effectively
handle both general and specialized content within
the EHR data.

1https://huggingface.co/google—bert/bert—bas
e-uncased

https://huggingface.co/emilyalsentzer/Bio_Cl
inicalBERT

3https://huggingface.co/bionlp/bluebert_pubme
d_mimic_uncased_L-12_H-768_A-12

4https://huggingface.co/abhinand/MedEmbed—lar
ge-vo.1
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Figure 1: Our proposed system architecture, structured as a modular pipeline involving preprocessing, relevance
classification, and answer generation. The entire system is designed to operate within a 24GB VRAM limit.

To address the class imbalance present in the
dataset, we adopt the focal loss (Lin et al., 2020) as
the objective function during training. Originally
developed for dense object detection in computer
vision, focal loss adjusts the contribution of each
sample to the overall loss based on its classification
difficulty. Specifically, it down-weights the contri-
bution of well-classified samples and focuses more
on harder-to-classify examples, mitigating the im-
pact of the overrepresented non-relevant class in
our dataset.

The training setup employs a learning rate of 5 x
1075, with a linear warm-up schedule comprising
10% of the total training steps. The training process
is conducted over seven epochs, with a batch size
of 16 samples per step. Model checkpoints are
saved at each epoch, with the best model based on
validation F1 score selected as the final model.

Upon completing individual model training, the
predictions from each model are aggregated to form
the ensemble output. For each input sentence, the
relevance label is determined by majority voting,
wherein the label receiving the highest number
of votes across all models is selected as the final
prediction. This ensemble strategy leverages the
strengths of each model, reducing the impact of
individual model biases and enhancing overall clas-
sification robustness.

The output of the relevance classification step
serves as the input to the subsequent answer gener-
ation module. Only sentences that are classified as
relevant to the clinician’s query are retained.
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3.3 Answer Generation

The generation stage begins by compiling the rele-
vant sentences identified during the classification
phase. Each sentence is formatted with its unique
identifier and presented in a structured evidence
list. This evidence list is then combined with the
clinician’s question to form a comprehensive input
prompt for the generation model.

For response generation, we employ the Mis-
tral Small 3.1 language model (Mistral Al, 2025),
which is designed to handle large-scale language
tasks with a compact yet powerful architecture. The
model is loaded using the Ollama interface with
the default parameters, which provides a seamless
integration for inference and allows efficient model
deployment without extensive modification of the
original architecture. This integration facilitates
the use of the model within the existing pipeline
without exceeding the 24GB VRAM limit imposed
by the RTX 4090 GPU, ensuring that the entire
system remains computationally feasible.

The input prompt instructs the model to generate
a concise response that addresses the clinician’s
query while adhering to a specified word limit. If
the generated response exceeds the maximum word
limit of 70 words, the generation step is repeated
with a modified prompt that instructs the model to
produce a more succinct version of the response.
This iterative refinement process ensures that the
output remains within acceptable length constraints
without compromising informativeness.

Following response generation, the grounding
step is employed to verify and reinforce the gen-
erated response by explicitly referencing relevant



evidence from the input sentences. This step miti-
gates the risk of unsupported claims and enhances
the factual accuracy of the output, aligning it with
the context provided by the EHR data.

The final post-processing step involves correct-
ing formatting inconsistencies, such as erroneous
citations or incomplete sentences. Additionally, the
post-processing script ensures that the output struc-
ture is consistent across cases, aligning with the
required submission format. This step is crucial for
maintaining the overall quality and coherence of
the generated responses.

4 Evaluation

The evaluation is conducted on a test set of 100
medical cases, focusing on factuality and relevance.
Factuality is assessed using Precision, Recall, and
F1 scores by comparing generated evidence cita-
tions with the ground truth.

Factuality evaluation includes Strict and Lenient
modes. Strict considers only ’essential’ sentence
citations, while Lenient also includes ’supplemen-
tary’ sentences, allowing for more flexibility.

Relevance is evaluated using BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), SARI (Xu et al.,
2016), BERTScore (Zhang et al., 2020), Align-
Score (Zha et al., 2023), and MEDCON (Yim et al.,
2023), assessing both linguistic quality and clinical
grounding.

The overall score is the average of the Strict
Citation F1 score (Factuality) and a composite Rel-
evance score, calculated by normalizing and aver-
aging the individual metric scores.

4.1 Evaluation Results

Table 1 presents the evaluation results of our sys-
tem across various metrics, focusing on both fac-
tuality and relevance. While the system achieves
consistent scores in citation-based evaluation, with
strict F1 scores of 44.7 (micro) and 46.4 (macro),
it underperforms in text generation metrics, partic-
ularly in BLEU (0.6) and BERTScore (23.9). This
suggests that while the model effectively identifies
relevant evidence, further refinement is required
to enhance the fluency and linguistic alignment of
generated responses.

4.2 Ablation Study

Table 2 reports the lenient F1 scores across the
four test cases for each individual model, all pair-
wise and three-way combinations, and the complete
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Metric Score Micro Macro
Overall Score 36.4 - -
Factuality 44.7 - -
Relevance 28.1 - -
Strict Precision - 58.7 63.6
Strict Recall - 36.1 42.7
Strict F1 - 44.7 46.4
Lenient Precision - 61.7 68.5
Lenient Recall - 35.9 41.4
Lenient F1 - 45.4 47.8
BLEU 0.6 - -
ROUGE-L 19.9 - -
SARI 49.0 - -
BERTScore 23.9 - -
AlignScore 43.0 - -
MEDCON (UMLS) 324 - -

Table 1: Official evaluation results on the test dataset
across overall performance, citation-based, and text gen-
eration metrics.

four model ensemble. Among the single models,
Bio_ClinicalBERT performs best, which is con-
sistent with its clinical-domain pretraining. How-
ever, the standard BERT model—despite lacking
biomedical specialization—proves surprisingly ef-
fective, particularly in combination with other mod-
els. In fact, BERT appears to play a stabilizing role
in most ensemble variants. Its inclusion consis-
tently improves performance, often more than one
might expect given its standalone score. This sug-
gests that general-domain representations may pro-
vide complementary context cues that specialized
models overlook especially when clinical language
overlaps with common phrasing. Performance im-
proves steadily as models are added, with all three-
model combinations outperforming any two-model
setup. Interestingly, the top three-model combina-
tion excludes BERT, but only slightly edges out
the BERT-inclusive variants>. Ultimately, the full
ensemble outperforms all others, confirming that
diversity in model training is meaningful to rele-
vance prediction.

4.3 Resource Usage

The entire pipeline—including preprocessing, rele-
vance classification, and answer generation—runs
comfortably within the 24GB VRAM limit of a sin-
gle NVIDIA RTX 4090 GPU. During inference, the
relevance classification stage takes approximately
1 second per case on average. The answer genera-
tion stage, which uses the Mistral Small 3.1 model



Variant F1

BERT 0.524
Bio_Clinical BERT 0.544
BlueBERT 0.515
MedEmbed 0.507
BERT + Bio_Clinical BERT 0.579
BERT + BlueBERT 0.563
BERT + MedEmbed 0.522
Bio_ClinicalBERT + BlueBERT 0.532
Bio_ClinicalBERT + MedEmbed 0.552
BlueBERT + MedEmbed 0.546
BERT + Bio_Clinical BERT + BlueBERT 0.563
BERT + Bio_ClinicalBERT + MedEmbed 0.602
BERT + BlueBERT + MedEmbed 0.602
Bio_ClinicalBERT + BlueBERT + MedEmbed  0.603
Full ensemble (all 4) 0.619

Table 2: Ablation study: F1 scores for each single
model, model combination, and the full ensemble.

via the Ollama interface, averages 15 seconds per
case. Post-processing, which involves formatting
corrections and citation verification, adds an ad-
ditional 0.001 seconds per case on average and is
performed entirely on CPU.

Altogether, the full inference pipeline processes
each case in about 16 seconds end-to-end. These
performance characteristics confirm the system’s
suitability for real-time or near-real-time deploy-
ment in clinical or low-latency environments. Ad-
ditionally, the total cost for running inference over
the full test set is negligible when using standard
compute infrastructure, making the approach both
scalable and accessible.

4.4 Error Analysis

The model exhibits false positives in sentences with
clinical terms or medication instructions that are
not directly relevant to the query, such as "You
were started on a milrinone drip, with improve-
ment in your heart’s pump function". This suggests
over-reliance on clinical terminology rather than
contextual alignment. Conversely, false negatives
often involve broader prognostic statements or men-
tal health assessments, where relevance is implied
across multiple sentences. This indicates a need for
improved contextual understanding to handle less
explicit but clinically relevant content.

5 Conclusions

This paper presents a modular pipeline for rele-
vance classification and grounded answer genera-
tion in the ArchEHR-QA shared task, operating
under constrained computational resources. The
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use of pre-trained models with minimal fine-tuning
proved effective in leveraging both general-domain
and medical-specific knowledge, resulting in con-
sistent citation-based evaluation scores. However,
lower scores in BLEU and BERTScore indicate
that further refinement is necessary to improve the
fluency and linguistic alignment of generated re-
sponses. Future work will explore methods for en-
hancing response generation, including advanced
grounding techniques and multi-sentence contex-
tual modeling.

Limitations

The reliance on a single RTX 4090 GPU con-
strained the computational capacity available for
training and fine-tuning, limiting the scope of
model experimentation and hyperparameter opti-
mization. Additionally, the development dataset
consisted of only 20 cases, restricting the diversity
of clinical scenarios encountered during training
and potentially impacting the system’s ability to
generalize effectively.
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Appendix A: Prompt Templates

Generation Prompt
You are a professional clinical assistant.

Using only the provided evidence, write a concise, clinical answer to the clinician’s question. Do not include any
citations. The answer must be no more than 75 words.

For example: Clinician Question: Why did they perform the emergency salvage repair on him?

Evidence: - 11| He was transferred to the hospital on 2025-1-20 for emergent repair of his ruptured thoracoabdominal
aortic aneurysm. - 12| He was immediately taken to the operating room where he underwent an emergent salvage
repair of ruptured thoracoabdominal aortic aneurysm with a 34-mm Dacron tube graft using deep hypothermic
circulatory arrest. - I8 Thoracoabdominal wound healing well with exception of very small open area mid wound
that is @ 1cm around and 1/2cm deep, no surrounding erythema.

Answer: His aortic aneurysm was caused by the rupture of a thoracoabdominal aortic aneurysm, which required
emergent surgical intervention |11. He underwent a complex salvage repair using a 34-mm Dacron tube graft and
deep hypothermic circulatory arrest to address the rupture 12|. The extended recovery time and hospital stay were
necessary due to the severity of the rupture and the complexity of the surgery, though his wound is now healing well
with only a small open area noted I8|.

Another example: Clinician Question: Why was ERCP recommended over a medication-based treatment for CBD
sludge?

Evidence: - |1/ During the ERCP a pancreatic stent was required to facilitate access to the biliary system (removed at
the end of the procedure), and a common bile duct stent was placed to allow drainage of the biliary obstruction caused
by stones and sludge. - 15| On hospital day 4 (post-procedure day 3) the patient returned to ERCP for re-evaluation
of her biliary stent as her LFTs and bilirubin continued an upward trend. - 16l On ERCP the previous biliary stent
was noted to be acutely obstructed by biliary sludge and stones. - |71 As the patient’s INR was normalized to 1.2, a
sphincterotomy was safely performed, with removal of several biliary stones in addition to the common bile duct
stent.

Answer: Medications can sometimes help in managing bile duct sludge, but in this case, ERCP was necessary due
to the severity of the obstruction and its complications. The initial ERCP revealed significant biliary obstruction
caused by sludge and stones, requiring the placement of a stent to restore bile drainage 111. However, even after this
intervention, the liver function tests and bilirubin levels continued to rise, indicating that the obstruction was not
fully resolved I51. A follow-up ERCP confirmed that the stent itself had become acutely obstructed by sludge and
stones, necessitating further intervention 16l. During this procedure, a sphincterotomy was performed, and several
stones were physically removed, which medications alone could not have achieved |7I. These findings confirm that
ERCP was essential in addressing his condition and preventing further complications.

Now, using the provided evidence, write a concise, clinical answer to the clinician’s question. Do not include any
citations (this will be done in a future step). The answer must be no more than 75 words.

Question: {clinician_question}

Evidence: {evidence_text}

Retry Prompt for Length Enforcement

The last answer was too long ({word_count} words). Please try again, but make sure the answer is no more than
{MAX_WORDS} words.

Last answer: {last_answer}

Grounding Prompt
You are a clinical documentation assistant.

You will be given: - A clinical question - A professional clinical answer to the question - A list of evidence sentences
with sentence IDs in the format Isentence_idI

Your task is to add appropriate citations to the clinical answer. For each statement in the answer, cite the sentence(s)
from the evidence that support it using the format Isentence_idl. If multiple sentences support a statement, separate
them with commas, e.g., 13,4,7l. Do not use ranges like 11-3I. Cite only at the end of the sentence (after the period),
and always add a newline after the citation. Do not add a newline after the final sentence. Do not change the wording
of the answer. Simply append the appropriate citation(s).

Clinician Question: {clinician_question}
Clinical Answer: {answer}

Evidence: {evidence_text}
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Abstract

We present a lightweight, domain-agnostic ver-
batim pipeline for evidence-grounded ques-
tion answering. Our pipeline operates in two
steps: first, a sentence-level extractor flags
relevant note sentences using either zero-shot
LLM prompts or supervised ModernBERT
classifiers. Next, an LLM drafts a question-
specific template, which is filled verbatim
with sentences from the extraction step. This
prevents hallucinations and ensures traceabil-
ity. In the ArchEHR-QA 2025 shared task,
our system scored 42.01%, ranking top-10 in
core metrics and outperforming the organiser’s
70B-parameter Llama-3.3 baseline. We pub-
licly release our code and inference scripts un-
der an MIT license.

1 Introduction

Modern question-answering (QA) and retrieval-
augmented generation (RAG) systems play a vital
role in many high-stakes domains for information
extraction and generation tasks. In medicine, a typ-
ical use case involves clinicians asking questions
based on a patient’s electronic health record (EHR)
notes, rather than manually sifting through lengthy
notes, which can be time-consuming. However,
in practice, RAG and QA pipelines often misalign
evidence and produce incorrect information, com-
monly referred to as hallucinations (Ji et al., 2023;
Madsen et al., 2024). We argue that a reliable QA
system should guarantee complete traceability of
answers. To tackle this problem, we propose a ver-
batim pipeline that clearly separates extraction and
generation to mitigate hallucinations:

* Sentence-level extraction, using either zero-
shot LLMs or supervised ModernBERT clas-
sifiers.

* Template-constrained generation, dynami-
cally creating answer templates filled exclu-
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sively with verbatim sentences selected from
the extraction phase.

We participated in the ArchEHR-QA 2025
shared task on grounded question answering
(QA) from electronic health records (EHRs).
Our approach involved (i) utilizing a zero-shot
gemma-3-27b-it! LLM (Team et al., 2025) and
(i1) generating synthetic data for sentence extrac-
tion from EHRs to train a compact extractor. For
this purpose, we trained a Clinical ModernBERT
classifier (Lee et al., 2025; Warner et al., 2024),
achieving performance comparable to the LLM ex-
tractor. Both extractors were then fed into the same
LLM template generator. Our solution achieved an
overall score of 42.01%, ranking in the top 10 for
core metrics, and surpassed the organizers’ 70B-
parameter Llama-3.3 baseline by a large margin.

Our contributions include a modular, traceable
QA architecture that mitigates hallucinations, a
method to generate synthetic EHR question-answer
corpus and train custom models. Additionally, we
are releasing all the code on GitHub? under the
MIT License. The remainder of the paper discusses
background (Section 2), method (Section 3), and
evaluation (Section 4).

2 Background

2.1 Dataset

Early clinical QA datasets such as emrQA (Pam-
pari et al., 2018) and CliCR (Suster and Daelemans,
2018) used fill-in-the-blank methods and lacked
explicit sentence-level evidence. ArchEHR-QA
(Soni and Demner-Fushman, 2025b,a) addresses
this by pairing clinician-authored questions with de-
identified MIMIC-III (Johnson et al., 2016) notes,
annotated at the sentence-level as essential, supple-
mentary, or irrelevant. Answers must be concise
1https: //huggingface.co/google/gemma-3-27b-it

2https://github.com/KRLabsOrg/verbatim—rag/
tree/archehr

BioNLP 2025 Shared Tasks, pages 69-74
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(under 75 words) and explicitly cite relevant sen-
tences.

2.2 Limitations of Standard RAG

Standard RAG models, despite external ground-
ing, still frequently hallucinate unsupported or con-
tradictory information (Ji et al., 2023). Existing
approaches like post-hoc verification (Friel and
Sanyal, 2023; Manakul et al., 2023) or classifiers
trained on hallucination corpora such as RAGTruth
(Niu et al., 2024) (e.g., RAG-HAT (Song et al.,
2024), LettuceDetect (Addm Kovdcs and Recski,
2025)) add extra complexity and latency. Post-
hoc saliency methods (Serrano and Smith, 2019;
Jain and Wallace, 2019) and LLM self-explanations
(Madsen et al., 2024) have also been found unre-
liable. Our approach proactively prevents hallu-
cinations through strict template-driven sentence
extraction and verbatim insertion.

2.3 Synthetic Training Data

Due to limited access and annotation restrictions,
obtaining sentence-level labeled clinical datasets is
challenging. Recent works address this by gen-
erating synthetic data via perturbation or LLM
prompting (Niu et al., 2024; Lozano et al., 2023;
Frayling et al., 2024; Bai et al., 2024). We follow
this approach, generating synthetic EHR snippets,
clinician-style questions, and sentence relevance
annotations (details in Section 3.3).

3 Method

3.1 System Overview

Figure 1 depicts our system architecture. First, an
extraction step identifies relevant sentences from
the input (patient narrative, clinician question, and
note excerpt). We implemented both zero-shot and
supervised models. Second, the generation step
uses gemma-3-27b-it to dynamically draft an an-
swer template, filled verbatim with extracted sen-
tences. If exceeding 75 words, answers are com-
pressed via a summarization prompt, preserving
sentence-level citations.

3.2 Evidence Extraction

We evaluated two extractors: (i) We prompted
gemma-3-27b-it to explicitly label sentences as
relevant via a step-by-step process. (ii) We fine-
tuned a Clinical ModernBERT classifier (Lee et al.,
2025), trained on our synthetic data (Section 3.3).
It independently evaluates each sentence in context
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Note Excerpt

1: He was transferred to the
hospital on 2025-1-20 for ...

2: He was immediately taken to the
operating room where ...

3: Please see operative note for
details which included ...

Why did they perform the
emergency salvage repair on
him?

8: Thoracoabdominal wound
healing well with exception of very
small ...

Patient Narrative l

¥
A

Generated Answer

Relevant
Sentences:
1,2,8

H

The emergency salvage repair was
performed because:

- <<RELEVANT SENTENCE>>

- <<RELEVANT SENTENCE>>

- <<RELEVANT SENTENCE>>

Figure 1: System overview. The pipeline first selects
relevant sentences and then generates a question-specific
answer using a dynamic template.

(question + patient narrative). Lee et al. (2025) is
a variant of ModernBERT (Warner et al., 2024)
adapted specifically for biomedical and clinical
text. Clinical ModernBERT supports extended in-
put sequences (up to 8,192 tokens) and includes
domain-specific vocabulary enhancements, making
it particularly suitable for handling long clinical
narratives. To provide additional context during
classification, we included one sentence before and
after the target sentence, forming a passage of up
to three sentences. We chose a window size of one
sentence before and after the target based on pre-
liminary experimentation. The target sentence was
explicitly marked with [START] and [END] tokens.
The full input was structured using the standard
BERT classification format. During fine-tuning,
we merged essential and supplementary labels into
a single positive class. We addressed class imbal-
ance using weighted binary cross-entropy loss. We
trained for 3 epochs (batch size 32, learning rate
2e-5), with gradient clipping and early stopping
based on F1 score.

3.3 Synthetic Data Generation

Due to the scarcity of publicly available annotated
data for sentence-level relevance classification, we
constructed a synthetic dataset tailored specifically
to the ArchEHR-QA task. Although the official de-
velopment set contains labeled sentences, it is lim-
ited to 428 sentences across only 20 question—note
pairs. Initial experiments using external resources



like RAGBench (Friel et al., 2025) and PubMedQA-
derived corpora (Jin et al., 2019) showed poor trans-
fer performance, emphasizing the need for task-
specific synthetic data.

We generated synthetic data via few-shot prompt-
ing with gemma-3-27b-it. Each prompt pro-
vided dynamic examples from the development
set to ensure diversity. The LLM generated syn-
thetic instances comprising de-identified clinical
note excerpts, patient narratives, clinician-authored
questions, and binary relevance labels. This ap-
proach yielded 3915 synthetic notes. We varied the
few-shot examples across multiple runs, as static
prompting resulted in repetitive outputs. This vari-
ation greatly increased lexical and semantic diver-
sity, aligning with other work in synthetic data
generation (Li et al., 2023; Tang et al., 2023; Xu
et al., 2024). Ultimately, selecting each sentence
with their relevance from the note excerpts, we
constructed a comprehensive dataset of 58k syn-
thetic training examples, each labeled at the sen-
tence level, which formed the training set for our
Clinical ModernBERT classifier. Table 1 shows an
illustrative training instance.

QUESTION  Patient narrative: My husband, a 72-year-old with
a history of COPD, was admitted for worsening
shortness of breath. He’s been on home oxygen
for years, but it wasn’t helping this time. He also
developed some swelling in his ankles. He seems
a little confused today... Clinician question: What
is the likely cause of the patient’s ankle edema and
what was done to address it?

SENTENCE A diuretic, furosemide 40mg PO daily, was initiated
to address the lower extremity edema, which was at-
tributed to both underlying heart failure and fluid re-
tention secondary to COPD exacerbation. [START]
Echocardiogram revealed mild left ventricular dys-
function with an estimated ejection fraction of 45%.
[END] Renal function was monitored closely, and
remained stable throughout hospitalization.

LABEL RELEVANT

Table 1: An example model input for our training.

3.4 Answer Generation

The answer generation module dynamically cre-
ates a template using the LLM (gemma-3-27b-it)
based on the clinician’s question, the selected evi-
dence sentences, and the clinical note context. Af-
ter the template generation step, we directly insert
the extracted evidence sentences verbatim into the
generated template, referencing sentence IDs ex-
plicitly. An example filled template generated by
our pipeline is shown in Figure 2.

The emergency salvage repair was performed due to:

- He was transferred to the hospital on 2025-01-20 for emergent

repair of his ruptured thoracoabdominal aortic aneurysm. [1]

- He was immediately taken to the operating room where he underwent an
emergent salvage repair of ruptured thoracoabdominal aortic aneurysm with
a 34-mm Dacron tube graft using deep hypothermic circulatory arrest. |2]
- Thoracoabdominal wound healing well with exception of very small open
area mid-wound that is ~1 cm around and ©.5 cm deep, no surrounding
erythema. |8]

Figure 2: Example answer generated by our verbatim
method, inserting evidence sentences verbatim into a
dynamically generated template.

He was transferred to the hospital on 2025-01-20 for emergent repair of
his ruptured thoracoabdominal aortic aneurysm |1]|. He underwent an
emergent salvage repair with a 34-mm Dacron tube graft using deep
hypothermic circulatory arrest |2|. See also: |8]
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Figure 3: Concise answer produced by our summariza-
tion step to comply with the 75-word limit.

If the filled answer exceeds the 75-word con-
straint of the task, we use an additional summariza-
tion prompt to rewrite the answer more concisely,
ensuring all selected evidence remains cited and
intact. An example summarization of the answer
from Figure 2 is illustrated in Figure 3.

4 Evaluation

We evaluated our pipeline in the ArchEHR-QA
2025 shared task (Soni and Demner-Fushman,
2025b) using official metrics that emphasize two
main aspects. Factuality is measuring alignment
of the cited evidence with manually annotated sen-
tences. Citation-level F1 scores are computed un-
der strict (essential sentences only) and lenient
(essential and supplementary sentences) condi-
tions. Relevance is evaluating how closely gener-
ated answers match ground-truth answers through
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
BERTScore (Zhang et al., 2020), and MEDCON
(Yim et al., 2023) metrics.

Our best system (zero-shot LLM based on
gemma-3-27b-it) scored 42.01% overall, placing
within the top 10 in multiple core metrics and sig-
nificantly outperforming the organizers’ baseline (a
70B-parameter Llama-3.3 model) across most met-
rics. Table 2 summarizes these metrics. A strong
point of our system is factuality recall (56.8% strict,
56.6% lenient), approximately 5 points above the
leaderboard average. This indicates strong capabil-
ity for reliably retrieving relevant clinical evidence.
Precision was more moderate (48.1% strict, 50.7%
lenient), suggesting that our methods are more re-
call oriented in the extraction phase. In terms of




Table 2: ArchEHR-QA 2025 test-set scores: our zero-shot LLM system (KR-Labs versus the organizer baseline,
Llama-3.3-70B).

Team Ov. Fact. Rel. Strict Len. ;1 Strict M Len. M BLEU R-L SARI BERT Align MEDC
P R F1 P R F1 P R F1 P R F1

KR-Labs 420 521 319 48.1 56.8 521 50.7 56.6 535 558 623 543 604 60.6 562 2.0 214 579 26.3 49.0 35.2

Organizer baseline  30.7 33.6 278 71.6 219 33.6 770 223 346 774 315 390 83.0 308 399 0.1 152 478 20.5 577 25.6

relevance, our system achieved competitive Align-  portant to note that clinical Al systems can perpetu-
Score (49.0%) and MEDCON (35.2%). ate harmful biases (Bender et al., 2021; Obermeyer
We compared our zero-shot LLM extractor and et al., 2019). In any deployment setting, we recom-
the fine-tuned Clinical ModernBERT extractor on ~ mend implementing a human-in-the-loop review
the development set, these findings can be seen in  process, maintaining strict provenance tracking of
Table 3. The comparison highlights a clear trade-  cited evidence, and conducting thorough bias au-
off: the LLLM-based extractor provides higher pre-  dits to ensure patient safety and fairness.
cision and balanced F1, while the Clinical Modern-
BERT demonstrates strong recall, capturing nearly
all relevant information at the expense of precision.
Our final submission employed the LLM extractor
for its balanced performance.

6 Limitations

Our verbatim RAG pipeline explicitly cites source
sentences to mitigate hallucinations; however, sev-
eral practical limitations remain. Due to the task’s
strict 75-word limit, our approach often required

Table 3: Sentence-level extraction on the development L R R .
summarization after the initial verbatim insertion

set.
step, meaning the purely verbatim property was not
Extractor Precision Recall F1 consistently maintained across all answers. Addi-
LLM (gemma-3-27b-it) 056 073 0.63 tionally, although .extracted sentences were cited
Clinical ModernBERT 0.46 091 061 exactly, the dynamically generated templates them-

selves were produced by an LLLM, potentially intro-
ducing subtle hallucinations or inaccuracies at the

Interestingly, final test scores were closely X )
framing level. Future work should include explicit

matched between our extractors: the LLM-based
model scored 42.01%, while Clinical Modern- checks on template factuality. Finally, user stud-
BERT achieved a near-identical 41.85%. This 1€s and clinician feedback are essential to confirm
underscores the effectiveness of our synthetic whether our structured, template-based answers ef-
data training methodology, enabling a lightweight fectively address real-world clinician information
model to achieve comparable performance to a needs.

larger LLM.

Overall, our results demonstrate that lean meth-
ods can achieve competitive performance in EHR  In this paper we presented a lightweight and trans-
QA, highlighting the value of synthetic data gen-  parent verbatim pipeline for grounded question an-
eration. We show that even smaller LLMs, when  swering from clinical texts. Our method separates
used for data creation, can enable the training of  sentence-level extraction from template-based gen-
lightweight models that rival larger systems—while  eration, significantly reducing hallucinations and
requiring significantly fewer computational re- maintaining traceable evidence. Participating in

7 Conclusion

sources. the ArchEHR-QA 2025 shared task, our system
ranked among the top-10 submissions on key met-
5 Ethical Considerations rics and significantly outperformed a substantially

larger baseline (70B-parameter Llama-3.3). We
also demonstrated the effectiveness of synthetic
training data generated by smaller LL.Ms for devel-
oping competitive, resource-efficient models.

Our experiments were conducted exclusively on a
secure, private A100 GPU server. This ensured that
we adhered to all data licensing requirements and
maintained confidentiality throughout the project
lifecycle, making the data inaccessible externally.
Our work relies on de-identified clinical text and
the generation of synthetic data. However, it is im-
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Abstract

This paper presents our approach to the
ArchEHR shared task on generating answers
to real-world patient questions grounded in ev-
idence from electronic health records (EHRs).
We investigate the zero-shot capabilities of
general-purpose, domain-agnostic large lan-
guage models (LLMs) in two key aspects: iden-
tifying essential supporting evidence and pro-
ducing concise, coherent answers. To this aim,
we propose a two-stage pipeline: (1) evidence
identification via test-time scaling (TTS) and
(2) generating the final answer conditioned on
selected evidences from the previous stage. Our
approach leverages high-temperature sampling
to generate multiple outputs during the evi-
dence selection phase. This TTS-based ap-
proach effectively explores more potential ev-
idences which results in significant improve-
ment of the factuality score of the answers.

1 Introduction

Large language models (LLMs) tuned with rein-
forcement learning from human feedback (RLHF),
have transformed automatic question answering
(QA) systems, leading to their widespread adop-
tion in various domains. In clinical settings, QA
systems have been used to answer health-related
inquiries (Demner-Fushman et al., 2020) which re-
quire medical domain knowledge. Patient-specific
QA, more critically, require grounding responses in
evidence extracted from electronic health records
(EHRs) to ensure factual accuracy and reliability.
Training and fine-tuning of clinical-specific LLMs
have been shown to outperform general models on
NLP tasks, including patient-specific QA (Lehman
et al., 2023). However, this approach faces several
significant challenges. First, task-specific clinical
data is often scarce and difficult to obtain due to
strict privacy regulations and patient safety con-
cerns. Second, manual expert annotation of such
data is prohibitively expensive. Most critically,
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even when clinical datasets are de-identified, there
remains a non-trivial risk of inadvertently disclos-
ing protected health information (PHI) through
model training and deployment (Das et al., 2025)
specifically in real-world applications where mod-
els are accessible externally such as patient por-
tals. These constraints, coupled with the increas-
ing zero-shot capabilities of LLMs, motivate an
alternative paradigm: leveraging general-purpose
domain-agnostic LLMs and elicit their domain-
specific knowledge and reasoning abilities at in-
ference time. This approach known as test-time
scaling (TTS) offers a promising path toward miti-
gating data scarcity, reducing annotation costs, im-
proving robustness to input variability, and mini-
mizing privacy risks in clinical NLP applications
in real-world settings (Zhang et al., 2025).

In this paper, we present a TTS-based solution
to the ArchEHR Shared Task (Soni and Demner-
Fushman, 2025b). We argue that TTS is particu-
larly well-suited for this task due to limited avail-
ability of annotated training data and the method’s
practicality in real-world deployment scenarios,
such as integration into patient portals. We propose
a two-stage pipeline methodology consisting of evi-
dence identification followed by answer generation.
In the first stage, we employ a parallel TTS strategy
by generating multiple outputs at a high tempera-
ture and selecting frequently predicted sentences as
essential evidence. In the second stage, we prompt
the model to generate concise and grounded an-
swers conditioned on the selected evidence, using
different prompting strategies to optimize response
quality.

2 Task Description

The ArchEHR-QA 2025 shared task aims at auto-
matically providing answers to real-world patient
questions grounded in evidence from EHRs (Soni
and Demner-Fushman, 2025b). The dataset con-
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sists of 20 cases in the development set and 100 in
the test set (Soni and Demner-Fushman, 2025a).
Each case includes patient question, clinician-
rewritten version, and excerpts from patients’ clini-
cal notes. Each sentence from the excerpt is man-
ually labeled as essential, supplementary, or not
relevant, indicating the relevance of the sentence
to the answer. Systems are evaluated on two cri-
teria: factuality and relevance. Overall factuality
is assessed using strict micro F1, where only es-
sential evidence sentences are considered relevant,
with manual annotations as reference labels. Au-
tomated relevance is measured by comparing gen-
erated answers to reference texts, which include
patient narrative, clinician question, and ground-
truth evidence sentences. Relevance metrics are
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
SARI (Xu et al., 2016), BERTScore (Zhang et al.,
2020), AlignScore (Zha et al., 2023), and MED-
CON (Yim et al., 2023). The final leaderboard
score averages the overall factuality score and the
normalized average of all automated relevance met-
rics. The organizers also conduct additional post-
challenge evaluations, including relevance compar-
isons to clinician-written answers and manual as-
sessments, offering a more comprehensive view of
system performance (Soni and Demner-Fushman,
2025b).

3 Approach

3.1 Overview

To address the challenges posed in low-resource
settings given only 20 cases in development set, we
leverage the strong zero-shot capabilities of LLMs.
Our preliminary experiments in prompting LLMs
to directly generate answers using corresponding
citations result in high variability across runs and
inconsistent sets of cited evidence generated at each
run by the same prompt. This method also often
leads to low overall factuality scores. These initial
findings align with the baseline scores reported by
the organizers using a similar strategy.

To address this limitation towards a more reliable
patient-specific QA system grounded in evidences
from note excerpts, we propose a two-stage prompt-
ing strategy. In the first stage, we apply parallel
test-time scaling to identify a broader set of poten-
tially essential evidence sentences. In the second
stage, we generate the final answer conditioned on
the evidence selected during the first stage.
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3.2 Stage 1: Evidence identification

The goal of this stage is to identify essential sen-
tences from the note excerpt to serve as evidence to
answer the patient’s question. Given a clinical note
consisting of sentences s; fort = 1,2, ..., Ngens
where Ngen: 1s the total number of sentences in
the note, we prompt a LLM to generate a list of
relevant sentence indices . We apply a zero-shot
chain-of-thought prompting strategy (Wei et al.,
2022), using the following prompt:

r

Given a clinical note and a patient’s question,
identify the sentence indices that provide evidence to
answer the question. Each sentence in the clinical
note is indexed. Return only the relevant sentence
indices as a comma-separated list.

Clinical note: ...
Patient question: ...

Think step by step before finalizing your answer.
Provide your final answer within \boxed{{}}.

We extract a list of sentence indices from each
model-generated output, representing the sentences
identified as essential. To encourage diversity in ev-
idence selection, we sample multiple candidate out-
puts by varying the decoding temperature. A lower
temperature (e.g., 0) results in more deterministic
outputs, while a higher temperature (e.g., 0.6 or
1.0) increases randomness, allowing the model to
explore more candidate solutions (Renze, 2024).
We prompt the model once using temperature 0
(greedy decoding), 64 times with a temperature of
0.6, and either 128 or 256 times with temperature
a of 1 to encourage diverse output generation. Let
¢; denote the number of times sentence s; is pre-
dicted as essential across all runs. A sentence is
included in the final evidence set if ¢; > ¢, where
t is a threshold in the range [1, Nyc,,| and Nyey, is
the total number of generations.

For this stage, we employ two open instruction-
tuned LLMs: Qwen2.5-32B-Instruct (Yang et al.,
2024) and LLaMA-3.3-70B-Instruct (Grattafiori
et al., 2024). We investigate the effectiveness of
three question variations provided in the dataset:
patient narratives, patient questions, and clinician
questions. Results on the development set indicate
that prompts with solely patient narratives as input
consistently achieve the highest performance. Ac-
cordingly, all prompts in our experiments use only
patient narrative as input.

3.3 Stage 2: Answer generation

We prompt the LLM to generate the final answer
using the essential sentence indices identified in
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Figure 1: Test-time scaling improves factuality score on development set.

the previous stage with the following prompt:

7~

Given a clinical note, a patient’s question and a list
of sentence indices that represent the essential
supporting evidence, write a 5-sentence (fewer than
100 words) answer that addresses the patient’s
concern. Each sentence must end with the evidence
indices immediately after the period, in this format:
"The treatment was successful.|1,2|\n"

You must cite all essential indices in the answer. Do
not introduce any information that is not grounded in
the clinical note. To ensure high-quality answer,
reuse as much phrasing and sentence structure from the
clinical note as possible.

Clinical note: ...

Patient question: ...

Essential sentences: <list of sentence indices from
stage 1>

We conduct an ablation study by varying the in-
struction components to evaluate their impact on
the overall score. Specifically, we experiment with
constraints such as allowing free-form generation,
limiting the answer length to a fixed number of
sentences or words, and encouraging the model
to reuse phrasing, sentence structure, or exact evi-
dence sentences from the clinical note.

In this stage, we experiment with Gemini-
2.0-flash(Google, 2024) and Gemini-2.5-pro-
preview(Google, 2025)!, as these models more
reliably follow instructions and consistently gen-
erate answers in the required submission format,
whereas the open-source LLMs used in Stage 1
occasionally fail to meet these criteria.

4 Results and Discussions

4.1 Dev performance

Figure 1 shows the performance of the evidence
identification stage. These results indicate that gen-
erating multiple outputs with higher temperatures

!These models are accessed via Vertex Al the platform
recommended by PhysioNet for responsible MIMIC data use.
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Figure 2: Factuality and relevance scores of answer
generation strategies on the development set, evaluated
over 16 runs using Gemini-2.0-Flash at temperature 0.6.

and setting lower selection thresholds consistently
improves factuality scores. With a temperature of
1.0, Llama-3.3-70B-Instruct achieves a factuality
score of 65.4 using a threshold of 7 over 128 runs,
while Qwen2.5-32B-Instruct achieves the highest
score of 66.5 with thresholds of 14 and 16 over 256
runs. This approach outperforms both single-pass
greedy decoding and self-consistency with majority
voting (Wang et al., 2022).

For each case, we prompt the model 16 times
with different configurations using the best evi-
dence set identified in Stage 1. Figure 2 presents
the performance of our answer generation strate-
gies across the 16 runs. When the model is re-
stricted to generate answers with a maximum of 5
sentences and fewer than 100 words, the model
achieves an overall relevance score of approxi-
mately 40, with an average output length of ap-
proximately 80 words on the development set.

It’s important to note that despite explicitly in-



#ID | Stage 1 Stage 2

Leaderboard

Post-challenge re-evaluation

t Answer generation settings

Fact.

Auto Rel. || Human Ovr. | Fact. | Auto Rel. | Human Rel.

Gemini-2.5-pro-preview
5 sentences, < 100 words 48.2

reuse phrasing and sentence structure

59.2

37.3 43.1 53.8 38.0 324

Gemini-2.0-flash
5 sentences, < 100 words 49.7
add unused citations to last sentence

reuse exact sentence when possible

59.1

40.3 42.6 535 415

Gemini-2.0-flash

no limit 51.0

reuse exact sentence when possible

60.4

41.6 41.5 533 42.0 29.6

Table 1: Details of our three submissions on the test set. Leaderboard scores are based on initial relevance labels and
concatenated evidence sentences from the clinical notes, while post-challenge re-evaluation scores use reconciled
relevance labels and clinician-written reference answers.

structing the model to include all essential sen-
tences from stage 1, LLMs often omit or introduce
citations outside the provided list, leading to vari-
ability across runs. The factuality score varies by
up to 6 points, while the relevance score remains
relatively stable. Removing length constraints im-
proves citation consistency, with the model more
reliably preserving the majority of the evidence
sentences identified in the previous stage.

We observe that automated relevance metrics fa-
vor answers that closely align with the reference,
which integrates information from the patient narra-
tive, clinician questions, and ground-truth essential
sentences. Prompting the model to reuse phrasing
or directly incorporating sentences from the clini-
cal note consistently boosts relevance scores to the
45—47 range. Further improvements are achieved
by directly copying sentences from the identified
evidence and ordering them based on importance
or model confidence to prioritize key information
within the first 75 words of the generated response.
Moreover, using the patient narrative and clini-
cian question directly as the answer (or appending
them to the beginning of the answer) yields a rel-
evance score of 52.9, significantly improving all
automated relevance scores, except for SARI score
due to copying questions. However, we refrain
from adopting these direct copy strategies in our
final submission, as they diverge from the objec-
tive of the challenge, which emphasize generating
coherent responses.

A medical expert at our institute provides an-
swers for the development set based on the anno-
tated essential sentences. Their responses yield an
average relevance score of 27.2 with an average
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length of 54 words, excluding case 16, where our
expert notes that the clinical note lacks relevant
evidence to answer the patient’s question.

4.2 Test submissions

Details of our three test submissions are shown in
Table 1. We run Qwen2.5-32B-Instruct 256 times
and select essential sentences using thresholds of
14 or 16, chosen based on development set perfor-
mance. For the first submission, we use Gemini-
2.5-pro-preview, which includes all essential sen-
tences within 5 sentences likely due to its stronger
reasoning capabilities. The other two use Gemini-
2.0-flash to boost automated relevance scores.
Post-challenge re-evaluation based on reconciled
relevance labels results in factuality scores drop-
ping by up to 7.1 points, while automated relevance
scores varies only slightly, increasing by at most
1.2 points. This aligns with our development set
observations and highlights the limitations of auto-
mated relevance metrics. Mitigating the limitations
of automated relevance scores, the organizers eval-
uated human relevance by comparing our answers
with clinician-written reference answers. Interest-
ingly, human relevance scores often diverged from
automated ones, favoring shorter responses with
less verbatim replication of the evidence sentences.

5 Related Work

Extractive question answering—a task closely re-
lated to grounded question answering—aims to
extract patient-specific answer spans from clini-
cal notes in response to clinical queries. Recent
approaches have leveraged large language models
(LLMs) to address this challenge through a variety



of techniques. Fine-tuning language models such
as ClinicalBert for sequence generation (Moon
et al., 2023) and sequence labeling(Yue et al., 2021)
tasks was used for extractive QA from unstructured
EHR notes. Hamidi and Roberts (2023) experiment
prompting ChatGPT 3.5 and Claude and report
a manual evaluation of accuracy, relevance, com-
prehensiveness, and coherence on a set of patient-
specific questions. Lehman et al. (2023) evaluate
the performance of various clinical domain specific
LLMs with different sizes ranging from 220M to
175B parameters, and use in context learning (ICL)
for extractive QA on a dataset on radiology reports
(Soni et al., 2022). Their results demonstrate that
fine-tuning clinical domain specific models outper-
form ICL methods on extractive QA.

6 Conclusion

Zero-shot prompting of large language models for
patient-specific question answering—grounded in
clinical notes—results in inconsistent evidence se-
lection, leading to lower factuality scores. Parallel
scaling strategy at test-time mitigates this problem
in a low-resource setting. We experiment with gen-
erating multiple outputs at higher temperatures and
selecting frequently predicted sentences as essen-
tial evidence which improves factuality score of
evidence identification. We then generate answers
conditioned on the selected evidence, and further
enhance relevance by engineering the prompt to
align the answer to the question while preserving
coherence.

Limitations

Our proposed approach has several limitations.
First, applying TTS by generating multiple out-
puts increases computational cost and latency. We
run the Qwen2.5-32B-Instruct model 256 times on
4 H100 GPUs to identify evidence, averaging 4
seconds per case, followed by answer generation
with Gemini-2.0-Flash via API, which takes an ad-
ditional 1 second. Due to the cost, we avoid using
API-based models for evidence selection and in-
stead rely solely on open-source instruction-tuned
LLMs. Exploring more efficient TTS methods
with recent open-weight reasoning models such as
DeepSeek-R1(Guo et al., 2025) and Qwen3(Yang
et al., 2025) is a promising direction for future
work. Second, the frequency-based evidence se-
lection is tuned on a small development set of 20
examples, which may not generalize well to unseen
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cases. Third, while the use of API-based models
for answer generation is acceptable for this shared
task, it may not be feasible or allowed in real-world
clinical settings due to privacy and regulatory con-
straints. Finally, the answer quality is sensitive
to prompt design in the second stage, with minor
phrasing changes often leading to significant output
variability.

References

Badhan Chandra Das, M. Hadi Amini, and Yanzhao
Wu. 2025. Security and privacy challenges of large
language models: A survey. ACM Comput. Surv.,
57(6).

Dina Demner-Fushman, Yassine Mrabet, and Asma
Ben Abacha. 2020. Consumer health information
and question answering: helping consumers find an-
swers to their health-related information needs. Jour-
nal of the American Medical Informatics Association,
27(2):194-201.

Google. 2024. Gemini-2.0-flash-001. https:
//console.cloud.google.com/vertex-ai/
publishers/google/model-garden/gemini-2.
0-flash-001.

Google. 2025. Gemini-2.5-pro-preview-03-
25. https://console.cloud.google.com/
vertex-ai/publishers/google/model-garden/
gemini-2.5-pro-preview-03-25.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Alaleh Hamidi and Kirk Roberts. 2023. Evaluation of
ai chatbots for patient-specific ehr questions. arXiv
preprint arXiv:2306.02549.

Eric Lehman, Evan Hernandez, Diwakar Mahajan,
Jonas Wulff, Micah J Smith, Zachary Ziegler, Daniel
Nadler, Peter Szolovits, Alistair Johnson, and Emily
Alsentzer. 2023. Do we still need clinical language
models? In Conference on health, inference, and
learning, pages 578-597. PMLR.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.


https://doi.org/10.1145/3712001
https://doi.org/10.1145/3712001
https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemini-2.0-flash-001
https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemini-2.0-flash-001
https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemini-2.0-flash-001
https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemini-2.0-flash-001
https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemini-2.5-pro-preview-03-25
https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemini-2.5-pro-preview-03-25
https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemini-2.5-pro-preview-03-25

Sungrim Moon, Huan He, Heling Jia, Hongfang Liu,
Jungwei Wilfred Fan, and 1 others. 2023. Extrac-
tive clinical question-answering with multianswer
and multifocus questions: data set development and
evaluation study. JMIR Al, 2(1):e41818.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Matthew Renze. 2024. The effect of sampling temper-
ature on problem solving in large language models.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 7346-7356, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Sarvesh Soni and Dina Demner-Fushman. 2025a. A
dataset for addressing patient’s information needs
related to clinical course of hospitalization. arXiv
preprint.

Sarvesh Soni and Dina Demner-Fushman. 2025b.
Overview of the archehr-qa 2025 shared task on
grounded question answering from electronic health
records. In The 24th Workshop on Biomedical Natu-
ral Language Processing and BioNLP Shared Tasks,
Vienna, Austria. Association for Computational Lin-
guistics.

Sarvesh Soni, Meghana Gudala, Atieh Pajouhi, and Kirk
Roberts. 2022. Radqa: A question answering dataset
to improve comprehension of radiology reports. In
Proceedings of the thirteenth language resources and
evaluation conference, pages 6250—-6259.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen,
and Chris Callison-Burch. 2016. Optimizing sta-
tistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401-415.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, and 1 others.
2025. Qwen3 technical report. arXiv preprint
arXiv:2505.09388.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen?2.
5 technical report. arXiv preprint arXiv:2412.15115.

80

Wen-wai Yim, Yujuan Fu, Asma Ben Abacha, Neal
Snider, Thomas Lin, and Meliha Yetisgen. 2023. Aci-
bench: a novel ambient clinical intelligence dataset
for benchmarking automatic visit note generation.
Scientific data, 10(1):586.

Xiang Yue, Xinliang Frederick Zhang, Ziyu Yao, Simon
Lin, and Huan Sun. 2021. Cliniqg4qa: Generating
diverse questions for domain adaptation of clinical
question answering. In 2021 IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM),
pages 580-587. IEEE.

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu.
2023. AlignScore: Evaluating factual consistency
with a unified alignment function. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 11328-11348, Toronto, Canada. Association
for Computational Linguistics.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang,
Weixu Zhang, Zhihan Guo, Yufei Wang, Irwin King,
Xue Liu, and Chen Ma. 2025. What, how, where,
and how well? a survey on test-time scaling in large
language models. arXiv preprint arXiv:2503.24235.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.


https://doi.org/10.18653/v1/2024.findings-emnlp.432
https://doi.org/10.18653/v1/2024.findings-emnlp.432
https://doi.org/10.18653/v1/2023.acl-long.634
https://doi.org/10.18653/v1/2023.acl-long.634
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

UTSA-NLP at ArchEHR-QA 2025: Improving EHR Question Answering
via Self-Consistency Prompting

Sara Shields-Menard®, Zach Reimers*, Joshua Gardner,
David Perry, and Anthony Rios
The University of Texas at San Antonio
{Sara.Shields-Menard2, Zachary.Reimers2,
Joshua.Gardner, David.Perry}@my.utsa.edu
{Anthony.Rios}@utsa.edu

Abstract

We describe our system for the ArchEHR-QA
Shared Task on answering clinical questions
using electronic health records (EHRs). Our ap-
proach uses large language models in two steps:
first, to find sentences in the EHR relevant to
a clinician’s question, and second, to generate
a short, citation-supported response based on
those sentences. We use few-shot prompting,
self-consistency, and thresholding to improve
the sentence classification step to decide which
sentences are essential. We compare several
models and find that a smaller 8B model per-
forms better than a larger 70B model for iden-
tifying relevant information. Our results show
that accurate sentence selection is critical for
generating high-quality responses and that self-
consistency with thresholding helps make these
decisions more reliable.

1 Introduction

The prevalence of electronic health records (EHRs)
has prompted increased digital communication be-
tween patients and clinicians. Patient portal use
has been linked to better health outcomes for those
with chronic conditions, especially by improv-
ing self-management and treatment (Brands et al.,
2022) and doctor-patient relationships (Carini et al.,
2021). While patients benefit from EHRs and pa-
tient portals, clinicians now face one extra hour of
work per day, much outside of work hours, due to
the high volume of patient-initiated messages and
results (Akbar et al., 2021). The result is increased
clinician burden and burnout. This work focuses on
developing methods that could potentially answer
patient portal questions.

Large language models are in the early stages
of adoption in medical systems and have begun
to be implemented in clinical decision support
(CDS), medical question-answering systems, and

“These two authors contributed equally to this work.
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medical documentation (Liu et al., 2023a). Clini-
cal decision support (CDS) has been used to help
reduce clinician burnout by sending rule-based
alerts to clinicians and patients based on their
EHRs. The clinician either canceled or ignored
these alerts due to improper timing or alert fatigue.
Large Language Models (LLMs) such as ChatGPT
have shown beneficial use to assist the clinician
in alert logic (Liu et al., 2023b). ChatGPT has
also been used as a chatbot assistant to respond to
patient questions from a social media forum (Ay-
ers et al., 2023). Overall, studies have found that
Al-generated responses are longer than those writ-
ten by physicians (Ayers et al., 2023; Liu et al.,
2023b). Some models are rated as more empa-
thetic and of higher quality (Ayers et al., 2023),
while reviewers note others to have a noticeably
artificial tone (Li et al., 2023). Recent efforts
such as Med-PaLM and Med-PalLLM 2 have ad-
vanced long-form medical QA by incorporating
improved prompting strategies, fine-tuning on med-
ical datasets, and human-centric evaluation frame-
works (Singhal, 2023, 2025). These models demon-
strate strong performance on USMLE-style ques-
tions and improved physician-rated safety and fac-
tuality in long-form answers (Pfohl, 2024; Calla-
han, 2021; Ayers, 2023).

While promising results have been shown using
LLMs with Question-Answer queries for specific
medical topics like cancer, hepatic disease, and
Obstetrics and gynecology, the use of LLMs for
patient-specific question-answer responses is lim-
ited (Liu et al., 2023b). Even with a medical chat
model that can respond to patient questions using
online medical content (Li et al., 2023), the pa-
tient’s question is not directly answered with their
own EHR information, which may provide critical
references to drug interactions, surgery recoveries,
or lab results. One limitation of previous work is
that the data to train these models is outdated by
the time the model is ready to be deployed, so the
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use of current patient EHRSs is essential for maxi-
mum clinician and patient benefit. Further, most
LLMs used in prior work are not grounded in real-
time, patient-specific data, which has been shown
to impact accuracy and safety in recent benchmark
evaluations (Singhal, 2025).

The ArchEHR-QA shared task provides a wide
range of real patient EHRs with clinician and pa-
tient questions to generate concise responses to
patient/clinician questions grounded in the patient
EHRs (Soni and Demner-Fushman, 2025b). In
this study, we designed a prompting pipeline for
LLMs to identify and compile relevant patient notes
in response to a clinician’s question. We specifi-
cally used few-shot prompting combined with self-
consistency and thresholding to select the EHR
sentences most relevant for response generation.

Our work contributes the following findings to
the solution for the ArchEHR-QA: BioNLP at ACL
2025 Shared Task on Grounded Electronic Health
Record Question Answering:

* A method for sentence classification using
few-shot prompting with self-consistency and
thresholding.

* An analysis showing that sentence selection
quality is the primary driver of overall perfor-
mance, with errors concentrated in the supple-
mentary class.

2 Methodology

Overall, this we aim to generate clinically grounded
answers to patient (or clinician) questions us-
ing evidence from electronic health records (Soni
and Demner-Fushman, 2025a). We provide an
overview of our approach in Figure 1. A more
complete overview is shown in the Appendix in
Figure 2. Our approach to the task was two-fold:
(1.) we develop an “relevant sentence identifier” us-
ing few-shot prompting and self-consistency with
thresholding. Specifically, the first objective was
to classify each sentence in the note excerpt as es-
sential supplementary, or not relevant to answer
the clinician’s question!. (2.) we generate final
answers to the question using zero-shot prompt-
ing that transforms a list of relevant sentences into
a 75-word response with citations indicating the
sentence used.

'In initial experiments we found limited difference in per-

formance between using the clinician, patient, or even a com-
bination of clinician an patient questions.
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Formally, given a natural language question ¢
and a set of context sentences from an electronic
health record C' = {s1, s2,...,5,}, the goal is
to generate an answer a consisting of at most 75
words, grounded in a subset of the sentences in C'.
Our two-part approach uses large language models
(LLMs) for: (1) sentence selection, where we learn
a function f (¢, C') — C’ C C that identifies rel-
evant sentences, and (2) answer generation, where
we use a function feen(q, C’) — a to compose a
fluent, grounded answer. Sentence citations from
(' are retained in a to support factual consistency.
We provide an overview of our approach in the
Appendix.

2.1 Relevant Sentence Identification.

To identify which sentences in the clinical note
are useful for answering the question, we use few-
shot prompting with a large language model. Each
sentence in the note is independently classified as
essential, supplementary, or not relevant to the
clinician-formulated question. We construct our
few-shot prompts using labeled examples from the
development set, where each example includes a
question and a sentence with its gold relevance
label. A balanced set of 30 such examples (sen-
tences) is randomly sampled and inserted into the
prompt for each test case.

2.2 Self-Consistency and Thresholds.

Overall, we find that the model has a hard time de-
tecting essential (relevant) sentences, and will often
default to not-relevant. To mitigate class imbalance
issues at inference time, we adopt self-consistency
decoding with thresholding. Despite using a pre-
trained model, the majority class of not relevant
may be predicted most of the time. Thresholding
is used to ensure other classes, especially essen-
tial, are predicted and can be used for response
generation. For each sentence, we sample 20 inde-
pendent predictions using the LLaMA 8B model
with temperature set to 1.0. Thresholds are ap-
plied to determine the final label: a sentence is
labeled essential if it appears in at least 2 out of
20 predictions; if not, it is labeled supplementary
if it appears at least once; otherwise, it is labeled
not relevant. This strategy biases the classification
toward relevant categories. Increasing the num-
ber of samples beyond 20 (e.g., to 111 or 200)
yielded limited gains in F1 score on the develop-
ment set. Prior thresholding attempts used the data
description statistics (both median and mean) of



Essential Checker Prompt

Your task is to determine how relevant the
context is to answer the question.

Question

Question from a patient or clinician.

Repeat N Times
with Self-Consistency

If total number of words
is less than or equal to 75.

If total number of words

1
1 .
+ . Essential Sentence | is greater than 75.
I Detector 1
Few-shot Examples ! !
P —_— | —p
Examples of relevant and not-relevant sentences. 1 : ® ®
1
+ N 1 Relevant Final
Sentences Answer

Response Generation Prompt

Your task is to summarize the provided sentences
into a response no longer than 75 words....

Figure 1: Overview of our multi-step approach for generating clinically grounded answers from electronic health
records. An essential sentence detector uses a prompt and few-shot examples to classify sentences from the EMR
with self-consistency sampling. Relevant sentences are passed to the response generation step. If the total word
count is within the 75-word limit, the sentences are used directly. Otherwise, the sentences are summarized using a
language model prompted to stay within the word constraint.

the distribution of each classification of sentences
per case. For example, the median number of es-
sential sentences is 5.5 out of 21 total sentences
per case (Soni and Demner-Fushman, 2025a). The
threshold was set at 26 percent, meaning that of
the 20 self-consistency samples, at least 5 would
have to be labeled essential for the final label to be
essential. We repeated several attempts with these
median and mean thresholds, but these high thresh-
olds yielded F1 scores with several false negatives
for the essential label.

2.3 Final Response Generation.

We use zero-shot prompting for response genera-
tion using the Llama 70B quantized model without
any in-context examples. Instead, a system prompt
(see Appendix) was provided to guide the structure
and formatting of the output. For lenient evalua-
tion, both essential and supplementary sentences
were used as relevant sentences to compose the
response, while strict evaluation included only sen-
tences labeled as essential. Sentences marked as
not relevant were excluded from all responses. In
cases where no essential sentences were identified,
a placeholder response (“No citations found”) was
generated along with a randomly sampled citation
(pipe-delimited from 1-10) to satisfy format re-
quirements that sentences must have at least one
citation. If the extracted content was under the
75-word limit, the sentence set was used directly
without further processing. We did not attempt to

&3

pass these sentences of less than 75 words to the
model to make the response even more concise
because we were concerned that further reduction
might negatively impact ROUGE and BERT scores
by decreasing n-gram overlap. Only when the com-
bined sentence content exceeded the limit, we used
the Llama 70B model to summarize the selected
sentences into a coherent answer under the con-
straint with the zero-shot prompt. If citations were
removed by the Llama model, citations for any es-
sential or supplementary sentences excluded due
to length were appended to the final sentence of the
response.

2.4 Models.

We evaluated both LLaMA 3.1 8B and 3.1 70B
(w416b quantization) models (Grattafiori et al.,
2024) on the development set for sentence classifi-
cation and answer generation.> Based on develop-
ment performance, we selected two configurations
for test set evaluation: (1) a entirely 70B pipeline
for both sentence selection and answer generation
(denoted 70B-LENIENT and 70B-STRICT), and
(2) a hybrid configuration using LLaMA 8B for
essential sentence identification and LLaMA 70B
for response generation called 8 B-LENIENT and
8B-STRICT.

>We also evaluated UltraMedical (Zhang et al., 2024), but
it did not outperform the LLaMA models in initial experiments.
Although UltraMedical showed some promise, its responses
were consistently too lengthy and overly elaborate, making it
unsuitable for the 75-word constraint on the test set.



Configuration Ovr  Rel. Fact. SMP SMR SMF1 SmP SmR

SmF1 LMP LMR

LMF1 LmP LmR LmF1 ROU MED BE AS BL SA

8B-LENIENT
8B-STRICT
SHAREDTASK-BASELINE

24
36.1
359

321 527 449
259 464 425
287 431 703 471 494 634 326

75.0
44.0

514 416
380 488

71.7
44.2

527
46.4
43.1 785

61.9
63.1

73.1
78.5
389

60.4
40.9
465 718

54.2
59.2

71.7
39.2
27.0

60.4
47.1
392

20.7
14.8
18.7

327 273 306 1.8 596
28.1 156 405 1.3 569
294 242 521 02 480

GT-LENIENT
GT-STRICT

61.90
74.58

39.39 8440 7825 100 8552 73.02 100
49.16 100 100 100 100 100 100

84.40 100
100 100

100
78.25

100 100
85.52 100

100
73.02

100
84.40

28.52
36.42

40.62 3543 5921 6.61 6595
48.64 4256 8225 11.18 73.89

293
263

245
223

34.1
30.3

47.4
34.7

29.1
25.1

8B-LENIENT (W/O THRESH.)
8B-LENIENT (W/0 THRESH. AND SC)

303
24.0

493 26.1
438 232

34.1
303

58.0
42.8

28.8
252

31.9
25.6

57.5
50.7

222
19.6

32.1
282

154
10.0

222
17.4

13.1
115

36.6 2.7
30.8 2.7

57.0
578

Table 1: Development set performance across configurations. Ovr is the overall score (mean of factuality and
relevance). Rel. and Fact. are overall relevance and factuality. SMP/SMR/SMF1 and LMP/LMR/LMF1 are
strict micro/macro precision, recall, and F1 (“essential” only). SmP/SmR/SmF1 and LmP/LmR/LmF1 are lenient
versions (“essential” + “supplementary”). ROU, BL, SA, BE, AS, and MED denote ROUGE-L, BLEU, SARI,

BERTScore, AlignScore, and MEDCON.

3 Results

Here, we present our results from several attempts
using the development data set and our three sub-
missions to the competition using the test data set.

3.1 Evaluation Metrics

The ArchEHR scoring script was used to evalu-
ate all attempts for classification accuracy (strict
and lenient F1 scores) and response quality, in-
cluding fluency, relevance, and medical accuracy,
using metrics such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), SARI (Xu et al., 2016),
BERTScore (Zhang et al., 2019), MedCon (Yim
etal., 2023), and AlignScore (Zha et al., 2023). The
scoring script parsed the responses for citations and
then, if needed, truncated the response to 75 words.
Only the 75 words and the pipe-delimited citations
were evaluated.

3.2 Validation Results.

We report the results on the dev set using leave-one-
out cross-validation in Table 1. The best perfor-
mance on the development set was achieved using
the LLAMA3-8B model to identify both essen-
tial and supplementary sentences, followed by re-
sponse generation using the LLAMA3-70B model
(denoted LENIENT (8B)). This configuration out-
performed all others, including strict variants that
relied solely on essential sentences.

To assess the potential upper bound of the
task, we evaluate ground truth (GT) configurations
that assume perfect classification. GT-STRICT
uses only the gold essential sentences, while GT-
LENIENT includes both gold essential and supple-
mentary sentences as input to the response genera-
tion model. These oracle settings achieved substan-
tially higher scores, 74.58 and 61.90, respectively,
demonstrating the significant headroom remain-
ing for improving sentence selection models. This
comparison also highlights the performance of our

lenient model, which achieves 42.37 overall.

Finally, we conducted ablations to examine the
effect of self-consistency and thresholding in the
classification process. Removing thresholding
alone reduced overall performance to 26.34, while
removing both thresholding and self-consistency
resulted in a score of 29.31 (Table 1). These de-
clines were primarily driven by reduced F1 scores
for sentence classification, underscoring the impor-
tance of threshold-based calibration in achieving
stable, high-quality predictions.

3.3 Competition Results.

The 8B model was used to classify sentences using
lenient evaluation metrics, and the 70B model was
then used to generate responses based on those clas-
sifications. This combination (“8B-lenient”) out-
performed the 70B model when it was used alone
to both classify sentences and generate responses
(““70B-lenient” and “70B-strict”’; Table 4 in the Ap-
pendix). For classification tasks, the 8B model had
better consistency in label prediction and produced
more factually correct and relevant answers than
the 70B quantized models. Furthermore, the bal-
anced recall and precision scores indicate that the
thresholds were well-established as the model was
able to identify most of the essential sentences. The
increased performance in sentence classification
led to higher-quality response generation and im-
proved the response generation metrics. Responses
had better alignment, quality, and included more
medical-specific content. Despite having fewer
parameters, the 8B model outperformed the 70B
quantized model across almost every metric, espe-
cially in classification, which showed to be a key
point in generating high-quality responses.

3.4 Error Analysis.

While the model shows the ability to differenti-
ate between classes, performance was negatively
affected by class imbalance. The overwhelming
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Class TP FP FN TN
Essential 64 67 74 223
Supplementary 18 89 33 288
Not-relevant 130 60 109 129

Table 2: Confusion Matrix for “Strict” Results.

number of not relevant sentences and the relatively
small number of supplementary sentences led to
label mismatches and reduced classification accu-
racy.

In the strict classification setting, the model was
expected to predict three distinct classes. As shown
in Table 2, the supplementary class proved par-
ticularly difficult to identify, with only 18 out of
51 instances correctly predicted. High false nega-
tive rates for both essential and not relevant sen-
tences suggest that important information was of-
ten missed, and irrelevant content was not reliably
excluded.

In the lenient setting, where essential and sup-
plementary sentences were grouped into a single
class, the task was reduced to binary classification
(Table 3). This improved recall for relevant con-
tent, and the model successfully identified a larger
number of relevant sentences. However, the distinc-
tion between essential and supplementary informa-
tion introduced ambiguity. While the lenient setup
benefited answer generation on the development
set, it also produced a high number of false pos-
itives, likely due to the low thresholding strategy
that aimed to capture as many relevant sentences
as possible.

To better understand these trends, we conducted
a manual error analysis on development set pre-
dictions. One common error involved not relevant
sentences being misclassified as essential or supple-
mentary. For example, in response to the clinician
question “Why was a procedure used instead of a
medication?”, two sentences containing only the
acronym of the procedure (which also appeared
in the question) were incorrectly labeled essential.
Although these sentences referenced the procedure,
they did not explain the reasoning behind it. This
suggests that the model may rely too heavily on lex-
ical overlap without considering the deeper intent
of the question.

We also observed the opposite error, where sen-
tences labeled as essential were misclassified as not
relevant. In one case, the clinician question con-
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Class TP FP FN TN
Essential 129 109 60 130
Not-relevant 130 60 109 129

Table 3: Confusion matrix for “Lenient” Results.

cerned a patient’s oxygen flow, and a relevant sen-
tence referenced “hypoxia” and “respiratory fail-
ure”. These terms are clinically important for eval-
uating oxygen status, yet the model failed to rec-
ognize the connection. This misclassification may
be due to the model’s reliance on surface features
rather than contextual relationships.

Ambiguity in the supplementary label also in-
troduced challenges. In one example, a two-part
clinician question asked about the lasting effects of
poisoning and the patient’s confusion. The model
often misclassified essential sentences as supple-
mentary or vice versa, suggesting it struggled to
distinguish between past clinician explanations and
future clinical concerns. Additionally, a sentence
mentioning psychiatry was misclassified as not-
relevant instead of supplementary, likely because
the model failed to connect psychiatric care with
the patient’s mental state in the question.

4 Conclusion

Our approach to the ArchEHR-QA Shared Task
showed that sentence classification is essential for
generating high-quality, grounded responses from
electronic health records. Using few-shot prompt-
ing with self-consistency and thresholding im-
proved performance, and the smaller LLAMA3.1-
8B model outperformed the larger 70B model in
identifying relevant sentences. However, distin-
guishing supplementary content remained difficult
due to label imbalance.

Future work should explore incorporating sen-
tence context and document structure to improve
classification, along with adaptive thresholding
based on model confidence. Fine-tuning with clini-
cian feedback and expanding evaluation to include
human judgments will be important for improving
real-world reliability and clinical applicability.
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Limitations

This work has several limitations. First, the dataset
was relatively small, consisting of only 20 devel-
opment cases and 100 test cases, which may limit
the generalizability of the results. Additionally,
the evaluation relied solely on quantitative metrics,
without manual review of patient context and med-
ical accuracy. It also lacked evaluation of person-
able aspects such as empathy and professionalism.
Finally, the imposed word limit on responses intro-
duced a scoring bias, particularly disadvantaging
longer or complex patient cases that required more
nuanced explanations.

Another limitation lies in the reliance on self-
consistency thresholding as a heuristic rather than
a learned calibration method. Although it improved
performance, the threshold values were tuned man-
ually and may not generalize well across datasets
with different distributions of relevance labels. Fu-
ture work could explore adaptive or data-driven
methods to calibrate sentence selection confidence.

Additionally, while the 8B model outperformed
the 70B model in sentence classification, this may
reflect the effects of quantization, prompt format
sensitivity, or differences in instruction tuning.
These variables were not systematically controlled
or analyzed. Further investigation is needed to
isolate whether smaller models offer consistent ad-
vantages or whether specific tuning strategies are
responsible for the performance gains.

The current approach treats each sentence inde-
pendently during classification, ignoring the sur-
rounding context that may be critical in understand-
ing clinical relevance. Sentences referring to pre-
vious or subsequent medical events could be mis-
classified due to this lack of discourse awareness.
Integrating document-level context or sequential
modeling could help mitigate this issue.
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A Appendix

A. Prompt for Sentence Relevance
Classification

We use a single, structured prompt to classify the
relevance of EHR sentences with respect to a clini-
cal question. For clarity, we display the full prompt
below in a formatted box, broken into the system
instruction and examples.

Prompt for “Essential Checker”

Your task is to determine how relevant the Context
is to answering the Question.

Assign one of the following labels:

- essential: The Context provides critical information
needed to answer the Question.

- supplementary: The Context provides useful but
non-essential information related to the Question.

- not-relevant: The Context does not provide useful
information for answering the Question.

Important: Output only the label — "essential",
"supplementary", or "not-relevant”. Do not include
any other text. "You will be given a Question and a
Context. The Context is a sentence excerpted from a
patient’s electronic health record.

Your task is to determine how relevant the Context is
to answering the Question.

Assign one of the following labels:

- essential: The Context provides critical information
needed to answer the Question.

- supplementary: The Context provides useful but
non-essential information related to the Question.

- not-relevant: The Context does not provide useful
information for answering the Question.

Important: Output only the label — "essential”, "sup-
plementary”, or "not-relevant”. Do not include any
other text.

Examples:?

3Examples have been changed to ensure anonyminity of
data.
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“Essential Checker”

Prompt: “You will be given a Question and a Context.
The Context is a sentence excerpted from a patient's
electronic health record.

Your task is to determine how relevant the Context is
to answering the Question.

Assign one of the following labels:

- essential: The Context provides critical information
needed to answer the Question.

- supplementary: The Context provides useful but
non-essential information related to the Question.

- not-relevant: The Context does not provide useful
information for answering the Question.”

2

Few Shot (Balanced for classes, 10 examples of each):
Clinician Question: development data

Sentence (Context): development data

Label: development data ground truth

v

INPUT DATA :
Clinician Question:
Sentence (Context):

OUTPUT

Label = Model Prediction x 20 (Self-Consistency)

Final Label = Threshold

v v

If concatenated
sentences are over 75
words, then proceed to
response generation.

If sentences are less
than 75 words
concatenated, proceed
to finalresponses.

“Response Generation”

Prompt: “You will be provided with a set of sentences,
each on a new line. Each sentence ends with a
numerical citation enclosed in pipes, such as |1].

Your task is to summarize the provided sentences
into a response no longer than 75 words.

This 75-word maximum must be strictly followed in all
cases.”

Specific instructions, good and bad examples with
explanations are provided.

INPUT DATA:
Sentences classified as “essential” or “supplementary”

OUTPUT

Response = Sentence |citation|. Sentence |citation]...

v

Post-Processing:

If no ”essential” or “supplementary” sentences
identified, then write “No citation found” [random
number 1-10].

If response is over 75 words, list all not used citations
in the last sentence pipes.

Final responses of 75 words with

pipe-delimited citations.

Figure 2: Overall Method Figure.
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Configuration Overall Rel. Fact. SMP SMR SMF1 SmP SmR SmFl1 LMP LMR LMF1 LmP LmR LmF1 R Med BE AS BL SA
8B Results 4045 2792 5297 4506 773 5259 4371 6722 5297 49.6 7743 56.65 47.02 6839 5573 11.11 17.75 294 5658 072 227
Organizers Baseline 307 278 336 714 315 39 716 219 336 83 308 399 77 223 346 152 256 205 577 0.1 478
70B Lenient Results 2993 1859 4128 444 51.06 417 38.67 4426 4128 4741 5071 4364 4142 4483 4306 8.83 1256 10.78 54.81 142 12.86
70B Strict Results 28.05 1892 37.18 4377 4453 383 3627 38.15 37.18 46.88 444 3997 38.64 3844 3854 877 1232 1133 5496 13 1271

Table 4: Overall Score Comparison of Model Configurations for Test Data. Ovr is the overall score (mean of factu-
ality and relevance). Rel. and Fact. are overall relevance and factuality. SMP/SMR/SMF1 and LMP/LMR/LMF1
are strict micro/macro precision, recall, and F1 (“essential” only). SmP/SmR/SmF1 and LmP/LmR/LmF1 are
lenient versions (“essential” + “supplementary”). ROU, BL, SA, BE, AS, and MED denote ROUGE-L, BLEU,
SARI, BERTScore, AlignScore, and MEDCON.

Question: What medications is the patient currently
taking?

Context: The patient is currently prescribed met-
formin and lisinopril.

Label: essential

Question: Has the patient experienced any recent
falls?

Context: The patient reports no falls over the past
six months.

Label: essential

Question: What is the patient’s preferred pharmacy?
Context: The patient prefers CVS Pharmacy on Main
Street.

Label: essential

Question: What medications is the patient currently
taking?

Context: The patient lives with their daughter and
two grandchildren.

Label: not-relevant

Question: Has the patient experienced any recent
falls?

Context: The patient has a history of osteoarthritis
in the knees.

Label: supplementary

Question: What is the patient’s preferred pharmacy?
Context: The patient reports good control of their
blood sugar levels.
Label: not-relevant

Question: What medications is the patient currently
taking?

Context: The patient reports an allergy to penicillin.
Label: supplementary

Question: Has the patient experienced any recent
falls?

Context: Patient noted to have unsteady gait and
occasional dizziness.

Label: supplementary

Question: What is the patient’s preferred pharmacy?
Context: The patient was discharged home with
follow-up scheduled in two weeks.

Label: not-relevant

Question: What medications is the patient currently
taking?

Context: At discharge, the patient was advised to
continue taking atorvastatin daily.

Label: essential

Question: Has the patient experienced any recent
falls?

Context: The patient was admitted after slipping on
ice and fracturing their wrist last month.

Label: essential

B. Prompt for Answer Generation

We use a single zero-shot prompt to guide an-
swer generation. The model receives a list of pre-
selected sentences with citations and is asked to
generate a 75-word summary with citation format-
ting preserved.
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Additional Examples:



Prompt for “Response Generator”

Your task is to summarize the provided sentences into
a response no longer than 75 words.

This 75-word maximum must be strictly followed in
all cases.

Do not add any notes, comments, or additional text
after the summary.

This will result in the response exceeding the 75-word
limit.

Each sentence in your output should start on a new
line.

Each sentence must have one or more citations at the
end, formatted as integers inside pipes (e.g., 12| or
13,5,71).

When combining multiple original sentences into
one, list all relevant citations in order, separated by
commas inside a single pair of pipes (e.g., 12,4,5I).

If multiple sequential citations are combined, list
them individually, not as a range (e.g., 17,8,9,10l, not
[7-10I).

If any sentences from the input are omitted com-
pletely from your summary, their citations must still
be preserved by adding them to the final sentence’s
citation list.

Only output the summarized response. Do not
include any commentary, labels, or additional text."
"You will be provided with a set of sentences, each
on a new line. Each sentence ends with a numerical
citation enclosed in pipes, such as |11.

Your task is to summarize the provided sentences into
a response no longer than 75 words.

This 75-word maximum must be strictly followed in
all cases.

Do not add any notes, comments, or additional text
after the summary.

This will result in the response exceeding the 75-word
limit.

Each sentence in your output should start on a new
line.

Each sentence must have one or more citations at the
end, formatted as integers inside pipes (e.g., 12| or
13,5,71).

When combining multiple original sentences into
one, list all relevant citations in order, separated by
commas inside a single pair of pipes (e.g., 12,4,51).
If multiple sequential citations are combined, list
them individually, not as a range (e.g., 17,8,9,10I, not
|7-101).

If any sentences from the input are omitted completely
from your summary, their citations must still be
preserved by adding them to the final sentence’s
citation list.

Only output the summarized response. Do not include
any commentary, labels, or additional text."

Examples:
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Example 1 — Input and Output

Input:

The company launched a new product in April I11.
Sales exceeded expectations within the first month
121.

Customer feedback highlighted a few technical is-
sues [3I.

The technical team promised a software update to
address concerns [4/.

Output:

The company launched a new product in April, and
sales exceeded expectations in the first month I1,2I.
Customer feedback highlighted technical issues, and
the technical team promised a software update to
address them 13,4l.

Example 2 — Output

A new downtown cafe offering organic food received
praise for its atmosphere but some criticism for high
prices 11,2,3.,41.

It plans to expand to a second location next year I5I.

Example 3 — Output

The software update brought a redesigned interface
and improved navigation 1,2I.

Although users reported new bugs, a patch issued
two weeks later resolved major issues but caused mi-
nor compatibility problems on older devices 13,4,5I.

Bad Example (What Not to Do)

Input:

The research team published their findings in a lead-
ing journal [11.

They discovered a new species of bacteria in the Arc-
tic 12I.

The bacteria showed resistance to extreme cold tem-
peratures I3

Further studies are needed to understand its potential
applications |4].

Output (Incorrect):

The research team published their findings about a
new cold-resistant bacteria discovered in the Arctic
11-3I.

Further studies are needed to understand its applica-
tions 14.

Issues:

* Incorrect citation format: |1-3| is a range, but
it should be 11,2,3I.

» Word count and sentence coverage are fine, but
citation formatting makes this output invalid.
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Abstract

Responding to patient portal messages
places a substantial burden on clinicians. To
mitigate this, automatically generating
answers to patient questions by considering
their medical records is a critical solution.
In this study, we proposed a clinical
question answering system for the BioNLP
2025 Shared Task on Grounded Electronic
Health Record Question Answering. The
system processed each patient message
case by selecting relevant sentences as
evidences from the associated clinical notes
and generating a concise, medically
accurate answer to the patient’s question. A
generative Al model from OpenAl (GPT-
40) was leveraged to assist with sentence
selection and answer generation. Each
response is grounded in source text, limited
to 75 words, and includes sentence-level
citations. The system was evaluated on 100
test cases using alignment, citation, and
summarization metrics. Our results indicate
the significant potential of the clinical
question answering system based on
generative Al models to streamline
communication between patients and
healthcare providers by automatically
generating responses to patient messages.

1 Introduction

Patient portal messaging has become a critical
communication channel between patients and
healthcare providers, extending interaction beyond
scheduled visits (Huang, Fan et al. 2022, Huang,
Khurana et al. 2023). This platform enables
dynamic exchanges on complex issues like new
symptoms, disease follow-ups, medication
concerns, and other medical inquiries (De, Huang
et al. 2021, Huang, Wen et al. 2022).

With the increasing adoption of digital
technologies by healthcare organizations to foster
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patient engagement and care, patient portals have
become more prevalent, leading to a substantial
surge in portal message volume (Huang, Khurana
et al. 2022, Zhou, Arriaga et al. 2022). While this
increased communication holds the promise of
improved patient care and satisfaction, it has also
created challenges in terms of efficient
management and timely responses. Consequently,
secure messaging has contributed to a heavier
workload and burnout among clinicians by
increasing patient-clinician interactions between
in-person visits. For instance, primary care
physicians commonly spend 1.5 hours daily
processing around 150 inbox messages, often
extending their work beyond regular clinic hours
(Akbar, Mark et al. 2021). This constant influx of
patient messages has become a significant stressor
in clinical settings, particularly for primary care
physicians, exacerbating burnout. Thus, the
development of a clinical question answering
system that can automatically generate answers to
patient questions derived from their messages is
essential to aid clinicians in responding effectively
to patient portal communications (Ren, Wu et al.
2023, Ren, Wu et al. 2024).

The BioNLP 2025 shared task on grounded
question answering (QA) from electronic health
records (EHRs) focuses on automatically
generating answers to patients’ health-related
questions that are grounded in the evidence from
patients’ clinical notes (Soni and Demner-Fushman
2025a). This QA task emphasizes direct citation of
supporting evidence and grounding within the
relevant clinical notes of patients. The need for
accurate, transparent, and reproducible QA
methods is especially important in clinical settings,
where misinterpretation or hallucination can lead to
critical errors.

This paper presents a clinical QA system
developed leveraging generative Al models. The
system selects sentences relevant to the clinical

BioNLP 2025 Shared Tasks, pages 91-95
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question and uses them to generate a plain-
language response. No training data, external
models, or automation was used. The emphasis
throughout development was on traceability,
consistency, and alignment with the shared task
format.

2 Methods

2.1 Dataset

The dataset for this task includes patient questions
(based on real patient queries) and associated EHR
data (from MIMIC-II) containing vital clinical
evidence (Soni and Demner-Fushman 2025b).
Each question-note combination is a '"case."
Clinical note excerpts are provided with pre-
assigned sentence numbers, which systems must
use for citing evidence. Additionally, each sentence
is manually annotated with a "relevance" label
("essential," "supplementary," or "not-relevant")
indicating its role in answering the question. The
development set of 20 cases provides these
relevance labels. The test set contains 100 cases
without the relevance labels.

N
Patient 1. Sentence
Message Selection
Patient 2. Answer
Question Generation
: L
Y
.. 3. Citati
Clinical Note 1t 1.0n
Formatting
Generative Al .
Final Answer
Model

J

Figure 1: Overview of the clinical QA system
for the BioNLP 2025 shared task

2.2

As shown in Figure 1, the clinical QA system for
automatically generating answers to patient
questions was implemented as a three-step pipeline
applied for each patient message:

1. Sentence Selection — identifying essential and
supplementary sentences from the clinical note

2. Answer Generation — using a structured
prompt to compose a response with Generative Al
models

System Design
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3. Citation Formatting — ensuring each sentence
is properly cited using its unique sentence 1D

All work was done directly in an interactive
session of ChatGPT (GPT-40) (Hurst, Lerer et al.
2024) through HIPAA compliant Azure OpenAl
Studio, without the wuse of application
programming interface (APIs) and model fine-
tuning.

Understand patient
question

[

[ Review each sentence in J

the clinical note

[ Does this directly answer

Include all essential

the questnon’ s.cntcm,ca

Does it explam or clarify
an cs\cntlal point?

Add supplementary J

sentences if sp'mc allows

[ Is it off- 10p1(, background-

Avoid all nol-rx.lt.vanl
only, or procedural fluff?

content

Figure 2: Sentence selection logic

2.3

Each sentence from the clinical note excerpt was
reviewed and categorized as one of the following
three categories:
1. Essential — directly answers the clinician’s
question (e.g., diagnosis, treatment, hospital
course)

Sentence Selection Strategy

2. Supplementary — adds clinical context (e.g.,
medications, labs, background)
3. Not relevant — unrelated or duplicative

information

Sentences were selected based on clinical
reasoning and their alignment with the question’s
intent. If essential information was distributed
across multiple sentences or incomplete without
context, supplementary sentences were added for
clarity.

To refine the sentence selection process, we used
the 20 development cases provided with gold-
standard relevance annotations. These cases
included  sentence-level labels  (essential,
supplementary, or not relevant), which allowed us
to evaluate how well different selection strategies
automatically designed by generative Al aligned
with human annotations. Several iterations of
sentence triage logic were tested and revised based
on comparisons to these keys. The final sentence
selection logic is illustrated in Figure 2. The
process to develop the final sentence selection



logic is detailed in Section 2.3.1. Once finalized,
this selection logic was applied to the 100 test
cases, which were processed without access to gold
relevance labels.

2.3.1 Self-evaluation Approach for Sentence
Selection

To improve sentence selection, we used ChatGPT
to perform a self-evaluation analysis based on the
20-case development set. After ChatGPT generated
answers without access to these Ilabels, we
uploaded the annotations to assess its performance
by providing the following prompt:

"I'm going to upload a file which, for each case,
shows  which sentences are  essential,
supplementary, or not relevant. I want you to
analyze how you did on using essential sentences
for your answer—how many did you use, how
many did you miss, etc.? Do the same for
supplementary and not-relevant sentences."

Based on this self-evaluation analysis, ChatGPT
recommended several logic changes, which we
adopted in the final system: (1) Read the clinician
question to determine its clinical focus (e.g.,
diagnosis, treatment, prognosis). (2) Classify note
sentences as essential, supplementary, or not
relevant based on their alignment with the question.
(3) Generate the answer by including essential
sentences first, then supplementary ones if needed.
This refinement process—enabled by prompting
ChatGPT  to self-assess—improved  the
completeness of generated answers, particularly in
aligning with the information explicitly required by
the question.

2.4 Answer Generation and Citation

Formatting

The answer to the patient question was composed
using a structured prompt. The prompt included the
question, the selected sentences, and explicit
instructions. A typical prompt was as follows:

"Write a medically accurate answer to the question
below using only the sentences provided. Limit the
answer to 75 words. Keep the language clear and
professional. At the end of each sentence in your
answer, cite the original sentence ID in this format:
IDL."
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Additionally, the prompt strategy enables all
generated answers to: (1) remain under 75 words
(2) cite each supporting sentence using its ID
(Isentence id|) (3) use only content from the
provided note excerpt (4) be written in medically
appropriate, clear language. This constraint-based
format ensured that responses were traceable and
aligned with the evidence selection.

2.5 Evaluation

The generated answers will be evaluated on two
key aspects: Factuality (how well they are
grounded in clinical evidence) and Relevance (how
well they answer the question). Factuality is
measured using Precision, Recall, and F1 scores by
comparing the evidence sentences cited in the
generated answer against a manually annotated
ground truth set of essential and supplementary
sentences. Two F1 scores are calculated: a strict
score considering only 'essential' sentences as
correct evidence, and a lenient score including both
'essential' and  'supplementary’  sentences.
Relevance is assessed by comparing the generated
answer text to the ground truth 'essential' sentences
and the original question using metrics like BLEU
(Papineni, Roukos et al. 2002), ROUGE (Lin
2004), SARI (Xu, Napoles et al. 2016),
BERTScore (Zhang, Kishore et al. 2019),
AlignScore (Zha, Yang et al. 2023), and MEDCON
(Yim, Fu et al. 2023). The overall score for ranking
will be the average of the strict Factuality F1 score

Metric Min| Max|Mean|Median| Score

= Overall 19.3|53.7| 39.8 39.2] 378
g |Factuality 13.2|60.5| 47.7| 45.3] 47.8
© [Relevance 25.2/48.8| 31.8 33.1] 27.8
B Strict F1(i) |13.2/60.5| 47.7 45.3] 47.8
T; Strict F1(a) |18.7/62.6| 51.4 48.5] 49.0
S |Lenient F1(i) |13.5/62.7| 48.8| 46.4| 49.7
= Lenient F1(a)|18.6| 64.8| 52.6 50.0] 51.8
BLEU 0.1]14.3 1.7 2.6/ 0.6

3 ROUGE 15.2146.5| 22.7 24.3] 20.0
E SARI 36.7/73.1| 54.4 55.5| 56.7
E BERTScore |19.9/53.9| 26.3| 28.3| 242
AlignScore |352/92.4| 529 542 354
MEDCON  |23.2/49.3| 329 33.8] 29.6

*F1(i) and F(a) denote F1 (micro) and F1 (macro), respectively.
Table 1: Analysis of key performance metrics



and a combined score derived from the normalized
Relevance metrics.

3 Results

The clinical QA system was evaluated on 100 test
cases using the official metrics provided by the
shared task organizers. Its key performance metrics
among the 30 participants are listed in Table 1.

Among the overall metrics (Factuality and
Relevance), Factuality performance was relatively
strong at 47.8, exceeding both the mean (47.7) and
median (45.3). This indicates a consistent use of
relevant evidence sentences. The strict and lenient
micro F1 scores (47.8 and 49.7, respectively) were
also higher than their respective means and
medians.

For Relevance, the system scored 27.8,
slightly lower than mean (31.8) and median (33.1).
The score of SARI (56.7) is higher than mean
(54.4) and median (55.5), suggesting the answers
were readable and cleanly edited. However,
metrics like ROUGE-Lsum (20.0), BLEU (0.6),
BERTScore (24.2), and MEDCON (29.6) were
slightly lower than mean and median because the
system focused on giving short, evidence-backed
answers rather than exact matches to the reference
summaries.

4 Discussion

This study explored using a single generative Al
model (GPT-40) through OpenAl's interact session
and prompts to generate answers to patient
questions with evidence from their medical
records. Our goal focused on the straightforward
application of readily accessible generative Al
models via the interact session, rather than
developing complex clinical QA models. This
approach leverages the easy deployment of
generative Al, which bypasses the need for in-
depth model development expertise such as API
calls, fine-tuning, and knowledge injection.

The performance of the clinical QA system was
comparable to the mean and median, indicating the
feasibility of using a single generative Al for
answering patient questions via direct interaction.
Its stronger performance in Factuality compared to
the mean and median highlights the effectiveness
of the designed sentence selection logic in
consistently utilizing relevant evidence for answer
generation.
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5 Limitations

The system was developed under tight time
constraints. While the current system only used a
single generative Al model and straightforward
interactive ~ workflow, our plans included
experimentation with multiple strategies involving
different generative Al models for a hybrid system,
collaborative learning, and advanced evidence
sentence classification. These extensions were not
explored due to lack of time.

The generative Al model (ChatGPT) was
accessed through the web interface for simplicity.
Although the interactive session allows the ease
use of generative Al models, this limited
reproducibility and scalability. The interactive
nature of the workflow made it difficult to test
multiple prompting strategies at scale or implement
programmatic validation. Use of the API could
have enabled more consistent experimentation and
versioning.

6 Conclusion

We present a clinical QA system developed
through an interactive workflow with a generative
Al model. The system selects relevant sentences
and uses them to construct a short, evidence-
grounded answer with sentence-level citations. No
model fine-tuning or APIs were required. Our
findings show the feasibility of the strategy to
develop a clinical QA system for generating
answers to patient questions in portal messages.
Future work may explore multi-model workflows,
collaborative learning, and more structured
evaluation pipelines.
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Abstract

This paper presents an approach to answer-
ing patient-specific medical questions using
electronic health record (EHR) grounding with
ArchEHR-QA 2025 datasets. We address
medical question answering as an alignment
problem, focusing on generating responses
factually consistent with patient-specific clin-
ical notes through in-context learning tech-
niques. We show that LLM-generated re-
sponses, used as few-shot examples with GPT-
4.1 and Gemini-2.5-Pro, significantly outper-
form baseline approaches (overall score
49.1), achieving strict precision, recall, and
F1-micro scores of 60.6, 53.6, and 56.9, re-
spectively, on the ArchEHR-QA 2025 test
leaderboard. It achieves textual similarity be-
tween answers and essential evidence using
BLEU, ROUGE, SARI, BERTScore, Align-
Score, and MEDCON scores of 6.0, 32.1,
65.8, 36.4, 64.3, and 43.6, respectively. Our
findings highlight the effectiveness of com-
bining EHR grounding with few-shot exam-
ples for personalized medical question answer-
ing, establishing a promising approach for de-
veloping accurate and personalized medical
question answering systems. We release our
code at https://github.com/biodatlab/archehr-
ga-lamar.

1 Introduction

Large language models (LLMs) have significantly
influenced medical question-answering systems by
generating clinically relevant content grounded in
electronic health records (EHRs) for more person-
alized and context-aware patient care (Yang et al.,
2022). Clinical-related questions are among the
most frequently asked topics, reflecting the public’s
natural curiosity about their health literacy and the
rising healthcare costs in many countries, which
drive individuals to seek alternative sources of in-
formation (Savery et al., 2020). Despite some hal-
lucinations, recent frontier models typically main-
tain reasonable factual accuracy. We theorized that
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aligning with human expectations on answering
style, citation practices, and information structur-
ing is the main challenge. Thus, we formulate our
approach to align the model response to human
expectation with the limited data provided in this
shared task.

While fine-tuning LLMs on medical records or
textbooks can improve alignment, it demands ex-
tensive datasets, limiting scalability (Singhal et al.,
2023). Few-shot learning offers a promising alter-
native by guiding models with representative exam-
ples that demonstrate task-specific reasoning pat-
terns without requiring fine-tuning, though design-
ing optimal examples remains challenging (Brown
et al., 2020). Similarly, Retrieval-augmented gen-
eration (RAG) enables LLMs to access external
knowledge sources such as structured medical
databases and clinical literature, providing accu-
rate, up-to-date answers by incorporating the medi-
cal knowledge without retraining (Alkhalaf et al.,
2024; Lewis et al., 2020). However, questions re-
main about how effectively retrieved information is
integrated and grounded in the model’s final output,
particularly in clinical contexts where alignment
with human preferences is crucial.

In this paper, we present an approach to answer-
ing patient-specific medical questions using elec-
tronic health record (EHR) grounding with the
ArchEHR-QA 2025 dataset (Soni and Demner-
Fushman, 2025b). We address medical question an-
swering as an alignment problem, focusing on gen-
erating responses factually consistent with patient-
specific clinical notes through in-context learning
techniques. Our system leverages LLM-generated
responses as few-shot examples with GPT-4.1 and
Gemini-2.5-Pro, achieving strict precision, recall,
and F1-micro scores of 60.6, 53.6, and 56.9, re-
spectively, on the test leaderboard.

BioNLP 2025 Shared Tasks, pages 96-103
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2 Related work

Large Language Models (LLMs) have demon-
strated significant potential across diverse med-
ical question-answering applications. Initial re-
search focused on general medical knowledge re-
trieval (Shi et al., 2024), while subsequent work
has expanded into specialized domains including
USMLE-style multiple-choice questions (Lucas
et al., 2024), clinical decision support (Benary
et al., 2023), medical exam preparation (Artsi
et al., 2024), and patient-facing information sys-
tems (Goodwin et al., 2022). Despite these ad-
vances, LLMs continue to face challenges. Hal-
lucinations remain a key concern in medical set-
tings (Agarwal et al., 2024), and newer models
have made progress in reducing them (Kim et al.,
2025). However, real-world EHRs introduce an
even bigger hurdle: clinical data are often messy,
incomplete, and inconsistent (Holmes et al., 2021).
Issues such as outdated knowledge and inconsis-
tent reasoning also persist and demand ongoing
attention (Ji et al., 2023).

In-context learning (ICL) provides an efficient
alternative to model fine-tuning, enabling LLMs
to learn from demonstrations embedded directly in
prompts without requiring parameter adjustments.
Dong et al. (2022) demonstrate that ICL leverages
pre-trained capabilities to recognize task patterns
from limited examples, reducing dependency on
supervised datasets (Dong et al., 2024). Few-shot
prompting, popularized by Brown et al. (2020)
with GPT-3, showed that LLMs can achieve com-
petitive performance across diverse tasks, including
medical question answering, by conditioning on
carefully selected examples. This approach signifi-
cantly reduces barriers to adapting LLMs for spe-
cialized applications like clinical reasoning without
requiring domain-specific retraining or extensive
annotated data (Brown et al., 2020).

Alkhalaf et al. demonstrated that combining gen-
erative Al with Retrieval-Augmented Generation
(RAG) significantly improves clinical information
extraction from EHRs, achieving 99.25% accuracy
using LLaMA 2 13B with zero-shot prompting
(Alkhalaf et al., 2024). Beyond methodology, RAG
component quality is critical for performance, as
highlighted by research using the MEDRAG toolkit
across 41 configurations with varying models, re-
trievers, and knowledge corpora. This comprehen-
sive analysis revealed that properly implemented
RAG systems can boost accuracy by up to 18%
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Development data
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Initial answer

Figure 1: The multistage few-shot prompting pipeline
of our system submitted to ArchEHR-QA 2025.

compared to chain-of-thought prompting across
multiple medical question-answering tasks, em-
phasizing the importance of appropriate language
model selection, retrieval strategy, and knowledge
corpus construction (Xiong et al., 2024).

3 Datasets

We utilize the ArchEHR-QA 2025 dataset (Soni
and Demner-Fushman, 2025a) , which comprises
20 development cases and 100 testing question-
note pairs. The dataset includes a patient question,
a clinician question, and a clinical note. The devel-
opment set features ground-truth annotations for ev-
idence sentences, while the test set requires natural
language answers accompanied by cited sentence
numbers. The patient’s question is inspired by real
patient inquiries. Clinical note excerpts are derived
from the MIMIC-III database (Johnson et al., 2016).
Answers consist of sentences referenced by the ID
from the clinical note.

4 Methodology

We viewed the problem as an alignment issue. We
aimed to generate an answer that was correctly
cited and factually aligned with the clinical note.
To help generate aligned answers, we explored
zero-shot, few-shot prompting, and retrieval aug-
mented generation (RAG) with external sources
including MedlinePlus and Merck Manual.

4.1 Baseline

We applied zero-shot and chain-of-thought (CoT)
prompting conditions as our baselines. We select
non-thinking models, including GPT-4.1, Gemini-
2.0-Flash, or Claude-3.7-Sonnet (non-thinking),
due to their significant computational and finan-
cial overhead. Each model was prompted to reason



step by step before generating a final answer, pro-
viding a reference for measuring the impact of few-
shot examples and retrieval-augmented generation
(RAG).

4.2 In-Context Learning through Few-shot
Prompting

We explored several few-shot prompting strategies,
including:

* Basic Few-shot. We selected two examples
from the ArchEHR website as few-shot.

* LLM-Generated Exemplars as Few-shot.
Since the relevant sentence labeling can only
be found in the development dataset, we used
Gemini-2.5-Pro to generate answers from the
development set. These answers, paired with
their corresponding clinical notes and ques-
tions, were used as few-shot examples in sub-
sequent prompts.

LLM-Generated Exemplars with Reason-
ing. We want to see if examples with reason-
ing can help improve the answer. Here, we
used Gemini-2.5-Pro to generate both reason-
ing steps and final answers. These reasoning-
annotated examples were included in prompts
to simulate clinical thinking.

4.3 Retrieval-Augmented Generation (RAG)

We tested external context enhancement using
10,232 MedlinePlus (National Library of Medicine
(US), 2025) and 2,927 Merck Manual articles
(Merck & Co., 2025). This experiment aimed to de-
termine whether external medical knowledge could
improve answer accuracy over a few-shot exemplar.
Articles were embedded using MedCPT (Jin et al.,
2023) and indexed for retrieval. We compared 3
retrieval approaches:

¢ Full-Text Clinical Articles. We retrieved the
complete texts of relevant clinical publications
identified by our RAG pipeline. We input the
entire article to provide the model with com-
prehensive contextual information for answer
generation.

Concise Article Summaries. We prompted
Gemini-2.5-Pro to distill each full-text arti-
cle into a one-paragraph summary to reduce
prompt length and boost information density.

98

* Synthetic Clinical Cases. We prompted
Gemini-2.5-Pro with a few-shot examples
from the ArchEHR page to transform and for-
mat the retrieved articles into a realistic pa-
tient scenario featuring patient narrative, pa-
tient question, clinical question, clinical notes,
and answer to mimic the ArchEHR dataset.

5 Evaluation

Each answer includes sentences and their refer-
ences to the clinical note. Generated sentences are
evaluated on factuality and relevance. Factuality
compares cited evidence to ground truth using pre-
cision, recall, and F1 scores, with both strict (essen-
tial sentences only) and lenient (essential and sup-
plementary sentences). Relevance measures textual
similarity between answers and essential evidence
using BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), SARI (Xu et al., 2016), BERTScore (Zhang
et al., 2019), AlignScore (Zha et al., 2023), and
MEDCON (Yim et al., 2023). The final score aver-
ages normalized Strict Citation F1 and composite
Relevance.

6 Experimental Setup

We use zero-shot and chain-of-thought prompting
with GPT-4.1, Gemini-2.0 Flash, and Claude-3.7-
Sonnet as our baseline. In few-shot prompting,
we use Gemini-2.5-Pro to generate 19 exemplar
answers for each item in the development set, ex-
cluding the item itself. Generated answers are sent
to Gemini-2.5-Pro to trim and summarize answers
to a 75-word limit. We set up top-k=5 in retrieval
for all RAG experiments.

7 Results and discussions

We evaluated various prompting and retrieval strate-
gies on the development dataset to assess their im-
pact on citation accuracy, factuality, and relevance
across multiple language models. These experi-
ments informed our final multi-stage pipeline de-
sign for the test dataset. The following sections
present key results and their implications for our
system.

7.1 Development dataset observation

7.1.1 Zero-shot Baselines

On the development set, GPT-4.1, Gemini-2.0-
Flash, and Claude-3.7-Sonnet achieved overall
zero-shot scores of 47.9, 45.0, and 48.1, respec-
tively, with Claude-3.7-Sonnet performing best (Ta-



Development dataset

Approach Model

Overall Factual. Relev. SP, SR, SF, LP, LR, LF, SPy SRy SFy LPy LRy LFy BLEU ROUGE-L SARI BERTScore AlignScore MEDCON

GPT-4.1 47.9 538 421 540 536 538 686 497 577 604 641 S0 742 594 622 69 34.1 69.5 373 61.8 427
Bascline Gemini-2.0-Flash 45.0 492 408 555 442 492 700 407 515 602 537 S35 730 507 562 63 30.6 65.4 359 65.4 41.0

Claude-3.7-Sonnet 48.1 571 392 511 645 S7.1 655 603 628 526 725 S1.5 669 680 641 57 316 64.2 35.6 56.6 412
Few-shot: GPT-4.1 48.6 578 394 608 551 S7.8 728 481 580 655 645 592 790 596 625 55 314 65.5 35.6 57.1 413
b‘e‘f'ﬁ ot Gemini-2.0-Flash 475 563 388 540 587 563 660 524 584 564 664 562 705 623 613 52 30.2 65.5 338 56.3 419
asie Claude-3.7-Sonnet 48.1 556 406 497 630 556 623 577 599 551 739 574 678 701 635 7.0 3238 66.3 352 60.7 415
Few-shot: GPT-4.1 515 6L1 418 564 667 611 718 619 665 603 772 636 769 740 7TL4 63 327 66.5 36.4 64.0 44.9
LLM-generated ~ Gemini-2.0-Flash 50.5 506 415 549 652 596 659 ST 612 569 759 598 688 695 636 7.5 321 66.7 362 60.9 45.6
exemplars Claude-3.7-Sonnet 49.6 584 407 SL1 681 584 652 635 643 534 763 584 691 720 658 7.1 317 65.8 352 61.3 432
Few-shot: GPT-4.1 473 556 390 522 594 556 67.5 561 613 566 709 582 751 708 673 6.1 316 65.8 36.5 54.6 39.6
exemplars  with ~ Gemini-2.0-Flash 510 581 439 544 623 581 658 550 599 572 742 593 685 689 640 98 355 70.6 40.0 60.3 474
reasoning Claude-3.7-Sonnet 49.3 555 431 584 529 555 680 450 541 617 60.5 573 736 552 582 9.1 346 70.8 382 64.1 41.6
RAG GPT-4.1 46.4 533 395 470 616 533 652 624 638 531 711 559 702 702 664 68 324 64.4 36.5 54.0 43.0
el Gemini-2.0-Flash 45.7 500 415 564 449 500 736 429 542 610 572 532 768 550 594 69 328 67.2 356 66.4 40.1
articles Claude-3.7-Sonnet 474 553 395 512 601 553 660 566 610 562 698 564 70. 655 626 69 316 67.0 373 580 36.4
RAG: GPT-4.1 46.7 528 405 49.0 572 528 627 534 577 549 666 554 688 630 6L1 72 334 67.4 36.8 55.4 429
il ) Gemini-2.0-Flash 45.7 490 423 520 464 490 602 392 474 571 551 500 667 499 SLI 64 33.0 66.8 387 67.1 417
article SUmMmAries oy, ge-3.7-Sonnet 46.9 547 391 471 652 547 660 667 663 S50.6 765 564 680 747 670 53 314 64.2 344 59.1 404
RAG: GPT-4.1 47.1 563 379 500 645 563 624 587 605 556 742 598 683 683 651 48 29.2 64.0 34.6 54.7 403
eynthetic cases  Gemini-2.0-Flash 48.9 582 397 552 616 582 669 545 60.1 597 686 580 729 651 628 48 30.9 66.7 357 59.4 40.5
R 4 Claude-3.7-Sonnet 47.8 553 403 512 601 553 660 566 6lL0 562 698 564 701 655 626 68 323 69.3 372 61.0 352

Test dataset
Submission Overall Factual. Relev. SP, SR, SF, LP, LR, LF, SPy SRy SFy LPy LRy LFy BLEU ROUGE-L SARI BERTScore AlignScore MEDCON

Exemplars as few-shot with Gemini-2.0-Flash ~ 48.5 546 425 626 484 546 659 482 556 676 627 587 7TL4 602 597 63 319 67.7 370 68.7 433
Exemplars as few-shot with GPT-4.1 486 573 398 614 538 573 647 537 587 657 642 604 702 623 620 42 29.6 64.6 338 63.7 43.1
Multistage few-shot prompting (Figure 1) 49.1 569 414 606 536 569 640 535 583 654 640 602 700 622 618 60 321 65.8 36.4 64.3 43.6

Table 1: Results on development and test sets. SP = Strict Precision, SR = Strict Recall, SF = Strict F1, LP = Lenient
Precision, LR = Lenient Recall, LF = Lenient F1. Subscripts 1 and M denote micro and macro respectively.

ble 1). Across all models, we observed consis-
tently high macro recall but low micro recall. This
suggests that while models can identify relevant
evidence across different cases, they often fail to
capture all necessary citations in longer notes with
many sentences, indicating challenges in evidence
completeness for long and complex cases.

7.1.2 Few shots outcome

GPT-4.1 with LLM-generated exemplars achieved
the highest overall score of 51.5 on the develop-
ment set, outperforming the reasoning-based few-
shot approach. These exemplars notably improved
factual recall, increasing the overall factuality score
from 53.8 (baseline) to 61.1 without relying on ex-
ternal data. This highlights that well-structured,
relevant examples can enhance the model’s abil-
ity to cite appropriate evidence. In contrast, the
reasoning-based few-shot setup achieved a lower
overall score of 47.3, compared to 51.5 for few-shot
prompting without reasoning. This suggests that
explicitly including reasoning steps may not yield
additional benefit in this task, and that the model
may perform implicit reasoning more effectively
when guided by concise, LLM-curated exemplars.

7.1.3 RAG: Full text vs. Article summary vs.
Synthetic clinical cases

Among RAG variants with Gemini-2.0-Flash, top-
5 synthetic cases yielded the best performance,
achieving an overall score of 48.9 and improv-
ing factuality from 49.2 to 58.2 compared to the
baseline. This suggests structured, case-like in-
puts better support clinical reasoning than unstruc-
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tured text. RAG using full-text articles and sum-
maries produced lower factuality scores (50.0 and
49.0, respectively). Although converting articles
into cases improved alignment, these formats re-
mained less effective than LLM-crafted exemplars,
likely due to misalignment between retrieved con-
tent and the target question. Overall, the RAG
approaches performed worse than the best few-shot
LLM-generated exemplars. We hypothesized that
the quality and relevance of in-context examples
may be more important than retrieved knowledge.

7.2 Test dataset results

Based on the development set results, GPT-4.1 with
LLM-generated exemplars as few-shot achieved
the best overall performance. On the test set, GPT-
4.1 demonstrated strong factuality (overall factual-
ity = 57.3), while Gemini-2.5-Pro performed better
in terms of relevance (overall relevance = 42.5). We
leveraged both models by developing a multistage
few-shot prompting pipeline without external data
for our final submission, achieving an overall score
of 49.1 (Table 1). This pipeline uses Gemini-2.5-
Pro to generate 20 exemplar answers with citations
from the development dataset. These 20 exemplars
are used as in-context examples for GPT-4.1’s ini-
tial answer generation on the test dataset. We then
extract references from these initial answers. In the
final stage, we input the test dataset and its corre-
sponding retrieved references into Gemini-2.5-Pro
to generate the final grounded answers (Figure 1).



8 Conclusion and Future Work

Our study demonstrates that few-shot learning
with LLM-generated examples significantly im-
proves EHR-grounded medical question answering.
We achieved performance gains on the ArchEHR-
QA 2025 benchmark without requiring model re-
training or external knowledge sources. Models
can leverage implicit patterns when guided by in-
context learning demonstrations. Future work may
explore example selection for ICL or demonstration
strategy (Zhang et al., 2024; Huang et al., 2023),
which can help improve the model’s alignment with
the ground truth. We can also improve the refer-
ence of clinical notes to achieve better recall.

Limitations

LLM-generated few-shot examples may incorpo-
rate subtle biases or inaccuracies that propagate
through the system. Our implementation relies on
underlying EHR data quality, which may vary in
completeness and structure across clinical settings.
In practice, real-world EMR heterogeneity ampli-
fies these challenges: clinicians document infor-
mation across free-text notes, scanned documents,
and copied entries that vary widely in format, of-
ten include redundant or contradictory details, and
fragment critical data. Moreover, we rely on propri-
etary model APIs with 19-20-shot prompts, which
drive up computation time and latency and limit
scalability in resource-constrained settings.

Despite strong benchmark performance, real-
world deployment would require the validation of
our prompting strategies on unstructured produc-
tion EHR systems, incorporating robust NLP pre-
processing (entity normalization, de-duplication)
alongside human oversight to ensure clinical safety,
data privacy, and appropriateness. We also need
to prune exemplars, distill models, and conduct
cost—benefit analyses to reduce inference time and
API costs, all while upholding data privacy and
regulatory compliance.
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A Appendix

This appendix provides documentation of the
prompts used in our multistage few-shot pipeline
(Figure 1). The following sections describe the ex-
act prompts, design rationale, and implementation
considerations used throughout the system.

A.1 Prompt for Exemplar Generation

Figure B illustrates the prompt employed for gen-
erating exemplars. This stage utilizes the develop-
ment dataset, which includes the patient narrative,
patient question, clinician question, clinical note,
and relevant sentence key. Gemini-2.5-Pro gener-
ates concise, citation-grounded answers in plain
text, which are subsequently used as few-shot ex-
amples for downstream prompting.

A.2 Prompt for Initial Answers Generation

We use the prompt in Figure A to generate initial
answers from the test dataset. Input components
include the patient narrative, patient question, clin-
ician question, and clinical note. The exemplars
derived from the development data (as described in
Section A.1) are incorporated into the prompt for
initial responses with GPT-4.1.

LLM-Generated Exemplars as Few-shot

# Examples
{exemplars}
# To answer

Patient Narrative: {patient_narrative}
Patient Question: {patient_question}
Clinician Question: {clinical_question}
Clinical Note: {clinical_note}

Return your response in the format below strictly.

<answer>

Your answer based on the things you have seen in
the Example Patient Narrative, Example Patient
Question, Example Clinician Question, Example
Clinical Note and the Example Answer. Please
do not use a hyphen (’-’) in the citation. List all
the citations.

</answer>

Figure A: Prompt used for LLM-generated exem-
plars as few-shot for final answers generation

Exemplars and Final Answers Generation

You are a medical expert tasked with providing clear,
accurate answers to medical questions based on relevant
sentences from the clinical notes. Your response should
be detailed, evidence-based, and reference specific points
from the relevant sentences using the numbered citations.
You are only allowed to use the relevant sentences to
answer the question.

Example Patient Narrative:

I had severe abdomen pain and was hospitalised for 15
days in ICU, diagnosed with CBD sludge. Doctor advised
for ERCP. My question is if the sludge was there does not
any medication help in flushing it out? Whether ERCP
was the only cure?

Example Patient Question:

My question is if the sludge was there does not any
medication help in flushing it out? Whether ERCP was
the only cure?

Example Clinician Question:
Why was ERCP recommended over a medication-based
treatment for CBD sludge?

Example Clinical Note:

1: During the ERCP a pancreatic stent was . . .

: However, due to the patient’s elevated INR . . .
: Frank pus was noted . . .

: The Vancomycin was discontinued.

: On hospital day 4 . . .

: On ERCP the previous biliary stent . . .

: As the patient’s INR was normalized . . .

: At the conclusion of the procedure . . .

00NN~ W

Example Relevant Sentences: [1, 5, 6, 7]

Example Answer:

Medications can sometimes help in managing bile duct
sludge, but in this case, ERCP was necessary... I1l... 15...
l6l... 171.

Now, please provide a similar detailed answer
for the following case:

Patient Narrative: {patient_narrative}
Patient Question: {patient_question}
Clinician Question: {clinical_question}
Clinical Note: {clinical_note}

Relevant Sentences: {relevant_sentences}

Answer Format:

<answer>

Use ALL of the relevant sentences to answer the
question. Make sure to answer the question based
on the relevant sentences. See the example an-
swer for the format (use the Isentence numberl to
reference).

</answer>

Note: Think about the question and relevant sentences
carefully. You may reshuffle the sentences, but should not

include any other content.
. v

Figure B: Prompt used for exemplars and final an-
swers generation
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A.3 Prompt for Final Answers Generation

For the final answer generation stage, we reutilize
the prompt shown in Figure B. However, instead
of using the development sentence key, we pro-
vide the model with retrieved sentences cited in the
initial answers. This configuration enables Gemini-
2.5-Pro to generate a grounded, citation-supported
response based on the test data and previously ex-
tracted evidence.
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Abstract

Automated question answering (QA) over elec-
tronic health records (EHRs) can bridge critical
information gaps for clinicians and patients, yet
it demands both precise evidence retrieval and
faithful answer generation under limited super-
vision. In this work, we present Neural, the
runner-up in the BioNLP 2025 ArchEHR-QA
shared task on evidence-grounded clinical QA.
Our proposed method decouples the task into
(1) sentence-level evidence identification and
(2) answer synthesis with explicit citations.
For each stage, we automatically explore the
prompt space with DSPy’s MIPROV2 opti-
mizer, jointly tuning instructions and few-shot
demonstrations on the development set. A
self-consistency voting scheme further im-
proves evidence recall without sacrificing pre-
cision. On the hidden test set, our method at-
tains an overall score of 51.5, placing second
stage while outperforming standard zero-shot
and few-shot prompting by over 20 and 10
points, respectively. These results indicate
that data-driven prompt optimization is a
cost-effective alternative to model fine-tuning
for high-stakes clinical QA, advancing the reli-
ability of Al assistants in healthcare.

1 Introduction

Automatically generating answers to patients’ med-
ical questions using information from their elec-
tronic health records (EHRs) poses significant chal-
lenges, but also offers substantial potential for im-
proving clinical communication and patient engage-
ment (Soni and Demner-Fushman, 2025b). The
ArchEHR-QA 2025 shared task directly targets this
problem by providing patient questions alongside
excerpts from clinicians’ notes, and requiring sys-
tems to generate grounded responses that explicitly
cite the supporting sentences.

Recent advances in Large Language Models
(LLMs) have shown promising results in the do-
main of answering clinical questions based on un-

structured patient notes (Singhal et al., 2025). How-
ever, fine-tuning LLMs for answering clinical ques-
tions based on unstructured patient notes is con-
strained by the limited availability of supervised
clinical data, which increases the risk of overfitting.
Consequently, prompt-based methods offer a prac-
tical and cost effective solution. Despite the advan-
tages, prompt engineering comes with its own set
of challenges (Karayanni et al., 2024). Crafting ef-
fective prompts for complex tasks often requires ex-
pert effort and iterative refinement. This difficulty
is amplified in the clinical domain, where identi-
fying the correct evidence from lengthy medical
notes is critical for accurate answers. Prior studies
have explored manual prompt designs and chain-
of-thought cues for medical QA (Tai and Tannier,
2025), yet these ad-hoc methods may not yield opti-
mal performance. Automated prompt optimization
techniques (Wang et al., 2023) offer a systematic
alternative, but often treat each task holistically and
may not incorporate domain expertise effectively.

In this work, we introduce a two-stage LLM
pipeline for clinical question answering that explic-
itly separates evidence identification and answer
generation. In each stage, prompts are automati-
cally optimized using the MIPROv2 optimizer from
DSPy (Khattab et al., 2021, 2024). The first stage
is dedicated to identifying the relevant information
within the clinical note, while the second stage
leverages this information to generate a precise and
contextually appropriate answer. By decomposing
the task into these two distinct stages, it becomes
possible to define clear, stage-specific evaluation
objectives, namely, F1 score for evidence retrieval
performance and the mean of word limit score, ci-
tation format score, BLEU, ROUGE, SARI, BERT,
ALIGN, and MEDCON scores for answer qual-
ity metrics. This decomposition also enables the
use of optimization algorithms to systematically
search for prompts that maximize these objectives.
To further improve reliability, we integrate a self-
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consistency (Wang et al., 2022) approach in the
evidence retrieval stage: the model is run multiple
times, and a majority vote over the outputs deter-
mines the final cited sentences, reducing variability
and errors.

In summary, our contributions are:

* Decomposed Prompt Optimization Frame-
work: We propose a two-stage pipeline
that modularizes clinical QA, enabling dis-
tinct and targeted prompt optimization for
evidence retrieval and answer generation, a
paradigm shift from monolithic optimization
approaches.

¢ Systematic Instruction Space Exploration:
We demonstrate the efficacy of leveraging ad-
vanced optimizers like MIPROV2 to discover
high-performing, task-specific prompt config-
urations from limited development data, en-
hancing both performance and reproducibility.

* We perform a rigorous evaluation on an
expert-annotated clinical QA dataset, demon-
strating that our prompt-optimized pipeline
yields significant improvements in factual ac-
curacy and answer relevance compared to es-
tablished baselines, underscoring its effective-
ness for reliable clinical-QA.

2 Related Work

Clinical QA: Developing QA systems for clin-
ical data has long been an interest in biomedical
NLP. Earlier datasets like emrQA (Pampari et al.,
2018) generated large-scale QA pairs from elec-
tronic medical records by repurposing annotations,
but these often contained synthetic questions or
required mapping to structured outputs. Recent
research has shown that large LLMs can achieve
near-expert performance on medical QA bench-
marks (Singhal et al., 2025).

Prompt Optimization: There is a growing in-
terest in automated prompt search or optimization.
More recently, methods such as APE (Zhou et al.,
2022) and OPRO (Yang et al., 2023) treat prompt
design as a black-box optimization problem, iter-
atively refining prompts by evaluating model out-
puts. MIPRO (Opsahl-Ong et al., 2024) extends
this idea to multi-stage LLM programs, jointly
optimizing the instructions and demonstration ex-
amples of each module in a pipeline. Our work

leverages the latest optimizer, MIPROvV2 (Opsahl-
Ong et al., 2024), which uses a combination of
prompt proposal and Bayesian search to find high-
performing prompts efficiently.

Self-Consistency: Large LLMs can produce
variable outputs given the same prompt, espe-
cially under chain-of-thought reasoning. The self-
consistency decoding strategy (Wang et al., 2022)
addresses this by sampling multiple outputs and
choosing the result that is most consistent across
samples.

3 Methodology

Our method draws on a human-inspired decoupling
strategy, separating evidence gathering from solu-
tion formulation. In Stage 1, we identify relevant
resources analogous to conducting a web search
or literature review by retrieving key sentences. In
Stage 2, we frame the final solution by synthesizing
insights from the retrieved facts. We operational-
ize this intuition as a modular, two-stage pipeline
tailored to clinical QA.

Consider each clinical note excerpt is seg-
mented into individual sentences s, So, ..., Sp,
and each sentence s; is annotated with a label
y; € (essential, not-relevant, supplementary. The
label indicates whether s; contains information es-
sential for answering a given patient/clinician ques-
tion g. This sentence-level annotation forms the
basis of Stage-1, while Stage-2 uses the content of
the essential sentences (post consistency testing) to
produce the final answer ayey,.

3.1 Sentence-Level Essentiality Classification

For a question—note pair let

Yyt = {z' ‘ yizl},and Yyt = {z

g =1},

denote, respectively, the indices of gold-standard
essential sentences and the indices predicted es-
sential by the model. We begin with a manually
crafted prompt that presents the question ¢ and
the sentence sequence {si,..., sy} and requests
a binary relevance label for every sentence in ad-
dressing the q.

Prompt-Optimization Objective (Stage-1): We
invoke the MIPROV2 to optimize the prompt.
Treating the instruction text (and any embedded
demonstrations) as discrete parameters P € P,
MIPROV?2 iteratively: (i) proposes a candidate
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prompt P, (ii) applies the fixed LLM to the train-
ing set, and (iii) updates P so as to maximize
the sentence-level F1(Y' T, V). By searching this
space of instructions and few-shot exemplars, the
optimizer converges on a prompt P* that elicits
labels with markedly higher precision and recall,
thereby yielding a more reliable evidence set for
Stage 2.

Self-Consistency Voting: To improve the relia-
bility of Stage 1, we apply a self-consistency voting
scheme: the classifier is executed R = 5 times on
the same (g, {s;}) input, each run differing only in
its stochastic seed. Let g)lm € {0, 1} be the binary

prediction for sentence s; in run 7 (1 = essential).
The final label is obtained by majority vote,

R 1 ifvy;>7=[R/2],
v = 2@5)7 U =
r=1

This aggregation suppresses spurious single-run
errors and retains sentences identified as essential
by at least three of the five passes, thereby reduc-
ing variance and boosting the expected F; of the
evidence selection step.

0 otherwise,

3.2 Answer Generation from Essential
Sentences

Let ¢ be the input question and let £ = { Si ‘
Ui = 1} denote the set of sentences that Stage 1 pre-
dicted as essential. Given the pair (g, F), Stage 2
must produce a concise natural-language answer
agen that (i) directly addresses g, (ii) contains at
most 75 words, and (iii) cites the supporting sen-
tences in E using the required parenthetical no-
tation. We initialise Stage 2 with a hand-written
prompt template and then invoke MIPROV2 to
optimize this template. Let P denote a prompt
parameterised by its instruction wording and any
embedded demonstrations, and let gy( - ; P) be the
fixed LLM generator. Given an input pair (g, E)
the model outputs agen = gg((q, E); P).

Prompt-Optimization Objective (Stage-2):
The goal is to maximise the composite reward

R(agen,a*,E) = 1[\agen] < 75]
—_———

length

+ 1[f0rmat(agen,E)] + % Z m(agenaa*)
meM

citations

~
surface & semantic quality

where a* is the reference answer, | - | counts words,
and

M = {BLEU, ROUGE, SARI,
BERT, Align, MEDCON}.

The indicator terms enforce hard constraints on
length and citation format, while the mean of the
six metrics rewards lexical overlap, semantic fi-
delity, factual consistency, and medical-concept
coverage.

Search Procedure: MIPROV2 explores the dis-
crete prompt space P by iteratively proposing can-
didate prompts, evaluating them on a validation set,
and selecting

P = argIIIDIEa%( IE(q,E,a*) [R(ge((an)7P)aa*7E):|

The optimal prompt P* consistently elicits answers
that are succinct, properly cited, and of high quality
according to all surface—level and semantic metrics,
thus satisfying the Stage 2 requirements.

4 Experimental Setup

Dataset: We evaluated our system on the
ArchEHR-QA 2025 dataset (Soni and Demner-
Fushman, 2025a). This dataset contains 120
question-note cases derived from MIMIC-III/IV
clinical notes. Each case includes a patient ques-
tion (often a layperson’s phrasing) and a clinician-
rewritten question focusing on the key medical
query, along with a relevant excerpt from the pa-
tient’s EHR notes. The notes are annotated with
sentence numbers and labels indicating relevance
(“essential,” “supplementary,” “not relevant”) to
the question. The official split provides 20 cases
as a development set and 100 cases as a test set
. We used the 20 development cases for prompt
optimization and for all ablations. Final results
on the test set were obtained via the Codabench
submission system.

Evaluation Metrics: Following the official
ArchEHRQA shared task protocol, we evaluate
each submission along two complementary axes:
Factuality and Relevance, which help capture evi-
dence faithfulness and response quality. Factuality
is quantified by matching the set of note sentences
cited by the model against expert-annotated evi-
dence and computing precision, recall, and F1. We
report a strict variant that counts only essential
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Table 1: Evaluation of participants on factuality and relevance metrics. Bold indicates the best performance in
each column, underlined the second best. Here P*° s RS, F 15 denote micro-averaged strict precision, recall and
Fl1; P, RE, F 1L denote micro-averaged lenient precision, recall and F1; AVGg,.; and AVGyey are the official
“Overall Factuality” and “Overall Relevance” scores, and “Overall” is the combined score. Abbreviations: R.L.=
ROUGE-Lsum, B.S. = BERTScore, A.S. = AlignScore, M.C. = MEDCON .

Model | Factuality | Relevance | Overall
| P RS B P R" F' AVGaa |BLEU RL. SARI BS. AS. MC. AVGrele
DMISLab 579 593 586 612 592 602 586 | 143 465 367 53.9 924 493 488 53.7
Ours 554 638 593 584 63.7 609 593 | 85 341 731 39.1 673 40.0 437 SLS
LAILab 56.0 655 604 59.7 66.0 62.7 604 | 65 327 692 374 653 384 416 51.0
LAMAR 60.6 53.6 569 64.0 535 583 569 | 60 321 658 364 643 436 414 49.1
ssagarwal 68.8 362 475 717 356 476 475 | 47 311 70.0 369 749 38.0 426 45.0
Few-Shot 712 382 498 745 37.8 502 498 | 1.7 255 539 287 545 397 340 41.9
Zero-Shot 71.6 219 33.6 77.0 223 346 336 | 0.1 152 478 205 577 256 278 30.7

citations and a lenient variant that also accepts sup-
plementary evidence, following the task guidelines.
Relevance is evaluated as the arithmetic mean of
complementary surface and semantic level met-
rics: BLEU (Papineni et al., 2002), ROGUE (Lin,
2004), SARI (Xuetal.,2016), BERTScore (Zhang
et al., 2020), AlignScore (Zha et al., 2023), and
MEDCON (Yim et al., 2023).

Baselines: To gauge the performance of our
prompt optimization approach, we compare it
against two baselines:

» Zero-Shot Prompting: A single, succinct in-
struction per stage. This reflects the common
practice of “plug-and-play” prompting with-
out any exemplars.

* Few-Shot Prompting: Adds two manually se-
lected demonstrations to each stage’s prompt
but preserves the terse directive style. This
isolates the value of exemplars alone, without
optimization.

5 Results

Table 1 presents the comparative performance of
our system alongside competing submissions on
the ArchEHR-QA 2025 test set. Our approach
ranked second overall, achieving a combined score
of 51.5, with individual scores of 59.3 for factu-
ality and 43.7 for relevance. Crucially, our sys-
tem maintained consistently high performance
across all evaluation axes, in contrast to other
systems that exhibited strong performance on iso-
lated metrics but lacked robustness overall. We
observe a substantial margin of improvement
over baseline prompting strategies: our method
outperforms the zero-shot and few-shot variants
by approximately 20 and 10 points, respectively,

on the overall score. These gains underscore the
effectiveness of automated prompt optimization,
which systematically discovers high-performing
instructions and demonstrations tailored to each
stage of the QA pipeline. Moreover, our system’s
relative stability across metrics—including both
surface-level (BLEU, ROUGE, SARI) and seman-
tic (BERTScore, AlignScore, MEDCON) relevance
measures—suggests that prompt optimization not
only improves individual metrics but also con-
tributes to the holistic quality and trustworthi-
ness of generated answers. These findings affirm
our central claim: that prompt optimization is not
merely a heuristic tuning step, but a principled and
impactful method for enhancing LLM-based clini-
cal QA systems.

6 Conclusion

We propose a two-stage approach for clinical
question answering on medical notes, leveraging
DSPy’s MIPROV2 optimizer to autonomously fine-
tune prompts for each stage. In Stage 1, the method
extracts essential evidence from the notes by op-
timizing the prompt to maximize the evidence F1
score. In Stage 2, the system generates answers by
optimizing a prompt based on a composite metric
incorporating several metric (word limit score, cita-
tion format score, BLEU, ROUGE, etc.), yielding
concise, structured, and clinically reliable response.
This prompt-optimized pipeline demonstrates sub-
stantial improvements over baselines, highlighting
the efficacy of prompt optimization within a mod-
ular LLM framework. The results suggest that
prompt engineering can transit from heuristic prac-
tice to data-driven optimization process, identify-
ing high-performing prompts tailored to specific
tasks. For medical question answering systems,
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this advancement enhances both evidence retrieval
and answer trustworthiness, representing a signif-
icant step toward the development of reliable Al
assistants for clinicians and patients.

Future research directions include integrating
web search agents to retrieve external medical
knowledge absent from clinical notes, further en-
riching the capabilities and completeness of auto-
mated clinical QA systems.

7 Limitations

Despite strong performance on the ArchEHR-QA
benchmark, our two-stage prompt-optimized frame-
work faces limitations rooted in both data and
model design. The curated and annotated EHR ex-
cerpts used for evaluation do not reflect the messi-
ness of real-world clinical notes, which often suf-
fer from incompleteness, inconsistency, and in-
stitutional variability; this makes generalization
across healthcare settings difficult, especially given
the lack of standardization and privacy restric-
tions on accessing realistic data. Furthermore, the
model has not been domain-adapted and relies on
a generic tokenizer, potentially missing special-
ized medical vocabulary crucial for understanding
nuanced queries. The modular two-step process,
while flexible, introduces latency and risk of com-
pounding errors, especially as the size of the candi-
date space in MIPROv2 grows. This reranker also
depends heavily on metrics like BLEU, which can
reward surface-level similarity over true semantic
alignment and are sensitive to the distribution of
training data. Together, these factors raise concerns
about both scalability and the quality of alignment,
even when evaluation scores appear strong.

8 LLM Settings

In both stages of our pipeline—sentence-level evi-
dence identification and answer synthesis—we em-
ploy the GPT-4.1 model accessed via the OpenAl
API. To accommodate the extensive clinical con-
text and few-shot demonstrations during prompt
optimization, we allocate a maximum context win-
dow of 10,000 tokens. All prompt-optimization
experiments (i.e., MIPROvV2’s evaluation of candi-
date prompt templates and few-shot exemplars) are
conducted with a low-variance decoding strategy,
setting the temperature to 0.3. This relatively “cold”
sampling regime promotes determinism, ensuring
that our optimizer receives consistent feedback on
prompt efficacy as measured by evidence-retrieval

F1 or composite relevance metrics.

For the self-consistency mechanism in Stage
1, we leverage stochastic sampling to capture the
model’s latent uncertainty. Specifically, we issue R
=5 independent generations per question—note pair,
each sampled at temperature 0.7. A majority-vote
over these five runs determines the final label for
each sentence, suppressing spurious outliers while
preserving genuinely informative evidence. All
other decoding parameters (e.g., top-p, frequency
and presence penalties) are held at their API de-
faults, isolating temperature and context length as
the principal levers in our experimental configura-
tion.

9 Prompts and Code Availability

To promote transparency and reproducibility, we
release all manual and optimized prompt templates,
together with our full pipeline implementation at
our GitHub repository’.
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Abstract

Automated response generation from electronic
health records (EHRs) holds potential to re-
duce clinician workload, but it introduces im-
portant challenges related to factual accuracy
and reliable grounding in clinical evidence. We
present a structured three-step pipeline that
uses large language models (LLMs) for ev-
idence classification, guided response gener-
ation, and iterative quality control. To en-
able rigorous evaluation, our framework com-
bines traditional reference-based metrics with
a claim-level "LLM-as-a-Judge" methodology.
On the ArchEHR-QA benchmark, our sys-
tem achieves 82.0 percent claim-level evidence
faithfulness and 51.6 percent citation-level
factuality, demonstrating strong performance
in generating clinically grounded responses.
These findings highlight the utility of struc-
tured LLM pipelines in healthcare applications,
while also underscoring the importance of trans-
parent evaluation and continued refinement.
All code, prompt templates, and evaluation
tools are publicly available.

1 Introduction

Artificial intelligence (AI) holds transformative po-
tential for healthcare, particularly in automating
routine clinical tasks. A significant challenge in
contemporary clinical practice is managing patient
messages efficiently, a process that often requires
clinicians to synthesize information from electronic
health records (EHRs) and compose personalized,
accurate responses. This time-consuming task im-
poses substantial cognitive and emotional burdens
on medical professionals, contributing to burnout
and potentially diminishing the quality of patient
care (Shanafelt et al., 2022).

The ArchEHR challenge addresses this critical
need by focusing on automated clinical response
generation from EHRs. This process presents two
primary technical challenges: the accurate extrac-
tion of relevant information from patient histori-

cal records, and the generation of factual, faithful,
context-appropriate responses suitable for patient
communication. Large language models (LLMs)
have shown promising capabilities in medical ques-
tion answering, with some studies reporting that
they match or exceed clinicians in empathy and
communication quality (Ayers et al., 2023). How-
ever, their real-world deployment remains con-
strained by risks of factual errors, hallucinations
(i.e., the generation of incorrect or fabricated in-
formation), and misunderstandings of medical con-
text.

A fundamental challenge in advancing this field
lies in the evaluation of Al-generated responses.
Traditional text similarity metrics such as BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004)
have demonstrated poor correlation with human
judgments across various tasks and scenarios (Liu
et al., 2016; Lowe et al., 2017; Xu et al., 2023; Fab-
bri et al., 2021; Ernst et al., 2023). This limitation
necessitates novel approaches to ensure the reliabil-
ity and safety of automated clinical communication
systems.

To address these challenges, we present a
grounded medical question-answering system
specifically designed for the ArchEHR challenge.
Our approach innovates by treating evidence clas-
sification as a multiple-choice task, where an LLM
selects among predefined clinical evidence cate-
gories. This classification then informs a structured
clinical response generation process, followed by
automated quality control and iterative revision to
enhance response adherence to the required format
and citation standards.

The remainder of this paper is organized as fol-
lows: Section 2 reviews related work on medi-
cal question answering, the spectrum of LLM us-
age, and evaluation methodologies for natural lan-
guage generation. Section 3 details our methodol-
ogy, including the LL.M-based classification sys-
tem, response generation process, and evaluation
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framework. Section 4 presents experimental results
on the ArchEHR-QA dataset. We then discuss
the implications and limitations of our findings
in Section 5. Finally, we conclude with a sum-
mary and directions for future work. Our source
code, prompts, and evaluation scripts are available
athttps://github.com/mo-arvan/grounded-m
edical-question-answering.

2 Related Work

Our work intersects three fundamental areas: medi-
cal question answering (QA) using large language
models (LLMs), the spectrum of LLM usage strate-
gies, and evaluation methods for natural language
generation (NLG). Together, these domains support
the development of a reliable medical QA system.
In this section, we summarize recent research in
each area to contextualize our contributions.

Medical QA with LLMs Recent advances in
large language models have significantly trans-
formed medical QA, demonstrating strong perfor-
mance in few-shot and zero-shot settings (Kung
et al., 2023; Nori et al., 2023; Brin et al., 2023;
Singhal et al., 2022). Despite their strengths, these
models continue to face critical challenges. Chief
among these are hallucinations, referring to gener-
ated statements that are not supported by underly-
ing medical evidence or knowledge sources (Zhang
et al., 2023; Yang et al., 2024), and difficulties in
maintaining accurate, up-to-date clinical knowl-
edge (Zhou et al., 2023; Gao et al., 2023). Our
work addresses these limitations through a combi-
nation of targeted constraints and comprehensive
evaluation protocols designed to ensure response
faithfulness.

Spectrum of LLM Usage The complexity of
medical queries has prompted the adoption of dis-
tinct modeling strategies aimed at improving rea-
soning and accuracy. One widely used approach
involves task decomposition, in which a complex
problem is reformulated into smaller, sequential
reasoning tasks. These are often structured as
chains or directed acyclic graphs (DAGs) of in-
termediate steps (Wei et al., 2022; Shen et al.,
2023). Although effective, these structures are
typically defined in advance and lack adaptability.
Alternatively, Al agents offer a more dynamic ap-
proach. These systems autonomously generate and
execute plans informed by contextual cues (Kim
et al., 2024). However, such flexibility introduces

increased system complexity and requires more rig-
orous evaluation to verify reliability (Anthropic,
2025). Our framework adopts a pipeline strategy
that decomposes responses into interpretable stages.
This approach balances control and transparency
with adaptability across diverse query types. The
exploration of more autonomous agent-based ap-
proaches is deferred to future work.

Evaluation of Natural Language Generation
Evaluation of generated medical text involves mul-
tiple complementary methodologies. Traditional
reference-based metrics, including BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004), as-
sess surface-level lexical overlap between system
outputs and gold-standard references. However,
such metrics often correlate poorly with human
judgments of quality and relevance (Liu et al.,
2016; Lowe et al., 2017; Xu et al., 2023; Fab-
bri et al., 2021; Ernst et al., 2023). More recent
semantic-oriented metrics, such as BERTScore
(Zhang et al., 2020) and AlignScore (Zha et al.,
2023), use contextual embeddings to better capture
semantic equivalence, offering improved sensitivity
beyond surface similarity.

LLM-based judgment frameworks, particularly
those employing the "LL.M-as-a-Judge" paradigm,
have demonstrated greater alignment with human
evaluators (Zheng et al., 2023; Ashktorab et al.,
2024; Hong et al., 2024; Ru et al., 2024; Gilardi
et al., 2023). These techniques often break the
evaluation process into finer-grained subtasks such
as claim extraction and factual verification (Ru
et al., 2024). Although promising, concerns re-
main about evaluator bias and model inconsistency
(Schroeder and Wood-Doughty, 2024; Thakur et al.,
2024). Our evaluation framework integrates both
reference-based and LL.M-based methods for a
more comprehensive analysis of text quality and
reliability.

These three strands of prior work collectively
inform our methodology for building a reliable
and interpretable medical QA system. By integrat-
ing structured decomposition strategies, constraint-
driven generation, and multi-method evaluation,
we tackle key challenges in producing trustwor-
thy, clinically relevant outputs. This approach also
supports future adaptability as techniques in each
domain continue to evolve.
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3 Methodology

To achieve rigorous and clinically reliable au-
tomation of message generation in healthcare, we
present a methodology encompassing three se-
quential stages: (1) evidence classification using
Large Language Models (LLMs), (2) generation
of clinician-facing responses with iterative quality
control, and (3) comprehensive evaluation across
diverse medical datasets. This structured pipeline
ensures transparency through principled processing
and systematic validation. It ultimately supports
robust clinical decision-making.

Prompt Templates To standardize and guide
LLM behavior across each stage, we employ a suite
of carefully designed prompt templates publicly
available at GitHub'. These templates include:

* Evidence Classification: Categorizing rele-
vant evidence segments from EHRs.

* Grounded Question Answering: Generat-
ing clinician responses grounded in classified
evidence.

* Answer Revision: Refining responses
through iterative feedback.

Evidence Classification We formulate evidence
classification as a multiple-choice task, wherein
the LLM assigns EHR evidence segments to one
of three classes: relevant, supplementary, or not
relevant. To ensure consistency in the output, cat-
egorical labels are constrained using Enum types
(Willard and Louf, 2023). Additionally, to improve
interpretability and encourage faithful predictions,
the model is prompted to provide a rationale before
selecting its final label (Wei et al., 2022).

Response Generation and Quality Control The
LLM generates responses designed for clinicians
that emphasize clarity, coherence, and professional
tone after identifying relevant evidence. These out-
puts undergo a systematic quality assurance pro-
cess based on metrics such as structural consistency,
citation accuracy, and length. When deficiencies
are detected, iterative feedback prompts the LLM
to revise and improve outputs. This feedback loop
enforces adherence to clinical communication stan-
dards.

1https://github.com/mo—arvan/grounded—medical
-question-answering/tree/master/prompts

Evaluation Strategy Our evaluation strategy in-
cludes two phases: benchmarking foundational
medical reasoning and assessing the full clinical
message pipeline.

The first phase evaluates the LLM’s performance
using multiple-choice datasets closely aligned with
our evidence classification framework: MMLU-
Pro-Med, MedQA-US, MedMCQA, and Pub-
MedQA (Wang et al., 2024; Jin et al., 2021; Pal
et al., 2022; Jin et al., 2019). These datasets collec-
tively measure domain-specific competency.

The second phase involves a comprehensive
evaluation of the pipeline. This includes evi-
dence classification, response generation and au-
tomated quality control applied to the ArchEHR-
QA dataset (Soni and Demner-Fushman, 2025b,a),
which is sourced from real-world EHR scenarios.
Performance is assessed across two major dimen-
sions:

Factuality is evaluated using Precision, Recall,
and F1 Scores that compare the evidence cited
in the generated responses to manually annotated
ground-truth evidence. A "strict" Citation F1 con-
siders only essential evidence, whereas a "lenient"
variant also incorporates supplementary evidence.

Relevance is measured by comparing generated
answers to essential EHR sentences and the orig-
inal clinical question. Metrics employed include
BLEU, ROUGE, SARI, BERTScore, AlignScore,
and MEDCON.

Faithfulness Verification via Claim-Level Triple
Extraction We introduce a custom, interpretable
faithfulness metric grounded in claim-level triple
extraction to evaluate factual consistency. Faithful-
ness, defined as the extent to which generated out-
puts accurately reflect source evidence, is a critical
factor for clinical dependability (Ru et al., 2024).
However, it is often difficult to measure due to
incomplete references and the resource-intensive
nature of expert reviews.

Our approach extracts atomic subject-predicate-
object triples from both generated responses and
their supporting EHR evidence. In a fungal infec-
tion case, the following triples, for example, are
identified:

("Yeast", "was seen with", "bacteria on
initial sputum gram stain"),
("Torulopsis glabrata", "was identified
in", "blood/fungal culture"), and
("Antifungal therapy", "was started af-
ter", "fungal findings were confirmed").
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In this example, the first two triples are sup-
ported by evidence, while the third lacks grounding.
Each claim’s support is verified by a separate LLM.
Faithfulness is then quantified as the proportion of
claims backed by evidence—in this case, 66.7%.
This metric provides scalable and explainable fac-
tuality assessment.

Summary In summary, our methodology inte-
grates structured prompt-guided classification, co-
herent response generation with iterative qual-
ity checks, and a rigorous evaluation framework.
These include domain-specific benchmarks and in-
terpretable factuality metrics. This design creates
reliable, transparent, and extensible automation
for generating clinical messages grounded in EHR
data.

4 Results

This section presents our evaluation of model per-
formance on two complementary tasks: general
medical knowledge assessment and grounded clini-
cal question answering. We first measure accuracy
on standard multiple-choice benchmarks to assess
general medical knowledge competence. We then
evaluate the ability of the models to generate factu-
ally grounded and contextually relevant answers to
clinical questions using the ArchEHR-QA dataset.

4.1 General Medical Knowledge Assessment

Table 1 summarizes accuracy scores across four
established medical knowledge benchmarks. GPT-
40 consistently outperforms both GPT-40-mini and
the baseline GPT-4" across all datasets.

In particular, GPT-40 achieves 77.67% on
MedMCQA, marking an 8 percentage point im-
provement over GPT-4. On MedQA, it attains
88.69%, surpassing GPT-4 by 5 points. For
MMLU-Pro-Med, GPT-40 sets a new state of the
art with 81.56% accuracy. Although performance
on PubMedQA is lower at 45.80%, this is expected
due to the dataset’s reliance on detailed compre-
hension of specialized biomedical literature. The
lack of retrieval capabilities particularly challenges
models in this setting.

4.2 Grounded Medical Question Answering

We next evaluate models on the ArchEHR-QA
dataset, which benchmarks clinical question an-
swering grounded in patient electronic health
records. To ensure comparability with prior work,

we use the official evaluation scripts provided by
the challenge organizers.

Table 2 reports factuality and relevance scores
for GPT-40 and GPT-40-mini on both the devel-
opment and test sets. GPT-40 achieves factuality
scores of 51.85% (dev) and 51.59% (test), along
with relevance scores of 29.96% and 33.33%, re-
spectively. GPT-40-mini scores 27.27% for fac-
tuality and 29.21% for relevance on the develop-
ment set. As only GPT-40 was submitted to the
challenge, test set outcomes for GPT-40-mini are
unavailable.

In addition to factuality and relevance, we assess
response faithfulness. As shown in Table 3, GPT-
40 attains 76.1% on the development set and 82.0%
on the test set. GPT-40-mini achieves a lower score
of 65.6% on the development set.

These results collectively indicate that GPT-40
not only generates responses that are more accurate
and pertinent but also maintains a strong alignment
with provided clinical evidence.

5 Discussion

Our findings show that large generative mod-
els, such as GPT-4o0, demonstrate superior per-
formance on medical question-answering tasks,
excelling across both knowledge-based and clin-
ically grounded queries. Furthermore, the model is
maintaining a high degree of factual consistency in
evidence-grounded outputs.

Despite these advances, key trade-offs emerge
between extractive and generative approaches.
Evaluation metrics employed by ArchEHR-QA em-
phasize lexical overlap with reference texts, thereby
favoring extractive methods. Generative models,
by contrast, tend to produce more fluent and co-
herent responses but may not replicate the precise
phrasing found in reference answers. To better cap-
ture the factual accuracy of generative outputs, we
adopted a structured evaluation using the LLM-as-
a-Judge framework. This approach enables scal-
able verification by assessing whether individual
assertions in a generated response are supported by
underlying evidence.

However, assessing factual consistency alone
does not guarantee citation-level reliability. Recent
studies highlight that large language models can
incorrectly attribute statements to references that
do not actually support them, introducing risks in
high-stakes domains like healthcare. Notably, prior
evidence shows that up to 30% of model-generated
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Model MedMCQA MedQA MMLU-Pro-Med PubMedQA
GPT-40 77.67 88.69 81.56 45.80
GPT-40-mini 68.13 74.39 74.07 44.80
GPT-47 69.88 83.97 - 39.60

Table 1: Performance comparison (accuracy %) across medical knowledge datasets. Results marked with { are

baseline results from Xiong et al. (2024).

Model Set Factuality Relevance
GPT-40 Dev 51.85 29.96
GPT-40 Test 51.59 33.33
GPT-40-mini  Dev 27.27 29.21

Table 2: Factuality and relevance scores for GPT-40 and
GPT-40-mini on development and test sets of ArchEHR.

Model Set  Faithfulness
GPT-40 Dev 76.1
GPT-40 Test 82.0
GPT-40-mini Dev 65.6

Table 3: Faithfulness scores for GPT-40 and GPT-4o-
mini on development and test sets.

statements may contain unsupported reference ci-
tations (Wu et al., 2025). Ensuring that all cited
sources genuinely substantiate the content remains
a critical challenge.

Given these limitations, the safe and responsi-
ble deployment of LLMs in clinical environments
requires comprehensive validation and routine mon-
itoring using scalable methods like those employed
in this study. Importantly, expert human review
remains essential, particularly in scenarios where
accuracy and reliability are paramount for patient
safety.

A practical advantage in the clinical setting is
that real-time response generation is often not re-
quired. This relaxed time constraint allows the
system to proactively generate multiple candidate
questions and corresponding answers for each in-
coming patient message in advance. Consequently,
clinicians are not burdened with crafting questions
themselves and can instead select from a curated
list of contextually appropriate Q&A pairs. This
workflow-integrated approach streamlines clinical
decision-making and promotes more efficient pa-
tient communication.

Looking ahead, integrating external knowledge

retrieval with interactive clinical tools presents a
promising avenue to enhance both model perfor-
mance and usability. Future research should also
examine the impact of such systems on key out-
comes, including clinician workload, as existing
evidence in this area remains mixed (Garcia et al.,
2024). In addition, comprehensive human prefer-
ence studies comparing outputs from extractive and
generative systems will be essential to align eval-
uation frameworks with the practical expectations
and needs of clinicians.

6 Conclusion

Our work shows that generative models such as
GPT-40 perform well across a range of clinical
question answering tasks. These models also
demonstrate strong factual alignment with source
evidence when evaluated using structured, claim-
level assessment methods.

However, several important challenges remain.
Distinguishing between claim faithfulness, which
assesses whether individual assertions align with
evidence, and citation faithfulness, which considers
whether referenced sources support the claims, con-
tinues to be difficult. In addition, label consistency
and the design of evaluation frameworks require
further improvement to ensure more reliable assess-
ments.

Addressing these challenges, together with in-
corporating direct feedback from clinicians, is es-
sential for enabling trustworthy and effective de-
ployment of these models in real-world biomedical
settings.

Limitations

One important challenge identified during Phase
1 of our evaluation involved testing models on
general medical knowledge benchmarks, including
MMLU-Pro-Med (Wang et al., 2024), MedQA-US
(Jin et al., 2021), MedMCQA (Pal et al., 2022),
and PubMedQA (Jin et al., 2019). A central lim-
itation in this context is the lack of transparency
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surrounding the training data used by commercial
large language models. Without clear documenta-
tion of training corpora, there is a significant risk of
data leakage, where benchmark content may inad-
vertently overlap with training inputs. This overlap
can lead to inflated performance metrics, which
misrepresent a model’s generalizability and compli-
cate direct comparisons between models. Because
these benchmarks aim to assess a broad range of
medical knowledge and reasoning skills, even par-
tial contamination reduces the credibility of conclu-
sions drawn from model performance. Although
commercial LLMs exhibit strong capabilities, the
opacity of their training data sources remains a fun-
damental barrier to reproducible and trustworthy
evaluation. This limitation underscores the need
for greater dataset transparency or the development
of evaluation strategies that explicitly control for
training-evaluation separation.

In addition, this study did not include expert
validation of the model-generated responses. Due
to time constraints, we were unable to engage li-
censed medical professionals in a systematic review
process. While our structured framework incorpo-
rates LL.M-as-a-Judge assessments, the absence
of expert oversight limits our ability to confirm
the clinical accuracy and safety of model outputs.
Future work should incorporate formal expert eval-
uation to ensure that responses meet professional
standards and are suitable for use in healthcare set-
tings.

Ethical Considerations

The system was developed using Azure OpenAl
Services in accordance with PhysioNet’s respon-
sible use guidelines 2. We avoided using any pro-
tected health information during development.
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Abstract

The increasing utilization of patient portals
has amplified clinicians’ workloads, primarily
due to the necessity of addressing detailed pa-
tient inquiries related to their health concerns.
The ArchEHR-QA 2025 shared task aims to
alleviate this burden by automatically generat-
ing accurate, evidence-grounded responses to
patients’ questions based on their Electronic
Health Records (EHRs). This paper presents a
six-stage multi-agent framework specifically
developed to identify essential clinical sen-
tences for answering patient questions, lever-
aging large language models (LLMs). Our ap-
proach begins with OpenAI’s 03 model gener-
ating focused medical context to guide down-
stream reasoning. In the subsequent stages,
GPT-4.1-based agents assess the relevance of
individual sentences, recruit domain experts,
and consolidate their judgments to identify es-
sential information for constructing coherent,
evidence-grounded responses. Our framework
achieved an Overall Factuality score of 62.0
and an Overall Relevance Score of 52.9 on the
development set, and corresponding scores of
58.6 and 48.8, respectively, on the test set.

1 Introduction

The increased use of patient portals has signifi-
cantly increased clinicians’ workload, especially
concerning responding to patients’ inbox mes-
sages. These messages frequently include de-
tailed questions regarding patients’ medical condi-
tions, treatments, and healthcare procedures. Ad-
dressing these inquiries manually by clinicians is
not only time-consuming but can also delay pa-
tient care. To mitigate this burden, the ArchEHR-
QA 2025 shared task (Soni and Demner-Fushman,
2025b) focuses on automatically generating accu-
rate and clinically-grounded responses to patients’
health-related questions by leveraging information

*Equal contribution  Corresponding author
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Figure 1: Overview of our six-stage multi-agent pipeline
for evidence-grounded EHR question answering. The
Context Agent generates a medical context K from the
patient question () and EHR sentences E. A General-
Medical Expert labels each sentence as essential or not-
relevant with a brief rationale. The Recruiting Agent
selects domain-specific Expert Agents. The Decision
Agent integrates all information, generate the answer
Ogec that cites sentence IDs. The patient narrative, clini-
cian question, and chosen ehr sentences are then assem-
bled into the final reply Ogpy-

contained within their Electronic Health Records
(EHRs).

In this paper, we introduce a six-stage multi-
agent framework specifically designed to select
appropriate EHR sentences for effectively answer-
ing patients’ questions in the ArchEHR-QA 2025
shared task. Figure 1 briefly shows how our frame-
work generates evidence-grounded answer based
on multiple LLM agents. Our approach begins
with context generation using OpenAl’s advanced
03 model (OpenAl, 2025b), selected for its demon-
strated superior reasoning capabilities in medical
contexts. Subsequent stages employ specialized
GPT-4.1 (OpenAl, 2025a)-based agents to evalu-
ate the relevance of clinical note sentences indi-
vidually and collectively, recruit domain-specific

118

BioNLP 2025 Shared Tasks, pages 118—125
August 1, 2025 ©2025 Association for Computational Linguistics



experts dynamically based on the patient’s narra-
tive, and integrate diverse expert perspectives into a
consensus-driven decision process. The final stage
involves synthesizing the identified essential clini-
cal evidence to produce a comprehensive, clinically
grounded answer. On the development set, our
framework achieved an Overall Factuality score of
62.0 and an Overall Relevance Score of 52.9. On
the test set, it attained an Overall Factuality score
of 58.6 and an Overall Relevance Score of 48.8.

2 Related Works

Recent advances in large language model (LLM)-
based multi-agent systems (Xi et al., 2025; Wang
et al., 2023; Guo et al., 2024) have demonstrated
significant promise in complex reasoning tasks.
Such systems have particularly shown effective-
ness in medical domains, with successful imple-
mentations like MDAgents (Kim et al., 2024) and
MedAgent (Tang et al., 2024) illustrating that de-
ploying specialized agents, each tailored for dis-
tinct analytical functions, facilitates robust clinical
decision-making processes and precise information
extraction. Given the complexity and the sensitive
nature of clinical data processing, utilizing a multi-
agent framework is particularly well-suited for the
ArchEHR-QA 2025 shared task.

3 Method

We propose a six-stage multi-agent framework that
automatically extracts the subset of sentences es-
sential for answering patient and clinician ques-
tions from a patient’s electronic health record
(EHR) corpus. The context generation stage em-
ploys OpenAl 03 (OpenAl, 2025b) selected for
its superior reasoning performance to generate
focused and clinically relevant medical context,
whereas the remaining stages rely on specialised
agents based on GPT-4.1 (OpenAl, 2025a) that
provide complementary analytic perspectives and
collectively converge on a final consensus.

3.1 Problem Definition

Throughout this section, () denotes the patient nar-
rative, £ = {ey, ..., e, } the set of EHR sentences,
and S C F the subset labeled essential. An agent
is defined as a function of the form:

Arole (M) I) = Ov

* model M is an instantiated LLM (e.g. Ope-
nAl o3 or GPT-4.1).

ContextAgent Example

### Patient Question

ICU 15 days for severe abdominal pain; diagnosed with
common-bile-duct (CBD) sludge and started Udiliv,

but doctor still advises ERCP.

Can medication alone clear the sludge?

### Generated Medical Context

1. UDCA may dissolve microscopic gallbladder sludge
but not obstructive CBD sludge, especially

when infection or jaundice is present...

2. Despite of ICU care and ongoing Udiliv,
the sludge has persisted strong enough evidence
that medication has not yet relieved the obstruction.

Figure 2: An example of medical contexts generated by
the ContextAgent, with long explanations truncated for
brevity.

* input 1 is a role-specific set of inputs, com-
prising prompts, auxiliary context, and inter-
mediate metadata.

* output O is the structured result expected
from that role (e.g. a context paragraph, a
binary relevance label with rationale.)

3.2 Multi-Agent Framework

Context Generation. The context agent A uses
the high-performance model M.« (OpenAl 03) to
generate a medical context K to address the patient
question (), guiding downstream reasoning.

K= Actx (MctX7 (QaE))

General Medical Expert Relevance Screening.
The general medical expert agent Ay, evaluates
the essentiality of each individual EHR sentence.
The agent is provided with the patient’s question
@, the generated medical context K, the full set
of EHR notes F/, and the specific sentence e; un-
der evaluation. The agent outputs a binary label
¢; € {essential, not-relevant}, indicating the es-
sentiality of e;, along with a rationale 7;. This pro-
cess is repeated independently for each sentence.
(5", 1) = Agen (Mgen, (Q, K, E, €;))

Experts Recruitment. The recruiting agent Ayec
synthesizes the patient narrative (), medical context
K, and the full set of EHR notes E to assemble an
expert panel, denoted as

Experts = {Ag()p, .

: 7Ac(3;r;3)} = AreC(Q)Ka E)
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Domain-Specific Assessment. Each expert agent
Ag{)p € Experts then receives the (Q, K, E) to
perform a domain-specific evaluation. Based on
this comprehensive input, the expert evaluates the
essentiality of all sentences in the EHR collectively,
leveraging their specialized medical knowledge to
make sentence-level judgments. The relevance la-
bel and rationale set produced by the j-th expert
agent are given by

(LW, RY) = AUy (ME), (Q. K, E)),

where LU) = (Egj ), . ,££Z )) represents the set of
sentence-level labels, and R\ = (7{3' ), .. ,r,(lj ))
represents the corresponding rationales provided
by the expert for each sentence e; € E. Each la-
bel EZ(J ) e {essential, not-relevant} encodes the
expert’s judgment regarding the essentiality of sen-
tence e;, and each rationale rﬁj ) provides the justi-
fication for that judgment.

Consensus Integration. The aggregated package
Lice = (@, K. B, (67, r5")iy, {(LY, RV,

is forwarded to the decision agent Age.. This agent
consolidates the upstream judgments to determine
the definitive essential-sentence set S, and uses S
to craft a comprehensive, evidence-grounded clini-
cal answer Qg to the patient’s question ().

Odec = Adec(Mdeca Idec)a

Final Answer Generation. Finally, we extract the
IDs of the essential notes identified in the Oy,
and then concatenate the patient narrative, clini-
cian question, and the selected essential notes to
generate a comprehensive response O iy

4 Experimental settings

4.1 Dataset

To evaluate our framework, we utilize the bench-
mark dataset (Soni and Demner-Fushman, 2025a)
provided by ArchEHR-QA 2025. This dataset con-
sists of case-based collections, each comprising
a patient narrative, a patient question, a clinician
question, and associated EHR data intended to sup-
port answering the question. The EHR data for
each case is composed of multiple sentences, each
annotated with a unique sentence ID. The dataset
consists of a development set and a test set. Among

Factuality (Strict Micro)

Method Precision Recall Fl1
Multiclass classification

w/ Experts 64.8 52.1 578
w/ Context K 61.0 52.1 56.2
w/ Experts + Context K 64.2 52.1 57.6
Binary classification

w/ Experts 50.0 69.5 58.1
w/ Context K 52.1 69.5 59.6
w/ Experts + Context K 534 73.9 62.0

Table 1: Factuality score comparison for multiclass mod-
els (essential | supplementary | not-relevant) and binary
models (essential | not-relevant) using w/ Experts, w/
Context K, and w/ Experts + Context K.

these, only the development set provides sentence-
level relevance labels (categorized as essential, sup-
plementary, or not relevant) for evaluating the per-
formance of answer generation.

4.2 Metrics

We adopt three evaluation metrics in accordance
with the official scoring criteria of ArchEHR-QA
2025: Overall Factuality Score, Overall Relevance
Score, and Overall Score.

Overall Factuality Score measures the F1 score
between the set of sentence IDs cited in the final
answer and those cited in the gold answer. This
score is computed based on the counts of true posi-
tives, false positives, and false negatives aggregated
across each case.

Overall Relevance Score evaluates the semantic
and lexical similarity between the final and gold
answers using a combination of BLUE (Papineni
et al., 2002), ROUGE (Lin, 2004), SARI (Xu et al.,
2016), BERTScore (Zhang* et al., 2020), Align-
Score (Zha et al., 2023), and MEDCON (Yim et al.,
2023) metrics. The final score is obtained by com-
bining the normalized scores of these individual
metrics. The gold answer in this context is con-
structed by concatenating the patient narrative, clin-
ician question, and essential EHR sentences pro-
vided for each case.

Overall Score serves as the primary evaluation
metric for this challenge. It is defined as the aver-
age of the Overall Factuality Score and the Overall
Relevance Score.

4.3 Results

To verify the quality of our framework, this section
presents (i) a sentence-level factuality analysis on
the development set, (ii) a multi-metric relevance
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Relevance

Method BLEU ROUGE-L SARI B.S. A.S. MEDCON Overall
Questions + Predicted sentences ~ 19.2 53.6 348 582 97.6 54.1 529
Summary of predicted sentences 2.0 25.1 55.7 27.6 426 374 31.7

Table 2: Comparison of relevance scores between two answer generation methods: using full question with
predicted essential sentences vs. using a summary of the predicted essential sentences. Abbreviations: ROUGE-L=

ROUGE-Lsum, B.S. = BERTScore, A.S. = AlignScore.

Factuality (Strict Micro)

Relevance

Team Overall Precision Recall Fl1 BLEU ROUGE-L SARI B.S. A.S. MEDCON Overall
DMIS Lab (Ours) 53.7 57.9 593 58.6 14.3 46.5 36.7 539 924 49.3 48.8
Neural 51.5 554 63.8 593 8.5 34.1 731 39.1 673 40.0 43.7
LAILab 51.0 56.0 655 604 6.5 32.7 69.2 374 653 38.4 41.6
LAMAR 49.1 60.6 53.6 569 6.0 32.1 658 364 643 43.6 414
ssagarwal 45.0 68.8 362 475 4.7 31.1 70.0 369 749 38.0 42.6

Table 3: Official results of the leaderboard (Top 5) on ArchEHR-QA 2025 dataset. The teams are ranked based on
Overall score. Abbreviations: ROUGE-L = ROUGE-Lsum, B.S. = BERTScore, A.S. = AlignScore.

analysis, and (iii) a comparison of test-set scores
on the official ArchEHR-QA 2025 leaderboard.

4.3.1 Factuality analysis

The sentence—level evaluation, summarised in Ta-
ble 1, reveals a clear benefit from contextual condi-
tioning. The multiclass (essential / supplementary
/ not-relevant) variant achieves the highest preci-
sion (62.2%) but simultaneously records the lowest
recall (51.4%), resulting in an F1 of 56.3. Con-
versely, the binary (essential / not-relevant) clas-
sifier attains the greatest recall (69.5%) at the ex-
pense of precision (50.0%), yielding an F1 of 58.1.
When the identical binary classification approach
is prefixed with the automatically generated med-
ical context K, recall increases further to 73.9%
while precision recovers to 53.4%, producing the
best strict-micro F1 of 62.0. These results indicate
that (i) finer-grained labels do not compensate for
the recall penalty inherent in multiclass formula-
tions, and (ii) domain-aware context provides the
disambiguating cues necessary to recover clinically
critical sentences, thereby maximising overall fac-
tuality.

4.3.2 Relevance analysis

Table 2 compares two answer-construction strate-
gies. Passing the generator the guestion con-
catenated with the sentences predicted essential
achieves higher scores across most relevance met-
rics: BLEU increases from 2.0 to 19.2, ROUGE-
Lsum from 25.1 to 53.6, AlignScore from 42.6 to
97.6, and MEDCON from 37.4 to 54.1, resulting
in an overall relevance score of 52.9. By contrast,
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generating a free-form summarised answer results
in an overall relevance score of 31.7. Based on
this result, we adopted the guestions + essential
sentences strategy for our final test submission.

4.3.3 Official Leaderboard

Table 3 summarises official test-set results. Our sys-
tem (DMIS Lab) ranks first with an Overall score
of 53.7, balancing a factuality F1 of 58.6 and a
relevance overall of 48.8. The consistency between
development and test splits underscores the effec-
tiveness of the proposed multi-agent architecture.

5 Conclusion

In this paper, we presented a multi-agent frame-
work for answering patients’ health-related ques-
tions using their EHRs. Our method decomposes
the task into distinct stages: context generation,
relevance assessment, expert recruitment, and con-
sensus integration. Each stage is handled by spe-
cialized LLM-based agents. This structured, modu-
lar approach enables robust identification of essen-
tial clinical sentences and the generation of coher-
ent, evidence-grounded responses. Our framework
achieved strong performance on both the develop-
ment and test sets in terms of factuality. These
results highlight the potential of LLM-based multi-
agent systems in clinical question answering and
suggest promising directions for future work in au-
tomating patient-clinician communication based on
real EHR data.
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Limitations

De-identification Assumptions. ArchEHR-QA
2025 provides de-identified notes, but real clinical
systems often contain partially identifiable informa-
tion. Our framework does not include additional
privacy-preserving mechanisms and would need
adaptation before deployment on raw, identifiable
EHR data.

Dependence on Closed source LLMs. Our frame-
work relies on OpenAl’s 03 and GPT-4.1 models.
Although these models currently provide state-of-
the-art reasoning, they are proprietary, incur non-
trivial inference costs, and can change without no-
tice. Reproducing or extending our results with
fully open-source alternatives may require prompt
and hyper-parameter retuning.

Latency and Cost. The framework’s inference
time and computational cost remain substantial,
posing challenges for real-time deployment in high-
volume patient-portal environments. These re-
source demands may limit its practical scalability
without further optimization.
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A Appendix
A.1 Prompt example for Each Agent

ContextAgent system_message

- You are a ContextBuildingAgent.

- Your role is to carefully read the patient’s question and generate a relevant medical context
that would help answer it accurately.

Guidelines:

- Focus only on medically meaningful information that would assist in answering the patient’s
question.

- Include important background knowledge, clinical reasoning steps, diagnostic considerations,
and treatment options that are directly relevant to the question.

- Do not fabricate information unrelated to the patient’s case.

- The context should be clear, concise, medically accurate, and structured to support clinical
decision-making.

Output:
- Plain text only.

- Write in a factual and professional tone as if you are preparing supporting information for a
medical expert.

RecruitingAgent prompt

- You are a recruiting agent.

- Given a patient question and EHR note, your task is to identify the most relevant medical
experts.

- Return a JSON object with a key called ’experts’ whose value is a list of strings.
- Example: {"experts”: ["cardiology”, "gastroenterology"”l}

- Do not include any explanation or additional text. Only return the JSON object.

AnalysisAgent prompt

- You are a medical reviewer. Your task is to evaluate whether each individual sentence
in a clinical note is relevant to answering the patient’s question.

- Each sentence is identified by its ID. For every sentence, return:
Whether the sentence is ’essential’ or ’not-relevant’, and A brief justification for your
judgment, explaining why the sentence does or does not contribute to answering the question.

- A sentence is considered *xessentialx*x if it directly or indirectly helps answer the question
through evidence, explanation, clarification, or medically meaningful context.

- Avoid marking sentences as essential if they only provide background or loosely related
information.

ExpertAgent prompt

- You are a board-certified clinical expert in {expertise}.

- You are evaluating each sentence in an EHR note from the unique clinical
perspective of your own specialty ({expertise}).

- Your role is to assess whether the sentence meaningfully contributes to
answering the patient’s question, based on your specialty’s reasoning
principles, typical clinical decision-making, and domain-specific interpretation.

- If the sentence contains medically meaningful evidence, logic, or interpretation
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that a {expertise} specialist would find critical to answer the question,
label it "ESSENTIAL".

- If the sentence contains no valuable insight or decision-making relevance from
your specialty perspective, label it "NOT-RELEVANT".

- Avoid generic reasoning. Always ground your decision in your expert role.

DecisionAgent prompt

- You are a skilled medical expert. Your task is to provide an accurate and evidence-based answer
to a patient’s question using the provided EHR note.

- Your answer must be medically sound and supported by evidence extracted from the provided EHR
note sentences.

- When composing your answer, you **must*x include citation IDs (enclosed in pipe symbols |, for
example, |3,4|) only for the parts of your answer that are directly supported by evidence
from the EHR note.

- Each sentence in your answer should be on a separate line.

- *xBefore writing your answer, carefully verify whether the EHR note includes any sentences that
are truly relevant to answering the patient’s question.#*x

A.2 Basic Structure of Agent

Listing A.2: Agent Class Definition

class Agent:
def __init__(self, agent_name,
model="model’,
temperature=0,
system_message="You are a helpful assistant.’):
self.agent_name = agent_name
self.model = model
self.temperature = temperature
self.system_message = system_message
self.client = openai.OpenAI()

def generate_response(self, user_msg: str) -> str:
rsp = self.client.chat.completions.create(
model=self.model,

messages=[{"role"”: "system”,
"content"”: self.system_message},
{"role": "user"”,

"content”: user_msg}],
temperature=self.temperature,
max_tokens=2048,

)

return rsp.choices[@].message.content.strip()
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Abstract

We present our system for the ArchEHR shared
task, which focuses on answering clinical and
patient-facing questions grounded in real-world
EHR data. Our core contribution is a 2-Stage
prompting pipeline that separates evidence se-
lection from answer generation while employ-
ing in-context learning strategies. Our experi-
mentation leveraged the open-weight Gemma-
v3 family of models, with our best submis-
sion using the Gemma-12B model securing 5th
place overall on the unseen test set. Through
systematic experimentation, we demonstrate
the effectiveness of task decomposition in im-
proving both factual accuracy and answer rele-
vance in grounded clinical question answering.

1 Introduction

As the adoption of digital systems in healthcare
become ubiquitous, patients will expect to be able
pose questions of their recent experiences. Re-
sponding to these questions in a rapid, thorough
and most importantly safe way will ensure patients
are more involved on their care and receive overall
improved care.

Effective communication between patients and
their healthcare providers is a cornerstone of quality
care as it plays a critical role in treatment adherence,
recovery, and overall health outcomes (Zolnierek
and DiMatteo, 2009). Patient portals have emerged
as a key tool for facilitating this communication,
providing individuals with direct access to their
health information and enabling ongoing interac-
tion with their care teams (Irizarry et al., 2015).
Modern patient portals go beyond simple data ac-
cess—they support secure messaging, prescription
refill requests, and delivery of tailored educational
materials (Lyles et al., 2020).

A growing body of research highlights that pa-
tient engagement through these digital platforms
is associated with improved health literacy, bet-
ter understanding, increased medication adherence,

and greater satisfaction with care (Han et al., 2019;
Otte-Trojel et al., 2014; Carini et al., 2021; Den-
dere et al., 2019). Portals enabling record review
and follow-up questions have been shown to fos-
ter better self-management and reduce conflict in
decision-making (Najafi et al., 2022; Shay and
Lafata, 2015).

Beyond empowerment, these digital systems
help reduce medical errors, improve communica-
tion of complex information, and foster trust be-
tween patients and providers (Bell et al., 2017;
DesRoches et al., 2020). Integrating robust and
responsive question-answering capabilities into pa-
tient portals offers a promising direction for advanc-
ing truly patient-centered care. The potential of
conversational agents to further enhance communi-
cation and engagement is increasingly recognized,
with recent studies showing early but promising
results in clinical contexts (Laranjo et al., 2018).

2 Background

2.1 Retrieval Augmented Generation

A widely adopted framework for building question-
answering systems is Retrieval-Augmented Gen-
eration (RAG) (Lewis et al., 2020), which uses a
Causal Large Language Models (LLMs) to gen-
erate answers. In this framework, a retriever first
selects relevant passages from a knowledge source,
which are then passed as context to the LLM that
leverages it to generate answers. In the medical do-
main, RAG has been applied to tasks such as clini-
cal decision support (Zakka et al., 2024), medical
literature retrieval (Tian et al., 2024), and patient
education (Xiong et al., 2024), generating patient-
friendly explanations of medical conditions and
procedures (Yang et al., 2025).

2.2 ArchEHR shared task

Responding to patients’ queries on portals offers
numerous benefits, as discussed in Section 1, but it
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has become a contributor to clinician burden. Au-
tomatically generating accurate, safe, and context-
aware responses to patient questions using data
from EHRSs can help alleviate this pressure.
Although RAG offers a compelling framework for
this task, it faces several limitations, especially in
the medical domain. Generated responses can be
incorrect, particularly when retrieved documents
are ambiguous or conflicting, leading to hallucina-
tions (Wong et al., 2025). The complexity of RAG
systems can make it challenging to trace the reason-
ing behind generated answers, which is especially
critical in medical contexts (Yang et al., 2025).

The ArchEHR shared task (Soni and Demner-
Fushman, 2025a), hosted on PhysioNet (Gold-
berger et al., 2000), proposes a benchmark specif-
ically designed to evaluate grounded question an-
swering in the clinical domain. The task focuses
on answering patient-facing questions using evi-
dence from EHR notes, with a strong emphasis
on two core criteria: factuality, which measures
whether the generated answer is supported by cited
evidence, and relevance, which assesses how well
the response aligns with the patient’s original query
(Soni and Demner-Fushman, 2025¢). This aims
at addressing the above discussed limitations and
thereby advancing safe and trustworthy patient-
centered clinical QA systems.

2.2.1 Dataset

The ArchEHR dataset (Soni and Demner-Fushman,
2025b) is constructed using the MIMIC-III
database (Johnson et al., 2016), a large, publicly
available resource of de-identified ICU records, en-
suring realistic clinical language and complexity.
Each instance in the dataset contains a patient-
posed question, a clinician-refined rewrite, a set
of evidence sentences from real clinical notes, and
a gold standard answer.

The task requires systems to generate responses
grounded in the provided evidence, with citations
to specific supporting sentences. The task does not
enforce answers to use either or only one of the
patient or clinician focused questions.

3 Methodology

We present two groups of approaches for the task:

* Firstly, we prompt LLMs either in 2-Stages or
a combined 1-Stage approach, as described in
Section 3.1.1 and 3.1.2 respectively.

* Secondly, we experiment with a classical sen-
tence embeddings, fine-tuning classifiers for
classification of relevant evidence to inform
the generation step.

These approaches are similar to a general RAG
process, but importantly our retriever step is con-
strained to only sentences, and to three distinct
classes of informativeness for the generated sum-
mary, i.e. essential, supplementary or not-relevant
sentence classes.

3.1 Approaches
3.1.1 2-Stage Prompt Approach

This approach consists of two stages, each targeting
a specific subtask: Stage 1 — Sentence Classifica-
tion and Retrieval and Stage 2 — Generation. For
both the stages, an LLM is prompted to perform
the specified subtask. Below is a description of the
stages:

 Stage 1: Given a query, Stage 1 focuses on
identifying the most relevant sentences from
the clinical notes. By passing focused context
to the generation stage, it improves perfor-
mance as the generation stage focuses on clin-
ically meaningful evidence, leading to more
precise and context-aware responses.

» Stage 2: Stage 2 performs generation us-
ing the filtered context, allowing the model
can leverage all its capability effectively to
produce accurate, clinically relevant answers.
This ensures that the final response is not only
coherent but also grounded in the relevant evi-
dence, minimizing the risk of hallucinations
or misinformation.

The 2-Stage prompt is the proposed approach
in this work. Its ability to break down the task
into manageable stages improves the clarity and
performance of each step, resulting in a higher
performing pipeline. Further details are discussed
in Section 5.

3.1.2 1-Stage Prompt and 2-Stage Fine-tuned
Classifier Approach

The 1-Stage Prompt combines sentence classifica-
tion and answer generation into a single prompt
to the LLM, requiring the model to both identify
relevant evidence and generate a response at once.
This approach simplifies and aims to streamline the
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process by tackling the task as a single coherent ob-
jective. This approach also utilises the prompting
techniques mentioned in Section 3.2.

The 2-Stage fine-tuned classifier approach fol-
lows the same 2 stage structure as the 2-Stage
prompting method, but uses a fine-tuned classi-
fier to perform the sentence classification in-place
of an LLM. Specifically, we use Sentence-BERT
embeddings (Reimers and Gurevych, 2019) to en-
code sentences and train a classifier to perform the
task using the dev test. This approach allows for
greater control over the sentence filtering stage and
enables fine-tuning on the task-specific data.

3.2 Few Shot Learning

To guide the model through both stages, we lever-
age in-context learning via few-shot prompting to
ensure consistent and contextually accurate outputs.
Carefully designed prompts which include a small
number of examples, help the model understand
the task, distinguish relevant from irrelevant infor-
mation, and structure its responses appropriately.

Prompt design was iteratively refined based on
empirical performance during sentence classifica-
tion and answer generation phases. Our approach
integrates task-specific examples that included var-
ied clinical scenarios to better guide the model,
allowing it to also grasp the clinical nuances of
the tasks. Appendix A.2 provides our prompt tem-
plates.

3.3 Output Guardrails and Format
Enforcement

To ensure consistency and adherence to format
requirements across both stages, we implement
guardrails across both stages of the pipeline. An
output parser validates the model’s responses in
both stages with the expected format criteria. In
cases where the initial output fails to adhere to the
required format, we utilize an additional parser that
leverages an LLM to reattempt answering and for-
matting. This lowers the probability of a response
being discarded by allowing it to be reformatted
correctly.

3.4 Pre-Trained Models

In our pipeline, we use the Gemma family of mod-
els (Gemma Team et al., 2025), specifically the
instruction tuned models. These models are openly
available and based off the closed source Google
Gemini models. We selected Gemma models due to
their strong performance on instruction-following

tasks and their demonstrated reasoning capabilities
with more manageable parameter sizes. Notably,
the Gemma v3 models outperform their predeces-
sors across multiple reasoning tasks (Gemma Team
et al., 2025), making them suitable for complex
clinical question answering. Our initial experi-
ments also included Mistral 7B v0.2 instruct model
(Jiang et al., 2023).

Experimentation utilized a shared university re-
source machine with 3 Nvidia A100 GPUs via
KCL CREATE (King’s College London e-Research
team, 2025). We also utilised LLama-cpp and
GGML / GGUF quantized models for directly run-
ning models on locally available hardware.

We attempted to use the Gemma 27B with ini-
tial experiments for 1-Stage prompting but found
the model refused to consistently return results on
the dev set. We did not continue experimenting
with this model and do not report results. Simi-
larly, we attempted to use the Qwen 2.5 7B instruct
model (Qwen Team, 2024). We did not report the
results for it as the performance was poor for all
approaches.

3.5 Evaluation

The ArchEHR task is evaluated through cited evi-
dence classification performance representing Fac-
tuality and the quality of the generated responses
using the cited evidence representing Relevance.

Factuality is measured through precision, recall
and F1 of prediction of each source sentence repre-
senting of one of three classes ‘essential’, ‘supple-
mentary’, ‘not-relevant’. Scoring is strict if only
‘essential’ labels are included or lenient if both ‘es-
sential’ and ‘supplementary’ sentences are counted
towards final calculations.

Relevance uses a collection of n-gram based au-
tomated evaluation metrics BLUE (Papineni et al.,
2002), ROUGE (Lin, 2004), SARI (Xu et al., 2016)
and model based metrics BERTScore (Zhang et al.,
2020), AlignScore (Zha et al., 2023) and MED-
CON (wai Yim et al., 2023). Scoring generated
text for relevance to a provided question can be
subjective, but aggregating a range of scores pro-
vides some means to automatically evaluate system
performance at scale.

While open-domain metrics can give a broad in-
dication of fluency and semantic similarity, MED-
CON directly assesses the preservation of medical
relevance, offering a more trustworthy signal in
safety-critical clinical question answering.

External knowledge was permitted during this

128



task, and a real system would likely include the
integration of external knowledge supplementing
existing knowledge within the LLLM or model ap-
proach. For example, a local, regional or national
clinical guideline could be referenced by an LLM
during a generation if a question involved why a
course of action was taken.

Our approach did not use any external knowledge,
or external clinical knowledge base such as UMLS
(Bodenreider, 2004) or SNOMED CT (Stearns
et al., 2001). This is further mentioned in Section
6.

4 Results
4.1 2-Stage Prompt Approach

Our approach was evaluated on the dev set and
test set using the specified metrics, and the results
demonstrate promising performance for clinical
question-answering tasks. As shown in the results
table 1, the Gemma 12B model outperformed the
other models across all metrics, achieving an over-
all score of 47.03. This suggests that the larger
models are better equipped to follow instructions
and capture the complex relationships and con-
text within clinical data®. While the larger models
consistently outperformed the smaller ones*, the
smaller models exhibited a strong ability to handle
complex clinical data.

4.2 1-Stage Prompt and 2-Stage Fine-tuned
Classifier Approach

As shown in Appendix A.l, both the 1-Stage
prompt and 2-Stage fine-tuned -classifier ap-
proaches underperform relative to the 2-Stage
prompt approach, especially for the Gemma 12B
model which shows a performance decrease of
34.7% and 47.1% respectively. The 1-Stage Prompt
approach lags in both factuality and relevance, ex-
cept for a slight gain in relevance for the Gemma
4B model.

Similarly, the 2-Stage fine-tuned classifier ap-
proach is subpar overall except Factuality for
Gemma 4B model. Notably, this approach achieves
high precision scores (for strict and lenient), with
lenient macro precision score of 86.25.

5 Discussion

The development of our approach for the ArchEHR
task evolved through several iterations, each build-
ing on previous insights. The 1-Stage prompt ap-

“Except Gemma 27B model as discussed in Section 3.4

proach exposed the limitations of a monolithic de-
sign, as the LLM struggled with handling both
classification and generation simultaneously. To
address this, we introduced a 2-Stage fine-tuned
classifier approach, which showed promise and
achieved high factuality and precision but was con-
strained by limited data for effective training. With
these insights, we adopted the 2-Stage prompt ap-
proach, which retained the advantages of task sepa-
ration without requiring fine-tuning. This approach
outperformed the others, delivering stronger results
in both factuality and relevance.

This approach mimics the Chain-of-Thought rea-
soning process (Wei et al., 2022), whereby break-
ing down the task into smaller, sequential subtasks
encourages more structured reasoning, improves
factual alignment, and reduces cognitive load on
the model, enabling it to perform each step more
reliably and accurately. It also provides a more
interpretable pipeline where each stage can be in-
dependently evaluated, enhancing overall system
transparency.

While the proposed approach achieves strong
results, it depends heavily on prompt design and
the inherent capabilities of the underlying LLM.
We further discuss the limitations and future work
in the below sections.

6 Conclusions & Future Work

Our work presents a 2-Stage few-shot prompting
approach to grounded clinical QA from real-world
EHR data. Leveraging the Gemma-v3-12B model,
our best approach secures Sth place overall on the
unseen test set, demonstrating a good balance be-
tween factuality, recognising the correct sentences
that should be used in the generated answer, and
relevance the quality of the generated text from the
cited evidence. This systematic task decomposition
enhances performance along with providing a more
transparent method, crucial for sensitive healthcare
contexts.

Our future work involves integration of exter-
nal world knowledge into system responses, either
as ‘guardrails’ or to directly improve system re-
sponses. An example of such world knowledge
could be clinical guideline that informed or im-
pacted a course of action, but is not directly refer-
enced in the source EHR notes. Secondly, we aim
to explore fine-tuning a Casual Large Language
Model on a more expansive and curated dataset
for sentence classification. This would enhance
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Table 1: Pipeline performance for 2-stage prompting approach

Factuality Relevance Overall
Model Strict Lenient Overall BLEU SARI Overall s\c]ore
Macro F1 Micro F1 Macro F1 Micro F1 factuality relevance
Dev set performance
Mistral 7B 41.89 38.65 43.38 42.21 38.65 344 574 353 36.98
Gemma 1B 2541 23.38 29.91 28.76 23.38 32 6299 3254 27.96
Gemma 4B 36.4 31.9 38.2 37.1 31.9 41 655 385 35.2
Gemma 12B  51.35 49.81 51.59 48.92 49.82 899 71.84 442 47.03
Test set performance
Gemma 12B 514 47.5 52.1 47.6 47.5 47 700 42.6 45.0

the quality and consistency of context filtering,
thereby improving downstream answer quality and
reducing reliance on prompt-based reasoning by
the LLM.

We look to integrate the development and testing
of these methods as we actively pursue safe and
reliable clinical QA over EHRs.

Limitations

Our work is presented as a solution to the ArchEHR
shared task, and provides results on a small devel-
opment and unseen larger test set. Our best method
generalises well to the unseen test demonstrating
the suitability of our method to the task.

However, the proposed system is limited in a
number of ways. Firstly, the task and proposed sys-
tem assumes that entire sentences are either wholly
relevant or useful to a response, representing a form
of extractive summarisation, whereas it is likely an
optimal response will likely be helped to abstrac-
tively summarise from across one or more partial
sentences to generate a response.

Secondly, the dataset is small and only represen-
tative of a single provider USA based ICU. Fur-
ther work could expand evaluation of such systems
across health systems and geographies.

Usage of our proposed system in a ‘production’
environment will likely require extensive use of
hardware resources, namely GPU compute. Due
to the sensitivity of patient EHR data, clinical
providers will likely require patient QA systems
that leverage LLM technology to be secure and
isolated from other systems alongside adhering to
regulatory standard such as HIPPA or GDPR. In
deployment of clinical informatics systems it is

especially important to balance availability of hard-
ware with model and system performance.
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A Appendix

A.1 Results for all approaches

Table 2: Pipeline performance for 1-Stage prompt approach

Dev set Performance

Factuality Relevance Overall
Model Strict Lenient Overall BLEU SARI Overall score
Macro F1 Micro F1 Macro F1 Micro F1 factuality relevance

Gemma 4B  24.66 25.25 24.65 24.89 25.25 357 68.63 41.79 3352
Gemma 12B  21.10 22.56 21.03 21.13 2256 136 65.70 38.84 30.70

Table 3: Pipeline performance for 2-Stage approach with fine-tuned classifier

Dev set Performance

Factuality Relevance Overall
Model Strict ' Overa.H BLEU SARI Overall score
Macro Micro . factuality relevance
. acro F1 . . Micro F1
Precision Precision

Gemma 4B  72.08 35.0 71.42 37.43 3743 132 56.38 27932  32.67
Gemma 12B  70.0 22.93 69.56 19.8 19.8 299 6229 29.89  24.88

A.2  Prompt for 2-Stage pipeline
A.2.1 For Stage 1

nnn

<bos><start_of_turn>user You are a clinical assistant. Use the context below to perform the given
task. Your response must be a JSON list of citations.

Answer using the given context to help, if you don’t know the answer, just say that you don’t know,
don’t try to make up an answer.

Format of Context:

ID: <chunk ID> ; text : <text>

ID: <chunk ID> ; text : <text>

The context contains all sentences from note excerpts. These sentences have two categories: relevant
and not relevant.

Your task is to using reasoning and filter out the ones that are relevant to the question, and
respond with their ID. Ensure to pick all the relevant ones, prioritise higher recall over
precision.

Include all chunks that are directly relevant and reasonably connected to answering the question.
Only exclude chunks that are clearly unrelated.

Output format:

Your output must be a list of structured objects with:
- ’citation’: the chunk ID (e.g., ’1’)
- ’citation’: the chunk ID (e.g., ’2’)
- ’citation’: the chunk ID (e.g., ’4’)

DO NOT add explanations, only the above output.
NOTE: The sentences may not be directly relevant, you will have to infer it.

Examples:
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# Example 1:

**Context:x*

ID: 1 ; Text: "The patient complained of frequent urination and excessive thirst. Laboratory tests
revealed elevated blood glucose levels.”

ID: 2 ; Text: "The patient was diagnosed with type 2 diabetes mellitus.”

ID: 3 ; Text: "Dietary counseling was initiated to help manage blood sugar levels.”

ID: 4 ; Text: "The patient also reported occasional headaches over the past month.”

**Question:** What is the patient’s diagnosis?

*kAnswer : xx

[{{"citation": "2"}},

{{"citation": "1"}},

{{"citation"”: "3"}}]

**Reasoning:

ID 2 gives the direct diagnosis (must include).

ID 1 gives symptoms and test results leading to diagnosis (should include).

ID 3 mentions management for blood sugar slightly grey, but include as it supports the context of the
diagnosis.

ID 4 about headaches is unrelated (exclude).

# Example 2:

**xContext: xx*

ID: 1 ; Text: "The patient sustained a fractured right femur after a fall from a ladder.”

ID: 2 ; Text: "An open reduction and internal fixation (ORIF) surgery was performed to stabilize the
fracture.”

ID: 3 ; Text: "The patient was prescribed physical therapy after hospital discharge.”

ID: 4 ; Text: "The patient’s blood pressure was also found to be elevated during admission.”

**Question:** What treatment did the patient receive for the femur fracture?

**Answer : xx

[{{"citation": "2"}},

{{"citation”: "3"}},

{{"citation": "1"3}}]

**Reasoning:

ID 2 describes surgical treatment (must include).

ID 3 is post-surgical physical therapy (treatment-related; include).

ID 1 gives context about the fracture itself include because it’s important background to understand
the treatment.

ID 4 about blood pressure is unrelated (exclude).

Context: {context}
Question: {query}

DO NOT add explanations, only the mentioned output <end_of_turn>
<start_of_turn>model

nn

A.2.2 Prompt for Stage 2

nn

<bos><start_of_turn>user You are a clinical assistant. Use all of the context below to answer the
question. Your response must be a JSON list of sentence-grounding pairs.

Answer the question using the given context to help, if you don’t know the answer, just say that you
don’t know, don’t try to make up an answer.

Format of Context:
ID: <chunk ID> ; text : <text>
ID: <chunk ID> ; text : <text>

Output format:
Your output must be a list of structured objects with:
- ’statement’: part of the response
- ’citation’: the chunk ID (e.g., ’1’) it came from to ground it in evidence

- ’statement’: part of the response
- ’citation’: the chunk ID (e.g., ’2’) it came from to ground it in evidence
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- ’statement’: part of the response
- ’citation’: the chunk ID (e.g., ’4’) it came from to ground it in evidence

DO NOT add explanations, only the above output.
NOTE: Use all of the sources and cite all sources, do not omit any one, all are relevant.

Examples

# Example 1:

**xContext:x*

ID: 1 ; Text: "The patient complained of frequent urination and excessive thirst. Laboratory tests
revealed elevated blood glucose levels.”

ID: 2 ; Text: "The patient was diagnosed with type 2 diabetes mellitus.”

*xQuestion:x* What is the patient’s diagnosis?
**Answer : *x

[{{"statement”: "The patient was diagnosed with type 2 diabetes mellitus."”, "citation”: "2"}},
{{"statement”: "Laboratory tests revealed elevated blood glucose levels.”, "citation”: "1"}}]
# Example 2:

**xContext:xx*

ID: 1 ; Text: "An open reduction and internal fixation (ORIF) surgery was performed to stabilize the
fracture.”

ID: 2 ; Text: "The patient was prescribed physical therapy after hospital discharge.”

**Question:** What treatment did the patient receive for the femur fracture?
**kAnswer : x*

[{{"statement”: "The patient underwent open reduction and internal fixation (ORIF) surgery to
stabilize the femur fracture.”, "citation”: "1"}3},

{{"statement”: "The patient was prescribed physical therapy after hospital discharge.”, "citation”:
N2II}}]

Context: {context}
Question: {query}

You can combine the sentences too, there is a word limit , so be succinct.
DO NOT add explanations, only the mentioned output.

USE ALL SOURCES, ALL OF THEM ARE IMPORTANT. <end_of_turn>
<start_of_turn>model

nnn
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Abstract

In this paper, we present the SzegedAl team’s
submissions to the ArchEHR-QA 2025 shared
task. Our approaches include multiple prompt-
ing techniques for large language models
(LLMs), sentence similarity methods, and tra-
ditional feature engineering. We are aiming
to explore both modern and traditional solu-
tions to the task. To combine the strengths of
these diverse methods, we employed different
ensembling strategies.

1 Introduction

The ArchEHR-QA 2025 shared task (Soni and
Demner-Fushman, 2025b) aimed to help reduce
the workload of clinicians by automatically gener-
ating answers to patients’ questions. These answers
were based on information from patients’ electronic
health records (EHRs) (Soni and Demner-Fushman,
2025a). The goal was to ensure that the answers
were grounded in the clinical notes, with clear ref-
erences to the specific sentences in the records. The
task focused on two main evaluation criteria: fac-
tuality, which checks if the references are correct,
and relevancy, which evaluates the quality of the
answers.

In our solution, we combined strategies based on
large language models (LLMs) with classical NLP
techniques, such as the bag-of-words representa-
tion of overlapping terms between the question and
the sentences. Our results include a comparison of
different LLMs, such as Gemini (Team et al., 2024),
Gemma 3 (Team et al., 2025), LLama (Grattafiori
et al., 2024) and its medical fine-tuned versions
(Ankit Pal, 2024; Christophe et al., 2024; Kim et al.,
2025). We applied prompting strategies that either
directly generate answers with references or select
relevant sentences and generate responses from
them. Additionally, we combined the outputs of
the models using a voting mechanism, along with
feature-rich classification techniques trained on the
development set.

2 System Overview
We developed two main approaches:

1. Pipeline Approach: A two-step process that
first identifies essential sentences in the clini-
cal notes and then generates an answer based
on these sentences.

2. End-to-End Approach: A single-step pro-
cess that directly generates responses with ap-
propriate citations using an LLM.

Our primary focus was on the pipeline approach,
where we experimented with different methods for
both essential sentence identification and answer
generation. For essential sentence identification,
we looked at the problem from both classical ma-
chine learning and LL.M-based perspectives. The
ML approach utilized feature engineering with lex-
ical and semantic similarity metrics between ques-
tions and clinical note sentences, and other textual
features. While the LLM-based approaches em-
ployed various prompting strategies to identify es-
sential sentences through direct citation, two-agent
interaction, and pairwise question-sentence evalua-
tion.

We also explored ensemble techniques for es-
sential sentence identification that combined the
strengths of our various approaches through voting
mechanisms and feature-rich classification. These
ensemble models incorporated predictions from
previous methods to improve overall performance.

For answer generation in our pipeline approach,
we developed methods that used the identified es-
sential sentences as input to craft concise, coherent
responses that answered the question while prop-
erly citing the source sentences.

In our end-to-end approach, we prompted LLMs
with carefully designed instructions to simultane-
ously identify relevant clinical evidence and gen-
erate coherent answers with citations in a single
step.
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Figure 1: Overview of our pipeline system architec-
ture for the ArchEHR-QA task, showing the two-step
process of essential sentence identification followed by
answer generation.
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Essential Sentence
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Both approaches were enhanced with an agentic
reflection loop where initial responses were pro-
grammatically validated against task requirements
(citation format, answer length, coverage of essen-
tial information) and iteratively refined based on
specific feedback.

3 Methods

Sections 3.1 and 3.2 detail the various techniques
we tested for the pipeline approach, while section
3.3 summarizes our procedure for the end-to-end
approach.

3.1 [Essential Sentence Identification

The first step of our pipeline approach was the iden-
tification of the essential sentences. We treated this
problem as a binary classification task (essential
or not-relevant), without considering "supplemen-
tary" as a separate category. We explored three
main approaches:

3.1.1 Supervised Machine Learning-based
Classification

We implemented a traditional machine learning
approach using a LightGBM classifier (Ke et al.,
2017), treating each sentence as a separate training
or test instance. The following feature templates
were used:

» Bag-of-words representations and overlap be-
tween question and sentence

* Semantic embeddings and cosine similarities
(between question-sentence and between ad-
jacent sentences)

* Length features (question, sentence, and their
difference)

* Positional indicators (first/last sentence in
note)

3.1.2 LLM-based Classification

We leveraged the contextual awareness and poten-
tial domain knowledge of LLMs through various
prompting strategies (the prompts are available in
Appendix A):

Answer with References This approach
prompted the LLM to generate answers with
citations to relevant clinical note sentences, which
were labeled as essential. Unlike our pipeline’s
answer generation step, it omitted validation for
length limits and formatting requirements. We
also developed a two-stage variation (v2) that first
identified the key sentence answering the question,
then found supporting context sentences.

Agentic This method used two LLM instances:
one generated an uncited answer, while the second
identified supporting sentences from the clinical
notes, which were labeled as essential.

References Only This approach focused solely
on identifying essential sentences without generat-
ing a complete answer. The LLM was prompted
to analyze the question and clinical notes, then out-
put the numbers of sentences containing essential
information. We used chain-of-thought reasoning
and tested both zero-shot and one-shot variants.

Question-Sentence Compare This strategy eval-
uated individual question-sentence pairs rather than
full cases, with the LLM classifying each sentence
as essential or not. For reliability, we applied ma-
jority voting across three separate evaluations of
each sentence.

3.1.3 Ensemblers

We developed two distinct ensemble approaches
for essential sentence identification:

Supervised Ensembler This approach combined
traditional machine learning features with the pre-
dictions from our various LLM-based methods as
additional input features. This hybrid method lever-
aged both the structured learning of traditional clas-
sifiers and the contextual understanding provided
by LLMs.

Answer with references - voting We created
five variations of our "Answer with References"
prompt with slight modifications. Sentences that
were marked as essential by at least three of the five
generated answers were considered essential in the
final output, creating a majority-voting ensemble.

137



3.2 Answer Generation

The second step of our pipeline approach is the
answer generation. Here our prompts contained the
patient narrative, clinician question, and the full list
of sentences identified as essential by our classifi-
cation methods. We developed an iterative prompt-
ing strategy with an agentic reflection loop where
each generated answer was programmatically val-
idated against several key requirements: proper
citation formatting, answer length constraints, com-
prehensive coverage of all essential information,
and proper citation of all identified essential sen-
tences.

When an answer failed to meet any of these crite-
ria, we provided the LLM with the original prompt,
the unsatisfactory answer, and specific feedback
identifying the shortcomings. This initiated an it-
erative refinement process where the model would
revise its response based on the targeted feedback,
continuing until all quality requirements were sat-
isfied.

3.3 End-to-End Approach

In contrast to our pipeline approach, we also ex-
plored an end-to-end method that directly gener-
ated answers with appropriate citations in a single
step. For this approach, we provided the LLM with
all sentences from the clinical notes rather than pre-
filtering for essential ones. The prompt explicitly
specified that not all sentences contained relevant
information and that the model should only cite
sentences that directly underpinned its answer.

The end-to-end prompts instructed the model
to generate a coherent answer using the clinical
notes, include proper citations, address key aspects
of the question concisely, and adhere to formatting
requirements—all in a single step.

This approach was also enhanced with an agen-
tic reflection loop, though with a different set of
validation criteria. Since no separate sentence iden-
tification step existed, validation focused primarily
on formatting correctness, citation syntax, and an-
swer length constraints.

4 Results

In this section, we present the results of our meth-
ods. We begin by showing the performance of our
models on the development set, followed by the
performance of our submissions on the test set.

4.1 Experimental setup

On the development set, we focus on factuality
(essential sentence identification) as the primary
criteria.

The supervised machine learning-based classi-
fier was trained on the development set with 100
estimators, gradient boosting decision trees, a fixed
random seed of 42, and a minimum of 10 data
points in each leaf. The model was validated using
k-fold cross-validation, where k was 5. To calcu-
late semantic representation we used LaBSE (Feng
et al., 2020).

In our experiments, we compared various LLMs
to find the best for the shared task!. Besides
our baseline models, LLama 3.3 70B and Gemma
3 27B, we utilized fine-tuned models for differ-
ent biomedical goals. Llama3-OpenBioLLM-70B
model fine-tuned for biomedical tasks using DPO
and a curated medical instruction dataset. Llama3-
Med42-70B is optimized for medical question an-
swering and clinical knowledge with instruction
tuning. Llama-3-Meerkat-70B (Kim et al., 2025) is
built for medical reasoning, trained with synthetic
CoT data and diverse instruction datasets. Along
with the open source models, we also used Gemini
1.5 Flash model.

4.2 Essential Sentence Identification

First, we evaluated our systems on the development
set, which is shown in the Table 1.

Supervised classification Despite the limited
number of training examples, our supervised
machine learning-based <classification
model that mainly applies bag-of-words and seman-
tic similarity-based features performed comparably
to many prompt-based solutions. It achieved better
results than 9 out of 13 LLM-based approaches.

LLMs Among the tested LLMs, the Gemini 1.5
Flash outperformed both the original and biomed-
ical LLaMA 70Bs and Gemma 3 27B by a large
margin. In the challenge of 70B LLaMa variants,
2 out of 3 fine-tuned models preceded the origi-
nal model, where the L1ama-3-Meerkat-70B was
the best. Interestingly, the smaller Gemma model,
which was not fine-tuned on medical data, achieved
comparable results to the best LLaMA model.

Prompting strategies When comparing prompt-
ing strategies, the best results were obtained

'We used 4 A100 GPU for the open sourced LLMs.
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LLM strict-micro strict-macro
P R F1 P R F1
Competition baseline Llama 3.3 70B 0.634 0326 0.431 0.703 0471 0.494
Supervised classifier - 0.521 0.529 0.525 0.510 0.514 0.499
Answer with references Gemini 0.566 0.558 0.562 0.608 0.638 0.578
Answer with references Llama 3.3 70B 0.397 0362 0379 0416 0.349 0.357
Answer with references Llama3-Med42-70B 0.341 0.341 0.341 0.358 0.400 0.340
Answer with references Llama3-OpenBioLLM-70B  0.333 0.275 0.406 0.309 0.308 0.289
Answer with references Llama-3-Meerkat-70B 0.336 0.406 0.385 0.360 0.434 0.362
Answer with references Gemma 27B 0.400 0.406 0.403 0419 0428 0.398
Answer with references v2 Gemini 0.631 0.384 0.477 0.651 0.443 0477
Agentic Gemini 0.500 0.442 0.469 0.583 0.530 0.495
References only - zero shot Gemini 0.657 0.500 0.568 0.659 0.568 0.574
References only - 1 shot Gemini 0.699 0.522 0.598 0.662 0.591 0.583
Question - sentence compare Gemini 0.477 0.536 0.505 0.481 0.519 0.457
Question - sentence compare Gemini 0.503 0.536 0519 0.517 0.518 0.462
End-to-end Gemini 0.693 0.507 0.587 0.534 0.438 0473
Answer with references - voting Gemini 0.514 0.398 0.449 0.538 0.490 0.454
Supervised ensembler Gemini 0.750 0.608 0.672 0.685 0.586 0.616

Table 1: Factuality results of the independent systems on the development set. The Competition baseline used
the LLaMA 3.3 70B model in a zero-shot setting prompting it to generate cited answers; if responses were invalid,
they retried up to five times to get a valid one. Detailed descriptions of the Supervised classifier method can be
found in Section 3.1.1; Answer with references (V2), Agentic, References only and Question - sentence
compare are in Section 3.1.2; End-to-end in 3.3; and Answer with references - voting and Supervised

ensembler are in 3.1.3.

with the References only and Answer with
references approaches for sentence identification,
but the End-to-end approch also acheived simi-
larly high score.

Ensemblers The voting method over the Answer
with references can’t improve the performance.
Instead of the Supervised ensembler that ap-
plies all of the Gemini-based system’s output as
features besides the features of the Supervised
classifier, achieved the highest score on the de-
velopment set.

4.3 Submissions

We selected three distinct models as submissions
to reflect the variety of approaches we had previ-
ously evaluated on the development set, results pre-
sented in the Table 2. The first model, Supervised
classifier (SC), aimed to evaluate the perfor-
mance of traditional machine learning methods on
the shared task. The End-to-end (E2E) model
was one of the most purely prompt-based solutions,
and we uploaded our best system from the develop-
ment set, the Supervised ensembler (SE).

The SC model performed notably worse on the
test set than on the development set. Since we did
not use the development set for hyperparameter
tuning during cross-validation, we suspect that the

SC E2E SE

Overall 0.321 0.407 0.427
Overall Factuality 0.317 0.470 0.472
Strict F1 (micro) 0.317 0470 0472
Strict F1 (macro) 0.309 0.523 0.514
Overall Relevance 0.325 0.344 0.382
BLEU 0.018 0.008 0.032
ROUGELSsum 0.227 0.211 0.292
SARI 0.558 0.597 0.642
BERTScore 0.288 0.275 0.191
AlignScore 0.272  0.631 0.195
MEDCON (UMLS) 0.586 0.344 0.278

Table 2: Official scores of our systems on the test set.

limited amount of training data failed to generalize
well to the test set. A similar pattern was observed
with our SE model. But in this case, the factual-
ity score is matched with the E2E model, which
was in third place on the development set. In the
case of relevance, the SE model, which generates
answers based on selected essential sentences, out-
performed the E2E model. Consequently, the SE
also achieved a higher score on the overall metric,
so we selected this model as our official submis-
sion.
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5 Conclusion

In this paper, we presented the SzegedAl team’s
submissions to the ArchEHR-QA 2025 shared task.
Our models combined traditional machine learning
techniques with LLM-based predictions. We ex-
plored a range of models and prompting strategies,
and integrated their outputs using a feature-rich
classification framework to identify the most rele-
vant information from clinical notes in response to
patient questions. Our submission achieved 11th
place in the automatic evaluation of the shared task.

Limitations

In this paper, we relied heavily on the develop-
ment set for evaluations, but the small size of this
dataset limits the accurate comparison of the differ-
ent methods.

Most of our LLM-based methods were lim-
ited to one prompt per question, except the
Agentic, End-to-end, and Answer generation
methods, which were limited to five cycles, and the
Question-sentence compare applied an LLM
call for each sentence in a clinical note.

While our supervised machine learning-based
systems performed well on the development set,
their performance dropped on the test set, sug-
gesting potential overfitting and limited general-
ization due to the small training size. Increasing
the amount of training data would likely improve
results, but the Supervised classifier is inher-
ently less generalizable than LLMs.

Our evaluation focused on factuality metrics,
with less emphasis on the relevance of the answer,
which plays a critical role in real-life applications.
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A Prompts for essential sentence identification

This section shows the prompts that were applied to the results of the paper.

A.1 Prompt for ""Answer with References'

SRR - NV

18
19
20
21
22
23
24
25
26

27

28

29

30
31

Task: Generate a concise, helpful answer to a patient's health question using only information from the clinical note. Each
< statement in your answer must be grounded in specific sentences from the note.

Example:

Patient's Narrative: Took my 59 yo father to ER ultrasound discovered he had an aortic aneurysm. He had a salvage repair (tube

Clinician's Rephrased Question: Why did they perform the emergency salvage repair on him?

Clinical Note (numbered sentences):

1: He was transferred to the hospital on 2025-1-20 for emergent repair of his ruptured thoracoabdominal aortic aneurysm.

2: He was immediately taken to the operating room where he underwent an emergent salvage repair of ruptured thoracoabdominal
< aortic aneurysm with a 34-mm Dacron tube graft using deep hypothermic circulatory arrest.

3: Please see operative note for details which included cardiac arrest x2.

4: Postoperatively he was taken to the intensive care unit for monitoring with an open chest.

5: He remained intubated and sedated on pressors and inotropes.

6: On 2025-1-22, he returned to the operating room where he underwent exploration and chest closure.

7: On 1-25 he returned to the OR for abd closure JP/ drain placement/ feeding jejunostomy placed at that time for nutritional
<— support.

8: Thoracoabdominal wound healing well with exception of very small open area mid wound that is @lcm around and 1/2cm deep, no
< surrounding erythema.

9: Packed with dry gauze and covered w/DSD.

Example Answer:

His aortic aneurysm was caused by the rupture of a thoracoabdominal aortic aneurysm, which required emergent surgical

< intervention (1). He underwent a complex salvage repair using a 34-mm Dacron tube graft and deep hypothermic circulatory
< arrest to address the rupture (2). The extended recovery time and hospital stay were necessary due to the severity of the
< rupture and the complexity of the surgery, though his wound is now healing well with only a small open area noted (8).
Now, please generate an answer for the following case:

Patient's Narrative: {patient_narrative}

Patient's Question: {patient_question}

Clinician's Rephrased Question: {clinician_question}

Clinical Note (numbered sentences):

{numbered_note?}

Instructions:

First, carefully identify which sentences are ESSENTIAL to answering the clinician's rephrased question. Focus on sentences
< that directly explain the medical reasoning, procedures performed, and clinical findings.

When writing your answer, ONLY include information from these essential sentences. Each statement in your answer MUST be
< supported by at least one citation.

For each statement in your answer, cite the specific sentence number(s) that support it using parentheses, e.g., "The

< procedure was successful (3, 5)."

Be very precise with your citations - only cite sentences that directly support each specific claim you make.

Your Answer:

A.2 Prompts ""Agentic LLM classification"

A.2.1 Stage 1: Answer generation prompt

1
2
3

SRR - NV

18

20
21
22

Task: Generate a helpful, concise answer to a patient's health question using only information from the clinical note.
Example:
Patient's Narrative: Took my 59 yo father to ER ultrasound discovered he had an aortic aneurysm. He had a salvage repair (tube

Clinician's Rephrased Question: Why did they perform the emergency salvage repair on him?

Clinical Note (numbered sentences):

1: He was transferred to the hospital on 2025-1-20 for emergent repair of his ruptured thoracoabdominal aortic aneurysm.

2: He was immediately taken to the operating room where he underwent an emergent salvage repair of ruptured thoracoabdominal
< aortic aneurysm with a 34-mm Dacron tube graft using deep hypothermic circulatory arrest.

3: Please see operative note for details which included cardiac arrest x2.

4: Postoperatively he was taken to the intensive care unit for monitoring with an open chest.

5: He remained intubated and sedated on pressors and inotropes.

6: On 2025-1-22, he returned to the operating room where he underwent exploration and chest closure.

7: On 1-25 he returned to the OR for abd closure JP/ drain placement/ feeding jejunostomy placed at that time for nutritional
< support.

8: Thoracoabdominal wound healing well with exception of very small open area mid wound that is @lcm around and 1/2cm deep, no
< surrounding erythema.

9: Packed with dry gauze and covered w/DSD.

Example Answer:

His aortic aneurysm was caused by the rupture of a thoracoabdominal aortic aneurysm, which required emergent surgical

< intervention. He underwent a complex salvage repair using a 34-mm Dacron tube graft and deep hypothermic circulatory

< arrest to address the rupture. The extended recovery time and hospital stay were necessary due to the severity of the
< rupture and the complexity of the surgery, though his wound is now healing well with only a small open area noted.

Now, please generate an answer for the following case:

Patient's Narrative: {patient_narrative}

Patient's Question: {patient_question}

Clinician's Rephrased Question: {clinician_question}

Clinical Note (numbered sentences):
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23
24
25
26
27
28
29

{numbered_note}
Instructions:

Answer the clinician's rephrased question directly and clearly.
Use only information found in the clinical note.

Your Answer:

A.2.2 Stage 2: Source identification prompt

A AW —

- S v ®

16

18
19
20
21
22
23
24
25
26
27
28
29
30
31

Task: Identify which sentences from the clinical note support statements in the patient answer

Example:

Clinical Note (numbered sentences):

1: He was transferred to the hospital on 2025-1-20 for emergent repair of his ruptured thoracoabdominal aortic aneurysm.

2: He was immediately taken to the operating room where he underwent an emergent salvage repair of ruptured thoracoabdominal
< aortic aneurysm with a 34-mm Dacron tube graft using deep hypothermic circulatory arrest.

3: Please see operative note for details which included cardiac arrest x2.

4: Postoperatively he was taken to the intensive care unit for monitoring with an open chest.

5: He remained intubated and sedated on pressors and inotropes.

6: On 2025-1-22, he returned to the operating room where he underwent exploration and chest closure.

7: On 1-25 he returned to the OR for abd closure JP/ drain placement/ feeding jejunostomy placed at that time for nutritional
< support.

8: Thoracoabdominal wound healing well with exception of very small open area mid wound that is @lcm around and 1/2cm deep, no
< surrounding erythema.

9: Packed with dry gauze and covered w/DSD.

Example input text:

His aortic aneurysm was caused by the rupture of a thoracoabdominal aortic aneurysm, which required emergent surgical

< intervention. He underwent a complex salvage repair using a 34-mm Dacron tube graft and deep hypothermic circulatory

< arrest to address the rupture. The extended recovery time and hospital stay were necessary due to the severity of the

< rupture and the complexity of the surgery, though his wound is now healing well with only a small open area noted.
Essential Sentences: 1, 2, 8

Now, please generate an answer for the following case:
Clinical Note (numbered sentences):

{numbered_note}

Input text:

{generated_answer}

Instructions:

Carefully analyze the answer and identify ALL sentences from the clinical note that directly support information in the answer
Do not include sentences that contain information not referenced in the text.

List ONLY the sentence numbers (without any additional text) in a comma-separated format.

Your response should follow this format exactly:

Essential Sentences: [list of numbers]
For example: "Essential Sentences: 1, 3, 5, 7"

A.3 Prompts for ""Answer with references v2'

A.3.1 Stage 1: Best sentence identification prompt

O 0N AW —

21
22
23
24
25

26
27

Task: Identify the SINGLE BEST sentence from the clinical note that directly answers the clinician's question.

Patient's Narrative: {patient_narrative}
Patient's Question: {patient_question}
Clinician's Rephrased Question: {clinician_question}

Clinical Note (numbered sentences):
{numbered_note?}

Instructions:

Analyze each sentence in the clinical note carefully.

Identify the ONE sentence that most directly answers the clinician's question about why a procedure was performed, what
< caused a condition, how something was treated, or other clinical reasoning.

Choose the sentence that contains the core explanation, not just related information.

Provide ONLY the sentence number in your response, with no additional text.

Few-Shot Examples:

Example 1:
Patient Question: "My question is if the sludge was there does not the medication help in flushing it out? Whether ERCP was

< the only cure?”
Clinician Question: "Why was ERCP recommended to him over continuing a medication-based treatment?”

Clinical Note:

Brief Hospital Course:

During the ERCP a pancreatic stent was required to facilitate access to the biliary system (removed at the end of the

< procedure), and a common bile duct stent was placed to allow drainage of the biliary obstruction caused by stones and
< sludge.

However, due to the patient's elevated INR, no sphincterotomy or stone removal was performed.

Frank pus was noted to be draining from the common bile duct, and post-ERCP it was recommended that the patient remain on
< IV Zosyn for at least a week.
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28
29

30

32
33
34
35
36

37
38
39

40
41
42
43
44

45

46
47
48
49

50
51

52

53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69

70
71

The Vancomycin was discontinued.

On hospital day 4 (post-procedure day 3) the patient returned to ERCP for re-evaluation of her biliary stent as her LFTs
< and bilirubin continued an upward trend.

On ERCP the previous biliary stent was noted to be acutely obstructed by biliary sludge and stones.

As the patient's INR was normalized to 1.2, a sphincterotomy was safely performed, with removal of several biliary stones
< in addition to the common bile duct stent.

At the conclusion of the procedure, retrograde cholangiogram was negative for filling defects.

Best Sentence Answer: 2

Reasoning: Sentence 2 is the best single sentence because it directly explains why ERCP was necessary - it reveals that stones
< and sludge were causing a biliary obstruction that required stent placement to allow drainage. This is the core reason why
< medication alone wouldn't be sufficient - there was a physical blockage that needed mechanical intervention.

Example 2:

Patient Question: "I overdosed October 4th on trihexyphenidyl, thorazine, and cocaine. I have had chest pain in my left upper
< quadrant ever since. Any ideas?”

Clinician Question: "Is the pain connected to the overdose or something else?”

Clinical Note:

Brief Hospital Course:

Bipolar d/o, PTSD, schizophrenia: Psychiatry consult recommended that all psych medications be held until they could be
< re-prescribed by pt's outpatient psychiatrist.

During hospital course, thorazine was restarted but discontinued soon after because pt became tachycardic; pt remained
< asymptomatic during these episodes of tachycardia.

Tachycardia resolved with discontinuation of thorazine, IV hydration, and small dose of IV benzodiazepene x 1.

Social work consult was obtained because pt did not have a PCP nor did he have a psychiatrist.

He could not see his former psychiatrist due to insurance reasons.

With the help of social work, pt was set up with a PCP who would be able to refer him to a new psychiatrist in a timely
— fashion.

He was instructed to follow-up with his new psychiatrist to restart his psychiatric medications.

Chest pain: Pt complained of chest pain during hospital course that appeared musculoskeletal as it was reproducible with
< palpation and pt reported more pain with movement.

EKG showed no ischemic changes and troponins were flat x 4. CK was elevated, peaking at 1405 but downtrended without any
< intervention.

TTE was obtained due to history of cocaine use to rule out cardiac events.

EF was >55%; TTE was unremarkable.

He was monitored on telemetry without significant events.

Discharge Instructions:

It was a pleasure taking care of you at the hospital.

You were admitted with confusion that was likely due to a combination of the medications you were taking and the street
< drugs that you may have also been used.

Your heart rhythm was monitored because many of these drugs can affect your heart.

Your EKG and blood tests showed that you likely did not have a heart attack.

An ultrasound of your heart was also normal.

Your confusion cleared during your hospital stay.

You were seen by our psychiatry team who recommended holding all of your medications while you were in the hospital.

It is very important that you follow-up with a primary care doctor who can refer you to a psychiatrist.

This psychiatrist can then prescribe to you the medications you were normally taking.

Best Sentence Answer: 9
Reasoning: Sentence 9 is the best choice because it directly addresses the nature of the chest pain, identifying it as
< musculoskeletal based on clinical examination (reproducible with palpation and worsening with movement). This directly

< answers whether the pain is connected to the overdose or something else by suggesting a musculoskeletal cause.

Your Answer:

A.3.2 Stage 2: Context sentences identification prompt

[C-TE- R Yo NV I I )

Task: Identify additional sentences from the clinical note that provide necessary context for understanding the answer to the
< clinician's question.

Patient's Narrative: {patient_narrative}
Patient's Question: {patient_question}
Clinician's Rephrased Question: {clinician_question}

Clinical Note (numbered sentences):
{numbered_note}

The MAIN sentence that answers the question is:
Sentence {best_sentence_num}: {best_sentence_text}

Instructions:

Analyze the clinical note to identify any OTHER sentences that provide necessary context to fully understand the answer.
Include sentences that:
Explain medical terminology used in the main answer
Provide evidence supporting the main answer
Show treatment outcomes that validate the answer
Describe test results that confirm the diagnosis or treatment decision
Explain why alternative treatments were not chosen
Exclude sentences that:
Repeat information already in the main sentence
Contain general information not directly related to the question
Focus on administrative details rather than clinical reasoning
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39
40

41
42

43
44

45
46
47
48

49
50
51
52
53
54

55

56

57
58
59
60
61
62
63
64
65

66
67
68
69
70

71

72
73
74
75

76
71

78

79
80
8

82
83
84

85
86
87
88
89
90
91
92
93
94

List ONLY the sentence numbers in your response, separated by commas (e.g., "3, 5, 9").
If no additional context sentences are needed, respond with "None".
Limit your selection to the most relevant sentences (typically 2-5 sentences)

Few-Shot Examples:

Example 1:

Patient Question: "My question is if the sludge was there does not the medication help in flushing it out? Whether ERCP was
< the only cure?”

Clinician Question: "Why was ERCP recommended to him over continuing a medication-based treatment?”

Clinical Note:

Brief Hospital Course:

During the ERCP a pancreatic stent was required to facilitate access to the biliary system (removed at the end of the

< procedure), and a common bile duct stent was placed to allow drainage of the biliary obstruction caused by stones and
< sludge.

However, due to the patient's elevated INR, no sphincterotomy or stone removal was performed.

Frank pus was noted to be draining from the common bile duct, and post-ERCP it was recommended that the patient remain on
< IV Zosyn for at least a week.

The Vancomycin was discontinued.

On hospital day 4 (post-procedure day 3) the patient returned to ERCP for re-evaluation of her biliary stent as her LFTs
< and bilirubin continued an upward trend.

On ERCP the previous biliary stent was noted to be acutely obstructed by biliary sludge and stones.

As the patient's INR was normalized to 1.2, a sphincterotomy was safely performed, with removal of several biliary stones
< in addition to the common bile duct stent.

At the conclusion of the procedure, retrograde cholangiogram was negative for filling defects.

Main sentence that answers the question is:

Sentence 2: During the ERCP a pancreatic stent was required to facilitate access to the biliary system (removed at the end of
< the procedure), and a common bile duct stent was placed to allow drainage of the biliary obstruction caused by stones and
< sludge.

Context Sentences Answer: 6, 7, 8
Reasoning for including these context sentences:

Sentence 6 shows that even after initial treatment, the patient's liver function tests continued to worsen, indicating
< that medication alone was not sufficient

Sentence 7 demonstrates that the biliary stent became obstructed again by sludge and stones, further proving that physical
— removal was necessary

Sentence 8 shows that once conditions allowed (normalized INR), a sphincterotomy was performed to physically remove the
< stones, which medication alone couldn't accomplish

Reasoning for NOT including other potential sentences:

Sentence 3 mentions elevated INR preventing sphincterotomy, but doesn't directly address why medication wouldn't work
Sentence 4 mentions pus and antibiotics, which is related to infection treatment but not directly about sludge removal
Sentence 9 only provides procedural outcome information without explaining why ERCP was necessary over medication

Example 2:

Patient Question: "I overdosed October 4th on trihexyphenidyl, thorazine, and cocaine. I have had chest pain in my left upper
< quadrant ever since. Any ideas?”

Clinician Question: "Is the pain connected to the overdose or something else?”

Clinical Note:

Brief Hospital Course:

Bipolar d/o, PTSD, schizophrenia: Psychiatry consult recommended that all psych medications be held until they could be
< re-prescribed by pt's outpatient psychiatrist.

During hospital course, thorazine was restarted but discontinued soon after because pt became tachycardic; pt remained
< asymptomatic during these episodes of tachycardia.

Tachycardia resolved with discontinuation of thorazine, IV hydration, and small dose of IV benzodiazepene x 1.

Social work consult was obtained because pt did not have a PCP nor did he have a psychiatrist.

He could not see his former psychiatrist due to insurance reasons.

With the help of social work, pt was set up with a PCP who would be able to refer him to a new psychiatrist in a timely
< fashion.

He was instructed to follow-up with his new psychiatrist to restart his psychiatric medications.

Chest pain: Pt complained of chest pain during hospital course that appeared musculoskeletal as it was reproducible with
< palpation and pt reported more pain with movement.

EKG showed no ischemic changes and troponins were flat x 4. CK was elevated, peaking at 1405 but downtrended without any
< intervention.

TTE was obtained due to history of cocaine use to rule out cardiac events.

EF was >55%; TTE was unremarkable.

He was monitored on telemetry without significant events.

Discharge Instructions:

It was a pleasure taking care of you at the hospital.

You were admitted with confusion that was likely due to a combination of the medications you were taking and the street
< drugs that you may have also been used.

Your heart rhythm was monitored because many of these drugs can affect your heart.

Your EKG and blood tests showed that you likely did not have a heart attack.

An ultrasound of your heart was also normal

Your confusion cleared during your hospital stay.

You were seen by our psychiatry team who recommended holding all of your medications while you were in the hospital.

It is very important that you follow-up with a primary care doctor who can refer you to a psychiatrist.

This psychiatrist can then prescribe to you the medications you were normally taking.

Main sentence that answers the question is:
Sentence 9: # Chest pain: Pt complained of chest pain during hospital course that appeared musculoskeletal as it was
< reproducible with palpation and pt reported more pain with movement.
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Context Sentences Answer: 3, 10, 11, 12, 13
Reasoning for including these context sentences:

Sentence 3 provides information about the thorazine (one of the overdosed medications) causing tachycardia, which could be
< related to the chest discomfort

Sentence 10 rules out cardiac ischemia through EKG and troponin tests, while noting elevated CK (which can indicate muscle
< damage)

Sentence 11 mentions additional cardiac testing due to history of cocaine use

Sentence 12 shows normal heart function on ultrasound

Sentence 13 confirms no cardiac events were detected during monitoring

Reasoning for NOT including other potential sentences:
Sentences 16-19 from the discharge instructions contain similar information to sentences 10-13 but are written for the
< patient rather than providing additional clinical details
Sentence 2 discusses psychiatric management but doesn't address the chest pain question

Sentences 4-8 focus on medication management and discharge planning rather than explaining the chest pain

Your Answer:

A.4 Prompts for ''References Only"

In this prompt, the question and the clinical note are given in a user prompt.

[N]

IR - NV SOt

[T R VCR R,

The system prompt:

Your task is to find essential sentences in a clinical note to answer a clinical question.

The clinical notes contain the history of a patient and details of a clinical event, you can select sentences from each
< category if neccessary.

There are always at least 3 essential sentences in the clinical note.

Try to find all of the relevant sentences in the clinical note to answer the question.

You can think step by step,

step 1: Analyze the question and the clinical note.

step 2: Find the essential sentences in the clinical note to answer the question. Write the reason why each sentence is
< essential or not.

step 3: To a separated last line list the ids of the essential sentences in the clinical note, in the following format:
1, 2, 3{example if example else ""}

The user prompt:

# Question
{patient_narrative}

# Clinical note
{json.dumps(clinical_note, indent=2)}

A.5 Prompt for '"'Question-Sentence Compare'

© N AW

You are a medical expert. You will be given a question relating to a patient and a sentence which may or may not contain
< relevant information to answering the question. Your job is to tell wether the information is relevant or not-relevant.
This is the question of the patient:

{narrative}

{clinical_question}

The sentence is:
{sentence}

Does the sentence contain relevant information? Think carefully before you answer and end your answer with a definitive yes or
< no answer:

A.6 Prompts for ""Answer with references - voting"'

A.6.1 Prompt variation 1

1

[ IR - NV

Task: Generate a concise, helpful answer to a patient's health question using only information from the clinical note. Each
< statement in your answer must be grounded in specific sentences from the note.

Example:
Patient's Narrative: Took my 59 yo father to ER ultrasound discovered he had an aortic aneurysm. He had a salvage repair (tube

Clinician's Rephrased Question: Why did they perform the emergency salvage repair on him?
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Clinical Note (numbered sentences):

*%1:%%x He was transferred to the hospital on 2025-1-20 for emergent repair of his ruptured thoracoabdominal aortic aneurysm.
*x2:%% He was immediately taken to the operating room where he underwent an emergent salvage repair of ruptured

< thoracoabdominal aortic aneurysm with a 34-mm Dacron tube graft using deep hypothermic circulatory arrest.

**3:%x% Please see operative note for details which included cardiac arrest x2.

*x4:%%x Postoperatively he was taken to the intensive care unit for monitoring with an open chest.

*%5: %% He remained intubated and sedated on pressors and inotropes.

*x6:%% On 2025-1-22, he returned to the operating room where he underwent exploration and chest closure.

*%7:%% On 1-25 he returned to the OR for abd closure JP/ drain placement/ feeding jejunostomy placed at that time for

< nutritional support.

*x8:%* Thoracoabdominal wound healing well with exception of very small open area mid wound that is @lcm around and 1/2cm
< deep, no surrounding erythema.

*%9:%%* Packed with dry gauze and covered w/DSD.

Example Answer:

His aortic aneurysm was caused by the rupture of a thoracoabdominal aortic aneurysm, which required emergent surgical

< intervention (1). He underwent a complex salvage repair using a 34-mm Dacron tube graft and deep hypothermic circulatory
< arrest to address the rupture (2). The extended recovery time and hospital stay were necessary due to the severity of the
< rupture and the complexity of the surgery, though his wound is now healing well with only a small open area noted (8).
Now, please generate an answer for the following case:

Patient's Narrative: {patient_narrative}

Patient's Question: {patient_question}

Clinician's Rephrased Question: {clinician_question}

Clinical Note (numbered sentences):
{numbered_note?}

Instructions:
1. First, carefully identify which sentences are ESSENTIAL to answering the clinician's rephrased question. Focus on
< sentences that directly explain the medical reasoning, procedures performed, and clinical findings.

2. When writing your answer, ONLY include information from these essential sentences. Each statement in your answer MUST be
< supported by at least one citation.

3. For each statement in your answer, cite the specific sentence number(s) that support it using parentheses, e.g., "The
< procedure was successful (3, 5)."

4. Be very precise with your citations - only cite sentences that directly support each specific claim you make.

Your Answer:

A.6.2 Prompt variation 2
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Task: Answer a medical question based solely on the provided clinical note. Cite sentence numbers for each claim.

Example:
Patient's Narrative: Took my 59 yo father to ER ultrasound discovered he had an aortic aneurysm. He had a salvage repair (tube

Clinician's Rephrased Question: Why did they perform the emergency salvage repair on him?

Clinical Note (numbered sentences):

*x1:%%x He was transferred to the hospital on 2025-1-20 for emergent repair of his ruptured thoracoabdominal aortic aneurysm.
*x2:%% He was immediately taken to the operating room where he underwent an emergent salvage repair of ruptured

< thoracoabdominal aortic aneurysm with a 34-mm Dacron tube graft using deep hypothermic circulatory arrest.

*%x3:4%%x Please see operative note for details which included cardiac arrest x2.

*x4:%%x Postoperatively he was taken to the intensive care unit for monitoring with an open chest.

*x5:%% He remained intubated and sedated on pressors and inotropes.

*%6:*%* On 2025-1-22, he returned to the operating room where he underwent exploration and chest closure.

*x7:%% On 1-25 he returned to the OR for abd closure JP/ drain placement/ feeding jejunostomy placed at that time for

< nutritional support.

*%8:%% Thoracoabdominal wound healing well with exception of very small open area mid wound that is @lcm around and 1/2cm
< deep, no surrounding erythema.

*%9:*%x Packed with dry gauze and covered w/DSD.

Example Answer:

His aortic aneurysm was caused by the rupture of a thoracoabdominal aortic aneurysm, which required emergent surgical

< intervention (1). He underwent a complex salvage repair using a 34-mm Dacron tube graft and deep hypothermic circulatory
< arrest to address the rupture (2). The extended recovery time and hospital stay were necessary due to the severity of the
< rupture and the complexity of the surgery, though his wound is now healing well with only a small open area noted (8).
Now answer this question:

Question: {clinician_question}

Clinical Note:
{numbered_note?}
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Instructions:

- Only use information directly from the note

- Each claim must have a citation in parentheses (e.g., "The surgery was successful (3)")
- Be concise and precise

- Only cite the most relevant sentences that directly answer the question

Your Answer:

A.6.3 Prompt variation 3

AW~

23
24
25
26
27
28
29
30
31
32
33
34
35

Task: Help a patient understand their medical situation by answering their question using information from their clinical note.

Example:
Patient's Narrative: Took my 59 yo father to ER ultrasound discovered he had an aortic aneurysm. He had a salvage repair (tube

Clinician's Rephrased Question: Why did they perform the emergency salvage repair on him?

Clinical Note (numbered sentences):

*x1:%% He was transferred to the hospital on 2025-1-20 for emergent repair of his ruptured thoracoabdominal aortic aneurysm.
*%2:%%x He was immediately taken to the operating room where he underwent an emergent salvage repair of ruptured

< thoracoabdominal aortic aneurysm with a 34-mm Dacron tube graft using deep hypothermic circulatory arrest.

*x3:%%x Please see operative note for details which included cardiac arrest x2.

*x4:%x Postoperatively he was taken to the intensive care unit for monitoring with an open chest.

*%5:%% He remained intubated and sedated on pressors and inotropes.

*%6:*%* On 2025-1-22, he returned to the operating room where he underwent exploration and chest closure.

*%7:%% On 1-25 he returned to the OR for abd closure JP/ drain placement/ feeding jejunostomy placed at that time for

< nutritional support.

*%8:%* Thoracoabdominal wound healing well with exception of very small open area mid wound that is @lcm around and 1/2cm
< deep, no surrounding erythema.

*%9:%%* Packed with dry gauze and covered w/DSD.

Example Answer:

His aortic aneurysm was caused by the rupture of a thoracoabdominal aortic aneurysm, which required emergent surgical

< intervention (1). He underwent a complex salvage repair using a 34-mm Dacron tube graft and deep hypothermic circulatory
< arrest to address the rupture (2). The extended recovery time and hospital stay were necessary due to the severity of the
< rupture and the complexity of the surgery, though his wound is now healing well with only a small open area noted (8).

Patient's Question: {patient_question}

Clinical Note:
{numbered_note?}

Instructions:

1. Analyze which sentences in the note directly address the patient's question
2. Write a clear, concise answer citing only the most important sentences

3. Each statement must include sentence numbers in parentheses: (1) or (2, 3)
4. Be factual and only use information from the note

Your Answer:

A.6.4 Prompt variation 4

AW —

® 9 N W

Task: Perform a structured medical note analysis to answer a clinical question.

Example:
Patient's Narrative: Took my 59 yo father to ER ultrasound discovered he had an aortic aneurysm. He had a salvage repair (tube

Clinician's Rephrased Question: Why did they perform the emergency salvage repair on him?

Clinical Note (numbered sentences):

*x1:%* He was transferred to the hospital on 2025-1-20 for emergent repair of his ruptured thoracoabdominal aortic aneurysm.
*x2:%% He was immediately taken to the operating room where he underwent an emergent salvage repair of ruptured

< thoracoabdominal aortic aneurysm with a 34-mm Dacron tube graft using deep hypothermic circulatory arrest.

*x3:%% Please see operative note for details which included cardiac arrest x2.

*x4:%%x Postoperatively he was taken to the intensive care unit for monitoring with an open chest.

*%x5:%% He remained intubated and sedated on pressors and inotropes.

*x6:%%x On 2025-1-22, he returned to the operating room where he underwent exploration and chest closure.

*%7:%% On 1-25 he returned to the OR for abd closure JP/ drain placement/ feeding jejunostomy placed at that time for

< nutritional support.

*%8: %% Thoracoabdominal wound healing well with exception of very small open area mid wound that is @lcm around and 1/2cm
< deep, no surrounding erythema.

*%9:%% Packed with dry gauze and covered w/DSD.

Example Answer:
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His aortic aneurysm was caused by the rupture of a thoracoabdominal aortic aneurysm, which required emergent surgical

< intervention (1). He underwent a complex salvage repair using a 34-mm Dacron tube graft and deep hypothermic circulatory
< arrest to address the rupture (2). The extended recovery time and hospital stay were necessary due to the severity of the
< rupture and the complexity of the surgery, though his wound is now healing well with only a small open area noted (8).

Clinical Question: {clinician_question}
Patient Context: {patient_narrative}

Clinical Note:
{numbered_note?}

Process:

1. First, identify the 3-5 most relevant sentences that directly answer the question
2. Organize these sentences into a logical flow

3. Write a concise answer citing each sentence number in parentheses

4. Only include information that is explicitly stated in the cited sentences

Your Answer:

A.6.5 Prompt variation 5
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Task: Use step-by-step reasoning to determine which sentences in a clinical note are essential to answering a medical question.

Example:
Patient's Narrative: Took my 59 yo father to ER ultrasound discovered he had an aortic aneurysm. He had a salvage repair (tube

Clinician's Rephrased Question: Why did they perform the emergency salvage repair on him?

Clinical Note (numbered sentences):

*x1:%% He was transferred to the hospital on 2025-1-20 for emergent repair of his ruptured thoracoabdominal aortic aneurysm.
*x2:%%x He was immediately taken to the operating room where he underwent an emergent salvage repair of ruptured

< thoracoabdominal aortic aneurysm with a 34-mm Dacron tube graft using deep hypothermic circulatory arrest.

**3:%% Please see operative note for details which included cardiac arrest x2.

*x4:%%x Postoperatively he was taken to the intensive care unit for monitoring with an open chest.

*x5:%% He remained intubated and sedated on pressors and inotropes.

*%x6:%% On 2025-1-22, he returned to the operating room where he underwent exploration and chest closure.

*%7:%%x On 1-25 he returned to the OR for abd closure JP/ drain placement/ feeding jejunostomy placed at that time for

< nutritional support.

*x8: %% Thoracoabdominal wound healing well with exception of very small open area mid wound that is @lcm around and 1/2cm
< deep, no surrounding erythema.

*x9:%% Packed with dry gauze and covered w/DSD.

Example Answer:

His aortic aneurysm was caused by the rupture of a thoracoabdominal aortic aneurysm, which required emergent surgical

< intervention (1). He underwent a complex salvage repair using a 34-mm Dacron tube graft and deep hypothermic circulatory
< arrest to address the rupture (2). The extended recovery time and hospital stay were necessary due to the severity of the
< rupture and the complexity of the surgery, though his wound is now healing well with only a small open area noted (8).

Question to answer: {clinician_question}
Patient's original query: {patient_question}

Clinical Note:
{numbered_note}

Instructions:

1. First, break down what information is needed to answer the question

2. Identify only the sentences that contain this essential information

3. Write a concise answer using only these sentences

4. Include sentence numbers in parentheses after each claim: (1) or (2, 3)
5. Be precise - only cite sentences that directly support your statements

Your Answer:

Answer generation prompt

# Medical question answering based on essential sentences

## Patient Information
**Patient narrative:*x {patient_narrative}

**Clinician question:** {clinician_question}

## Numbered essential sentences from the clinical note
{essential_text}

## Task Instructions

1. Generate a mostly extractive response from the listed sentences, which serves as an answer for the question. You must

< maximize lexical overlap between the source sentences and the response, while providing a useful answer

2. Each essential sentence must be cited at least once in your answer. Include the sentence numbers in parentheses after

< statements that use information from those sentences, e.g., (2) or (1, 3). Cite multiple sources separated by comma, when
<> neccessary.
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3. Citations must be at the end of each generated sentence.
4. Limit your answer to a maximum of {words_limit} words, but more than 50 words. (About 4-5 sentences.)

Be straight to the point with your answer to the question, avoid phrases like "Based on the sentences”. Remember, you must
< maximize the similarity in the wording to the original sentences.

## [For Iteration i > 1] Previous Attempts
#it# Attempt {i-1}

**xAnswer : %

{previous_answer}

*xRejection Reason:** {validation_feedback}

{
+ "Too long ({word_count} words)"” -> word limit exceeded
"Does not cite all essential sentences: {missing_citations}" -> missed citations
- "Citations to non-essential sentences: {invalid_citations}"” -> invalid citations
}

## Instructions for revision

- Review ALL previous rejection reasons

- Ensure ALL essential sentences are properly cited

- Maintain a concise response (maximum {words_limit} words)
- Make sure to address all issues from previous attempts

B.1 End-to-End approach prompt

# Medical question answering based on clinical notes

## Task

Generate an answer to a patient's health question using only information from the clinical note. Each statement in your answer
< must be grounded in specific sentences from the note.

Generate an answer to the patient's question.

Include information that explain medical reasoning, procedures, relevant medical history of the patient that provides a
full answer to the question.

EVERY sentence in your answer MUST end with at least one citation in parentheses, e.g., "The procedure was performed to
treat the condition (3)."” or "The treatment involved multiple steps to address your condition (3, 5)."

Be precise with your citations - only cite sentences that support each claim.

Be accurate with your citations, make sure citation format is correct: (sentence_number) OR (sentence_number_1,
sentence_number_2, ...)
- Invalid citation examples to avoid: (1-3); (1-2, 5-6); (Sentence 2)
- Valid citation examples instead: (1, 3); (1, 2, 5, 6); (2)

6. Cite at most a couple of sentences at a time, not more.

7. Keep your answer under {words_limit} words total.

8. Do not include any sentences without citations.

forlefv

[Example showing format with citations...]

## Current Case
*xPatient narrative:** {patient_narrative}

*xClinician question:** {clinician_question}

### Clinical Note (numbered sentences):
{numbered_note}

## [For Iteration i > 1] Previous Attempts
### Attempt {i-1}
**Answer:** {previous_answer}
*xRejection Reason:** {validation_feedback}
{
« "Too long ({word_count} words)" -> word limit exceeded
- "Sentence {n} doesn't end with citation” -> missing citation
"Poorly formatted citation” -> citation format error
+ "Invalid citation numbers” -> cited non-existent sentences
}

Review ALL previous rejection reasons, and do not repeat these mistakes
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Abstract

In this paper, we investigated two approaches
to clinical question-answering based on patient-
formulated questions, supported by their nar-
ratives and brief medical records. The first
approach leverages zero- and few-shot prompt
engineering techniques with GPT-based Large
Language Models (LLMs), incorporating strate-
gies such as prompt chaining and chain-of-
thought reasoning to guide the models in
generating answers. The second approach
adopts a two-steps structure: first, a text-
classification stage uses embedding-based mod-
els (e.g., BERT variants) to identify sentences
within the medical record that are most rele-
vant to the given question; then, we prompt
an LLM to paraphrase them into an answer so
that it is generated exclusively from these se-
lected sentences. Our empirical results demon-
strate that the first approach outperforms the
classification-guided pipeline, achieving the
highest score on the development set and
the test set using prompt chaining. Code:
github.com/armandviolle/BioNLP-2025

1 Introduction

The ArchEHR-QA 2025 shared task (Soni and
Demner-Fushman, 2025b) focused on grounded
electronic health record question answering. The
goal was to design a system that could answer pa-
tients’ questions based on sentences from the pa-
tient’s medical notes providing evidence supporting
the answer’s statements.

A development dataset (Soni and Demner-
Fushman, 2025a) of 20 cases was at our disposal,
structured as follows in XML format: a patient nar-
rative (P"9T%v¢) where the patient states their
situation and asks their question(s); the original
patient question (QP*¢"); its clinician reformula-
tion (Q¢!™iciany. and a medical note summarizing
the patient’s history, presented both as a whole
and sentence-by-sentence. Additionally, a JSON

file was provided which contained a label for each
sentence ("essential," "supplementary," or "not rel-
evant") with respect to the questions.

Three guidelines were set for the generated an-
swers: 1. a maximal length of 75 words, 2. one
sentence per line with, at the end of each line, the
cited id attribute(s) of the supporting medical note
sentence(s) and 3. avoiding using external data or
knowledge (relaxed later on).

The answers went through a two-step evaluation
based on their factuality, i.e. the effective citation
of “essential” sentences in the answers, and their
relevance, i.e the semantic similarity with the in-
puts. Consequently, we tried to design systems
suiting this layered structure with a classification
step of the medical note sentences’ relevance and a
summarization step rephrasing relevant sentences
into an answer to the QP?***"* We confronted these
approaches to Large Language Models (LLMs)
prompting strategies which we considered as base-
lines.

2 Methods

2.1 Sentence relevance classification

In this section, we present a method to iden-
tify question-relevant sentences using Sentence-
BERT’s bi-encoder and cross-encoder architec-
tures (Reimers and Gurevych, 2019), enabling the
LLM to generate answers grounded solely in the
extracted content.

2.1.1 Single-sentence classification using
short-context embeddings

First, we evaluated each clinical sentence individ-
ually against P"%"etv¢ yging pairwise compar-
isons.

We employed the pretrained cross-encoder ms-
marco-MiniLM-L12-v2, which was originally
trained on the MS MARCO dataset (Bajaj
et al., 2016), a large corpus of query-document
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pairs ranked by relevance, and then fine-tuned
on 15 cases (5 for validation) from ArchEHR
dataset (Soni and Demner-Fushman, 2025a).

We also evaluated a bi-encoder model Jina-
embedding v3 (Sturua et al., 2024). Sentences
with cosine similarity score > 0.5 to the query
were considered essential, using 0.5 as a midpoint
heuristic within the range of [0, 1]. eFigure 1 in
the Appendix shows the distribution of similarity
scores across label categories.

2.1.2 Multi-sentence classification using
long-context embeddings

In our second approach, we utilized Jina-
embedding v3’s 8k-token capacity to process multi-
ple sentences in context. Unlike the single-sentence
setup, each example consists of a concatenated in-
put of the P"@"rative and candidate sentences, for-
matted as [Question] </s> [Sentence 1] </s>

. [Sentence NJ]. The model outputs binary la-
bels indicating whether each sentence is Essential
or not (Supplementary/Not Relevant).

2.1.3 Data augmentation for robust
classification

To address data scarcity, we generated 748 syn-
thetic question-answer pairs from i2b2 (Uzuner
et al., 2011), emrQA (Pampari et al., 2018), and
MIMIC-III (Johnson et al., 2016)) clinical corpora.
Each instance contained: (i) a question (generated
via OpenAl’s gpt-04-mini with manual prompt tun-
ing), (ii) clinical note excerpts, and (iii) binary rele-
vance labels. For sentence selection, we embedded
text using text-embedding-ada-002, retrieved
top-k matches via FAISS, and assigned labels (Es-
sential/Supplementary/Not relevant) based on rank-
ing position. We evaluated augmentation effec-
tiveness by fine-tuning both a ms-marco-MiniLM-
L12-v2 cross-encoder (short-context) and a Jina
Embedding v3 classifier (long-context). Details on
the training are available in the section A of the
Appendix.

2.2 Prompting LLMs for answer generation

In this section, we present an end-to-end method
that generates the answer using LLMs. To evaluate
different prompting strategies, we used the OpenAl
API with data sharing explicitly disabled, ensur-
ing that no inputs, outputs, were used to train or
improve OpenAl models.

2.2.1 Zero-shot prompting

Zero-shot prompting was our first approach to gen-
erate the answer, specifically to understand how
effectively LLMs could tackle both classification
and paraphrasing sub-tasks at once. We adapted
the prompt’s instructions and format according to
the observed output and best practices found in the
literature, as well as diverse combinations of in-
put data. We tested GPT-4.1-mini (OpenAl, 2025)
and Mistral Large (Al 2024). More details on the
prompts can be found in eFigure 2 and eFigure 3
of the Appendix.

2.2.2 Prompting reasoning steps with
chain-of-thought

As chain-of-thought (CoT) has proven to be an effi-
cient prompting strategy to increase model reason-
ing abilities, we decomposed the task in a sequence
of distinct steps to help the model tackle the task.
We incorporated these reasoning steps into the sys-
tem prompt and fed it to a GPT-4.1-mini (OpenAl,
2025) model, mostly to control outputs’ format, try-
ing to force the model to autonomously check and
adapt its answer to the expected format. Prompt is
presented in eFigure 4 of the Appendix.

2.2.3 Few-shot prompting

In few-shot prompting, we created pairs of
question-answers to add as examples in our
prompts. To generate the “gold standard” answers,
we prompted GPT-4.1-mini (OpenAl, 2025) to
paraphrase essential sentences from the medical
note, based on the available labels in the dataset,
into an answer to the QP®*"  Then, for each
case, we sampled randomly a subset of pairs among
the other available cases that were included in the
prompt as examples, before the inference case’s
input. Prompts are presented in eFigure 5 and eFig-
ure 6 of the Appendix.

2.2.4 Prompt chaining: divide-and-conquer

We adopted a prompt chaining approach based on
the divide-and-conquer principle, breaking down
the overall task into a structured sequence of
smaller, interdependent subtasks. Each subtask
is addressed by a language model, and the inter-
mediate outputs are passed as inputs to subsequent
stages. An overview of the full pipeline is shown
in Figure 1.
This pipeline comprised five steps:

(i) Free answer generation. We prompted
04-mini-2025-04-16 to generate a detailed and
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Step 2: Essential Sentence
Identification
Model: GPT 4.1-mini-2025-04-14

Step 1: Free Answer Generation
Model: GPT 04-mini-2025-04-16

Step 3: Answer Reformulation
with Inline Citations
Model: GPT 4.1-mini-2025-04-14

Step 4: Answer Compression
Model: GPT 4.1-mini-2025-04-14

he patient's narrative ... the patient's narrative ...

[f Your task is to respond %

... Your task is to respond D / Your task is to respond to
the patient's narrative ... the patient's narrative ...

{ Your task is to respond tu}
t

(## Patient's narrative )

<patient_narrative>
## Clinical note
\<clinical_note> V)

## Patient's narrative
<patient_narrative>
## Clinical note
<clinical_note>

Detailed answer to the patient’s
narrative using the full clinical
note, aiming for maximum

completeness and informativeness.

Generates

<patient_narrative>
## Clinical note
\<clinical_note>

<patient_narrative>
## Clinical note

(## Patient's narrative ‘
«<clinical_note>

## patient's narrative ‘

Detailed answer to the patient’s
narrative using the full clinical
note, aiming for maximum

completeness and informativeness.

Detailed answer to the patient’s
narrative using the full clinical
note, aiming for maximum

completeness and informativeness.

Identify and extract the exact
sentences from the clinical
note that were directly helpful
in answering the patient’s

Identify and extract the exact
sentences from the clinical
note that were directly helpful
in answering the patient’s

Identify and extract the exact
sentences from the clinical
note that were directly helpful
in answering the patient’s

narrative ... narrative ... narrative ...

5 4 5 \ e X N\

## sentence id: 1 [## sentence id: 1 ## sentence id: 1

<sentence> <sentence> <sentence>

## Sentence id: 2 ## Sentence id: 2 ## Sentence id: 2

<sentence> <sentence> <sentence>

L ) e )
p-List of essential sentence ids. List of essential sentence ids.

Generates

Roles

System

User

Assistant

Figure 1: Overview of the prompt chaining workflow:

enforces formatting.

informative answer, given the P"* 7@€ and the
associated full medical note. The prompt was de-
signed to encourage completeness, with no for-
matting constraints, in order to generate as many
relevant elements of the medical note as possible.
(ii) Essential sentence identification. The output
from Step 1, along with the medical note (provided
as a list of markdown-formatted sentences), is
passed to gpt-4.1-mini-2025-04-14. The model
was prompted to identify the minimal subset of sen-
tences that directly support the answer.

(iii) Answer reformulation with inline citations.
Using only the essential sentences from Step 2, the
same model was prompted to reformulate the an-
swer in a structured format. Each sentence appears
on a new line and includes inline citations (e.g.,
|3,7]) referencing the supporting sentence IDs.
(iv) Answer compression. We prompted the same
model to compress the reformulated answer into
a concise version constrained to 75 words, while
preserving the same inline citations.

(v) Strict answer compression (optional). If the
compressed answer still exceeds 75 words, we
prompt the same model again using the same com-
pression rules, but presented in a more structured

narrative using only the narrative using only the

... Your task is to reformulate ... Your task is to reformulate|
a response to the patient's a response to the patient's
essential sentences ... essential sentences ...

(## Patient's narrative (## Patient's narrative )
<patient_narrative> <patient_narrative>

## Reformulated by a clinician ## Reformulated by a clinician
lsclinician_question> ) lsclinician_question>

Reformulated answer using only the
essential sentences, writing one
sentence per line with inline
citations (e.g., [1,2]).

... Your task is to compress a
clinical response so that it
contains fewer than 75 words in
total ...

Generates

Generates

Final answer meeting all
formatting requirements

each step refines the answer, improves grounding, and

and imperative format. We allow up to three re-
tries. If the constraint remains unmet, we restart
the entire pipeline with a new seed.

The system prompts used in the pipeline are pro-
vided in eFigure 7 in the Appendix. One may note
that only prompt chaining and CoT consistently
produced answers within the 75-word limit. Other
methods required post-processing compression, as
described in Section E of the Appendix.

3 Results

3.1 Sentence relevance classification

Table 1 reports the performance of various
embedding-based models in identifying essential
sentences. We present precision, recall, and F1-
score for each model configuration including the
pretrained cross-encoder ms-marco-MiniLM-L12-
v2 (with 33.4 million parameters), Jina Embed-
ding v3 (Sturua et al., 2024) (with 572 million
parameters) evaluated in both a bi-encoder (single-
sentence) and a multi-sentence classification set-
ting. The second and third columns indicate fine-
tuning on the ArchEHR sample and the augmented
dataset, respectively.
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Precision

Recall

F1-score

Model ArchEHR FT*  Augmented FT*
ms-marco-MiniLM
ms-marco-MiniLM v
ms-marco-MiniLM v
Jina (single-sentence)
Jina (multi-sentence) v

0.24 (0.20-0.28)
0.37 (0.34-0.41)
0.36 (0.35-0.37)
0.49 (0.41-0.61)
0.39 (0.33-0.46)

0.51 (0.42-0.60)
0.28 (0.24-0.33)
0.90 (0.88-0.92)
0.55 (0.43-0.66)
0.70 (0.59-0.82)

0.29 (0.25-0.34)
0.29 (0.26-0.32)
0.51 (0.50-0.52)
0.52 (0.44-0.59)
0.50 (0.44-0.56)

Table 1: Performance of embedding-based models for essential sentence classification on the development set.
Metrics are reported as mean (95% confidence interval). *FT: fine-tuned.

3.2 Prompting LLMs for answer generation

Table 2 reports the performance of various prompt-
ing methods using large language models. The first
column lists the prompting strategies. The second
column presents the factuality score, measured as
the F1-score on the essential sentence identification
task. The third column shows the relevance score,
computed as the average of several semantic sim-
ilarity metrics (bleu, rouge, medcon, alignescore,
bertscore, and sari) between the generated answer
and the concatenation of the essential sentences,
the Pnarrative’ and the chim‘cian.

Development Set

Method Factuality Relevance
Zero-shot Mistral  51.1 (2.6)  31.1 (0.7)
Zero-shot GPT 56.6 (2.1)  32.5(0.6)
Chain-of-thought  52.4 (1.9) 33.2(0.5)
Few-shot 54.5(1.9) 32.5(0.5)
Prompt chaining  59.3 (0.2) 37.9(0.3)
Test Set

Method Factuality Relevance
Prompt chaining 54.2 35.5

Table 2: Comparison of methods on factuality and rele-
vance score for the development and test sets. Results
are reported as mean (standard deviation) over 10 ran-
dom seeds for the development set. Test result is shown
for the best-performing method.

4 Discussion

Our findings highlight several important insights
regarding the classification of essential sentences
in clinical narratives. First, fine-tuning on the
ArchEHR dataset alone did not yield consistent per-
formance gains. We attribute this to the dataset’s
limited size (only 20 annotated cases), which is
insufficient for effective adaptation. Moreover,
the augmented dataset significantly improved the
performance of the cross-encoder model. It not
only boosted F1-scores but also reduced variance
across runs, suggesting that the model benefited

from the synthetic data. However, fine-tuning the
Jina-Embedding v3 model with augmented data
and multi-sentence input did not improve perfor-
mance. This may be due to the LoRA adapters
being poorly suited for this fine-tuning setup, or
because the model’s initial performance left little
room for improvement. Further investigation is
needed to understand the cause.

Despite extensive experimentation with
embedding-based approaches, including both
single and multi-sentence configurations, we
observed that LLMs outperformed them on the
sentence classification task. Nevertheless, it is
noteworthy that a relatively small 33M-parameter
BERT cross-encoder achieved the same F1-score
of 0.51 as the much larger 123B-parameter Mistral
large model, highlighting a meaningful tradeoff
between performance and computational cost.

Results indicate that prompting strategies isolat-
ing subtasks through sequential prompt chaining
led to more accurate sentence classification, im-
proved answer relevance, and reduced variability,
with standard deviation nearly ten times smaller
for the factuality score. Interestingly, zero-shot
prompting outperformed both few-shot and CoT
approaches. While the reason remains unclear, this
may suggest that overly long system prompts were
less effective for this task.

5 Conclusion

This study addressed the ArchEHR-QA challenge,
where the goal is to answer patient-specific clin-
ical questions by identifying and citing essential
sentences from clinical notes. For sentence classifi-
cation, augmenting the dataset with synthetic QA
pairs improved performance and reduced variation.
While embedding models such as bi-encoders and
cross-encoders produced solid results, LL.Ms con-
sistently outperformed them. For this task, prompt
chaining, which isolates subtasks, gave the best
result.
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Limitations

The first limitations to mention are related to the
LLMs we used for prompting strategies. Indeed
OpenAI’s GPT models and Mistral AI’s models
are proprietary and thus lack transparency on their
training process (e.g data corpora used) and some
functionality (e.g “determinism not guaranteed”
when fixing seed parameter). In research, it is a
major drawback as it is hard to truthfully build
upon undisclosed features. Moreover, these models
are pay-as-you-go, so we stuck to smaller, cheaper
models that enabled us to run multiple experiments
(we spent almost 100$ worth of OpenAl tokens for
the challenge). Scaling up to models such as GPT-
4.5, ol or 03 may have improved performances-but
it comes at a cost.

One limitation of our synthetic dataset is that the
complexity of the sentence classification task often
requires domain-specific medical knowledge. As
a result, the generated data may not fully capture
the nuances present in real clinical scenarios. In-
corporating validation and annotation by medical
experts could help ensure the reliability and clinical
relevance of the synthetic data, thereby increasing
its impact for downstream tasks.

To conclude, we reflect on the evalua-
tion methodology, particularly the suitability of
BLEU (Papineni et al., 2002) for assessing the rel-
evance metric. BLEU includes a brevity factor that
can disproportionately penalize predicted answers
that differ in length from the reference. In our case,
relatively short predicted answers (with a maxi-
mum expected length of 75 words) were evaluated
against much longer references composed of con-
catenated prarrative Qdimcmn, and essential sen-
tences. This mismatch in length likely contributed
to the uniformly low BLEU scores observed across
the leader board.
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Appendix

A Training details for sentence
classification

A.1 Cross-encoder finetuning

We trained the cross-encoder on both the aug-
mented dataset and archEHR sample using iden-
tical hyperparameters: binary cross-entropy loss,
AdamW optimizer (learning rate 2 x 107%), and
batch size of 64. Training proceeded for 10 epochs.

A.2 Multi-sentence classification

We fine-tuned the LoRA adapter specifically de-
signed for classification in the Jina-Embedding
v3 model, which includes five task-specific LoRA
adapters in total. These adapters are integrated into
the embedding and linear layers of the multi-head
attention mechanism, with a rank of 4 and o« = 1.
We fine-tuned the classification adapter on our syn-
thetic QA dataset for 5 epochs using the AdamW
optimizer (learning rate: 2 x 107°). Due to the
long input sequences, we used a batch size of 1.
Class imbalance was addressed using a weighted
BCEWithLogitslLoss, and mixed-precision train-
ing (bfloat16) was enabled via torch.cuda. amp.
Inputs followed the format: [Question] </s>
[Sentence 1] </s> [Sentence N] The
final prediction was produced by a linear head ap-
plied to sentence embeddings extracted at the </s>
token positions.

B Bi-encoder classification

The bi-encoder approach using Jina Embedding v3
demonstrated significantly higher cosine similar-
ity scores between patient questions and sentences
labeled as "Essential” (mean = 0.62) compared to
other categories (mean = 0.41, t-test p < 1 x 10710).
eFigure 1 shows the distribution of similarity scores
across label categories, revealing clear separation
between essential and non-essential phrases.

C C(lassification with a large encoder

Here we report an evaluation of gte-Qwen2-7B-
instruct (Li et al., 2023). When using the prompt
presented in eFigure 8, the model ended up overfit-
ting on the training set while failing to generalize
the information on the validation set . For the ac-
curacy it reached 0.98 and the f1 0.98 in training,
while in validation the best metrics were : f1 0.33,
recall 0.28, precision 0.41.

— label
40 4 3 others
[ essential

30 4

Count

10 A —

T T T
0.1 0.2 0.3 0.4 0.5 0.6
score

eFigure 1: Distribution of cosine similarity between
question and sentence

D CoT and Few-Shot implementation
details

We used the three roles offered by the
chat.completions.create of the OpenAl
API client: system to describe the general beahior
of the model, user to input data and additional
information helping the model to respond such as
reasoning steps or examples, and assistant to
input example responses for few-shot prompting.
The system prompt and user prompts were very
similar in few-shot (see Figure 6) and CoT (see
Figure 4). For the user inference prompt, we
just concatenated the selected data consisting in
Pnarrative’ Qpatient’ chinician and the sentence-
by-sentence medical note excerpt in few-shot,
while in CoT we first prompted the reasoning steps
and then the same inputs.

For CoT, we created examples using the first
2 cases by prompting successively the reasoning
steps and input data in ChatGPT. We then used
the final answers as “gold standard” to provide an
example for each case before inference, which re-
sulted in the following (considering a single case):

1. We prompt the system role (see Figure 4 for
detailed prompts).

2. We prompt the user role with the reasoning
steps and the input data of an example case.

3. We prompt the assistant role with the final
answer obtained with ChatGPT.

4. Finally, we prompt the actual inference case
to the user role.
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In few-shot, before generating the answers, we
zero-shot a summarization task with the system
prompt on Figure 5 and a user prompt containing
essential sentences only and QP*™  We used
them in the few-shot strategy to provide as follows,
considering a single case:

1. We randomly sampled 5 cases among the 19

other available to serve as examples.
We prompt the system role.

3. We prompt 5 times user-assistant roles
successively, user prompts being the sam-
pled cases formatted as inference prompts,
and assistant prompts being the correspond-
ing sampled cases’ previously generated para-
phrase.

Finally, we prompt the actual inference case
to the user role.

For CoT, we created examples using the first
2 cases by prompting successively the reasoning
steps and input data in ChatGPT. We then used
the final answers as “gold standard” to provide an
example for each case before inference, which re-
sulted in the following (considering a single case):

1. We prompt the system role (see Figure 4 for
detailed prompts).

2. We prompt the user role with the reasoning
steps and the input data of an example case.

3. We prompt the assistant role with the final
answer obtained with ChatGPT.

4. Finally, we prompt the actual inference case
to the user role.

E Answer post-processing to enforce
word limit

To enforce the 75-word limit required by the evalu-
ation protocol, we apply a post-processing script to
the model-generated answers. Although the sum-
marization prompt explicitly specifies this limit,
responses occasionally exceed it. The cleanup pro-
cess ensures validity and evaluation compatibility
through the following steps:

* Grouped summarization: Consecutive sen-
tences with identical citations are grouped and
summarized using GPT-4.1-mini, with a dy-
namic word limit to ensure the final output
stays within the 75-word constraint.
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* Citation preservation: Citations from the
original outputs are preserved and reattached
to the corresponding summarized segments to
maintain factual alignment.

Fallback handling: If summarization fails
or exceeds the limit, a generic sentence is
inserted: "Additional supporting evidence."
with the missing citations appended.

Format compliance:  The evaluation
script requires at least one citation line
in the format Sentence or summary.
|[citation_id(s) |, but not necessarily one
for every sentence.

This method prioritizes factual consistency and
strict format adherence, and was found to be effec-
tive when used with a controlled summarization
model such as GPT-4.1-mini.



F System prompts

You are a clinical assistant. Carefully review the patient narrative,
clinician question, and the provided clinical note sentences. Provide a
medically accurate and detailed answer to the clinician's question.

Example:

Patient Narrative:
"I had difficulty breathing and fever, and was hospitalized."

Clinical Note Sentences:

[0] Patient admitted on Wednesday evening.

[1] Patient complained of difficulty breathing.

[2] Chest X-ray showed clear infiltrates in lower lobes.

[3] White blood cell count significantly elevated, indicative of infection.
[4] Patient was discharged after five days.

Correct JSON Response:

{
"answer": "Yes, the patient has clinical evidence of pneumonia 12,3,
supported by X-ray infiltrates and elevated white blood cell count 121."

Important Instructions:

Include ALL sentences that could partially or fully support answering
the clinician's question by mentionning them in IsentencelDsl.

If uncertain, lean towards including the sentence.

Prioritize recall and completeness of supporting evidence.

Patient Narrative:

{patient_narrative}

Clinical Note Sentences:
{formatted_sentences}

Respond strictly in the JSON format:
«

"answer": "your detailed answer here cite sentences IDs between II"

»

eFigure 2: Mistral large zero-shot prompt

/

You are a clinical assistant. Your goal is to answer the patient's question
using only the sentences provided below.

- Every sentence used must be cited at the end using |sentence_id|.
- Cite all sentences that support each part of your answer.

- If multiple sentences support a point, cite all of them like |2,3].

- Keep your total answer upto 75 words.

- Write one sentence per line.

Sentences:

{context}

Question :

{question / patient_narrative}

Answer:

o /

eFigure 3: Zero-shot prompt using GPT 4.1-mini

\

# Identity
‘You are a helpful medical assistant answering accurately to patients’ questions using evidence
from their medical records.

‘Your goal is to provide clinically grounded answers by highlighting relevant information from the
note excerpt while preserving its medical meaning.

Maintain a tone of light formality suitable for direct communication with patients.

‘You will receive detailed instructions that you MUST follow exactly.

# Instructions

- Address the pafient.

- Do not produce void answers.

- Do not refer to or quote the full clinical note.

- Write the response as a series of standalone sentences, one sentence per line.

- Atthe end of each sentence, cite the supporting sentence ID(s) in this format: Is11.

- It a sentence is supported by multiple note sentences, cite them Iike this: 1s2,531.

- Every sentence in your response MUST be backed by one or more note_excerpt_sentences.
- Your answer must be EXACTLY between **70 and 75 words™* (excluding citations). Adjust
phrasing to meet this requirement.

# Input format

You will be given input in XML format with the following elements:

- <patient_narratives: the full narrative question from the patient.

- <patient_question>: key phrases extracted from the narrative, each within a <phrase= tag with
attributes "id” and "stari_char_index".

- <clinician_question>: a rephrasing of the patient's question from a clinician’s perspective.

- <note_excerpt_sentences>: sentences extracted from the patient's medical record, each within a
<sentence> tag, with attributes "id", "paragraph_id", and "start_char_index".

\

# Reasoning Steps

1. Identify relevant information from the note_excerpt_sentences based on the patient's question.
2. Atthe end of each response sentence, cite the supporting note_excerpt_sentences ID(s) like
this: 11 or 12,31 if multiple.

3. Paraphrase and summarize the relevant information.

4, Ensure the answer is between 70 and 75 words, excluding citafions.

# Input
<patient_narrative>
<patient_guestion>
<clinician_question>

\ <note_excerpt_sentences>

/

/

eFigure 4: Prompts for system (top) and user (bottom)
roles used for the CoT experiments with OpenAl API.
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# Identity
‘You are a helpiul medical assistant that rewrites text clearly and accurately to answer
a question.

‘Your goal is to paraphrase input sentences and guestion while preserving its medical
meaning, aiming for light formality in the tone answering to the patient.

You will be given instructions that you STRICTLY have to follow.

# Instructions

‘Your {ask is to reformulate a response fo the palient's narrative using only the
essential sentences extracted from the clinical note. Follow these strict guidelines:
- Use only the provided essential sentences, patient narrative and clinician question
1o generale your response.

- Da not refer to o quote the full clinical note.

- Write the response as a series of individual sentences, one sentence per line.

- At the end of each sentence, cite the supporting sentence ID(s) in this format:
Isentence_idl.

- If a sentence is supported by multiple essential sentences, cite all applicable 1Ds like
this: 12,31,

- Every slatement in your response must be supported by one or more essential
sentences.

- All essential sentences must be cited in your response.

- The answer should STRICTLY have “*between 70 and 75 words™.

# Reasoning Steps

- Each input sentences holds valuable information to answer the patient's question.
Using every one of them should help imrpving the answer's relevance.

- Make sure that all instructions on the answer’s format are followed, if not reformulate
until they are all followed.

# Qutput format

## Example of output format

This is the first generated sentence with cited evidence. 101

This is ancther generated sentence with cited evidences. li jI

You can also cite multiple evidence-sentences within a response sentence. INI

Take a deep breath and work step by step.

eFigure 5: System prompt used to generate essential
sentences’ and P"%7"tv¢’ suymmarized paraphrase in
Zero-Shot fashion.



# Ideniity
You are a helpiul medical assistant answering accurately o patients' questions considering their medical
records.

Your goal is to answer highlighting the clinical evidence found in a patient's note excerpt an
their medical meaning, aiming for light formality in the answer to the patient

“You will be given instructions that you STRICTLY have to follow.

# Instructions
- Do not refer to or quote the full dlinical note.

- Writa the response as a series of individual sentences, one sentence per line

- Atthe end of each sentence, cite the supporting sentence ID(s) in this format: Isentence_idl

- i a sentance is supported by muliiple essential sentences, cite all applicable IDs ke this: 12,31
- Every statement in your response must be supported by one or more essential sentences

- The answer should STRICTLY have **between 70 and 75 words*

# Input format
“Your are given an input sample containing different levels of information in XML format with the following

s
- patient_narrative: full patient narrative questien.

- patient_question: key phrases in the palient_narrative identified as the patient's question, each phrase is
delimited by a ‘phrase’ tag along with an index "id" and its starting character in the narrative
“starl_char_index"

- clinician_question: rephrasing of the patient's question, posed by a ciinician

- note_excerpt_sentences: sentences exiracted from the patient's medical hospital history. Each sentence
is delimited by a 'sentance’ tag along with 'id", "paragraph,_id" and "start_char_index" aftributes

# Reasoning Steps
1. Answer 1o the patient's question using relsvant information amang the note_excerpt_sentences,
considering the clinician question to guide the medical argumentation of your response.
2. For each sentence of the answer:

a. Identify which sentences among the note_excerpt_sentences can contain information related to this
responsa sentence.

b. Cite its/their "id" attribute(s) enclosed in pipe symbols (1) at the end of the sentence.

. You have to find at least ane relevant citation per response setence: none should be let without
citation
3. Try to reformulate your answer to stick more clasely to the cited note_excerpt_sentances, paraphrasing
them to some extent.
4. Make sure that the answer's length does not exceeds 75 words citations excluded, reformulate unti this
condition is met

# Ouput format
## Example of output format

This is the first generated sentence with cited evidence. 01
This is another generated sentance with cited evidences.
“You can also cite multiple evidence-sentences within a response sentence. NI

Take a deep breath and work step by step.

eFigure 6: Prompt for system role used for Few-Shot
experiments with OpenAl API.

/Instruct: You are given a question from a patient:\

I nad severe abodmen pain and was hospitalised for
15 days in ICU, dianoised with CBD sludge
thereafter in udilv. Doctor advised for ERCP . My

Step 1: free answer generation question s 1 e siudge was there does ot the
medcation help in flushing it out? Whether ERGP
You are a clinical assistant. Your task is to respond to the patient's narrative using only the information ‘was the only cure ?
found in the provided clinical note. Do not introduce any information that is not explicitly stated in the Which has been reformulated by a clinician:

dlinical note. . X . - Why was ERCP recommended to him aver
Your primary goal is to provide an accurate and detailed response that directly addresses the patient's ‘continuing a medication-based treatment ?

narrative, strictly based on the content of the clinical note. Do not infer or assume any additional
\context beyond what is given.

Step 2: essential sentence identification Bt Hospital Course:

During the ERCP.

As well as a detailed report about his medical
tory :

\dentify and extract the exact sentences from the clinical note that were directly helpful in answering
the patient's narrative. Only include the most relevant sentences that provide clear support for the e s etence &

answer. Do not include unrelated information or extra context. Return the selected sentences, followed
by a list of their corresponding sentence IDs. vant for the question ?

Step 3: answer reformulation with inline citations

You are a clinical assistant. Your task is to reformulate a response to the patient's narrative using only
the essential sentences extracted from the clinical note. Follow these strict guidelines: : . :

- Use only the provided essential sentences to generate your response. eFlgure 8 . Prompt for Qwenz'gte'7B 'lnStrUCt
- Include all essential sentences in your response.

- Do not refer to or quote the full clinical note.

- Write the response as a series of individual sentences-one sentence per line.

- Atthe end of each sentence, cite the supporting sentence ID(s) n this format: [sentence_id. Each phrase of the excerpt makes a sample, the example shown

- If a sentence is supported by multiple essential sentences, cite all applicable IDs like this: [2,3]. . .

- Every statement in your response must be supported by one or more essential sentences. here is for the first phrase. In bold are the added text to give
Step 4: answer compression context to the instruct model.

ﬁou are a clinical assistant. Your task is to compress a clinical response so that it contains fewer than N
75 words in total while preserving the full set of cited sentence IDs. Follow these strict guidelines:
- Your goal is to reduce the total word count to 75 words or fewer by merging and rephrasing the
original sentences.
- You must include all original sentence IDs in the final response, but you can combine them into fewer
citation brackets.
- Example:
Original:
<sentence A>. |1,2|
<sentence B>. |4,8,16|
Reformulated:
<merged sentence>. |1,2,4,8,16|
- Write the response as a series of individual sentences—one sentence per line.
- Every statement in your response must be supported by one or more essential sentences.

Step 5: strict answer compression

You are a clinical assistant. Your task is to compress a clinical response so that it contains **fewer tha}
75 words in total** while preserving the full set of cited sentence IDs.

STRICT RULES:

- Your output must contain **less than 75 words total**. Not 75 or more. Not approximately. **Fewer
than 75.**

- Merge, shorten, and rephrase aggressively, but preserve all sentence IDs. You may combine them
into fewer citation brackets (e.g., |1,2,4]).

-**DO NOT exceed the word limit under any circumstance.**

- Each line must be a single sentence.

- Every statement must be supported by at least one sentence ID.

FINAL CHECK BEFORE OUTPUT:

- Each line must be a single sentence.

- Count the words in your response. If 75 or more: revise, shorten, and try again.
- The output is invalid unless it has **< 75 words**.

EXAMPLE:

Original:

<sentence A>. |1,2|
<sentence B>. |4,8,16|

Compressed:
tmerged sentence>. [1,2,4,8,16| /

eFigure 7: System prompts used for the prompt chaining
pipeline.
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Abstract

We present a retrieval-augmented system for
the ArchEHR-QA 2025 shared task, which
focuses on generating concise, medically ac-
curate answers to clinical questions based on
a patient’s electronic health record (EHR).
A key challenge is following a strict cita-
tion format that references relevant sentence
IDs. To improve retrieval, we fine-tuned
an all-MiniLM-L6-v2 embedding model us-
ing contrastive learning on over 2,300 ques-
tion—sentence triplets, with DoRA for efficient
adaptation. Sentences were selected using
cosine similarity thresholds and passed into
a quantized Mistral-7B-Instruct model along
with a structured prompt. Our system achieved
similar relevance to the baseline but lower over-
all performance (19.3 vs. 30.7), due to issues
with citation formatting and generation quality.
We discuss limitations such as threshold tuning,
prompt-following ability, and model size, and
suggest future directions for improving struc-
tured biomedical QA.

1 Introduction

The ArchEHR-QA 2025 shared task focuses on
answering medical questions based on a patient’s
electronic health record (EHR) (Soni and Demner-
Fushman, 2025b). Each answer must be short, med-
ically accurate, and include in-text citations using
sentence IDs from the patient history (e.g., 11,2l).
This makes the task challenging, especially due to
the length and complexity of clinical records and
the strict output formatting rules.

Our approach follows a retrieval-augmented
pipeline. First, we fine-tune an embedding model
to better identify relevant sentences in the patient’s
history. Then, we pass the selected sentences, to-
gether with the question, into a generative model
(Mistral-7B') that produces the answer.

1https://huggingface.co/mistralai/
Mistral-7B-Instruct-ve.2

Although our method did not outperform the
baseline, it achieved comparable relevance score.
Most of the performance gap came from format-
ting issues and citation errors in the generated text,
which we analyze in this paper. We also discuss
the challenges of tuning models with limited data
and propose directions for improvement.

2 Methodology

In order to improve the accuracy and relevance
of cited sentences in generated answers, the main
focus of the proposed system is a domain-adapted
embedding model, which can capture the nuances
of a biomedical domain.

2.1 Overview

The approach consists of three main steps: (1) fine-
tuning an embedding model on the development
set of the shared task dataset (Soni and Demner-
Fushman, 2025a), (2) selecting relevant and sup-
plementary context sentences based on cosine sim-
ilarity thresholds, and (3) generating answers using
a quantized generative model (Mistral-7B) with
in-context citations.

2.2 Embedding Model Fine-Tuning

To accurately retrieve relevant sentences
from the patient’s history, we fine-tuned the
all-MinilM-L6-v2?> model with contrastive
objective using DoRA (Mao et al., 2024), a
parameter-efficient fine-tuning method that
extends LoRA (Hu et al., 2022). DoRA improves
learning capacity and training stability of LoRA,
making it particularly suitable in settings with
limited training data and computational resources.
Additionally, parameter-efficient tuning mitigates
the issue of catastrophic forgetting (Goodfellow
et al., 2013), where the pretrained model loses its

2https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2
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original knowledge during full fine-tuning. Details
about DoRA setup can be found in Appendix A.

We constructed a dataset of 2,582 triplets from
the development set (Soni and Demner-Fushman,
2025a), where each triplet consisted of:

* Anchor: a clinical question,

¢ Positive: a sentence labeled as "essential" or
"supplementary" to a given clinical question,

¢ Negative: a sentence labeled as "not relevant”
to a given clinical question.

The dataset was split into 2,341 training and 241
validation triplets to monitor performance.

We used the Trainer® from the
SentenceTransformer library with
MultipleNegativesRankingloss (analogous to
InfoNCE loss (Oord et al., 2018)) as the training
objective. In this setup, negatives were treated as
in-batch negatives, with the explicit negative in
each triplet acting as a hard negative. Training
was run for 50 epochs with the following key
hyperparameters: batch size of 64 (train) and 128
(eval), learning rate of le-4, warmup ratio of 0.1,
and no-duplicates batch sampling (beneficial for
in-batch negative mining).

To monitor training, we evaluated embedding
quality using alignment and uniformity metrics
(Figure 1). Alignment is a metric that measures
the closeness of positive pairs representations. Uni-
formity, on the other hand, depicts how well the
embeddings are ditstributed on a unit hypersphere.
These metrics were introduced by Wang and Isola
(2020) and provide insights into how well the fine-
tuned model clustered relevant sentences closer to
their corresponding questions while maintaining
separation from irrelevant ones.

2.3 Threshold Selection for Relevance

To define a threshold for sentence relevance, we em-
bedded both the clinical questions and patient his-
tory sentences using the fine-tuned model and com-
puted cosine similarity scores. Thresholds were
empirically determined by testing similarity val-
ues between 0.0 and 1.0 (in increments of 0.01) on
the development set, selecting the threshold that
produced the highest F1 score for identifying "rele-
vant" sentences:

* Relevant: cosine similarity > 0.25

3https://sbert.net/docs/package_reference/
sentence_transformer/trainer.html
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* Supplementary: 0.20 < cosine similarity
< 0.25

* Irrelevant: cosine similarity < 0.20

During answer generation on the test set, if no
sentences met the "relevant” or "supplementary"
criteria (i.e., all sentences were classified as "irrele-
vant"), the full patient history was used as context.

2.4 Generative QA Module

For answer generation, we used a quantized
Mistral-7B-Instruct-v@.2* model, selected
due to computational constraints. The prompt was
structured into three segments:

1. Instruction Header: a detailed instruction
block framing the task, e.g., “You are a med-
ical assistant tasked with answering patient
questions using provided case information.
After each factual claim, cite supporting sen-
tences in the format lidl or lid1, id2l. Limit the
answer to 75 words.”

. Context: a concatenation of the retrieved rel-
evant and supplementary sentences, each la-
beled with its sentence ID for proper referenc-
ing.

. Clinical Question: the specific question to be
answered.

The prompt also included an explicit example
demonstrating correct citation style and answer for-
matting, to help enforce the desired output pattern.
Despite these explicit instructions, we observed
that the generative model frequently struggled to
fully comply with strict citation formatting and
word count limits, highlighting typical challenges
in controlling large language models.

The full prompt template used in this work is
provided in Appendix C.

2.5 Reflections

The final system’s underperformance relative to
the baseline may be from two main factors: (1)
intrinsic weaknesses of the generative model in
structured QA and (2) potentially over-restrictive
relevance thresholds, which may have omitted valu-
able context. The small development set size also
limited threshold generalizability.

4https://huggingface.co/mistralai/
Mistral-7B-Instruct-ve.2
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Figure 1: Training progression visualized through alignment (left) and uniformity (right) metrics on a validation set.

3 Results

We  submitted one main official run
for the ArchEHR-QA task wusing the
Mistral-7B-Instruct-v@.2-based system.

Furthermore, we experimented with another
generative model meta-lama-3-8B-Instruct’,
but its performance was slightly lower (overall
score: 19.2) and therefore it is not considered in
this section. Table 1 reports the scores of our main
run compared to the organizers’ baseline.

Metric Baseline Ours
Overall 30.7 19.3
Overall Factuality 33.6 13.5
Overall Relevance 27.8 25.2
Strict Precision (micro) 71.6 36.8
Strict Recall (micro) 21.9 8.2

Strict F1 (micro) 33.6 13.5
Lenient Precision (micro) 77.0 39.7
Lenient Recall (micro) 22.3 8.4

Lenient F1 (micro) 34.6 13.9
Strict Precision (macro) 77.4 49.6
Strict Recall (macro) 31.5 14.5
Strict F1 (macro) 39.0 19.0
Lenient Precision (macro) 83.0 53.8
Lenient Recall (macro) 30.8 13.6
Lenient F1 (macro) 39.9 19.1
BLEU 0.1 04

ROUGE-Lsum 15.2 16.8
SARI 47.8 45.8
BERTScore 20.5 19.9
AlignScore 57.7 43.9
MEDCON (UMLS) 25.6 24.5

Table 1: Performance comparison between the base-
line (organizers) and our system (razreshili) on the
ArchEHR-QA test set.

Our best submission did not outperform the base-

5https://huggingface.co/meta—llama/
Meta-Llama-3-8B-Instruct

line in most official metrics, but achieved a com-
parable relevance score (25.2 vs. 27.8 overall rel-
evance) and slightly higher ROUGE-Lsum (16.8
vs. 15.2) and BLEU (0.4 vs. 0.1).

3.1 Error Analysis

We conducted a detailed error analysis with the
following findings:

* Citation format errors: Despite explicit
prompt engineering, some generated answers
failed to follow the required citation for-
mat (|sent_id|, e.g., |1]|). This often hap-
pened when the context was complex or in-
cluded many sentences. Typical mistakes in-
cluded separating citations incorrectly (e.g.,
[1], |12] instead of [1,12]), breaking them
across lines (e.g., |3]\n\n]|2,6]| instead of
|3,2,6]), or separating with a dot (e.g., |6] .
|1,3] instead of |6, 1, 3]). These formatting
issues might have contributed to lower scores
in strict citation metrics.

Word limit violations: Of 100 cases, 14 gen-
erated responses exceeded the 75-word limit.
We observed that these violations were more
common in truncated cases, where the con-
text length was substantially longer: truncated
cases had on average 7.4 relevant and 5.3 sup-
plementary sentences, compared to 3.6 and
2.0 in non-truncated cases. This suggests that
longer, information-rich contexts increased
the likelihood of the model producing over-
length answers.

4 Discussion

Our method did not outperform the baseline, but it
helps show where smaller generative models strug-
gle in biomedical question answering.

Even though adding relevant and supplementary
sentences to the prompt helped us reach a similar
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relevance score, other scores like citation accuracy
and factual correctness were much lower. This
means that better sentence retrieval alone is not
enough—the model also needs to follow strict rules
for format and content.

Smaller models like Mistral-7B and Meta-
Llama-3-8B often failed to follow the required
citation format or stay under the 75-word limit.
In contrast, larger models like LLaMA 3.3 70B,
which were used in the baseline system, are better
at following instructions and producing more accu-
rate answers. While we used a retrieval-augmented
setup to shorten the context and focus the model on
relevant sentences, newer models like LLaMA-3-
8B or Mistral-7B support longer inputs and could
process the full patient history directly. We didn’t
try this due to limited resources, but it could be a
strong and simpler baseline for future work.

In future work, combining better retrieval with
larger or more fine-tuned generative models may
help improve performance on this type of task.

5 Limitations

Our approach has several limitations:

* Small dev set: The development set was
small, which made it hard to properly adapt
a sentence embedding model to a complex
medical domain.

* Strict thresholds: The fixed similarity thresh-
olds for selecting relevant and supplementary
sentences may have removed useful context,
especially for more difficult questions.

* Generative model constraints: We used a
quantized version of Mistral-7B due to hard-
ware limitations. While fast and memory-
efficient, this model often failed to follow
citation and length constraints, limiting the
effectiveness of our retrieval pipeline.

* No fine-tuning of the generator: The gener-
ator was used as-is with prompt instructions.
We didn’t fine-tune it on this task, which likely
hurt citation accuracy.

* Prompt sensitivity: Despite careful prompt
design, the model often ignored citation for-
matting rules. This suggests that prompt-only
control may be insufficient for tasks with strict
output requirements.

* No baseline for smaller embedding model:
We did not compare our fine-tuned embed-
ding model against the original (non-adapted)
version. This limits our ability to directly mea-
sure the contribution of contrastive fine-tuning
to retrieval performance.
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bias="none",

)

B Generation Parameters

The following parameters were used during answer
generation with Mistral-7B-Instruct-v0.2:

generation_kwargs = {
"pad_token_id": tokenizer.eos_token_id,
"max_new_tokens": 512,
"temperature”": 0.2,
"top_p": 0.95,
"do_sample”: True,

}
C Prompt Template

You are a medical assistant tasked with answering patient questions using provided
case information.

Rules:

- After every factual claim, cite the supporting sentence(s) in the format |id]| or
[id1, id2].

- Group citations if multiple sentences support the same claim (e.g., [1,2]).

- Do not create a 'References' section.

- Limit the answer to 75 words or fewer.

- Only use the provided sentences; do not hallucinate facts.

- Write clearly, medically accurately, and concisely.

Example:

Evidence:

1. The patient has alcoholic cirrhosis.
2. He has advanced hepatic encephalopathy.
3. His renal function is deteriorating.

Question:
What is the patient's prognosis?

Answer:
The patient’s prognosis is poor due to alcoholic cirrhosis |[1], advanced hepatic

encephalopathy |2|, and worsening renal function |3].

Patient Question:
{QUESTION}

Relevant Information:
- {Sentence text} |[{sentence_id}|

Supplementary Information (less directly relevant but possibly helpful):
- {Sentence text} |{sentence_id}|

Now, based on the evidence, write your answer:
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Abstract

This paper describes our submission for the
BioNLP ACL 2025 Shared task on grounded
Question Answering (QA) from Electronic
Health Records (EHRs). The task aims to auto-
matically generate answers to patients’ health
related questions that are grounded in the ev-
idence from their clinical notes. We propose
a two stage retrieval pipeline to identify rel-
evant sentences to guide response generation
by a Large Language Model (LLM). Specif-
ically, our approach uses a BioBERT based
bi-encoder for initial retrieval, followed by a re-
ranking step using a fine-tuned cross-encoder
to enhance retrieval precision. The final set of
selected sentences serve as an input to Mistral
7B model which generates answers through
few-shot prompting. Our approach achieves
an overall score of 31.6 on the test set, outper-
forming a substantially larger baseline model
LLaMA 3.3 70B (30.7), which demonstrates
the effectiveness of retrieval-augmented gener-
ation for grounded QA.

1 Introduction

The widespread adoption of patient portals and dig-
ital health platforms has led to a growing volume of
patient messages directed to healthcare providers
(Martinez et al., 2024; Sieck et al., 2017). Respond-
ing to these messages in a timely, accurate, and per-
sonalized manner presents a challenge for health-
care providers often contributing to burnout (Still-
man, 2023; Shanafelt et al., 2017). The ArchEHR-
QA 2025 task aims to develop automated responses
to patient messages that are grounded in clinical evi-
dence from their Electronic Health Records (EHRs)
(Soni and Demner-Fushman, 2025b).

Large Language Models (LLMs) have recently
shown exceptional performance on general domain
QA benchmarks (Singhal et al., 2025; Wang et al.,
2024). However, directly applying LLMs to clini-
cal EHR-based QA often results in models halluci-
nating or generating irrelevant details especially if

abhishek.kaushik@dkit.ie
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prompted without proper grounding (Jeong et al.,
2024; Elgedawy et al., 2024). The key challenge
LLMs face is identifying the relevant evidence
from patients’ lengthy EHRs (Ahsan et al., 2024).
To address this, modern QA pipelines often uti-
lize neural retrieval models such as bi and cross-
encoders (Karpukhin et al., 2020; Nogueira and
Cho, 2019).

Neural retrievers typically serve as the retrieval
components in Retrieval Augmented Generation
(RAG) frameworks which provide LLMs with
grounded document context to mitigate hallucina-
tions and improve factuality (Lewis et al., 2020).
Despite their wide adoption in open domain QA,
neural retrievers are still underexplored in clinical
EHR patient specific QA. A recent review found
that most current QA models rely on span extrac-
tion methods which are inherently unable to gener-
ate coherent answers (Bardhan et al., 2024).

In this work, we propose a two stage retrieval
pipeline as shown in figure 1. A bi-encoder first
retrieves a broad set of top-K candidate sentences,
these sentences are then re-ranked by a fine-tuned
cross-encoder to produce top-N sentences. The top-
N sentences are ultimately used as context for the
LLM response generation.

2 Background & Related work

Previous research in clinical QA has primarily fo-
cused on developing datasets that map natural lan-
guage queries to structured data or extract relevant
spans from EHRs (Bardhan et al., 2024). A com-
mon approach involves semi-automated template-
based generation of QA pairs. For instance, em-
rQA utilized annotations from i2b2/n2c2 clinical
shared tasks to create over 1 million question an-
swer pairs by populating templates with entities
from EHRs (Pampari et al., 2018). RxWhyQA fo-
cused on extractive QA by leveraging annotated
drug-reason relations to produce multi-answer and
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Figure 1: Our retrieval augmented pipeline for patient QA.

multi-focus questions (Moon et al., 2023). Further-
more, DrugEHRQA compiled over 70,000 medi-
cation related QA pairs from structured tables and
unstructured notes, aiming to support multimodal
QA systems (Bardhan et al., 2022). While these
datasets have enabled development of clinical QA
methods, they often rely on simple rule based or
retrieval only methods that lack the capability to
generate coherent and accurate answers. Although
LLMs can generate coherent responses, they of-
ten struggle to extract relevant information from
EHRs, which leads to irrelevant outputs (Huang
et al., 2025; Maynez et al., 2020). Retrieval meth-
ods, such as RAG, have been explored to guide
factual generation (Lewis et al., 2020), but existing
studies mainly focus on general biomedical QA
rather than patient-specific QA (Elgedawy et al.,
2024; Xu et al., 2024; Chung et al., 2025; Jiang
et al., 2024).

3 Methodology

In this section, we describe our proposed method-
ology for the task of grounded QA from EHRs.

3.1 Dataset

The dataset used in this study was provided by the
organizers of the ArchEHR-QA shared task. It
comprises 120 patient cases (20 development and
100 test). Each case includes a patient question,
patient narrative and a clinician rewritten version
of the patient question, along with the associated
clinical notes with pre-annotated sentence numbers
for grounding. The development set has relevance
labels indicating whether each sentence is essential,
supplementary, or not-relevant for answering the
question (Soni and Demner-Fushman, 2025a).

3.2 Problem Formulation

Given a dataset D of patient questions and expert-
annotated clinical note excerpts, the task is to clas-
sify whether a sentence s € S is essential for an-
swering a question ¢ € Q. Each instance includes

alabel y € 0,1, defined as:

o

The dataset is D = (g, si,yi)f\il, where N is
the total number of question-sentence pairs.

1

0 otherwise.

if s is essential,

3.3 Model Fine-tuning

We fine-tune three BERT-based cross encoders:
BERT-base (uncased) (Devlin et al., 2019),
BioBERT (Lee et al., 2020) ', and BioClinical-
BERT (Alsentzer et al., 2019) 2 using the dataset
described in section 3.2. For each model, the ob-
jective is to predict whether a candidate sentence
s from the clinical note is essential to answer the
patient question q.

Input Representation: Each question-sentence
pair (g;, s;) is concatenated and tokenized as fol-
lows:

z; = [[CLS] ¢; [SEP] s; [SEP]]

The resulting sequence is tokenized with a maxi-
mum length of 512 tokens and fed into the trans-
former encoder to produce contextualized represen-
tations:

h; = Transformer(z;)

The embedding corresponding to the [CLS] token,
denoted hi[CLS] € R, is used as a joint representa-
tion of the question and candidate sentence.

3.3.1 C(lassification and Training

The joint representation is passed through a linear
classification head followed by a sigmoid activation
to produce a relevance score g;:

§i = o(Wh®1 4 b)

"https://huggingface.co/pritamdeka/
BioBERT-mnli-snli-scinli-scitail-mednli-stsb

2https://huggingface.co/emilyalsentzer/Bio_
ClinicalBERT
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where W € R4 and b € R are learnable param-
eters, and o(+) denotes the sigmoid function. The
models are optimized using binary cross-entropy
loss:

N

1

N E yz IOg yz 1 - yz) log(l - yz)]
=1

3.4 Retrieval and re-ranking

3.4.1 Bi-encoder Retrieval

For initial retrieval, we adopt a bi-encoder architec-
ture using BioBERT *implemented via Sentence-
Transformers (Reimers and Gurevych, 2019).

Given a question g and a set of candidate sen-
tences {s; }jj\il, we first encode them indepen-
dently using a bi-encoder architecture:

eq = BiEncoder(q)

es, = BiEncoder(s;), Vji=1,...,M

where e, €5 ; € R< are the resulting dense em-
beddings. Cosine similarity between the question
and each candidate sentence is computed as:

€q " €Es;

Sim(q, s —_—
(@%) = e, Tea ]

The top-K candidates with the highest similarity
scores are selected for re-ranking:

Stop = {Sj | rank(Sim(% 5])) S K}

where rank(-) denotes ranking based on similar-
ity in descending order.

3.4.2 Cross-encoder re-ranking
Each of the top- K candidates is concatenated with

the question and scored for relevance using the
fine-tuned cross-encoder:

= [[CLS] q [SEP] s; [SEP]]

Qj _ O_(WhECLS] + b)

where htS is the contextualized embedding of
the input, and y; € [0,1] is the predicted rele-
vance score. The top- N candidates with the highest
scores are selected as evidence for generation:

{s | rank(g;) < N}

Sevidence =

3https://huggingface.co/pritamdeka/
BioBERT-mnli-snli-scinli-scitail-mednli-stsb

3.5 Answer Generation

For the Answer generation stage, we employ
Mistral-7B-DPO 4, an instruction tuned causal lan-
guage model denoted as G(-;#). This model is
based on the Mistral 7B architecture (Jiang et al.,
2023) and has been optimized via Direct Prefer-
ence Optimization (DPO) to follow instruction and
align human preferences (Rafailov et al., 2023).
Given a structured prompt P which includes the
patient narrative, patient and clinician questions,
and the top- N evidence sentences, the model gener-
ates free-text answers in an autoregressive manner:

A=G(P; 0)

where A denotes the generated response and 6
represents the pretrained model parameters. The fi-
nal output consists of sentences that cite supporting
evidence by including sentence identifiers inline
using pipe symbols.

4 Experiments

4.1 Experimental Setup

We fine-tune the cross-encoder models on the de-
velopment set using the patient question. Given the
small size of the development set, we performed a
fixed split over cases to separate training and val-
idation subsets. Finetuning was conducted with
a batch size of 8 for up to 10 epochs with early
stopping if there is no improvement for 2 consecu-
tive evaluations. Optimization is performed using
AdamW with a weight decay of 0.01 and a learning
rate of 2 x 107°.

For sentence retrieval, we experimented with
different combinations of the number of candi-
dates retrieved by the bi-encoder (/') and re-ranked
by the cross-encoder (/V). Specifically, we evalu-
ated (K, N) = (5,20), (7,20), (10,25), (12, 30),
(13,30), and (15, 35). The configuration (13, 30)
yielded the best performance and was adopted in
the final retrieval pipeline.

For answer generation, we used a few-shot
prompt (Brown et al., 2020) using the two exam-
ples provided in the shared task description (Soni
and Demner-Fushman, 2025a). Generation was
performed with a sampling temperature of 0.70, a
maximum length of 200 tokens, and a target an-
swer length of up to 75 words, as specified by the
task organizers. If the model produced no output

4https://huggingface.co/NousResearch/
Nous-Hermes-2-Mistral-7B-DPO
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or generated an answer shorter than 65 words or
longer than 75 words, generation was retried up to
10 times.

4.2 Evaluation

For sentence retrieval, we evaluated our models on
the development set using precision, recall, and F1-
score, comparing the retrieved sentences against
the manually annotated ground truth. During fine-
tuning, we used the same metrics on the develop-
ment set to assess sentence-level classification per-
formance. The generated responses were assessed
using the official evaluation framework provided by
the organizers (Soni and Demner-Fushman, 2025b),
which balances two key aspects, Factuality and Rel-
evance. Factuality was measured by calculating
Precision, Recall, and F1 Scores between the cited
evidence sentences in the generated answer and
the manually annotated ground truth evidence sen-
tences. Relevance, on the other hand, was assessed
by comparing the generated answers to the ground
truth essential note sentences and the questions us-
ing BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), SARI (Xu et al., 2016), BERTScore (Zhang
et al., 2019), AlignScore (Zha et al., 2023), and
MEDCON (Yim et al., 2023). The overall score
was computed as the mean of the Factuality and
Relevance scores.

4.3 Experimental Results & Discussion

Experimental results on the development set show
that among the fine-tuned models, shown in table 1,
BioBERT achieved the best performance and was
therefore selected as the cross-encoder re-ranker in
the retrieval pipeline.

Model Precision Recall F1-Score
BioClinical BERT 41.49 72.46 52.77
BERT-base 46.06 80.43 58.58
BioBERT 51.45 89.86 65.44

Table 1: Performance of fine-tuned cross-encoders on
the essential sentence prediction task in (%).

We also compare our system with using only
few-shot prompting as shown in table 2.

Few-shot prompting achieved a slightly higher
overall factuality score (47.90 vs. 45.45), how-
ever, our system outperformed it in overall rele-
vance (35.71 vs. 31.08) and overall score (40.58
vs. 39.49). Based on these results, we selected the
RAG system for testing.

Metric RAG Few-Shot Only
Overall Factuality Score 45.45 47.90
Overall Relevance Score 35.71 31.08
Overall Score 40.58 39.49

Table 2: Comparison of our system (RAG) with few-
shot prompting only (no retrieval). Both methods use
the Mistral 7B model.

Metric RAG Baseline
Overall Factuality Score 32.70  33.60
Overall Relevance Score  30.50  27.80
Overall Score 31.6 30.70

Table 3: Performance of our system (RAG) on the test
set.

Evaluation on the test set in table 3 showed that
our system achieved an overall relevance score of
30.50, outperforming the baseline score of 27.80.
This suggests that our system’s generated answers
were more aligned to the ground-truth essential
note sentences. However, it slightly underper-
formed in the overall factuality with a score of
32.70 compared to the baseline score of 33.60.
Despite this, our system achieved a higher over-
all score of 31.6, surpassing the baseline score
of 30.7, which was based on LLaMA 3.3 70B.
While our model (Mistral 7B parameters) is sig-
nificantly smaller than the LLaMa 70B model used
in the baseline system, it still delivers competitive
results which shows the effectiveness of retrieval
augmented generation for grounded clinical ques-
tion answering.

5 Conclusion & Future Work

In this work, we introduced our approach for
the grounded patient QA task using EHRs. Our
method uses a two stage retrieval pipeline using a
BioBERT based bi-encorder for initial relevant sen-
tence retrieval and a fine-tuned cross-encoder for
re-ranking to identify the most relevant sentences
for LLM (Mistral 7B) generation. Experimental
results show that our proposed approach improves
performance over the baseline in terms of overall
score (31.6 versus 30.70).

Future work should investigate alternative model ar-
chitectures and evaluate the performance of smaller
LLMs on larger datasets.
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6 Limitation

Our study was constrained by several factors. First,
the development set used for fine-tuning was rela-
tively small thus using a larger dataset could yield
better performance. Second, our fine-tuning exper-
iments utilized smaller pretrained language models
due to resource constraints, exploring larger LLMs
could further improve performance.
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AEHRC at BioLaySumm 2025: Leveraging TS for Lay Summarisation of
Radiology Reports

Wenjun Zhang*'
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Abstract

Biomedical texts, such as research articles and
clinical reports, are often written in highly tech-
nical language, making them difficult for pa-
tients and the general public to understand. The
BioLaySumm 2025 Shared Task addresses
this challenge by promoting the development
of models that generate lay summarisations of
biomedical content. This paper focuses on Sub-
task 2.1: Radiology Report Generation with
Layman’s Terms. In this work, we evaluate
two large language model (LLM) architectures,
T5-large (700M parameter encoder—decoder
model) and LLaMA-3.2-3B (3B parameter
decoder-only model). Both models are trained
under fully-supervised conditions using the
task’s multi-source dataset. Our results show
that T5-large consistently outperforms LLaMA-
3.2-3B across nine out of ten metrics, includ-
ing relevance, readability, and clinical accu-
racy, despite having only a quarter of the pa-
rameters. Our T5-based model achieved the
top rank in both the open-source and close-
source tracks of the subtask 2.1.

1 Introduction

Biomedical texts, ranging from research articles to
clinical reports, are often written in highly technical
language. This presents a major barrier for patients
and the general public, limiting their ability to un-
derstand health information and make informed
decisions. As a response, the field of biomedical
lay summarisation has emerged to simplify expert-
level content into language that non-experts can
understand (Guo et al., 2021). A particular applica-
tion of this is the translation of radiology reports. A
recent analysis found that only about 4% (Martin-
Carreras et al., 2019) of radiology reports are writ-
ten below an 8th-grade reading level (the average
adult reading level). Without clear explanations,
the information can be confusing or even mislead-
ing, creating barriers to understanding one’s own
health.
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To advance research in this area, the BioLay-
Summ 2025 Shared Task hosted at the BioNLP
Workshop at ACL 2025, introduces two primary
tasks aimed at improving the accessibility of
biomedical information for non-expert audiences
(Xiao et al., 2025). Task 1 focuses on the lay
summarisation of biomedical research articles, and
Task 2 centers on lay summarisation of radiology
reports. Participants are provided with a dataset
containing paired radiology reports and lay sum-
marisations from sources such as Open-i (Demner-
Fushman et al., 2016), PadChest (Bustos et al.,
2020), BIMCV-COVIDI19 (de la Iglesia Vaya et al.,
2020), and MIMIC-CXR (Johnson et al., 2019).
The shared task includes two evaluation tracks.
The open-source track uses test data from three
public datasets (Open-i, PadChest, and BIMCV-
COVID19), while the close-source track adds the
additional MIMIC-CXR dataset. In this work, we
trained our models exclusively on the open-source
datasets and submitted predictions for both the
open-source and close-source tracks.

While language models have become central to
biomedical lay summarisation (Xie et al., 2023),
there remains no clear consensus on whether
encoder-decoder or decoder-only architectures are
better suited to this task. Prior studies have shown
both to be effective in different contexts, but few
have directly compared them under controlled,
fully-supervised conditions. Motivated by this, we
conduct a comparison between an encoder—decoder
model T5-large (Raffel et al., 2020) and a decoder-
only LLaMA-3.2-3B model (Meta Al, 2024). Our
final submission, based on T5-large, achieved the
highest overall score in Subtask 2.1, ranking first
among all participating teams. It consistently out-
performs LLaMA-3.2-3B across nine of ten evalu-
ation metrics, despite having only a quarter of the
parameters.

BioNLP 2025 Shared Tasks, pages 171-178
August 1, 2025 ©2025 Association for Computational Linguistics



2 Related Work

2.1 Biomedical Lay Summarisation

Biomedical lay summarisation is a sequence-to-
sequence task that translates specialised medi-
cal language into accessible explanations for non-
experts, such as patients (Xie et al., 2023). While
biomedical summarisation has traditionally fo-
cused on preserving factual accuracy and complete-
ness, much less attention has been given to simpli-
fying language for broader public understanding.
In response to this need, the BioLaySumm Shared
Task series (2023—present) was introduced to en-
courage the development of models that generate
lay summaries from biomedical content (Goldsack
et al., 2023, 2024; Xiao et al., 2025).

Over time, the field of biomedical summarisa-
tion has evolved from rule-based and statistical
methods to neural architectures and, more recently
to language models (Xie et al., 2023). A simi-
lar trend is evident in the BioLaySumm Shared
Tasks: in 2023, only 3 teams used LLMs, while in
2024, 18 teams used decoder-only LLMs (BioGPT
(Luo et al., 2022), BioMistral (Labrak et al., 2024),
GPT-4 (OpenAl, 2023), LLaMA (Touvron et al.,
2023)) and 13 teams using encoder-decoder LLMs
(TS5 (Raffel et al., 2020), FLAN-TS (Chung et al.,
2024)), reflecting a growing interest in applying
both architectures to the task of lay summarisation
(Goldsack et al., 2024).

2.2 Encoder-Decoder and Decoder-only
Language Models

Both encoder—decoder and decoder-only LLMs are
based on the Transformer architecture (Vaswani
et al., 2017), which was originally introduced for
sequence-to-sequence tasks such as machine trans-
lation. The Transformer consists of two compo-
nents: an encoder that processes the input into
a latent space, and a decoder that generates the
output based on that representation and the previ-
ously generated tokens. Encoder—decoder models,
such as T5 (Raffel et al., 2020) and BART (Lewis
et al., 2020), leverage both components to perform
a wide range of text-to-text tasks, including trans-
lation, summarization, and question answering. In
contrast, decoder-only models, such as the GPT se-
ries (OpenAl, 2022, 2023) and LLaMA (Touvron
et al., 2023), comprise only the decoder component.
These models are trained using an autoregressive
objective, predicting the next token based solely
on preceding tokens in a unidirectional manner. In

the context of biomedical summarisation, both en-
coder—decoder and decoder-only models remain
active areas of research, with no definitive answer
as to which performs better (Goldsack et al., 2024).
In this work, we will compare an encoder-decoder
model TS5 to a decoder-only model LLaMA on the
task of lay summarisation of radiology reports.

2.3 Lay Summarisation of Radiology Reports

Due to the lack of alignment data, initial studies in-
vestigated the feasibility of direct prompting LLMs
such as ChatGPT (OpenAl, 2022) and GPT-4 (Ope-
nAl, 2023), to simplify radiology reports. The
generated contents are reviewed by radiologists to
measure accuracy, completeness, and simplicity.
For instance, lyu (2023) showed that while Chat-
GPT could generate understandable plain-language
summaries, it often over-simplified or introduced
inaccuracies. Similarly, Kuckelman et al. (2024)
found that ChatGPT’s summaries of musculoskele-
tal radiology reports were generally accurate but
sometimes lacked completeness. In 2024, Zhao
et al. (2025) introduced the LaymanRRG frame-
work, utilised GPT-4o0 to translate professional ra-
diology reports from MIMIC-CXR into layman’s
terms. BioLaySumm Shared Task 2 (Xiao et al.,
2025) built on this dataset to establish a standard-
ised benchmark for evaluating lay summarisation
systems across four datasets Open-i, PadChest, and
BIMCV-COVID19 and MIMIC-CXR (Demner-
Fushman et al., 2016; Bustos et al., 2020; de la
Iglesia Vaya et al., 2020; Johnson et al., 2019).

3 Methodology

Our primary goal was to develop a model for
Subtask 2.1 of the BioLaySumm 2025 Shared
Task, which involved generating lay summarisa-
tions from radiology reports. As part of this effort,
we fine-tuned T5-large (Raffel et al., 2020) and
LLaMA-3.2-3B (Meta Al, 2024) on the shared task
dataset. The model with the highest validation
BERTScore-F1 (Zhang et al., 2020) was submitted
for testing on both the open-source track and the
close-source track, described in Section 3.2.

3.1 Model Selection

We selected two prominent open-source LLM ar-
chitectures:

e T5-large (Raffel et al., 2020): An en-
coder—decoder model pretrained on Colos-
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sal Clean Crawled Corpus (C4) dataset (com-
prises 156 billion tokens) (Dodge et al., 2021).

e LLaMA-3.2-3B (Meta Al 2024): A decoder-
only model pretrained on up to 9 trillion to-
kens from publicly available sources, includ-
ing Common Crawl, Wikipedia, and other
web-based corpora.

3.2 Datasets

Task 2.1 includes two evaluation tracks. The open-
source track evaluates models on test sets from
three publicly available datasets: Open-i, Pad-
Chest, and BIMCV-COVID19 (Demner-Fushman
et al., 2016; Bustos et al., 2020; de la Iglesia Vaya
et al., 2020). The close-source track adds an ad-
ditional dataset, namely MIMIC-CXR (Johnson
et al., 2019). We trained our models exclusively on
the three open datasets, and submitted the same
model to both the open-source track and close-
source track. This setup enables us to evaluate
in-domain performance (on seen datasets) as well
as generalisation to unseen data (MIMIC-CXR).
Table 1 summarises the dataset composition across
tracks.

3.3 Data Processing and Tokenisation

For training TS, input and output sequences were to-
kenised separately using a SentencePiece tokeniser.
The input (e.g., a radiology report) was tokenised
without an end-of-sequence token, while the out-
put (e.g., a lay summarisation) includes the <eos>
token at the end. For example, the input “The
chest X-ray shows pneumonia.” was tokenised as
[’_The’, ’_chest’, ..., ’_pneumonia.’],
and the output “There is an infection in the lungs.”
was tokenised as [’_There’, ’_is’, ...,
’_lungs.’, ’<eos>’]. In contrast, LLaMA-3.2-
3B used a byte-level BPE tokeniser and expected
the input and output to be concatenated into a sin-
gle sequence for decoder-only training. We used
a special token <s> to separate the lay summari-
sation from the radiology report. Specifically, the
input before tokenisation was “The chest X-ray
shows pneumonia.<s>There is an infection in the
lungs.</s>”, where </s> is the end-of-sentence
token.

3.4 Training

We trained both models for six epochs using Py-
Torch Distributed Data Parallel (DDP) on a sin-
gle H100 compute node with four GPUs. Each

Table 1: Composition of datasets for Subtask 2.1.
We train on the three open-source track datasets (top).
The MIMIC-CXR dataset (bottom) is used exclusively
for the close-source track and is not included in our
training or validation.

Dataset Train Val Test

Open-source track datasets (training)

Open-i 2,243 134 186
PadChest 116,847 7,824 7,130
BIMCV-COVID19 31,364 2,042 3,221
Open-source total 150,454 10,000 10,537
Close-source track addition (evaluation only)
MIMIC-CXR 45,000°  5,000° 500
Close-source test total - - 11,037

* Provided for reference only; not used in training or
validation.

GPU processed a local batch size of 2, resulting
in a global batch size of 8. We used the AdamW
optimiser (Loshchilov and Hutter, 2019) with a
learning rate of 2e-5 and a constant learning rate
schedule with 500 warmup steps. Input sequences
were truncated or padded to a maximum length of
2048 tokens, and during inference, the models were
allowed to generate up to 300 tokens. BERTScore-
F1 (Zhang et al., 2020) was used as the primary
metric for model selection.

3.5 Maetrics

The evaluation is based on three key categories
defined by the BioLaySumm 2025 Shared Task:
relevance, readability, and clinical accuracy.

Relevance measures how well the generated
summaries align with the reference texts. ROUGE-
1/2/L (Lin, 2004) are computed for lexical overlap;
BLEU (Papineni et al., 2002) for 1-to-4-gram preci-
sion with brevity penalty; METEOR (Banerjee and
Lavie, 2005) for word-level matches and ordering;
BERTScore (Zhang et al., 2020) for embedding-
based semantic similarity. Semantic similarity be-
tween radiology report and lay summarisations is
also measure.

Readability evaluates how easy the generated
text is to understand for a general audience. The
Flesch—Kincaid Grade Level (FKGL) (Kincaid
et al., 1975), Dale—Chall Readability Score
(DCRS) (Dale and Chall, 1948), and the Cole-
man-Liau Index (CLI) (Coleman and Liau, 1975)
are reported; lower values indicate simpler lan-
guage.

Clinical accuracy assesses the factual correct-
ness of medical content. This is captured by
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Table 2: Performance of LLaMA-3.2-3B and T5-large across relevance, readability, and clinical-accuracy metrics

(open-source track). Boldface indicates best score.

Model ROUGE BLEU MET. BERT. FKGL" DCRS' CLIf Sim. RadF1  ChexFl
LLaMA-3.2-3B 64.20 4290 6770 94.90 7.46 9.38 8.04 8790 37.20 85.00
T5-large-770M 66.9 45.6 70.2 95.3 7.43 9.34 8.11 889 40.0 85.6

T Lower values indicate better readability.

CheXbert-F1 (Smit et al., 2020), which gauges
agreement on clinical findings, and RadGraph-
F1 (Jain et al., 2021), which measures overlap of
medical entities and their relations.

4 Results and Discussion

4.1 Comparing Encoder-Decoder Models and
Decoder-only Models Results

We present our submission results for the open-
source track in Table 2, comparing our fine-tuned
models: T5-large and LLaMA-3.2-3B. T5-large
outperforms LLaMA-3.2-3B across 9 out of 10
metrics, including all relevance (ROUGE, BLEU,
METEOR, BERTScore, and semantic similarity)
and clinical accuracy metrics (RadGraph-F1 and
CheXbert-F1). Readability scores are similar
across models, but TS achieves lower Dale—Chall
and FKGL scores, indicating slightly simpler vo-
cabulary.

Notably, T5-large achieves these results with
only one-quarter the parameters of LLaMA-3.2-
3B, suggesting that encoder—decoder architectures
may be more efficient for the supervised lay sum-
marization task. Several factors may explain this
performance difference. First, the encoder—decoder
structure of T35 is inductively biased toward in-
put—output transformation tasks such as summari-
sation and paraphrasing, potentially making it more
effective in low-resource, domain-specific settings.
Second, the larger capacity of LLaMA-3.2-3B may
require more training data to fully optimise, and in
limited-data scenarios, its performance could suffer
due to underfitting or instability. Indeed, we ob-
served more fluctuation in validation scores during
LLaMA training, whereas T5’s training curve was
smoother and more consistent.

These quantitative results are further supported
by qualitative case studies in Appendix A and B,
where T5’s outputs consistently demonstrate higher
fidelity to the original clinical findings while of-
fering clearer and more accessible lay-language
paraphrasing. For example, in Case 1, T5 trans-

Table 3: Performance of T5-large
on the open-source track evalua-
tion and close-source track evalua-
tion. Boldface indicates best score.

Metric Open Close
ROUGE-L 66.90 58.66
BLEU 45.61 32.08
METEOR 70.17 62.68
BERTScore 9530 94.33
FKGL' 743 765
DCRS' 9.34 8.60
CLI' 8.11 7.88
Semantic Score  88.88  89.52
RadGraph-F1 39.96 34.81
CheXbert-F1 85.64 68.20

lates technical terms like "atelectasis and consoli-
dation" into "lung collapse and solid areas," while
LLaMA retains the original jargon, making the
output less readable for general audiences. In
Case 2, TS maintains more specific references such
as “heart problems related to the coronary arter-
ies” and “chronic obstructive pulmonary disease
(COPD),” whereas LLaMA tends to generalise or
simplify more loosely.

4.2 Comparing Open-source Track and
Close-source Track Submission Results

We submitted our model to both the open-source
track and close-source track for evaluation, with re-
sults shown in Table 3. The close-source track
evaluates model performance on a broader test
set than the open-source track. Specifically, the
open-source track includes test samples from three
public datasets—Open-i, PadChest, and BIMCV-
COVID19—while the close-source track adds
MIMIC-CXR.

Our model was trained exclusively on the open-
source track training set, which means that its per-
formance on the close-source track reflects both
in-domain evaluation (on seen sources) and out-of-
domain generalisation (on unseen MIMIC-CXR ex-
amples). We can observe overall trends: compared
to the open-source track results, the close-source
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track metrics drop across nearly all categories, espe-
cially BLEU, ROUGE-L, and CheXbert-F1. How-
ever, because the closed test set is a mixture of all
four datasets and aggregate scores are reported, we
cannot isolate exact performance on MIMIC-CXR.
Also, due to the absence of comparison with T5-
large trained on the closed-source track, the relative
performance drop remains unknown. Therefore,
we cannot fully conclude on the model’s generali-
sation to unseen data.

Nevertheless, our model achieved the top rank
in both the open-source and close-source tracks,
according to the competition leaderboard, outper-
forming all other submissions, including those
trained on the full close-source dataset.

4.3 Conclusion

This study investigated the task of translating ra-
diology reports into lay summarisation as part of
Subtask 2.1 of the BioLaySumm 2025 Shared Task.
We compare the performance of two large lan-
guage model (LLM) architectures: the decoder-
only LLaMA-3.2-3B and the encoder—decoder T5-
large. Our results demonstrate that the T5-large
model consistently outperforms LLaMA-3.2-3B
across a broad range of metrics, including rele-
vance, readability, and clinical accuracy, despite
having significantly fewer parameters. This find-
ing suggests that encoder—decoder models may be
more effective and parameter-efficient for fully-
supervised summarisation tasks, such as lay sum-
marisation of radiology reports.
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A Case Study 1

Table 4: Comparison of TS and LLaMA outputs for a radiology report indicating COVID-19-type pneumonic
infiltrates. TS better paraphrases technical terms like “atelectasis” into lay-friendly expressions like “lung collapse,”
improving accessibility. LLaMA preserves more clinical terminology, which may limit interpretability. T5 also

mirrors the structure of the ground truth better, enhancing relevance and readability.

Radiology Report

Ground Truth Lay Summary

Bands of

mid-lung fields, along with confluent
opacities in the lower mid-lung fields, also
showing bilateral involvement. Findings,
considering the reported history, could
correspond to COVID-19-type pneumonic
infiltrates. Evaluate progression and correlate
with clinical and laboratory data.

in the

There are areas of

in the middle parts of the lungs,
along with large blurry spots in the lower
middle areas, affecting both lungs. These
findings, considering the patient’s history,
could be related to the type of lung
inflammation seen in COVID-19. Further
evaluation of the progression and correlation
with clinical and lab data is needed.

T5-large Output

LLaMA-3.2-3B Output

There are

in the middle parts of the lungs, along
with merged cloudiness in the lower middle
parts of the lungs, affecting both sides. These
findings, considering the reported history,
could be signs of COVID-19-type lung
inflammation. It is important to evaluate the
progression and compare with clinical and lab
data.

The middle areas of the lungs show signs of

, and the lower
middle areas of the lungs have merged
opacities on both sides. These findings,
considering the patient’s history, could be
related to COVID-19-like lung infiltrates. It
is recommended to evaluate the progression
and correlate this with clinical and laboratory
data.
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B Case Study 2

Table 5: Comparison of T5 and LLaMA outputs for a radiology report covering dyspnea, coronary artery disease,
scoliosis, and COPD. T5 demonstrates better consistency with the ground truth by retaining specific phrases like
“coronary artery disease” and clearly expressing medical conditions. LLaMA tends to generalise phrases (e.g., “heart

problems”), which may lose important details for patient understanding.

Radiology Report

Ground Truth Lay Summary

Reason for consultation: dyspnea. Old
coronary artery disease. Significant dorsal
scoliosis. Aortic elongation with descending
aortic dilatation. Right pleural thickening.
Radiological signs of chronic obstructive
pulmonary disease (COPD).

The person came in because they were having
trouble breathing. They have a history of
heart problems related to the coronary
arteries. They also have a significant curve
in their spine. Their main blood vessel, the
aorta, is longer than usual and the part of
it that goes down from the heart is wider.
The outer layer of the lung on the right side
is thicker than it should be. The x-ray shows
signs of a lung disease called COPD, which
makes it hard to breathe.

TS-large Output

LLaMA-3.2-3B Output

The patient came in because they were having
trouble breathing. They have a history of
heart problems related to the coronary
arteries. They also have a significant curve
in their spine. The main blood vessel
coming out of the heart is stretched out and
wider than normal. The outer lining of the
lungs on the right side is thicker than it
should be. The x-ray shows signs of a
long-term lung condition called chronic
obstructive pulmonary disease (COPD).

The patient came in because they were having
trouble breathing. They have a history of
heart problems and a curved spine. The
main blood vessel leaving the heart, called
the aorta, is stretched out and the part that
goes down from the heart is widened. The
outer lining of the lungs on the right side is
thicker than normal. The x-ray shows signs
of a long-term lung condition called COPD.
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Abstract

In this paper, we present our approach to the
BioLaySumm 2025 Shared Task on lay summa-
rization of biomedical research articles, which
was conducted as part of the BioNLP Work-
shop 2025. This marks the third edition of
the BioLaySumm Shared Task (Goldsack et al.,
2023, 2024; Xiao et al., 2025). The aim of
the task is to create lay summaries from scien-
tific articles to improve accessibility for a non-
expert audience. To this end, we applied pre-
processing techniques to clean and standardize
the input texts, and fine-tuned Qwen2.5 (Team,
2024; Team) and Qwen3-based language mod-
els (Yang et al., 2025; Team, 2025) for the
summarization task. For abstract-based fine-
tuning, we investigated whether we can insert
salient sentences from the main article into the
summary to enrich the input. We also curated
a dataset of child-friendly articles with corre-
sponding gold-standard summaries and used
large language models to rewrite them into
more complex scientific variants to augment
our training data with more examples.

1 Introduction

Interdisciplinary collaboration is a major challenge,
especially in the biomedical field, where the num-
ber of scientific publications is increasing rapidly
and the language used is often highly technical.
This complexity poses significant obstacles not
only for researchers from other disciplines, but also
for the general public, making it difficult to ac-
cess and understand new scientific findings. One
promising solution to this problem is the inclusion
of lay summaries in biomedical research articles.
These summaries serve as a bridge between special-
ized content and a broader audience, allowing stu-
dents, interdisciplinary researchers, and laypeople
to better understand and engage with biomedical
advances. The BioLaySumm 2025 Shared Task
aims to improve automated systems for generating
summaries of biomedical research articles. The

focus is on producing summaries that are factually
accurate, accessible to non-specialists and faith-
ful to the original scientific content, thus support-
ing the wider dissemination and understanding of
biomedical knowledge.

Previously, Bao et al. (2024) investigated simple
preprocessing techniques such as hard truncation
and text fragmentation and showed that large lan-
guage models can produce effective lay summaries
of biomedical texts even without complex pipelines.
Stefanou et al. (2024) developed a child-friendly
summarization method by fine-tuning biomedical
models to simplified summaries. They used special-
ized tokens and data augmentation to improve ac-
cessibility for younger readers, using training data
from the Science Journal for Kids (Science Jour-
nal for Kids, 2024). Modi and Karthikeyan (2024)
showed that minimal preprocessing of summaries
such as removing parenthetical content can signifi-
cantly improve LLM performance in lay biomed-
ical summarization. You et al. (2024) applied an
extract-then-summarize strategy and tuned GPT-
3.5 (OpenAl, 2023) on salient sentences to achieve
strong relevance and overall performance. These
studies show how different approaches, from ba-
sic cleanup to structured extraction, aim to make
biomedical lay summaries clearer and more acces-
sible.

2 Datasets

The task included two datasets, PLOS and eLife
(Goldsack et al. (2024) (Goldsack et al., 2022) (Luo
et al., 2022) ). PLOS is the largest dataset derived
from the Public Library of Science, comprising
24,773 training instances and 1,376 for validation,
while the eLife dataset was derived from the peer-
reviewed eLife journal and contains 4,346 instances
for training and 241 for validation. The test data
used for evaluation consisted of examples from
both sources and was kept hidden by the organizers.
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3 Methodology

We investigated the pre-processing of full texts,
the use of summaries and full articles for lay sum-
marization, the generation of synthetic data from
child-friendly texts with LLMs, and the extraction
of key phrases by clustering.

3.1 Preprocessing

Before fine-tuning, we evaluated the performance
of zero-shot and few-shot models using raw text
input. The models tested include DeepSeek-Qwen
(Lyu et al., 2025) and Qwen2.5 (Yang et al., 2024)
with either full articles or abstracts provided as
input. Building on the principles of PoA (Prepro-
cessing over Abstract) from Modi and Karthikeyan
(2024), we introduce a preprocessing step POWA
(Preprocessing over Whole Article) that improves
the performance in both zero-shot and few-shot
scenarios. PoWA involves removing all content
enclosed in square, round or curly brackets from
the input text including those in the training and
test sets.

As with many systems submitted in previous
years, our initial strategy focused on using only
the abstract as input text for the summary. How-
ever, due to the varying lengths of the abstracts,
we adopted a consistent approach by selecting the
first 10 sentences from each abstract. The sentence
boundaries were determined by splitting on peri-
ods, and applied uniformly to both the training and
validation sentences. Unless otherwise specified
(e.g. the condition “Full test” in Table 1), we only
used the first 10 sentences of each test instance dur-
ing the tests. This ensured comparability between
different models and configurations.

3.2 Reverse Data Augmentation

Following the approach of Stefanou et al. (2024),
we adopted a fine-tuning enhancement strategy that
incorporates external data. Specifically, we used
Frontiers for Young Minds(Frontiers for Young
Minds, 2024), a child-friendly branch of the Fron-
tiers journal series(Frontiers, 2024), which features
simplified scientific articles written for young au-
diences. We collected 373 articles from the "Hu-
man Health’ section using a web scraping script
built with the Selenium library (Selenium Project,
2025). Each article includes an abstract and spans
approximately 500-1000 words. Designed for read-
ers aged 8 to 12, these texts employ low FKGL
(Flesch-Kincaid Grade Level) language (Flesch,

1975), with accompanying abstracts that provide
even more simplified summaries. Each abstract was
treated as a golden summary, resulting in a data set
with two columns: Article and Summary. However,
since both the article texts and their summaries
were already simplified, the resulting pairs did not
reflect the input-output complexity of the task. To
address this gap, we used the DeepSeek-R1-Distill-
Qwen-32B model (DeepSeek-Al, 2024) to rewrite
the simplified articles in a more scientific tone,
following the method described by DeepSeek-Al
(2024). We used the following prompt: "Rewrite
the given text so that it is more scientific and suit-
able for publication." The generation was limited to
1024 tokens with a temperature of 0.01 and a repeti-
tion penalty of 1.2. As mentioned in DeepSeek-Al
(2024), DeepSeek models often produce internal
thoughts before generating the final output. To
address this, we extract the content following the
</think> tag, along with minimal pre- and post-
processing to format the results.

The gold summaries from Frontiers for Young
Minds typically had FKGL scores between 8 and
10 (Flesch, 1975), and were notably shorter than
the summaries found in the eLife and PLOS train-
ing sets (Task, 2025a,b). To address this length and
complexity mismatch, we incorporated a curricu-
lum learning strategy (Bengio et al., 2009), which
is discussed further in Section 4.4 on model fine-
tuning.

3.3 Injecting Salient Sentences

Using only the abstract to summarize an entire
article was found to be insufficient. To improve
this and build on strategies observed in our earlier
literature review, we appended key sentences from
the full text to the end of each abstract. To process
sentences beyond the initial 10 in each article, we
developed a function that encodes these sentences
using the all-MiniLM-L6-v2 model (Wang et al.,
2020), which is accessible via the Hugging Face
repository (Reimers and Gurevych, 2021).

We trained a K-Means clustering model with
k = 3 on encoded sentence representations to iden-
tify the salient content (Lloyd, 1982). A sentence
closest to each centroid was selected, resulting in
three sentences in total, which were then appended
to the end of the article’s abstract. Transformers
and Scikit-learn libraries were used for this phase
(Wolf et al., 2020; Pedregosa et al., 2011).
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3.4 Model Fine-tuning

First, fine-tuning was performed only on the ab-
stract and lay summary pairs using the Qwen?2.5:
1.5B and Qwen2.5: 3B3B models (Team, 2024;
Team), prompted with a very short instruction:
"Summarize the following:" The Qwen2.5 models
were fine-tuned using low-rank adaptation (LoRA)
(Hu et al., 2021).

For Qwen3 models (Yang et al., 2025; Team,
2025), we applied LoRA for parameter-efficient
fine-tuning, using a rank of 8, a scaling factor of
16, and a dropout rate of 0.05. Adaptation was
limited to the q_proj and v_proj attention layers,
without any bias terms, under a causal language
modeling setup (Hu et al., 2021; Dettmers et al.,
2023).

After preprocessing steps such as trimming,
salient sentence injection, curriculum learning, and
adding Frontiers for Young Minds articles, the data
was converted into ChatML format (OpenAl, 2023)
and used for fine-tuning.

Training hyperparameters were slightly adjusted
based on the dataset. For eLife, we fine-tuned the
model for 3 epochs with a learning rate of 1 x 10~*
and 6 gradient accumulation steps. For PLOS, we
used 2 epochs, a higher learning rate of 1.5 x 1074,
and 8 accumulation steps. For other datasets, we
set the learning rate to 1.25 x 10™4, trained for 2
epochs, and used 7 accumulation steps. These val-
ues were chosen after a few initial trials to balance
training time and performance. All models were
trained with a per-device batch size of 2 and FP16
precision using Hugging Face Transformers and
PEFT libraries (Wolf et al., 2020; Dettmers et al.,
2023).

We applied curriculum learning (Bengio et al.,
2009), which is presented in Table 1 with "Aug" la-
bel, in which 373 articles from Frontiers for Young
Minds were placed at the beginning of the train-
ing dataset (Frontiers for Young Minds, 2024),as
explained in Section 3.2. The remaining articles
were then sorted by word count in ascending or-
der, resulting in a training sequence that gradually
progressed from simpler to more complex texts.
In the Salient Sentence Injection strategy (see Sec-
tion 3.3), the three most important sentences follow-
ing the abstract were added to it, and fine-tuning
was done on this updated version of the dataset.
The part marked as Full Text in Table 1 refers to
the evaluation of the two 142-entry test sets with-
out any trimming, prior to fine-tuning. The ex-
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periment labeled as “Post Processing” in the same
table refers to the action taken after fine-tuning, as
described in Section 3.5.

3.5 Post-processing for Readability

To slightly reduce the FKGL (Flesch, 1975)
score of the summaries generated by the fine-
tuned LLMs, a post-processing step was ap-
plied. Using the DeepSeek-R1-Distill-Qwen-32B
model (DeepSeek-Al, 2024) in a zero-shot setting,
we prompted it with: “Reduce the FKGL score of
the text. Simplify while preserving the scientific
content” DeepSeek-Al (2024). As in Section 3.2,
post-processing was also applied to the outputs
of the DeepSeek model (DeepSeek-Al, 2024). In
most experiments, additional steps and alternative
prompts were needed due to the model frequently
disrupting the structure of the article.

4 Experimental Setup

The training was performed on an NVIDIA A100
GPU (Corporation, 2020) provided by Google Co-
laboratory (Bisong, 2019). Several automatic met-
rics to measure relevance were used for evalua-
tion, with a focus on comparing system output with
human-written references. ROUGE (Lin, 2004)
evaluates recall by measuring the overlap of n-
grams between the generated text and the reference
text. BLEU (Papineni et al., 2002) focuses on the
precision of the n-grams and applies a penalty for
brevity to prevent overly short outputs. METEOR
(Banerjee and Lavie, 2005) considers synonym
matching, stemming and word order, balances pre-
cision and recall, and penalizes disjointed output.
BERTScore (Zhang et al., 2020) captures seman-
tic similarity by calculating cosine similarity be-
tween contextualized token embeddings from mod-
els such as BERT (Devlin et al., 2019), enabling a
deeper evaluation of meaning beyond surface-level

overlaps.
The Flesch-Kincaid Grade Level
(FKGL)(Flesch, 1975) assesses the reading

difficulty of a text based on sentence length and
word syllables and provides a score that corre-
sponds to US school levels. The Coleman-Liau
Index (CLI)(Coleman and Liau, 1975) provides a
similar assessment of readability, but is based on
the number of characters rather than the number of
syllables, making it more suitable for automatic
processing of digital texts. The D-Level Sentence
Complexity Rating Scheme (DCRS)(Rambow



Model ROUGE BLEU METEOR BERTScore FKGL DCRS CLI LENS AlignScore SummaC
Qwen3:4B Trim + Aug + SSI + PostP 0.3061  5.3966 0.2555 0.8537 16.7644 11.2446 16.0117 60.0364 0.7837 0.6858
Qwen3:4B Trim + Aug + SSI + Full Test ~ 0.2576  4.2385 0.3296 0.8493 15.0595 10.0385 15.5170 22.2383 0.9025 0.9369
Qwen3:4B Trim + Aug + SSI 0.3261  6.6388 0.2910 0.8560 16.3742  11.0955 16.9846 34.2622 0.8748 0.9195
Qwen3:4B Trim + Aug 0.3279  6.7490 0.2928 0.8560 16.3242  11.0915 16.9893 34.0978 0.8679 0.9203
Qwen3:4B Trim 0.3300  6.9466 0.2903 0.8567 16.4528 11.2157 17.0054 34.8577 0.8807 0.9203
Qwen2.5:3B Trim 0.3127  6.2905 0.3036 0.8486 147591  9.8484 154835 23.1406 0.7937 0.9172
Qwen2.5:1.5B Trim 0.3108  6.2470 0.3014 0.8484 14.8767 9.7678  15.6298 23.1043 0.8047 0.9170

Table 1: Evaluation metrics of Qwen models on various configurations. Trim: Trimming top 10 sentences of the
article, Aug: Reverse data augmentation using Frontiers for Young Minds, SSI: Salient Sentence Injection, PostP:
Postprocessing for lower FKGL using DeepSeek, Full Test: Full test set in the inference without trimming

et al.,, 2004) assesses grammatical complexity
by analyzing syntactic features such as sentence
structure and part-of-speech patterns.  More
recently, LENS(Tan et al., 2023) uses a compre-
hensive language model to estimate how difficult a
passage is to understand, providing a neural-based
alternative to traditional readability metrics.

To assess factuality, AlignScore (Jia et al., 2022)
was used to determine whether the generated sum-
mary remains faithful to the content of the source.
It applies a Natural Language Inference (NLI)
model (Bowman et al., 2015) to assess whether
each sentence in the summary is implied by the
source text. Similarly, SummaC (Laban et al.,
2022) checks the factual consistency between the
summary and the source by applying sentence-level
entailment models to ensure logical consistency.

5 Results

The Qwen2.5-1.5B and 3B (Team, 2024; Team)
models were fine-tuned with LoRA, reducing the
training and validation sentences to their first 10
sentences. They were then tested with zero shot
on similarly trimmed test sets, and the results were
surprising. After the experiments, the lowest FKGL
values were observed for the two Qwen2.5 models.

The Qwen3-4B model (Yang et al., 2025; Team,
2025) was fine-tuned with LoRA, reducing the
training and validation sentences to their first 10
sentences. The highest ROUGE score was ob-
served in the scenario where only the test set was
trimmed, with no data augmentation, injection of
salient sentences, post-processing, or use of the full
test data (labeled *Qwen3: 4B Trim’ in Table 1).
With augmentation, the FKGL score decreased
slightly and the METEOR score increased slightly,
but ROUGE, BLEU, BERTScore and AlignScore
all decreased in the Qwen3:4B Trim + Aug set-
ting. With the addition of Salient Sentence Injec-
tion (SSI), most relevance scores decreased and
AlignScore increased slightly, which is shown in

Table 1 as Qwen3:4B Trim + Aug + SSI.

In the Qwen3:4B Trim + Aug + SSI + Full
Test experiment, the test set without trimming was
used. As a result, ROUGE and BLEU scores de-
creased significantly, while METEOR, AlignScore
and SummaC were higher than in all other exper-
iments. The FKGL, CLI and LENS scores also
decreased, suggesting that higher factuality could
be achieved in this setting.

In our comparative analysis of the different tech-
niques, we found that data augmentation consis-
tently improves readability, but leads to a decrease
in relevance and factuality. Salient Sentence Injec-
tion led to a decrease in all three evaluation criteria.
Full fine-tuning also decreased performance in rele-
vance and readability, but scored highest in factual-
ity. Post-processing with external LLMs performed
worst overall, scoring lowest in all experiments.

6 Conclusion

In this paper, we present our participation in the
BioLaySumm 2025. Our results show that the per-
formance of the Qwen 1.5B model with low param-
eters was particularly promising and shows that
even smaller models can be competitive if they
have sufficient input data and the hyperparameters
are set appropriately. With additional input data
and further optimization, this model has the poten-
tial to outperform larger counterparts, especially
in terms of readability. In particular, the use of
untrimmed test data significantly improved factu-
ality, on the other hand it led to a decrease in core
relevance scores. This suggests that an interme-
diate strategy (e.g. using a higher value for the
first sentences instead of first 10 sentences) might
provide a better balance between factuality and
relevance. Although techniques such as salient
sentence injection, reverse data augmentation, and
postprocessing with auxiliary LLMs did not yield
the expected gains, they remain promising for fu-
ture exploration.
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Abstract

We present LayForge, a two-track lay sum-
mary generation system developed for the Bio-
LaySumm?2025 shared task(Xiao et al., 2025)
. Task 1.1 addresses the lay summarization
using only the internal content of the article,
while Task 1.2 augments this process with do-
main knowledge such as biomedical definitions
and concept explanations. BioLaySumm em-
ploys a modular architecture that leverages
large language models (LLMs), a BioBERT-
based named entity recognizer (NER), and the
UMLS(Bodenreider, 2004) knowledge base to
create readable, informative, and faithful lay
summaries. Our system shows strong perfor-
mance on both tasks when evaluated on the
PLOS and elife subset(Goldsack et al., 2022),
particularly in readability and factuality metrics.
The architecture illustrates how modularity and
domain adaptation can be effectively combined
for accessible biomedical communication.

1 Introduction

Lay summaries are a critical bridge between dense
biomedical literature and non-specialist audiences,
including patients, caregivers, and policy mak-
ers. These summaries must balance clarity, com-
pleteness, and technical accuracy. The BioLay-
Summ?2025 shared task(Xiao et al., 2025) presents
two summarization challenges:

e Task 1 (Internal-only): Generate a lay sum-
mary using only the content of the original
article.

* Task 2 (Augmented): Improve the lay sum-
mary by incorporating external biomedical
knowledge such as terminology definitions.

We introduce LayForge, a flexible and extensi-
ble system designed to address both tracks. Our
design is rooted in modular NLP techniques - chunk
extraction, LLM-based draft generation, and it-
erative rewriting—with additional augmentation

for Task 2 using BioBERT-based NER (Lee et al.,
2019) and UMLS-based concept simplification.
Our contributions include:

* A two-tiered summarization pipeline that inte-
grates pretrained LLMs with biomedical NER
and knowledge retrieval.

* A task-specific rewriting mechanism for in-
creasing the readability and accessibility of
summaries.

* A detailed performance comparison across
readability, fidelity, and factuality metrics.

2 Related Work

The BioLaySumm shared task series began in
2023 (Goldsack et al., 2023), with a follow-up
edition in 2024 (Goldsack et al., 2024), laying
the groundwork for consistent evaluation and
dataset development in biomedical lay summa-
rization. Our work builds on the methodologies
and evaluation frameworks introduced in these ear-
lier editions, Biomedical summarization has tra-
ditionally leveraged sequence-to-sequence archi-
tectures and domain-specific pretrained models
such as BioBERT and PubMedBERT (Beltagy et al.,
2020). Recent trends in summarization, includ-
ing the use of large language models and retrieval-
augmented generation (RAG)(Lewis et al., 2020),
show promise in improving factuality and reduc-
ing hallucination. Entity-level simplification is an-
other important strand, where domain terms are
replaced or explained using biomedical ontologies.
However, most prior work stops at simple substi-
tutions, while our system integrates retrieved defi-
nitions into fluent rewrites. Instruction tuning for
LLMs is also a promising avenue of research. (Tran
et al., 2024) introduced a corpus of 25,005 human-
crafted prompts to instruction-tune LLaMA models
on biomedical tasks, yielding QA gains and gener-
ation improvements There have also been
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3 System Architecture

We ensure that the system architecture is modular
and easy to understand. The 2 tasks share a com-
mon pipeline in the beginning. The augmentation
using the UMLS backed definitions is performed
for task 2 at the end.

Input Data
W
h

Extracted Chunks

Draft Summary

Final Summary

Figure 1: Task 1.1 : Framework for lay summary gener-
ation with no external information

3.1 Shared Architecture (Tasks 1 & 2)

Preprocessing and Chunking Articles are seg-
mented into overlapping text chunks (3,000 tokens
with 200-token overlap) to accommodate LLLM con-
text windows and ensure semantic continuity.

Top-k Sentence Extraction For each chunk,
salient sentences are extracted using an LLM
(LLaMA 3-70B) prompted to select informative
statements. The resulting sentence pool contains
all the key findings and methods.

Draft Generation We conditioned the LLM with
article metadata, keywords, and extracted sentences
to generate a draft lay summary. Prompts guide
the model to assume a "science teacher" persona to
ensure accessibility.

Iterative Rewriting Two rewriting passes are
applied:

Input Data

v

®

Extracted Chunks

Draft Summary Final Summary

summary
Extracted Terms Terms With
Definitions

BiOBERT
Jerm Extractor,

Figure 2: Task 1.2 : Framework for lay summary gener-
ation with external information

* Reader Rewrite: A persona-based prompt
enhances flow and readability.

* Jargon Softening: Phrases are simplified
and clarified, guided by syntactic and lexical
heuristics.

3.2 Knowledge Augmentation (Task 2 Only)

Domain NER A BioBERT model fine-tuned for
NER identifies and extracts biomedical terms that
are not layperson friendly in the summary.

Definition Retrieval Each detected term is
passed to a UMLS-backed lookup API, which re-
trieves lay definitions.

Definition-Guided Rewrite These definitions
are incorporated into the summary through guided
LLM prompts, either by appending explanations or
paraphrasing terms inline.

3.3 Model Selection

We chose LLaMA 3-70B as our backbone because
it offers a strong balance between model capac-
ity and computational cost, while remaining fully
open-source under a permissive license. In pre-
liminary experiments (not shown), LLaMA 3-70B
outperformed smaller variants (e.g., 13B) on zero-
shot biomedical QA benchmarks. Additionally,
its 8K-token context window accommodates long
article chunks without resorting to expensive re-
trieval passes, which was critical for processing
3,000-token windows in our pipeline.
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4 Implementation Details

We implemented LayForge in Python, using
Langchain for orchestrating LLM calls and Lang-
Graph for managing pipeline state. Sentence ex-
traction and summarization use the Grog-hosted
LLaMA 3-70B model. BioBERT NER is handled
using the SimpleTransformers library.

UMLS queries are made via a RESTful endpoint
returning short, simplified definitions. All com-
ponents are containerized and run using Google
Colab with GPU acceleration for efficiency.

4.1 Handling UMLS Definition Ambiguity

When a detected term has multiple definitions in
UMLS, our lookup strategy resolves ambiguity by:

* Source prioritization: We only accept defi-
nitions whose rootSource is in (MSH, PDQ,
NCI, MEDLINEPLUYS), in that order.

* Conciseness heuristic: If multiple definitions
remain, we choose the one with the fewest
tokens, assuming brevity aids lay understand-
ing.

* Fallback: If no preferred definition is found,
we leave the term unchanged and rely on the
LLM’s paraphrasing step to “soften” it.

5 Experimental Setup

We evaluate both tasks using the BioLay-
Summ?2025 PLOS and elife datasets.

Evaluation Metrics Various evaluation metrics
were used to evaluate performance of the system in
different fields.(Luo et al., 2022)

* Readability: FKGL, DCRS, CLI and LENS.

¢ Content Fidelity: ROUGE-L, BLEU-4, ME-
TEOR, BERTScore.

 Factuality: SummaC and AlignScore.

6 Results and Discussion

Our results show that augmentation with external
definitions significantly improves readability met-
rics, with FKGL decreasing by over 3 points and
DCRS/CLI also showing similar gains. The LENS
metric confirms slightly longer outputs, likely due
to inserted definitions and the model being more
verbose to avoid using technical terms

Metric Task 1 Task 2
ROUGE 0.32 0.29
BLEU 5.45 4.32
METEOR 0.29 0.26
BERTScore  0.85 0.85
FKGL 1456 11.15
DCRS 10.01 8.36
CLI 1536  11.93
LENS 71.51 81.50
AlignScore  0.69 0.61
SummaC 0.50 0.53

Table 1: Performance across BioLaySumm track as per
the Leaderboard

Interestingly, although Task-2 reduces ROUGE
and BLEU slightly, this can be attributed to para-
phrasing and definition insertion changes that pro-
mote lay understanding at the cost of n-gram over-
lap. Semantic paraphrase or added explanatory
phrase tend to reduce these metrics despite improv-
ing readability and fidelity(Xu et al., 2016; Gane-
san, 2018; Wang et al., 2022; Elliott et al., 2019).

SummaC(Tian et al., 2022) improves in Task?2,
suggesting factual information is more clearly and
accurately preserved with domain support. Align-
Score, however, drops slightly, indicating a poten-
tial loss in extractive alignment.

7 Conclusion and Future Work

We presented LayForge, a modular, domain-aware
pipeline for lay summary generation in biomedical
research. Our two-track approach enables detailed
comparison between internal-only and knowledge-
augmented strategies.

In future work, we aim to incorporate dynamic
chunk prioritization, retrieval-based augmentation,
and human-in-the-loop feedback. We also plan to
evaluate generalizability across different journals
and medical domains. We also see great potential
in Reinforcement Learning from Human Feedback
(RLHF)(Natarajan et al., 2024) to directly optimize
summary-quality objectives (e.g. readability, factu-
ality) by defining appropriate reward functions.
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Step

Text

Original Paragraph
Top-k Sentences

Draft Simple Passage

Retrieved Definitions

Final Rewrite

“DPAGT1-CDG is a Congenital Disorder of Glycosylation (CDG) that ...”

1. DPAGT1-CDG is a Congenital Disorder of Glycosylation (CDG) that lacks
effective therapies. 2. DPAGT1 synthesizes dolichol-PP-GIcNAc, which is the first
step in N-glycosylation. 3. We used a Drosophila rough eye model of DPAGT1-
CDG with an improperly developed, small eye phenotype.

“DPAGT1-CDG is a rare genetic disorder that affects the synthesis of dolichol-PP-
GlcNAc, a crucial step in N-glycosylation. This disorder leads to developmental
delay, muscle weakness, and seizures, among other symptoms. To better understand
the disease and identify potential therapeutic options...”

developmental delay: ’Failure to meet, or late achievement of developmental
milestones.” dolichol-PP-GIcNAc: ’A compound involved in the first step of N-
glycosylation.” muscle weakness: ’A reduction in the strength of one or more
muscles.’

“DPAGT1-CDG is a rare genetic disorder that affects the production of a crucial
molecule, essential for a process called N-glycosylation. This disorder causes
symptoms including delayed developmental milestones, muscle weakness, and
seizures. To study the disease and identify treatments, researchers used a fruit fly
model with small, improperly developed eyes and tested 1,520 existing drugs from
a library of FDA- or EMA-approved compounds...”

Table 2: Example of the Extract-Draft—Rewrite Flow
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Abstract

As part of the BioLaySumm shared task at ACL
2025, we developed a summarization tool de-
signed to translate complex biomedical texts
into layperson-friendly summaries. Our goal
was to enhance accessibility and comprehen-
sion for patients and others without specialized
medical knowledge. The system employed
an extractive-then-abstractive summarization
pipeline. For the abstractive component, we ex-
perimented with two models: Pegasus-XSum
and a Falcons.ai model pre-trained on medical
data. Final outputs were evaluated using the
official BioLaySumm 2025 metrics. To pro-
mote practical accessibility, we completed all
experimentation on consumer-grade hardware,
demonstrating the feasibility of our approach
in low-resource settings.

1 Introduction

The BioLaySumm shared task Lay Summarization
of Biomedical Research Articles and Radiology
Reports @ BioNLP Workshop, ACL 2025 (Xiao
et al., 2025) is conducting its third iteration this
year. The goal of the shared task is to improve
techniques for summarizing biomedical texts in
non-scientific lay-terms, in order to increase the
accessibility and understanding of medical texts
for patients and others who are not in the medi-
cal field. We used the data from the shared task
as well as their evaluation methods to create and
evaluate our models and referenced previous partic-
ipants’ work for inspiration. We used an extractive-
then-abstractive summarization technique. Begin-
ning with extractive summarization and followed
by training both the Pegasus-XSum model and the
Falconsai/medical_summarization model to pro-
duce abstractive summaries. As a step towards
future iterations of summarization, we have also
created a dictionary of medical terms translated to
lay-terms for injection.'

"https://github.com/michael-pollack/573Project.git

uwmpp, hvs278) @uw.edu

2 Related Work

Our pipeline of extractive-to-abstractive summa-
rization was inspired by previous iterations of this
workshop (Goldsack et al., 2023), (Goldsack et al.,
2024) and the winning paper from 2024 (You et al.,
2024). Our work is also influenced by the datasets
used in this task (eLife and PLOS), which were de-
veloped by (Goldsack et al., 2022) and (Luo et al.,
2022).

3 Description of Data

The dataset ‘BioLaySumm?2025-PLOS’ consists of
26,291 rows and the dataset ‘BioLaySumm?2025-
eLife’ consists of 4,729 rows. Each row consists
of the following information: the original text of a
biomedical article, a gold-standard lay-terms sum-
mary, a list of section headings, a list of keywords,
the year of publication, and the article title. Both
datasets are already split into training, validation,
and test.

We created a lay-term dictionary to add lay-term
injection to our pipeline in the future. The dic-
tionary consists of medical terms and their cor-
responding lay-term alternative based on a Stan-
ford Glossary of medical terms (Stanford Research
Compliance Office, n.d.). We were careful to start
definitions with a consonant if the original word be-
gan with a consonant, and extended this to vowels.
This premeditated measure was taken to facilitate
smoother substitutions in the future with lay-term
injections in the abstractive summaries.

3.1 Pre-Processing Data

Analysis showed that there are a large number of
citations in academic text, which tend not to con-
tribute significantly to the actual meaning of the
document and are laden with complicated punc-
tuation that affected our sentence tokenizer. We
removed all information enclosed in parentheses
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using regex and acknowledge that it removes more
than just citations.

Since TF-IDF relies on vocabulary counts to cal-
culate the importance of words, it is beneficial to
remove stopwords and lemmatize the data first to re-
duce vocabulary size and establish obvious connec-
tions between different morphological variations of
the same word. We used the built-in NLTK list of
English stopwords, as well as our own short list of
custom stopwords to target and remove stopwords
from the data. NLTK’s WordNet Lemmatizer was
used to lemmatize remaining words in the docu-
ment. The data we used to create the extractive
summaries consists of both the clean lemmatized
data resulting from these preprocessing techniques
as well as the un-lemmatized version.

4 Model

4.1 Total Pipeline Overview

We use data cleaning and TF-IDF for pre-
processing and the creation of extractive sum-
maries. The extractive summaries are fed into an
abstractive summary model.

4.2 TF-IDF

Term Frequency — Inverse Document Frequency
(TF-IDF) (Sparck Jones, 1988) gives each word
in a document a score based on importance to the
document’s meaning relative to the collection of
documents. We chose TF-IDF because it allows us
to numerically calculate the importance of words
and sentences in a systematic way, thereby allowing
us to rank which sentences should appear in the
final extractive summary.

We used Scikit-Learn’s prebuilt TF-IDF vector-
izer model with the cleaned and lemmatized Elife
training data as input to calculate the numerical
importance of every word in each document in the
data set. This produces a set of (word, vector) pairs
for each document, where the larger the vector
number, the higher the importance of the word. We
calculated the importance of each sentence within
a document by summing the TF-IDF scores of each
word in the current sentence and dividing by the
sentence’s total word count. A higher score means
that the sentence has a greater relevance to the
meaning of the document.

We then return the 40% top-scoring sentences as
an extractive summary.

4.3 Pegasus-XSum

Pegasus is an abstractive text summarization model
developed by Google Research (Zhang et al., 2020).
It is based on the Transformer architecture and was
specifically pre-trained for summarization tasks us-
ing a "gap-sentence" technique, where whole sen-
tences are masked and the model learns to predict
them from the remaining text. This model was
chosen because it could be fine-trained on our hard-
ware.

4.4 TS5 for Medical Text Summarization

Parallel to Pegasus-XSum, we also used the Fal-
consai/medical_summarization model (Wolf et al.,
2020). This T5 Large for Medical Text Summa-
rization model is fine-tuned specifically for medi-
cal domain summarization tasks. This model was
selected for its strong performance on domain-
specific texts and its ability to run efficiently on
consumer-grade hardware, making it suitable for
reproducible and accessible NLP research.

4.5 Computing Limitations

Limited access to high-end computing made it un-
realistic to fine-tune hyper-parameters during the
data validation. This is discussed in Section 7.1.

5 Evaluation

Relevance is measured using ROUGE (1, 2,
and L), BLEU, METEOR, and BERTScore.
ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) includes measures to automatically
determine the quality of a summary by comparing
it to other (ideal) summaries created by humans.
BLEU (Bilingual Evaluation Understudy) is a mea-
surement of an automatic translation and a human
written translation of the same material. METEOR
(Metric for Evaluation of Translation with Explicit
ORdering) is based on the harmonic mean of
unigram precision and recall, with recall weighted
higher than precision. For BERTScore, a neural
evaluation metric uses contextual embeddings
from pre-trained language models (like BERT) to
calculate similarity scores between candidate and
reference texts.

Readability is measured using Flesch-Kincaid
Grade Level (FKGL) and Dale-Chall Readability
Score (DCRS), Coleman-Liau Index (CLI), and
LENS. Factuality is measured using AlignScore,
and SummacC.
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6 Results

For the medical summarization model, we used
’Summarize the following scientific article" as the
prompt followed by the summary of the TF-IDF.
For the pegasus models, we pass the TF-IDF sum-
mary through the model.

The results table of our summarizations are
shown in 1.

6.1 Relevancy

As shown our evaluation data, medi-
cal_summarization scored highest for relevance.
This model was developed specifically for summa-
rization of medical text and it follows reasonably
that it would score the highest. The extractive
summaries coming in second in relevancy, beating
out the Pegasus-XSum model (another specifically
trained model for summarization) The extractive
summaries were based mainly on frequency of
word occurrence, using TF-IDF, which may make
sense in context as a word that occurs frequently
in the documents but is not an extremely general
word of English, has a high likelihood of being
relevant.

6.2 Readability

The Pegasus-XSum model dominated in the re-
sults for Readability in the FKGL evaluation metric,
with the fine-tuned version of the model perform-
ing extremely well under the LENS evaluation met-
ric. For DCRS the Pegasus-XSum model seems to
perform slightly better than the rest, with the fine-
tuned version actually performing the worst, and
for CLI all three models other than the fine-tuned
pegasus model perform at extremely similar levels,
with the medical_sumarization model just barely
performing a bit better than the rest. Readability
tends to focus on word complexity and overall clar-
ity of a summary. The Pegasus model is trained
on medical texts, along with a wider variety of text
to produce summarizations. This wider expanse
of data could contribute to its readability scores as
opposed to relevance because it is trained to create
well-made abstractive summaries.

6.3 Factuality

Our original extractive summaries performed better
than other models using both evaluation metrics.
This is a relatively unsurprising result as the ex-
tractive summaries utilize the original sentences
from the documents. Consequently, the summaries

will be more factual than for the pegasus or medi-
cal_summarization models because the text is com-
ing straight from the source.

7 Discussion

7.1 Accessible AI

In this section, we discuss how medical summa-
rization systems can be made more accessible to
a broader range of users. While recent advance-
ments in medical NLP have demonstrated impres-
sive capabilities, they often come with steep com-
putational requirements, limiting their practical use
outside well-resourced research institutions. Bed-
narczyk et al.(2025) report that the success of us-
ing an LLM for summarization relies on the com-
putational resources available and future research
should “evaluate the economic impact of deploy-
ment to ensure that LLM adoption is both tech-
nically and financially sustainable in clinical set-
tings.” We argue that accessibility - in both eco-
nomic and practical terms - is essential if these
technologies are to benefit clinicians, medical re-
searchers, and public health professionals operat-
ing in low-resource environments or institutions
without dedicated computing clusters.

7.2 Economic Accessibility

The growing trend toward large-scale models has
created a barrier to entry for many who wish to
apply or replicate state-of-the-art NLP techniques.
We quickly ran into computational resource barri-
ers because our plans of replicating previous work
required computing resources that we did not have.
As a result, our final choice of models and data
processing were simpler to run, and can be used by
people who do not have access to high-end comput-
ing resources. Our approach eliminates the need
for expensive GPU clusters that are often used in
academic settings.

All experiments in this study were conducted on
one of two laptops. We used either a laptop with
an Intel 13th Gen Core i9-13900H CPU, 32GB of
RAM and a NVIDIA GeForce RTX 4060 Laptop
GPU with 8GB RAM. This configuration, while
not trivial, remains within reach of many individ-
uals with limited budgets and does not rely on a
distributed GPU cluster or a cloud-based API that
incurs costs.

By using moderately sized, open-access models,
such as Pegasus-XSum, and optimizing evaluation
tools, we demonstrate that it is feasible to run sum-
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Figure 1: Evaluation Results

marization pipelines and evaluate results locally.
This makes the system viable for clinicians, medi-
cal students, or NGOs who may wish to generate
or verify lay summaries in real-world medical com-
munication contexts.

7.3 Practical Reproducibility and
Implementation

An important tenet of scientific research is repro-
ducibility. Methods that can be implemented on
accessible hardware can more easily be reproduced
by scholars and others who want to learn. An anal-
ysis by Belz et al. (2021) demonstrates that repli-
cation and reproducibility are critical to scientific
research, yet "it is surprisingly hard to achieve, 70%
of scientist reporting failure to reproduce someone
else’s results, and more than half reporting failure
to reproduce their own."

In this study, reproducibility was hindered by the
complexity of previous configurations, conflicting
dependencies, and reliance on costly computing en-
vironments. By deliberately choosing lightweight
tools and open-source resources, we designed a
summarization and evaluation pipeline that can be
easily shared, executed, and adapted.

7.4 The Downside of Small Computing

While our emphasis on accessibility enables
broader participation in this task, it also introduces
notable limitations. Fine-tuning Pegasus-XSum
on our consumer-grade hardware required approxi-
mately 40 hours, significantly slowing experimen-
tation cycles. These experimentation cycles were
slow and had to be run sequentially, instead of in
parallel as could be done on a distributed GPU clus-

ter. Due to hardware constraints, we were unable to
explore larger or more recent models which would
likely to produce results that score higher on the
leaderboard.

Time and resource constraints prevented us from
fine-tuning with separate validation data, limiting
our ability to tune hyper-parameters effectively.
These trade-offs demonstrate the challenges faced
by low-resource researchers and scientists while
highlighting the need to develop lightweight, effi-
cient models that perform well without requiring
extensive investments in hardware.

8 Conclusion

Our work demonstrates that medical summariza-
tion is achievable even with limited computational
resources. By leveraging models like Pegasus-
XSum, we were able to develop and evaluate effec-
tive summarization systems on a standard laptop,
highlighting the potential for accessible and repro-
ducible research in this space. Our findings support
the idea that meaningful contributions to biomedi-
cal NLP can be made without relying on large-scale
infrastructure, paving the way for more inclusive
and resource-efficient approaches to language tech-
nology.

Limitations

While our system demonstrates results in generat-
ing readable and relevant lay summaries of biomed-
ical texts using consumer-grade hardware, several
limitations should be acknowledged.
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Dataset Diversity

This work relies exclusively on two open-
acess datasets: BioLaySumm2025-eLife and
BioLaySumm?2025-PLOS, both of which consist
entirely of English language documents from a set
of biomedical articles. As such, our model’s gener-
alizability to other medical domains or languages
is untested.

Lay-Term Dictionary Coverage

The lay-term lexicon that we created, while a valu-
able resource for term injection, is limited in scope.
It is derived from a single source (Stanford Re-
search Compliance Office) and does not cover all
relevant terminology. It requires an additional step
and is not part of the summarization pipeline.

Pre-Processing

Our pre-processing decisions, particularly the re-
moval of all parenthetical content using regular ex-
pressions, may have inadvertently discarded mean-
ingful information. Although our rationale was that
parenthetical content typically contains citations or
supplementary material, this approach may have
led to the loss of scientific details.

Experimentation Bottlenecks

Because all experiments were conducted on
consumer-grade hardware without parallel GPU
resources, experimentation had to proceed sequen-
tially and in a time-consuming manner. This sig-
nificantly limited our ability to iterate on model
design or integrate new features (such as lay-term
injection).

Validation and Fine-Tuning

Time and hardware constraints prevented us from
fine-tuning using dedicated validation data. This
limited our capacity to adapt the models. As a
result, our models may not be optimally calibrated
for the data distributions.

Ethical Considerations

The goal of this project and of the shared task as
a whole is to expand the reach of biomedical text
and make this information more approachable
to people outside of the medical field. However,
it is important to acknowledge that this task is
not without its risks. For example, a flawed
summarization system has the potential to give
false information or omit important details from

the original text, which is fundamentally opposed
to the goal of the project. Additionally, it is
important to include a diverse selection of texts
when training a model of this kind, in order to
reduce biases and create a model that can adapt
and be used for a variety of new documents.

For this type of project, it is important to
know that private information is not included in
training documents, as that would be a violation
of the privacy of individuals. The data included
in our project was provided by the creators of
the BioLaySumm shared task and comes from an
open-access publisher (PLOS) and journal (eLife)
so this is not a major concern for us.
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Abstract

BioLaySumm 2025 is a shared task that aims to
automatically generate lay summaries of scien-
tific papers for a wider audience of readers with-
out domain-specific knowledge, making scien-
tific discoveries in the domain of biology and
medicine more accessible to the general pub-
lic. Our submission to the task is a FLAN-TS
base model fine-tuned on the abstract and con-
clusion of articles and expert-written lay sum-
maries from the shared task’s provided datasets.
We find that our system performs competitively
in terms of relevance, exceeds the baseline on
factuality, but falls short on readability.!

1 Introduction

Lay summarization is the task of summarizing do-
main specific texts into simplified summaries non-
experts can understand. In these types of sum-
maries, complex jargon is eliminated and informa-
tion is summarized in a clear and concise manner
for easy readability. Biomedical literature is an
example of highly technical, jargon-rich texts that
are difficult to understand by those outside of the
field, but are invaluable resources for interested
researchers, professionals, and the general public.
Unfortunately, this wealth of knowledge has lim-
ited accessibility and comprehension due to length
and complexity. Lay summaries can improve sci-
ence literacy, help limit the spread of misinforma-
tion, and invite interdisciplinary work (King et al.,
2017).

To address these persistent issues, the Biomedi-
cal Lay Summarization task (BioLaySumm) 2025
(Xiao et al., 2025) shared task at the BioNLP Work-
shop at ACL 2025 focuses on various biomedical
lay summarization tasks, from plain lay summa-
rization to multimodal lay summarization. The Lay

'Our code is made available in a public repository:
https://github.com/nschimka/TLPIQ—BioLaySumm-2025
Zhttps://aclweb.org/aclwiki/BioNLP_Workshop

People in Question (TLPIQ) team focuses on plain
lay summarization as a baseline model to summa-
rize biomedical texts. This model aims to improve
accessibility and understanding of these complex
texts, while maintaining factuality and domain rel-
evance.

2 Related Work

Previous work has evaluated two types of summa-
rization: extractive and abstractive. Extractive sum-
marization aims to select verbatim components of
a document to create a summary, whereas abstrac-
tive summarization generates novel summaries.
Overviews of the past two years of the task can
be found in Goldsack et al. (2023) and Goldsack
et al. (2024). Particularly, using an extract-then-
summarize approach with TextRank (Mihalcea and
Tarau, 2004) and BERT (Devlin et al., 2019), You
et al. (2024) extracted text to reduce input length
to separately fine-tune GPT-3.5 and a Longformer
Encoder Decoder model to achieve the best perfor-
mance in the task last year.

Preprocessing techniques showcased positive
summarization results. Zhao et al. (2024) indi-
cated that hard truncation and text-chunking re-
sulted in better quality and efficiency compared to
data augmentation and prompt engineering tech-
niques. Modi and Karthikeyan (2024) utilized a
preprocessing over the abstract technique to extract
initial sentences from a document and remove punc-
tuation and enclosed text to successfully increase
summary readability.

Previous work has utilized smaller parameter
sequence-to-sequence models with varying results.
Malik et al. (2024) utilized a FLAN-T5 model with
a basic prompt structure, but the lack of constraints,
limited training, and context length of the model
resulted in poor lay summarization output. Modi
and Karthikeyan (2024) also fine-tuned a FLAN-
T5-base, but focused on preprocessing over the
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abstract and a cosine scheduler to generate lay sum-
maries.

In this task, we train a sequence-to-sequence
FLAN-TS5-base * model with abstract extraction, in-
struction tuning with dataset tags, and a specialized
prompt template to improve upon previous T5 lay
summarization methods. Sequence-to-sequence
models handle input and output sequences better
than other larger models while being computation-
ally efficient, making the TS model a strong choice
for this summarization task.

3 Data

The dataset for the shared task is from Goldsack
et al. (2022) which includes articles from two dif-
ferent biomedical resources. The Public Library
of Science* (PLOS) is an open-access non-profit
publisher of articles from various peer-reviewed
journals in a wide variety of scientific fields. eLife’
is an open-access peer-reviewed journal of biomed-
ical and life sciences. Of the two, PLOS is longer,
with 24,773 instances for training and 1,376 for val-
idation. eLife contains 4,346 instances for training
and 241 for validation.

We performed exploratory data analysis (EDA)
on the two data sets to better understand the quan-
titative and qualitative features of both the articles
and the summaries. See Appendix A for the results
of the EDA.

4 Methods

4.1 Preprocessing

Because the FLAN-T5-base model has a maximum
input length of 1,024 tokens, the original articles
needed to be shortened significantly from the av-
erage token lengths of 6,981 tokens for PLOS and
10,428 tokens for eLife (see Figure 1 in Appendix
A.l).

We segmented each article into sections using
newline characters, appended the dataset-provided
keywords to each input to enrich contextual infor-
mation, and removed in-text citations with a regular
expression.

We implemented a TF-IDF scoring function with
scikit-learn’s TfidfVectorizer class (Pedregosa
et al., 2012) to find the most important sentences

3https://huggingface.co/docs/transformers/model_doc/

flan-t5
*https://huggingface.co/datasets/BioLaySumm/
BioLaySumm?2025-PLOS
Shttps://huggingface.co/datasets/BioLaySumm/
BioLaySumm?2025-eLife

in each section, rank the sentences by importance,
then take the first n allotted tokens starting at the
top of the list of sentences. We found the most
success allotting 50% of the input tokens to the ab-
stract and 50% to the conclusion/discussion section
(depending on each article’s naming conventions).

4.2 Model

We fine-tuned FLAN-T5-base (248M parameters),
an instruction-tuned variant of the T5 architecture
(Raffel et al., 2020; Chung et al., 2022) to balance
the compute cost and performance in our combined
30K sample biomedical corpus. Its Transformer
backbone with multi-headed attention (Vaswani
et al., 2017) captures long-range dependencies in
scientific text, enabling accurate and accessible lay
summaries.

At inference time, we steer our fine-tuned FLAN-
T5-base model with a diverse controlled beam
search setup to balance faithfulness, readability,
and coverage. We generate up to 400 new tokens
(minimum 120) beyond the input prompt to ensure
complete summaries without truncation, using 8
beams divided into 4 diversity groups (diversity
penalty = 0.8) to explore varied phrasings. To
avoid repetition of three-gram patterns, we enforce
no_repeat_ngram_size=3 to avoid repeating n-
grams and apply a mild repetition penalty of 1.2. A
length penalty of 0.9 encourages more comprehen-
sive output.

Details of our model approach can be found in
Appendix B.

5 [Evaluation

Evaluation for this task cover three areas: relevance
of the summary to the original article, readability,
and factuality.

Relevance is measured with ROUGE (1, 2, and
L), BLEU, METEOR, and BERTScore; readabil-
ity is measured with Flesch-Kincaid Grade Level
(FKGL) and Dale-Chall Readability Score (DCRS),
Coleman-Liau Index (CLI), and LENS; factuality
is measured with AlignScore and SummaC.

BioLaySumm 2025 utilizes the Codabench (Xu
et al., 2022) platform for participants to submit
their predicted summary results. Our final model
output consisted of the predicted summaries, qual-
ity scores, token counts, and input text identifiers.
We created a script to retain only the predicted sum-
maries in the appropriate submission format to then
evaluate model performance.
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Source

ROUGE BLEU METEOR BERTScore

FLAN-TS5 base 0.34 7.16 0.27 0.86
llama3-8B-sft 0.37 9.86 0.31 0.86
qwen2.5-7B-sft 0.35 8.74 0.3 0.87

Table 1: Comparison of our relevance scores across evaluation metrics compared to the baselines. Best score for

each metric is in bold.

Source FKGL DCRS CLI LENS
FLAN-T5 base 13.44 10.59 13.43 43.68
llama3-8B-sft 12.21 9.23 1298 72.86
gwen2.5-7B-sft  12.71 9.65 13.7 60.22

Table 2: Readability scores across metrics

6 Results

Tables 1, 2, and 3 present our FLAN-TS Base
model’s performance alongside the shared-task
baselines—Llama3 (8B params) (Grattafiori et al.,
2024) and Qwen2.5 (7B params) (Qwen Team,
2024)—as reported on Codabench®.

Our combined-dataset FLAN-TS system (248M
params) achieves a ROUGE of 0.34 and a
BERTScore of 0.86, compared to Llama3’s
ROUGE of 0.37 (BERTScore = 0.86) and
Qwen2.5’s ROUGE of 0.35 (BERTScore = 0.87)
(Table 1). In factuality metrics (Table 3), we match
or exceed these baselines, with an AlignScore of
0.76 (vs. 0.72/0.75) and SummaC of 0.64.

However, our readability scores (Table 2) re-
veal a larger gap: our FKGL of 13.44 and LENS
of 43.68 lag behind Llama3 (12.21/72.86) and
Qwen2.5 (12.71/60.22).

These results demonstrate that a lightweight
248M-parameter FLAN-TS model can achieve rel-
evance and factuality on par with much larger 7-8
B—parameter systems, but still requires further re-
finement to match their readability.

Source AlignScore SummaC
FLAN-TS5 base 0.76 0.64
llama3-8B-sft 0.72 0.64
qwen2.5-7B-sft 0.75 0.64

Table 3: Factuality scores across metrics

®Accessed May 22, 2025

7 Discussion

In our error analysis, we identified two main short-
comings of the combined-dataset model. First,
eLife summaries were sometimes truncated mid-
sentence; key findings would abruptly end because
the model had internalized a compression ratio
dominated by the shorter PLOS summaries (see
Figure 3 in Appendix A.1). Second, despite our
diverse beam search and generation strategies, occa-
sional technical terms still slipped through, subtly
raising both Flesch—Kincaid and LENS scores and
detracting from true lay readability.

Looking ahead, we see three promising direc-
tions. First, training separate, dataset-specific mod-
els would let each learn its own optimal com-
pression ratio and vocabulary constraints, elimi-
nating length-bias effects. Second, a two-stage
pipeline, initially generating a faithful summary
and then passing it through a lightweight simplifi-
cation model or rule-based rewriter, could ensure
factual accuracy while improving clarity. Finally,
integrating a post hoc lexical simplification step,
via curated synonym lists or a small neural simpli-
fier, would remove residual jargon and bring read-
ing levels down to our grade 8-9 target. Together,
these refinements promise to restore full-sentence
integrity and markedly boost readability without
sacrificing domain fidelity.

Limitations

While our system achieves strong relevance and fac-
tuality scores, it exhibits several limitations that af-
fect its overall performance—particularly in terms
of readability. First, the use of a single model
trained on both PLOS and eLife datasets introduced
a compression mismatch: summaries generated
from longer eLife articles were occasionally trun-
cated mid-sentence, likely due to the model inter-
nalizing an average summary length skewed by the
shorter PLOS samples. This resulted in incomplete
outputs and diminished coherence for eLife inputs.

Second, despite instruction-tuning and con-
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trolled decoding strategies, technical vocabulary
and complex syntax persisted in some outputs. This
limited the model’s ability to consistently produce
content aligned with the target 8th—9th grade read-
ing level, as evidenced by elevated FKGL and
LENS scores.

Moreover, due to time constraints, we did not ex-
plore more advanced strategies such as multi-stage
summarization, dataset-specific modeling, or post-
hoc simplification pipelines. These approaches
may have mitigated the readability issues while
preserving factual accuracy.

Finally, all evaluations rely on automatic metrics.
While useful for benchmarking, they may not fully
capture nuance in accessibility, clarity, or human
comprehension—factors that are especially critical
in the biomedical lay summarization context.
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A Data
A.1 Text Length

Figure 1 shows the distribution of tokens per article
in both datasets. We found the PLOS articles to
be shorter on average with a mean of 6981 tokens
per article. The eLife articles were longer with an
mean of 10,428 tokens with a greater variability in
length.

Figure 2 compares the number of tokens across
the gold standard summaries for the two datasets.
A similar trend appears, with the PLOS lay sum-
maries containing fewer (mean of 195) tokens than
the eLife lay summaries (mean of 386), and the
eLife distribution is again wider.
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Figure 1: Distribution of tokens per article in the PLOS
and eLife datasets.
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Figure 2: Distribution of tokens per summary in the
PLOS and eLife datasets.

A.2 Section Relevance

You et al. (2024) compared each section of an arti-
cle’s relevance to the summary via cosine similarity.
Across both datasets, they found the abstract, back-
ground, and conclusion to be the most relevant to
the summary, in that order.

The existing dataset does not retain the section
headings in place in the article text. The are ex-
tracted into a section headings list for each in-
stance. We found that the article could be split
on ‘\n’ into a list of the different sections. We
compared the listed sections across all instances
and found that across PLOS instances, 100% con-
tained an abstract, 99.85% contained an introduc-
tion, and 95.83% contained a discussion section
(with another 3.53% containing a combined re-
sults/discussion section). Across eLife instances,
100% contained an abstract, 99.33% contained an
introduction, and 98.62% contained a discussion.
The compression ratio refers to the difference in
length of an article and its lay summary. Figure 3
demonstrates that on average, the PLOS articles are
less compressed than the eLife articles. While the
eLife summaries are still longer on average than
PLOS summaries, their articles are much longer,
necessitating more compression of their informa-
tion into a summary.
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Figure 3: Distribution of compression ratios (article
token length divided by summary token length).

B Model Settings

We framed the task using the prompt: "Create
a lay summary of this scientific research for a
general audience who has no background in bi-
ology," leveraging Flan-T5’s instruction-tuning ca-
pabilities. This approach aligns with recent work
showing prompt-based task framing enhances per-
formance in biomedical applications (Tran et al.,
2024). We structured inputs with source-specific
tags (e.g., <plos> [TITLE]...[ABSTRACT]...) as
lightweight semantic cues. Input documents were
truncated to 1024 tokens, with output summaries
capped at 400 tokens.

Training used AdamW with a learning rate of 3e-
5, weight decay of 0.01, and warmup ratio of 0.1.
We employed a batch size of 12 without gradient
accumulation, using PyTorch with expandable seg-
ment configuration for memory efficiency. Early
stopping was applied with a patience of 2 evalua-
tion steps. For generation, we utilized beam search
with 4 beams, shown to produce more faithful sum-
maries than sampling-based approaches (Wan et al.,
2023).

The gradual decrease of both training and valida-
tion loss indicate that our model was able to learn
and generalize effectively, as shown in Figure 4.
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Abstract

Generating lay summaries of biomedical re-
search remains a time-intensive task, despite
their importance in bridging the gap between
scientific findings and non-expert audiences.
This study introduces a retrieval-augmented
fine-tuning framework for biomedical lay sum-
marization, integrating abstract-driven seman-
tic retrieval with LoRA-tuned LLaMA 3.1 mod-
els. Abstracts are used as queries to retrieve
relevant text segments from full-text articles,
which are then incorporated into prompts for su-
pervised fine-tuning. Evaluations on the PLOS
and eLife datasets show that this hybrid ap-
proach significantly improves relevance and
factuality metrics compared to both base mod-
els and those tuned individually, while main-
taining competitive readability. Prompt design
experiments highlight a trade-off between read-
ability and factual accuracy. Our fine-tuned
model demonstrates strong performance in rel-
evance and factuality among open-source sys-
tems and rivals closed-source models such as
GPT, providing an efficient and effective solu-
tion for domain-specific lay summarization.

1 Introduction

Biomedical research is essential to advancing hu-
man health and societal well-being. However,
with over 1.5 million articles published annually
(Gonzilez-Marquez et al., 2024), it is increasingly
difficult for readers to absorb new findings effi-
ciently. Although abstracts are designed to sum-
marize key results, their technical language often
limits accessibility for non-experts. Lay summaries
help bridge this gap by presenting core contribu-
tions in clear, non-technical language, yet they re-
main uncommon due to the manual effort required.
The BioLaySumm shared task addresses this chal-
lenge by promoting the automatic generation of
high-quality lay summaries to support broader un-

“These authors contributed equally.

derstanding of biomedical research (Xiao et al.,
2025).

Recent advances in large language models
(LLMs) have enabled zero- and few-shot summa-
rization, reshaping the field through strong lan-
guage understanding and instruction-following ca-
pabilities (Zhang et al., 2024). Results from the
BioLaySumm shared task further demonstrate that
LLM-based methods perform well in generating
lay summaries of biomedical texts (Goldsack et al.,
2024, 2023).

One of the key challenges in the BioLaySumm
shared task is the computational cost of feeding an
entire research article into a large language model
(LLM), even though many recent LLMs support
extended context windows (e.g., up to 128k tokens
in LLaMA 3.1). Prior research has investigated sev-
eral strategies to address this issue, including text
chunking, which segments lengthy documents into
smaller, more manageable units for summarization
by models such as Mixtral 8x7B (Bao et al., 2024),
or extractive summarization techniques that iden-
tify and select salient sentences from the full text
(You et al., 2024).

In this study, we developed a workflow that
integrates retrieval-augmented generation (RAG)
with LoRA-based fine-tuning to improve the per-
formance of LLaMA 3.1 on the biomedical lay
summarization task (Figure 1) . To address in-
put length constraints imposed by limited GPU
memory, we used the abstract of each article as
a query to retrieve relevant but complementary
content from the full text. Both the abstract and
the retrieved information were used to fine-tune
the model, enabling it to generate lay summaries
that match the editorial style of the target journals,
PLOS and eLife.

"https://github.com/ACL-LLM-
Research/BioLaySummarization
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Figure 1: Overview of the proposed workflow for
biomedical lay summarization. The abstract is used
to query a vector database constructed from the seg-
mented main text of the article. The retrieved content
is then combined with the abstract and processed by a
fine-tuned language model to generate a lay summary.

2 Methods

2.1 Datasets

In this study, we used a publicly available PLOS
and eLife dataset (Goldsack et al., 2022), which
includes both full research articles and their cor-
responding lay summaries written by the original
authors or editors. Summary statistics of the data
set can be found in the Appendix A.

2.2 Supervised Fine-Tuning

The LLaMA 3.1 8B model was used as the
base model for supervised fine-tuning (Grattafiori
et al.,, 2024). Given the size of the training
set, we adopted Low-Rank Adaptation (LoRA),
a parameter-efficient fine-tuning approach. A brief
hyperparameter search was conducted based on the
autoregressive loss. Further details are provided in
the Appendix B.

2.3 Retrieval-Augmented Generation (RAG)

The vector database was constructed using the main
text of each article. The text was segmented into
500-character chunks with a 50-character overlap.
Each chunk was embedded using the all-MiniLM-
L6-v2 model from the Sentence Transformers li-
brary, which encodes sentences and short para-
graphs into dense vectors optimized for semantic

similarity and retrieval (Reimers and Gurevych,
2019). The resulting embeddings were indexed
using FAISS (Douze et al., 2025).

During the retrieval phase, each article’s abstract
was used as a query to retrieve semantically similar
and contextually relevant content from the corre-
sponding document in the vector database. The
top five most relevant chunks, ranked by embed-
ding similarity, were incorporated into the prompt
alongside the original abstract.

2.4 Evaluation Metrics

We evaluated summary quality using three metric
categories: relevance, readability, and factuality.

Relevance was evaluated using ROUGE (Lin,
2004), BLEU(Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005) and, BERTScore
(Zhang et al., 2020), which quantify lexical and
semantic overlap between the generated and refer-
ence summaries.

Readability was evaluated using the Flesch-
Kincaid Grade Level (FKGL) (Kincaid et al., 1975),
Dale-Chall Readability Score (DCRS) (Dale and
Chall, 1948), Coleman-Liau Index (CLI) (Coleman
and Liau, 1975) and LENS (Maddela et al., 2023).

Factuality metrics include AlignScore (Zha et al.,
2023) and SummaC (Laban et al., 2022), which
estimate the consistency of generated summaries
with the source content.

Additionally, we explored the use of G-Eval,
an LLM-based evaluator that provides a holistic
assessment by jointly considering relevance, read-
ability, and factuality. However, it requires further
development and was not included in this study.
Further details are provided in Appendix C.

3 Result

We first explored several strategies to improve
model performance, including retrieval-augmented
generation (RAG), LoRA-based fine-tuning, and
prompt engineering using the validation set.
Based on these evaluations, we selected the best-
performing approach and compared its perfor-
mance on the test set against that of general-
purpose large language models.

3.1 Retrieval-Augmented Fine-Tuning

Our study utilizes LLaMA3.1-8B-Instruct as the
primary baseline model. To assess the impact
of scaling model size by an order of magnitude,
we also included the LLaMA3-70B-Instruct base
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model. However, the performance of the 70B
model was only marginally better than that of the
8B model (Table 1).

We then incorporated retrieval-augmented gen-
eration (RAGQG) to evaluate whether retrieved text
chunks from the full text could enhance summary
quality. The underlying hypothesis is that re-
trieved content may contain contextual information
relevant to key points mentioned in the abstract,
thereby providing additional background for gen-
erating more comprehensive and informative sum-
maries. Compared to the base model, the RAG
approach achieved higher scores in relevance met-
rics such as ROUGE and METEOR, as well as
in most readability metrics across both datasets,
although it underperformed in factuality metrics.

The main rationale for using retrieved text in
place of the full article is to minimize computa-
tional overhead. We compared the performance
of the RAG approach with models using full-
text input. Interestingly, the results were dataset-
dependent. On the PLOS dataset, the RAG-based
model outperformed the full-text model across all
relevance and factuality metrics. In contrast, on
the eLife dataset, the RAG-based summaries un-
derperformed relative to the full-text model in both
relevance and readability metrics.(Table 1).

Next, we evaluated whether supervised fine-
tuning using LoRA could enhance summary quality.
Compared to the base model, the LoRA fine-tuned
model demonstrated improvements across all evalu-
ation metrics on both the PLOS and eLife datasets,
with the exception of the readability metric LENS.
(Table 1).

Finally, we assessed a combined approach us-
ing both LoRA and RAG to determine whether
the two strategies are complementary. On the
PLOS dataset, this combined model outperformed
the base model as well as models using LoRA or
RAG alone in both relevance and factuality metrics,
though not in all readability metrics. On the eLife
dataset, the combined model outperformed oth-
ers in most relevance metrics and achieved higher
scores in one factuality metric, AlignScore (Ta-
ble 1).

3.2 Prompt-Based Trade-off between
factuality and readability

Given the low scores observed in readability met-
rics such as FKGL, CLI, and DCRS, we modi-
fied the prompt instructions to enhance readability.
Prompts 1 through 4 (B.2 to B.5) were designed

to incrementally increase emphasis on readability,
while progressively reducing focus on factual accu-
racy

The results from Prompt 1 to Prompt 4 with-
out LoRA exhibit a consistent upward trend across
all readability metrics (Table 2). However, this
improvement in readability is accompanied by a
decline in factuality, as evidenced by decreasing
scores in AlignScore and SummaC. In contrast,
for models fine-tuned using LoRA, the increase in
readability is less consistent compared to models
relying solely on RAG.

We also estimated the average readability met-
rics of the reference summaries using 100 examples
from the eLife training set. These editor-written
summaries achieved average scores of FKGL =
11.1694, CLI = 12.2691, DCRS = 11.1068, and
LENS = 58.9321. In comparison, our generated
summaries using the RAG approach with Prompt
4 produced slightly lower, but comparable re-
sults: FKGL = 11.6004, CLI = 12.5959, DCRS
=14.3942, and LENS = 52.1310.

3.3 Comparison against other pretrained
LLMs

Given the strong overall performance of LLaMA
3.1-8B with retrieval-augmented fine-tuning us-
ing prompts that emphasize factual accuracy, we
submitted its results for test set evaluation and com-
pared them to summaries generated by various
types of LLMs, including GPT, Qwen (a hybrid
reasoning model), and Seed/Doubao (a mixture-of-
experts model). The aggregated results across both
datasets are presented in Table 3 .

Our model achieves the highest average scores in
ROUGE, BLEU, METEOR, AlignScore, and Sum-
maC, demonstrating superior performance com-
pared to other LLMs, including GPT-4. Among the
general-purpose systems, GPT-4 performs second-
best on relevance metrics, but still lags behind our
approach by over 0.02 in ROUGE and 0.04 in ME-
TEOR. In contrast, the Doubao and Qwen-3-32B
models perform significantly worse, highlighting
the effectiveness of retrieval-augmented LoRA fine-
tuning for domain-specific summarization. In read-
ability metrics, our system achieves stronger per-
formance than GPT-3.5 on CLI, FKGL, and DCRS,
although it underperforms relative to GPT-4.
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Approach Dataset  ROUGE BLEU METEOR BERTScore FKGL| CLI| DCRS| LENS AlignScore SummaC

LLaMA3.1-8B base PLOS 0.3015 6.5620 0.2523 0.8472 159551 14.3183 17.6025 43.7496 0.7888 0.6043
LLaMA3.1-70B base PLOS 0.3177 5.9399 0.2732 0.8482 16.6955 14.6441 18.4586 56.0141 0.7838 0.6110
LLaMA3.1-8B +RAG PLOS 0.3111 6.4173 0.2757 0.8448 15.6542 14.0322 16.3438 37.9543 0.7716 0.5969
LLaMA3.1-8B, full text PLOS 0.2868 5.5198 0.2696 0.8386 14.0785 13.7034 15.3931 39.2586 0.7406 0.4899
LLaMA3.1-8B +LoRA PLOS 0.3125 8.0553 0.2684 0.8483 142926  13.6650 15.7595 43.5402 0.7961 0.6606
LLaMA3.1-8B +RAG+LoRA  PLOS 0.3682  13.1528 0.3294 0.8589 16.0238  13.6458 16.2309 59.2123 0.8905 0.8325
LLaMA3.1-8B base eLife 0.1938  0.9549 0.1247 0.8250 15.0991 14.1559 17.8718 50.6078 0.8171 0.5587
LLaMA3.1-70B base eLife 0.2583 2.6717 0.2026 0.8237 16.2511 142092 17.7906 419114 0.8145 0.5141
LLaMA3.1-8B +RAG eLife 0.2357 1.6102 0.1654 0.8208 14.7901  13.8905 16.3313  35.0491 0.7680 0.4821
LLaMA3.1-8B, full text eLife 0.2475 2.7377 0.2267 0.8124 12.8411 13.7393 149535 16.7232 0.7919 0.4650
LLaMA3.1-8B +LoRA eLife 0.2276 1.2622 0.1467 0.8283 14.2445 13.5854 16.2066 46.0314 0.8103 0.5900
LLaMA3.1-8B +RAG+LoRA  eLife 0.3093  4.8882 0.2404 0.8277 16.0863 13.5323 17.1463  49.9853 0.8187 0.5412

Table 1: Performance of models with RAG and LoRA on the validation set. | Indicates that lower values correspond
to better performance. Bold indicates the best score in each dataset. All metrics were computed on the full validation
set (PLOS, n = 1376. eLife, n = 271).

Approach Dataset ROUGE BLEU METEOR BERTScore FKGL| CLI| DCRS| LENS AlignScore SummaC
RAG, prompt 1 plos 0.3111 6.4173 0.2757 0.8448 15.6542 14.0322 16.3438 37.9543 0.7716 0.5969
RAG, prompt 2 plos 03139 6.3055 0.2856 0.8456 14.3461 13.6433 15.6403 46.0194 0.7479 0.5559
RAG, prompt 3 plos 0.3088 6.3005 0.2632 0.8492 13.0738 12.9733 14.2286 62.0774 0.7013 0.5466
RAG, prompt 4 plos 0.2966  4.5010 0.2493 0.8467 11.7158  12.1700 12.5419 66.4741 0.5951 0.5133
RAG+LoRA, prompt 1 plos 0.3682  13.1528 0.3294 0.8589 16.0238  13.6458 16.2309 59.2123 0.8905 0.8325
RAG+LoRA, prompt 2 plos 0.3485  9.8177 0.3227 0.8550 16.5375 13.5550 16.3920 66.1999 0.7753 0.6310
RAG+LoRA, prompt 3 plos 0.3601  10.1433 0.3315 0.8561 15.1839 133211 15.7658  69.0966 0.7598 0.5718
RAG+LoRA, prompt 4 plos 0.3434  8.2041 0.3230 0.8560 15.1830 12.8227 14.9630 73.0403 0.6322 0.5242
RAG, prompt 1 elife 0.2357 1.6102 0.1654 0.8208 147901 13.8905 16.3313  35.0491 0.7680 0.4821
RAG, prompt 2 elife 0.2638 2.2989 0.1846 0.8271 13.5047 13.3958 15.5217 46.3963 0.7802 0.5234
RAG, prompt 3 elife 0.2739  3.1185 0.2050 0.8283 11.8284 12.7894 14.3307 47.2025 0.7419 0.5303
RAG, prompt 4 elife 0.2771 3.2216 0.2031 0.8296 11.6004 12.5959 14.3942 52.1310 0.7366 0.5375
RAG+LoRA, prompt 1 elife 0.3093  4.8882 0.2404 0.8277 16.0863  13.5323 17.1463 49.9853 0.8187 0.5412
RAG+LoRA, prompt 2 elife 0.2886  4.4900 0.2186 0.8241 15.8230 15.0335 14.0296 52.6318 0.7171 0.5104
RAG+LoRA, prompt 3 elife 0.2957  4.8307 0.2215 0.8252 15.6024  14.8157 13.7995 52.2966 0.7302 0.5364
RAG+LoRA, prompt 4 elife 0.3061 5.0620 0.2317 0.8303 153697 139646 13.3087 60.8793 0.6404 0.4672

Table 2: The impact of prompt design on generated summaries using augmented LLaMA 3.1 models. Prompts 1
through 4 progressively increase emphasis on readability while reducing emphasis on factuality. | indicates that
lower values correspond to better performance. Bold values indicate the best score within each dataset. All metrics
were computed on the full validation set (PLOS, n = 1376; eLife, n = 271).

Model ROUGE BLEU METEOR BERTScore FKGL| CLI| DCRS| LENS AlignScore SummaC
LLaMA3.1-8B +RAG+LoRA, prompt I~ 0.3469  8.6382 0.2978 0.8534 16.9472 109176 17.2120 57.6922 0.8801 0.7471
LLaMA3.1-8B +RAG, prompt 4 0.2985  4.6963 0.2499 0.8457 12.9965 103171 14.5694  53.3393 0.7646 0.5704
Seed/Doubao-1.5-pro, RAG, prompt 1 0.1371  0.4055 0.1202 0.8052 12.3599  11.0582 15.6888 71.4021 0.3423 0.4382
Qwen3-32B, RAG, prompt 1 0.1926  1.4937 0.1396 0.8338 164236  14.2241 19.7064  40.6607 0.6860 0.5315
GPT3.5, RAG, prompt 1 0.2918  3.9624 0.2076 0.8536 17.5771  12.1847 18.9784 66.3074 0.8047 0.5118
GPT3.5, RAG, prompt 4 02543 2.2707 0.1709 0.8544 147574  11.7962 16.9538 74.9194 0.7850 0.5180
GPT4, RAG, prompt 4 0.3207  5.4428 0.2532 0.8554 12.2789  9.5065 13.3833 80.4591 0.6754 0.5210

Table 3: Final submission and test set performance compared to other general-purpose LLMs. The table reports
average results across the PLOS and eLife datasets. | indicates that lower values correspond to better performance.
Bold values indicate the best scores. All metrics were computed on the test set ( PLOS, n = 142. eLife, n = 142).
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4 Discussion and Conclusion

Applying both LoRA and RAG to fine-tune
LLaMA3.1 resulted in superior overall perfor-
mance on the biomedical lay summarization task
compared to using the base model or applying
LoRA or RAG individually. This combined ap-
proach substantially improved relevance and fac-
tuality metrics, though it slightly reduced perfor-
mance on most readability metrics. The gains in rel-
evance and factuality are likely attributable to the
additional contextual information retrieved from
the full text, which often contains factual content
present in the reference summaries but absent from
the abstract. The slight decline in readability met-
rics, such as FKGL, CLI, and DCRS, may result
from the introduction of new concepts via the re-
trieved content or from the integration of additional
information using more complex sentence struc-
tures, such as subordinate clauses.

Our prompt design experiments revealed a trade-
off between factuality and readability in LLM-
generated summaries, suggesting that efforts to
simplify language or meet brevity constraints may
compromise the accurate representation of com-
plex scientific content. It may be challenging for
a single model to simultaneously enforce simpli-
fied vocabulary and sentence structures, comply
with word count constraints, and extract essential
information while preserving technical precision.
A potential solution is to adopt a two-stage summa-
rization framework (Goldsack et al., 2025), where
an "author" model first extracts key factual con-
tent, followed by a "writer" model that generates
a more readable summary while preserving that
information.

Our RAG fine-tuned LLaMA3.1 model demon-
strated superior performance in relevance and fac-
tuality metrics compared to pretrained general-
purpose LLMs in this summarization task. How-
ever, we also observed that the pretrained GPT-4
model excels in readability metrics while main-
taining competitive performance in relevance and
factuality. This suggests that GPT-4 may serve as
a strong base model for fine-tuning, potentially
achieving well-balanced performance across all
evaluation criteria, as demonstrated in previous
work (You et al., 2024). Nevertheless, leveraging
GPT-4 for fine-tuning and inference entails signifi-
cantly higher computational and financial costs.

Limitations

This study has several limitations. First, the RAG
component relied exclusively on the main text of
each article. As a result, it may have omitted essen-
tial background information, such as fundamental
biological concepts, which are critical for generat-
ing accurate and accessible lay summaries. Future
work could enhance summary quality by incorpo-
rating external domain-specific resources—such as
biomedical ontologies or reference texts—into the
RAG pipeline. Additionally, the embedding model
used in our RAG implementation was a small, cost-
efficient variant. Employing larger and more power-
ful models, such as all-mpnet-base-v2, may further
improve retrieval quality and overall summariza-
tion performance. Third, we used prompt templates
optimized for LLaMA 3.1 to evaluate other LLMs,
which may disadvantage models whose optimal
prompts differ in structure or emphasis.
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Dataset Train Validation Test
PLOS 24,773 1,376 142
eLife 4,346 242 142

Table 4: Number of examples in the training, validation,
and test sets of the PLOS and eLife lay summary dataset.
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Figure 2: Word counts of PLOS reference summaries in
the training and validation sets.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore:
Evaluating text generation with bert. Preprint,
arXiv:1904.09675.

A Dataset Summary Statistics

The dataset was divided into training, validation,
and test sets, as shown in Table 4.

Summary statistics of word counts are presented
in Tables 5 and 6 to confirm that the validation and
test splits are representative of the dataset. The
training, validation, and test sets display compa-
rable mean and median word counts. However,
13 instances in the PLOS training set contain in-
correctly phrased abstracts, each comprising fewer
than 500 tokens according to the LLaMA 3 to-
kenizer. These instances were identified as hav-
ing improperly parsed abstracts and were removed
prior to training.

The reference summaries typically range from
100-300 words for PLOS and 200-600 words for
eLife ( Figure 2 and Figure 3). These ranges in-
formed the prompt design, enabling the model to
generate summaries of comparable lengths .

B Fine-Tuning

The prompts used for LoRA fine-tuning—with and
without RAG—are provided in B.1 and B.2, respec-
tively. Similar prompts were used during inference,
except that the reference summary part was omit-
ted.
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Figure 3: Word counts of eLife reference summaries in
the training and validation sets.
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The final LoRA configuration employed a LoRA
rank of 8, a LoRA alpha of 16, a LoRA dropout
of 0.1, and a learning rate of 1 x 107°. Hyper-
parameters such as the LoRA rank (8, 16) were
explored using the PLOS dataset, but performance
differences were minimal. The number of epochs
(1, 2, 4) was also explored. The optimal number
of training epochs was found to be 1 for the PLOS
dataset and 2 for the eLife dataset. The training and
validation loss curves are available in the GitHub
repository.

A series of prompts with progressively increased
emphasis on readability were explored: Prompt 1
(B.2), Prompt 2 (B.3), Prompt 3 (B.4), and Prompt
4 (B.5). Blue color coding indicates instructions
related to accuracy, while orange color coding high-
lights instructions aimed at improving readability.

C Evaluation of G-Eval

Multiple classical metrics were employed in this
study, some of which exhibited contradictory be-
havior during prompt optimization. This highlights
the challenge of determining appropriate weights
for each metric in order to construct a meaningful
overall evaluation score. Previously, equal weights
were assigned to each metric to calculate average
performance within each evaluation aspects (Gold-
sack et al., 2024). Recent advancements have intro-
duced the "LLM-as-a-Judge" paradigm, wherein
large language models are employed as evaluators
for complex tasks, offering scalable, cost-effective,
and consistent assessments across diverse domains
(Gu et al., 2025).

In this preliminary study, we employed G-Eval,
an LLM-based evaluation framework that prompts
a language model to assign scores and provide jus-
tifications based on criteria such as relevance, read-
ability, and factuality (Liu et al., 2023). G-Eval
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Text Min Max Mean Median
Train Abstract 71 509 166 165
a Main text 324 28,696 10,200  9.890
Validati Abstract 76 306 166 165
AICAION  Naintext 3,408 23,048 10,031 9,707
Test Abstract 83 464 267 220
S Main text 2,666 16,954 8,157 8,032

Table 5: Words counts of abstracts and articles from the eLife dataset.

Text Min Max Mean Median

Train Abstract 2% 701 268 269
Main text 748 26,643 6754  6.581

Validation  Abstract 93 561 271 273
andation\rdintext 933 24751 8.869 8,649
et Abstract 97 377 245 245
©s Main text 3,316 17,330 7735  7.521

Table 6: Word counts of abstracts and articles from the PLOS dataset. * indicate instances with unusually low word
counts due to incorrectly parsed abstracts, which were removed prior to training.

was implemented using the GPT-3.5-turbo model,
and the evaluation criteria are detailed in Box C.1.

To evaluate the effectiveness of G-Eval for this
task, we conducted a controlled experiment us-
ing synthesized data. Specifically, we examined
whether G-Eval scores could differentiate among
positive controls, negative controls, and standard
summaries generated with the LLaMA3.1 model
using various prompts. The positive controls (Para-
phrased Gold Summaries) were created by para-
phrasing the reference summaries to preserve their
factual content while altering surface form. The
negative controls (Intentionally Degraded Sum-
maries) were generated by prompting the model to
produce outputs characterized by vague language,
poor structure, and incorrect terminology. The stan-
dard summaries were generated directly from ab-
stracts using a conventional prompt. All prompts
used to generate this synthetic data are listed in
Table 7.

The results showed that paraphrased reference
summaries achieved the highest median G-Eval
scores, while intentionally degraded summaries re-
ceived the lowest scores. Summaries generated
using the standard prompt fell between these two
extremes (Figure 4). These findings suggest that
G-Eval is effective in distinguishing between sum-

maries of varying quality.

In addition, summaries that received low G-Eval
scores were manually reviewed to assess the jus-
tifications provided by the G-Eval framework for
their evaluation.

We applied G-Eval scoring to 20 test set exam-
ples across four model configurations: the LLaMA
3.1 baseline, LLaMA 3.1 + LoRA, LLaMA 3.1 +
RAG, and LLaMA 3.1 + RAG + LoRA (Figure 5).
Consistent with the results in Table 1, the model
fine-tuned with both LoRA and RAG achieved the
highest median G-Eval score, suggesting that G-
Eval is capable of distinguishing higher-performing
models from lower-performing ones. However, the
boxplot reveals substantial variance across the 20
evaluated samples, indicating that a larger sample
size would be necessary to establish statistical sig-
nificance.

Upon reviewing examples with low G-Eval
scores, we found that the most common reason for
low performance was the omission of key details
present in the reference summary. This issue likely
stems from limitations in the abstract, which may
lack sufficient context, and from retrieved chunks
that failed to supplement the missing information.
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Box B.1: LoRA without RAG, prompt 1

#system:You are an expert science communicator. Your task is to generate a clear,
accurate, and formal summary of biomedical research articles.

The summary should be accessible to a general audience while maintaining
scientific rigor.

#user:

Title: (...)

Abstract: (...)

Provide a formal summary of the article in {summary_word_len} words.

Do not include explanations, self-reflections, or additional notes.

Keep the response strictly to the summary. The output should begin directly with
the summary text itself.

#fassistant:
(ref summary...)

G-Eval score
.
L

i
o o
~ [e:]
|
\

4y 1

GEval Score

Paraphrased Standard Intentionally .
Gold Prompt Degraded 0.3 L i -+
Summaries Outputs Summaries i

0.2 °
LlaMA3 baseline LlaMA3+LoRA LIaMA3+RAG LIaMA3+RAG+LoRA

Figure 4: G-Eval scores for summaries generated by the

LLaMA3.1-Instruct model and control conditions. Para-  Fjgure 5: G-Eval scores for summaries generated by
phrased Gold Summaries were created by rephrasing  the LLaMA 3.1 model and fine-tuned models, with or
the original lay summaries while preserving their mean-  without RAG. n=20

ing. Intentionally Degraded Summaries were generated

by explicitly prompting LLaMA 3.1 to produce out-

puts with vague language, poor structure, and incorrect

terminology. n=20
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Box B.2: LoRA with RAG, prompt 1

#system: You are an expert science communicator. Your task is to generate a
clear, accurate, and formal summary of biomedical research articles.

The summary should be accessible to a while maintaining
scientific rigor.

#user:

Title: (...)

Abstract: (...)

Supporting Text:
(retrieved text chunks...)

Provide a formal summary of the article in {summary_word_len} words.

Do not include explanations, self-reflections, or additional notes.

Keep the response strictly to the summary. The output should begin directly with
the summary text itself.

#assistant:
(ref summary...)

Box B.3: LoRA with RAG, prompt 2

#system: You are an expert science communicator. Your task is to generate a
clear, accurate, and formal summary of biomedical research articles.
The summary should be accessible to a using
, While maintaining
scientific accuracy.
#user:
Title: (...)
Abstract: (...)

Supporting Text:
(retrieved text chunks...)

Provide a formal summary of the article in {summary_word_len} words.

Do not include explanations, self-reflections, or additional notes.

Keep the response strictly to the summary. The output should begin directly with
the summary text itself.

#assistant:
(ref summary...)
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Box B.4: LoRA with RAG, prompt 3

#system: You are an expert science communicator. Your task is to generate a
clear, accurate, and formal summary of biomedical research articles.

The summary should be accessible to a . Use
#user:
Title: (...)

Abstract: (...)

Supporting Text:
(retrieved text chunks...)

Provide a formal summary of the article in {summary_word_len} words.

Do not include explanations, self-reflections, or additional notes.

Keep the response strictly to the summary. The output should begin directly with
the summary text itself.

#assistant:
(ref summary...)

Box B.5: LoRA with RAG, prompt 4

#system: You are an expert science communicator. Your task is to generate a
summary of biomedical research articles.

The summary should be accessible to a . Use
#user:
Title: (...)

Abstract: (...)

Supporting Text:
(retrieved text chunks...)

Provide a formal summary of the article in {summary_word_len} words.

Do not include explanations, self-reflections, or additional notes.

Keep the response strictly to the summary. The output should begin directly with
the summary text itself.

#fassistant:
(ref summary...)
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Box C.1: G-Eval Evaluation Criteria

Evaluate the generated lay summary on the following three criteria: 1. Relevance
(1-5): Does the summary retain all major findings and themes of the source abstract?
Score higher if it covers key points, even if phrased differently. Penalize
only if essential information is missing or incorrect topics are introduced. 2.
Readability (1-5): Is the summary easy to understand for a non-expert audience?
Consider fluency, sentence structure, and clarity. Avoid penalizing for simplified
language unless it introduces confusion. 3. Factuality (1-5): Does the summary
accurately reflect the scientific claims in the source abstract? Check for
hallucinations or misinterpretations, not just omissions. Each criterion should
be scored from 1 (poor) to 5 (excellent). Then provide a final Overall Score.
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Synthetic Data Type  Prompt

Paraphrased Gold #system

Summaries You are a professional science communicator. Your role is to paraphrase
lay summaries with precision, maintaining the original meaning and
content without introducing interpretation or additional information.
#user
Title: (...)
Summary: (...)
Rephrase the summary in 100-300 words. Do not include explanations,
commentary, or additional remarks.
Keep the response strictly to the summary.
#assistant

Intentionally #system

Degraded Summaries

You are a deliberately ineffective science communicator. Your task is to
generate an example of a poorly written summary of biomedical research.
This summary should reflect common mistakes in science communica-
tion, such as vague language, poor structure, and misuse of terminology.
The summary may also include minor factual inaccuracies or exagger-
ated claims to illustrate how misleading summaries might appear. This
output will be used strictly for educational comparison with well-written
summaries.

#user

Title: (...)

Abstract: (...)

Provide a poor-quality summary of the article in 100-300 words, reflect-
ing issues like lack of clarity, overgeneralization, or scientific inaccuracy
(intended for contrastive purposes only). At least some summary needs to
be generated. Do not include explanations, self-reflections, or additional
notes.

Keep the response strictly to the summary.

#assistant
Standard Prompt #system
Outputs You are an expert science communicator. Your task is to generate a

clear, accurate, and formal summary of biomedical research articles. The
summary should be accessible to a general audience while maintaining
scientific rigor.

#user

Title: (...)

Abstract: (...)

Provide a formal summary of the article in 100—300 words.

Do not include explanations, self-reflections, or additional notes.

Keep the response strictly to the summary.

#assistant

Table 7: Prompts used to generate paraphrased, degraded, and standard summaries for evaluating G-Eval.
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Abstract

In this work, we present our approach to ad-
dressing all subtasks of the BioLaySumm 2025
shared task by leveraging prompting and re-
trieval strategies, as well as multimodal input
fusion. Our method integrates: (1) zero-shot
and few-shot prompting with large language
models (LLMs); (2) semantic similarity-based
dynamic few-shot prompting; (3) retrieval-
augmented generation (RAG) incorporating
biomedical knowledge from the Unified Medi-
cal Language System (UMLS); and (4) a multi-
modal fusion pipeline that combines images
and captions using image-text-to-text gener-
ation for enriched lay summarization. Our
framework enables lightweight adaptation of
pretrained LLMs for generating lay summaries
from scientific articles and radiology reports.
Using modern LLMs, including Llama-3.3-
70B-Instruct and GPT-4.1, our 5cNLP team
achieved third place in Subtask 1.2 and second
place in Subtask 2.1, among all submissions.

1 Introduction

BioLaySumm’s third edition (Xiao et al., 2025b)
introduces a new task focused on translating ra-
diology reports into layperson-friendly language,
while continuing its existing biomedical article
summarization task from previous editions (Gold-
sack et al., 2024, 2023). Summaries are expected to
include more background information and reduce
technical jargon to improve accessibility.

Thus, BioLaySumm 2025 comprises two main
tasks, each with two subtasks, aimed at improving
biomedical communication for lay audiences. Task
1 focuses on generating accessible summaries of
biomedical research articles from PLOS and eLife,
either directly (Subtask 1.1) or with the integration
of external knowledge sources (Subtask 1.2). Task
2 targets the translation of radiology reports into
layperson-friendly language, using text alone (Sub-
task 2.1) or in combination with chest x-ray images

(Subtask 2.2). This task was offered in both open
and closed tracks, with the closed track additionally
incorporating the MIMIC-CXR dataset. We opted
for the closed track in our submission.

To address these tasks, we developed a unified
and flexible framework that combines prompting,
retrieval, and multimodal fusion techniques. It sup-
ports zero- and few-shot prompting with LLMs,
dynamic few-shot selection via embedding-based
nearest neighbors, retrieval-augmented generation
using UMLS (Bodenreider, 2004), and multimodal
processing through image-text-to-text generation
for enriched lay summarization. Based on our pre-
vious experience, we adopted structured (compo-
sitional) prompting including task goals, instruc-
tions, formatting guidelines, and output specifica-
tions (Chan et al., 2025). Also, previous work
shows that LLMs perform better with well-chosen
in-context examples (Brown et al., 2020; Liu et al.,
2021). Following (Liu et al., 2021), we chose
most similar samples based on cosine similarity
for few-shot prompting. We also explored varying
the number and selection strategy of these exam-
ples. Moreover, we explored several LLMs of vary-
ing sizes, including Llama-3.1-8B, Llama-3.1-8B-
Instruct (standard and 8-bit quantized), Llama-3.3-
70B-Instruct, and GPT-4.1. A single approach was
applied across all task datasets, without building
data-specific models, to improve generalizability.

2 Shared Task Overview

Task 1: Lay Summarization: Participants were re-
quired to generate layperson-accessible summaries
of biomedical articles from two datasets, PLOS and
eLife, using two different approaches.

* Subtask 1.1: Plain Lay Summarization:
Given an article’s abstract and main text, sys-
tems had to produce a non-technical summary
suitable for a general audience.
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* Subtask 1.2: Lay Summarization with Exter-
nal Knowledge: This task extended Subtask 1.1
by permitting the use of additional knowledge
sources (e.g., databases, medical ontologies) to
enrich contextual understanding for lay readers.

Task 2: Radiology Report Translation to Layper-
son’s Terms: This task was offered in open and
closed tracks. The open track used PadChest (Bus-
tos et al., 2020), Open-i, and BIMCV-COVID19
(de la Iglesia Vaya et al., 2020), while the closed
track additionally included MIMIC-CXR (Johnson
etal., 2019, 2024).

* Subtask 2.1: Radiology Report Translation:
The goal was to build models to translate profes-
sional radiology reports to layperson’s terms.

* Subtask 2.2: Multimodal Radiology Report
Translation: This was a multi-modal task with
the goal of achieving a lay translation of radiol-
ogy reports. The input was chest x-ray images
and radiology reports and the output should be
a report in layperson’s terms.

Datasets: All datasets were made available by the
organizers on HuggingFace (Xiao et al., 2025a;
Zhao et al., 2024) - except the imaging data from
MIMIC-CXR used in Subtask 2.1. For Task 1,
two datasets from biomedical journals, PLOS
and eLife, were provided (Goldsack et al., 2022;
Luo et al., 2022). For Task 2, four datasets were
used: Open-i, PadChest, BIMCV-COVID19, and
MIMIC-CXR (Zhao et al., 2025). Participants
could choose between using only the first three
(open track) or all four (closed track). The training,
validation, and test splits are detailed in Appendix
Tables 4 and 5.

Evaluation Metrics: Submissions were evalu-
ated using task-specific metrics. For Task 1,
summaries were assessed on relevance (ROUGE-
1/2/L, BLEU, METEOR, BERTScore), readabil-
ity (FKGL, DCRS, CLI, LENS), and factuality
(AlignScore, SummacC). Task 2 used the same rele-
vance metrics, similar readability measures (exclud-
ing LENS), and clinical-specific factuality metrics
(CheXbert-F1, RadGraph-F1). All metrics were
determined by the shared task organizers.

3 Methods

We used prompting, retrieval, and multimodal fu-
sion with Llama and GPT models, outlined below.

TASK 1

We focused on text-to-text generation tasks, mainly
using zero-shot, one-shot, and few-shot prompting.
Building on our experience from previous shared
tasks, we used structured (compositional) prompt-
ing, which included task goals, instructions, guide-
lines, and output formats (Chan et al., 2025). In
this work, we extended our structured prompts by
incorporating role-based instructions, directing the
model to adopt specific personas, such as a teacher
explaining complex concepts to students of vary-
ing ages (role prompting). We tried small models
as baselines and larger models to increase perfor-
mance. For instance, Llama-3.1-8B and its quan-
tized variant support a combined input/output token
limit of 8,192 tokens. Accordingly, we constrained
model responses to 500 tokens and truncated input
articles when necessary. Most experiments involv-
ing small models were conducted using zero-shot
prompting.

Subtask 1.1

» Zero-Shot Prompting on Initial and Final Ar-
ticle Segments: To maximize the use of avail-
able tokens, we used only the beginning and end
of each article. This approach was applied with
small models only.

e Zero-Shot Prompting on Summaries: We di-
vided long texts into chunks, summarized each
chunk individually, and then combined them into
a final summary.

e Zero/One-shot Prompting on Section-Based
Inputs: Articles often contained diverse section
structures. We extracted combinations such as:
abstract only, abstract + introduction, abstract +
discussion + conclusion (when available), or all
four sections.

* One-Shot Prompting with Random Sample:
Due to token constraints, we used a random ex-
ample per prompt.

* One-Shot Prompting with Most Similar Ex-
ample: We used cosine similarity (via Llama-
3.1-8B embeddings) to find the most similar
article-summary pair from the validation dataset.
For long articles, we split them into chunks, com-
puted embeddings, and averaged them. The most
similar validation example was then included in
the prompt.

* Few-Shot Prompting with Five Examples (Lay
Summaries Only): We selected five lay sum-
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maries based on the most similar examples from
the validation set in this few-shot prompting.

Subtask 1.2

This subtask aimed to improve upon Task 1.1 by
incorporating external knowledge. It was based on
the Retrieval-Augmented Generation (RAG) frame-
work and focused on handling technical terms. Our
process for this task included the following steps.

» Extraction of Clinical Terms: We used struc-
tured zero-shot prompting to extract technical
terms from test articles.

* Definition of Clinical Terms: Each extracted
term was queried using the Unified Medical Lan-
guage System (UMLS) API. When available, the
most suitable definition was selected.

* Prompt Augmentation: The resulting term-
definition pairs were formatted and incorpo-
rated into the zero-shot, one-shot, and few-shot
prompts used in Subtask 1.1. These refined
prompts were then applied with larger models.

TASK 2

As in Task 1, we used prompt engineering to con-
vert radiology reports (intended for healthcare pro-
fessionals) into layperson-accessible summaries.

Subtask 2.1: Closed Track

We used the MIMIC-CXR dataset along with three
public datasets: PadChest, Open-i, and BIMCV-
COVID19. We used structured zero-shot and few-
shot prompting approaches, incorporating exam-
ples selected either at random or based on cosine
similarity of embeddings. Prompts explicitly de-
fined the terms “radiology report” and “layman
report” and included clear guidelines, as described
as follows.

» Zero-Shot Prompting on Radiology Report:
Our baseline used a structured prompt without
examples.

¢ Few-Shot Prompting with Five Random Ex-
amples: We added five example pairs of radiol-
ogy reports and lay summaries, one from each
dataset, plus a fifth example illustrating varia-
tions of reports containing the phrase “No sig-
nificant findings”. This improved factuality and
relevance, but caused a slight drop in readability.

* Few-Shot Prompting with Ten Most Similar
Examples: For each test case, we used cosine
similarity on BERT-large uncased embeddings

to select the ten most similar examples from the
validation set (approximately 20k samples).

* Few-Shot Prompting with Twenty Most Simi-
lar Examples: We extended the above method to
include the top 20 most similar examples. Like
the ten-example approach, this relied on the val-
idation dataset to reduce computational costs
while maintaining strong performance.

Subtask 2.2

We adopted an image-text-to-text model, BLIP
(Bootstrapping Language-Image Pretraining) (Li
et al., 2022), that combines a Vision Transformer
with a Transformer-based text decoder to gener-
ate text from images and optional textual prompts.
While less advanced than newer models like BLIP-
2 (Liet al., 2023) and LLaVA (Zhang et al., 2025),
it offers an efficient solution for descriptive im-
age captioning. For the experiments, we used im-
ages and corresponding radiology reports, lay sum-
maries, and metadata from Openl, PadChest, and
BIMCV-COVIDI19. The Hugging Face test set in-
cluded 10,537 records, though actual image counts
varied (e.g., Openl often includes two images per
record), and some images were missing. After
aligning the metadata with the available images,
the final dataset comprised 9,865 entries. There-
fore, we were unable to submit official results due
to mismatches between the number of processed
records and the expected count.

4 Results

We report the results of our official submissions on
the test data, as evaluated by the official evaluation
server. The results for Subtask 1.1, Subtask 1.2,
and Subtask 2.1 are presented in Tables 1, 2, and 3,
respectively.

5 Discussion

We officially submitted approaches for three Sub-
tasks 1.1, 1.2, and 2.1. Our approaches focused
on the generalization of a single method (using the
same model) across different datasets. For Task
1, we used a single approach for both eLife and
PLOS. Similarly, for Subtask 2.1, we adopted a
unified model for MIMIC, COVID, PadChest, and
Openl. We also conducted experiments for Sub-
task 2.2; however, due to issues related to dataset
download and size, we were unable to submit our
results for evaluation. Our experiments provided
several key insights regarding the performance of
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Llama-3.1 (8-bit quantized) Llama-3.3-70B-Inst. GPT-4.1
Description Metric Baseline S1 S2 S3 S4 SS S6
ROUGE 1 0.2701 0.2283 | 0.2429 || 0.3349 0.3334 0.3080 | 0.3056
Relevance BLEU 1 4.1857 2.6787 | 3.0217 | 6.0490 6.1354 4.2153 | 4.1381
METEOR 1 0.2791 0.2459 | 0.2575 | 0.2703 0.2676 0.2632 | 0.2584
BERTScore 1 || 0.8358 0.8239 | 0.8282 | 0.8581 0.8586 0.8533 | 0.8534
FKGL | 12.2884 || 8.3792 | 9.3130 | 16.6736 | 16.0718 | 15.5356 | 15.5398
DCRS | 7.2444 6.1730 | 6.5255 | 10.5558 | 10.3976 || 10.3787 | 10.4061
CLI| 11.8690 || 8.4256 | 9.2667 | 15.8282 | 15.3358 || 14.1439 | 14.1545
LENS 1 65.5266 || 70.7002 | 71.8203 | 74.2810 | 76.0519 || 77.2428 | 77.5635
AlignScore 1 || 0.6061 0.4526 | 0.4893 | 0.6366 0.6307 0.4483 | 0.4506
SummacC 1 0.5348 0.6141 | 0.6114 | 0.4456 0.4550 0.4202 | 0.4186

Readability

Factuality

Table 1: Performance of the 5cNLP team for Subtask 1.1. The baseline was scored from the results of zero-shot
prompting on Llama-3.1-8B-Instruct (8-bit quantized). Submissions S1 and S2 correspond to the scores of additional
role-prompting experiments performed on the same Llama-3.1 model. Submissions S3 and S4 correspond to the
scores of one and few shot prompting respectively on Llama-3.3-70B-Instruct. Similarly, submissions S5 and S6
correspond to the scores of one and few shot prompting on GPT-4.1.

Llama-3.3-70B-Inst. GPT-4.1
Description Metric S1 S2 S3 S4

ROUGE 1 0.3364 0.3350 0.3117 || 0.3089

Relevance BLEU 1 5.9982 5.9029 42778 || 4.1743
METEOR 1 0.2764 0.2747 0.2733 | 0.2659

BERTScore T || 0.8576 0.8576 0.8531 0.8533

FKGL | 16.8155 | 16.2979 | 15.7437 || 15.5391

Readability DCRS | 10.5226 | 10.2896 | 10.3104 || 10.3314
CLI |} 15.7708 | 15.2399 || 14.1524 || 14.2205
LENS 1 73.8590 | 75.5722 || 76.9570 | 77.4515

Factuality AlignScore 1 || 0.6258 0.6099 0.4431 0.4461
SummaC 1 0.4468 0.4455 0.4185 || 0.4154

Table 2: Performance of the 5ScNLP team for Subtask 1.2. Submissions S1 and S2 correspond to the scores of RAG
one and few shot prompting respectively on Llama-3.3-70B-Instruct. Similarly, submissions S3 and S4 correspond
to the scores of RAG one and few shot prompting on GPT-4.1.

Llama-3.3-70B-Inst. GPT-4.1
Description Metric S1 S2 S3 S4 S5
ROUGE t 0.4424 0.5078 0.4679 | 0.5170 | 0.5547
BLEU 1 16.3978 | 23.4148 | 19.7649 | 25.0122 | 28.2705
METEOR 1 | 0.5051 0.5630 0.5169 | 0.5654 | 0.6095
BERTScore T | 0.9196 0.9317 0.9257 | 0.9332 | 0.9371
FKGL | 12.3058 | 9.8568 8.8586 | 8.5402 | 8.0463
Readability DCRS | 10.0489 | 9.6991 9.2135 | 9.1778 | 9.2373
CLI | 10.1783 | 9.1757 8.2113 | 8.1571 | 8.2250
Similarity T | 0.8309 0.8561 0.8401 | 0.8591 | 0.8717
Factuality RadGraph 1+ | 0.2452 0.2759 0.2566 | 0.2872 | 0.3170
F1CheXbert 1 | 0.7172 0.7348 0.6971 | 0.7162 | 0.7495

Relevance

Table 3: Performance of the 5ScNLP team for Subtask 2.1 across 5 submissions. S1: Structured zero-shot prompt
with Llama-3.3-70B-Instruction model. S2: Structured few-shot prompt with random examples with Llama-3.3-70B
Instruct model. S3: Structured zero-shot prompt with GPT-4.1 model. S4: Structured few-shot prompt with random
examples with GPT-4.1 model. S5: Structured few-shot prompt with similarity-based examples with GPT-4.1 model.
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LLMs for lay summarization of research articles
and radiology reports.

Task 1 was particularly challenging due to the
length of the research articles. Models often can
only attend to portions of the input, potentially
missing critical information—especially in longer
documents. Moreover, using RAG with external
sources introduces additional complexities. RAG
requires a supplementary step: clinical term iden-
tification. In our approach, we extracted clinical
terms through prompting, which were then used
to query UMLS. We believe that explicitly incor-
porating a dedicated clinical entity recognition or
term extraction step could significantly enhance the
quality of the generated summaries.

Prompt Structure and Role Specification

Task 1: When compared to the baseline, role speci-
fication in Task 1 prompts produced responses with
higher readability but lower relevance. Prompts
that specified roles such as “You will act as a
teacher” significantly improved the simplicity of
the responses’ language; however, the style of writ-
ing did not align with the gold standard and resulted
in lower relevance scores.

Subtask 2.1: Naive, unstructured prompts, such
as “The following is a radiology report containing
medical terms: <radiology-report>. I would like a
brief summary of the radiology report that anyone
without medical knowledge can understand, i.e.,
a layman report”, performed significantly worse
than structured prompts incorporating explicit role
specification and output guidelines. For instance,
prompts beginning with: “You are an expert medi-
cal communicator. Your task is to...”, consistently
produced higher-quality layperson summaries, em-
phasizing the importance of structured role-focused
instructions.

Model Scale and Performance

Task 1 and Subtask 2.1: Across both structured
and unstructured prompts, larger parameter mod-
els within the same architecture demonstrated su-
perior performance. For example, the Llama-3.3-
70B-Instruct model outperformed its smaller coun-
terpart, Llama-3.1-8B. For Subtask 1.1, this also
demonstrates the larger models’ ability to consider
a greater amount of information and instruction.
They are not constrained by the token limit as was
the case with Llama-3.1-8B. For Subtask 2.1, a sim-
ilar trend was observed with GPT-4.10 compared to
GPT-4.1, underscoring the impact of model scale,

as well as context length on translation accuracy.

In-Context Learning

Task 1 and Subtask 2.1: The inclusion of contex-
tual examples within prompts further improved
model performance. Few-shot prompting, particu-
larly with dynamically selected examples based on
cosine similarity from the training sample embed-
ding space, yielded the best results. This approach
ensured that the model received relevant, semanti-
cally aligned demonstrations for the given input.

Retrieval Augmented Generation

Subtask 1.2: When analyzing the impact of incor-
porating external knowledge, we should compare
Subtask 1.1 prompts against their Subtask 1.2 coun-
terparts (i.e., Subtask 1.1. S3 against Subtask 1.2
S1, S4 against S2, etc.). Overall, using our meth-
ods, we observed no significant performance im-
pact when including external knowledge. This out-
come can be attributed to several factors. First, the
definitions included in the prompt may have been
insufficient or irrelevant. Second, the provided def-
initions may not have added any new information
beyond what the LLMs already contained.

6 Conclusion and Future Work

We proposed a framework for translating medical
texts into layperson’s language focusing on sum-
marizing biomedical articles and translating radi-
ology reports. Using state-of-the-art LLMs (e.g.,
Llama-3.3-70B-Instruct and GPT-4.1), our 5cNLP
team ranked third in Subtask 1.2 and second in
Subtask 2.1. Rankings were based on normal-
ized averages across all evaluation metrics. Our
experiments highlighted the importance of struc-
tured, role-specific prompting, model scale, and
contextual example selection in optimizing LL.M
performance. Moreover, while LoRA fine-tuning
was applied to smaller models, prompt engineering
yielded better results.

Future work may include full model training,
improved prompt design, and the integration of ad-
ditional external knowledge sources. For Subtask
2.2, alternative strategies for multimodal fusion
could be explored. The proposed framework is also
adaptable to other biomedical applications, such as
patient question answering, clinical decision sup-
port, and summarizing electronic health records for
non-expert audiences.

219



Limitations

Our experiments are limited to English-language
radiology reports. Experiments for other languages
could reveal more challenges in generating lay
summaries. We also had limited time and com-
putational resources; therefore, our conclusions are
valid only for a small number of LLMs.

Ethics

The datasets provided by the shared task organizers
were carefully prepared to ensure proper use of the
data, without information about the patients. We
used the datasets solely for research purposes, as
expected.
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A Appendix

A.1 Task 1 and 2 datasets’ splits

Dataset | Training | Validation | Test
PLOS 24,773 1,376 | 142
eLife 4,346 241 | 142

Table 4: Training, validation, and test splits for the PLOS and eLife datasets for Task 1.

Dataset Training | Validation | Test
PadChest 116,847 7,824 | 7,130
MIMIC- 45,000 5,000 500
CXR

BIMCV- 31,364 2,042 | 3221
COVID19

Open-i 2,243 134 186

Table 5: Training, validation, and test splits for the evaluated datasets for Task 2.

A.2 Task 1 Prompt Templates

##H# Task:

Your task is to perform layman summarization of the following biomedical article by succintly summarizing the article in a way that is easy to
understand for a general audience and should not contain highly technical terms.
### Guidelines for Output:

- The summary should be in layman terms and will not include any technical terms.

- The summary should avoid using acronyms.

- Limit the output summary to 300 words.

- The output should only contain the summary and will not reference the article itself.
- Do not provide sources.

- Do not include any disclaimers.

- Do not include any information that is not relevant to the summarization.

- Do not repeat the guidelines given by the prompt.

### Input:

{article}

#i## Output:

Table 6: Zero-Shot Structured Prompt Template for Task 1.1, Baseline.

A.3 Task 2 Prompt Templates
A.4 Task 2.1 Experiments

We conducted additional experiments comparing structured and unstructured prompts using both zero-shot
and few-shot approaches with randomly selected examples. Table 16 summarizes these results, which
were generated using a subset of the validation data. Due to a technical error, we couldn’t compute
F1CheXbert scores for experiments E1 and E2.
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#i## Task:

Your task is to perform layman summarization of the following biomedical article by succintly summarizing the article in a way that is easy to
understand for a general audience and should not contain highly technical terms.

### Role:

You will act as a middle school teacher who is explaining the article to a group of grade 7 students who are 12 years old and who require simple
language to understand your summarization.

#i## Guidelines for Output:

- The summary should be in layman terms and will not include any technical terms.

- The summary should avoid using acronyms.

- Limit the output summary to 300 words.

- The output should only contain the summary and will not reference the article itself.

- Do not provide sources.

- Do not include any disclaimers.

- Do not include any information that is not relevant to the summarization.

- Do not repeat the guidelines given by the prompt.

### Input:

{article}

### Output:

Table 7: Zero-Shot Structured Role Prompt Template for Task 1.1, S1.

### Task:

Your task is to perform layman summarization of the following biomedical article by succintly summarizing the article in a way that is easy to
understand for a general audience and should not contain highly technical terms.

### Role:

You will act as a secondary school teacher who is explaining the article to a group of grade 9 students who are 15 years old and who require simple
language to understand your summarization.

#i## Guidelines for Output:

- The summary should be in layman terms and will not include any technical terms.

- The summary should avoid using acronyms.

- Limit the output summary to 300 words.

- The output should only contain the summary and will not reference the article itself.

- Do not provide sources.

- Do not include any disclaimers.

- Do not include any information that is not relevant to the summarization.

- Do not repeat the guidelines given by the prompt.

### Input:

{article}

### Output:

Table 8: Zero-Shot Structured Role Prompt Template for Task 1.1, S2.
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##H# Task:

Your task is to perform layman summarization of the following biomedical article by succintly summarizing the article in a way that is easy to understand for a
general audience, avoiding technical jargon unless briefly defined.

### Instructions:

- Use the example below as a guide, matching its structure and writing style in your summary.

- The summary should be in layman terms.

- Briefly define any technical terms that must be included.

- Do not reference the original article or include disclaimers.

- Exclude any information not relevant to the summary.

- Do not provide sources

- Do not repeat the guidelines given by the prompt

- Avoid repeating information unnecessarily

#it# Guidelines for Output:

- Format: Clear, flowing prose in one paragraph.

- Content: Capture the essential meaning and logic of the article as if the summary itself were a brief version of the full text.
- Audience: General readers without specialized knowledge of the topic.

### Example:

#H#HE Article:

{example_article}

##### Summary:
{example_summary}

### Now, summarize the following article based on the given criteria and using the same style of the example:

### Article:
{article}

### Summary:

Table 9: One-Shot Structured Prompt Template for Task 1.1, S3 and S5.
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##H# Task:

Your task is to perform layman summarization of the following biomedical article by succintly summarizing the article in a way that is easy to
understand for a general audience, avoiding technical jargon unless briefly defined.

### Instructions:

- Use the example below as a guide, matching its structure and writing style in your summary.

- The summary should be in layman terms.

- Briefly define any technical terms that must be included.

- Do not reference the original article or include disclaimers.

- Exclude any information not relevant to the summary.

- Do not provide sources

- Do not repeat the guidelines given by the prompt

- Avoid repeating information unnecessarily

#### Guidelines for Output:

- Format: Clear, flowing prose in one paragraph.

- Content: Capture the essential meaning and logic of the article as if the summary itself were a brief version of the full text.
- Audience: General readers without specialized knowledge of the topic.

### Examples:

-> Example 1

##H#HH Summary:

{example_summary_1}

-> Example 2
##### Summary:
{example_summary_2}

-> Example 3
####H# Summary:
{example_summary_3}

-> Example 4
##HHH Summary:
{example_summary_4}

-> Example 5
####H# Summary:
{example_summary_5}

### Now, summarize the following article based on the given criteria and using the same style of the example:

### Article:
{article}

### Summary:

Table 10: Few-Shot Structured Prompt Template for Task 1.1, S4 and S6.
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### Task:

Your task is to perform layman summarization of the following biomedical article by succintly summarizing the article in a way that is easy to
understand for a general audience, avoiding technical jargon unless briefly defined.

### Definitions:

Use the following definitions to better understand and summarize the article.

{definitions}

### Instructions:

- Use the example below as a guide, matching its structure and writing style in your summary.
- The summary should be in layman terms.

- Briefly define any technical terms that must be included.

- Do not reference the original article or include disclaimers.

- Exclude any information not relevant to the summary.

- Do not provide sources

- Do not repeat the guidelines given by the prompt

- Avoid repeating information unnecessarily

#i## Guidelines for Output:

- Format: Clear, flowing prose in one paragraph.

- Content: Capture the essential meaning and logic of the article as if the summary itself were a brief version of the full text.
- Audience: General readers without specialized knowledge of the topic.

### Example:

##HHAE Article:

{example_article}

##### Summary:
{example_summary}

### Now, summarize the following article based on the given criteria and using the same style of the example:

#i# Article:
{article}

### Summary:

Table 11: One-Shot Structured Prompt Template for Task 1.2, S1 and S3.
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### Task:
Your task is to perform layman summarization of the following biomedical article by succinctly summarizing the article in a way that is easy to
understand for a general audience, avoiding technical jargon unless briefly defined.

#i#H# Definitions:

Use the following definitions to better understand and summarize the article.

{definitions }

#i## Instructions:

- Use the example below as a guide, matching its structure and writing style in your summary.
- The summary should be in layman terms.

- Briefly define any technical terms that must be included.

- Do not reference the original article or include disclaimers.

- Exclude any information not relevant to the summary.

- Do not provide sources

- Do not repeat the guidelines given by the prompt

- Avoid repeating information unnecessarily

### Guidelines for Output:

- Format: Clear, flowing prose in one paragraph.

- Content: Capture the essential meaning and logic of the article as if the summary itself were a brief version of the full text.
- Audience: General readers without specialized knowledge of the topic.

#it# Examples:

-> Example 1

##### Summary:

{example_summary_1}

-> Example 2
##H#HH Summary:
{example_summary_2}

-> Example 3
##### Summary:
{example_summary_3}

-> Example 4
##H#HH Summary:
{example_summary_4}

-> Example 5
##### Summary:
{example_summary_5}

### Now, summarize the following article based on the given criteria and using the same style of the example:

#i## Article:
{article}

### Summary:

Table 12: Few-Shot Structured Prompt Template for Task 1.2, S2 and S4.
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### Task:

You are an expert medical communicator. Your role is to translate radiology reports, originally written for healthcare professionals, into language that an
average person without a medical background can understand. The rewritten report should preserve all essential medical findings and implications
suitable for the general public. Note that you must avoid redundancy.

### Definitions:
- Radiology Report: A medical document that describes findings from imaging studies such as X-rays, CT scans, or MRIs.
- Layman Report: A simplified, non-technical explanation suitable for someone with no formal medical education.

### Guidelines:

- Generated number of tokens: Try to match the number of tokens of the original Radiology Report, adjusting as needed based on report complexity.
- Avoid Speculation: Do not add interpretations beyond what is stated in the original report.

- Maintain a Reassuring and Neutral Tone: Use clear, calm, and factual language.

- Structure: Present the information in a single, coherent paragraph.

- The single paragraph can be composed of one or several sentences.

- Adhere to Reported Diagnoses: Only summarize what is already reported; do not include diagnoses not explicitly stated. - Avoid redundancy.

### Guidelines for Output:

- Format: Clear and concise prose.

- Redundancy: Avoid repeating information unnecessarily.

- Length: Should closely match the number of tokens in the original Radiology Report, adjusting as needed based on report complexity.
- Audience: A general reader with no medical background or clinical training.

### Analyze the Following Radiology Report Based on the Given Criteria:

### Radiology Report:
{radiology_report}

### Response (Layman Report):

Table 13: Zero-Shot Structured Prompt Template for Task 2.1, S1 and S3
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### Task:

You are an expert medical communicator. Your role is to translate radiology reports, originally written for healthcare professionals, into plain
language that an average person without a medical background can understand. The rewritten report should preserve all essential medical findings and
implications suitable for the general public. Note that you must avoid redundancy.

### Definitions:
- Radiology Report: A medical document that describes findings from imaging studies such as X-rays, CT scans, or MRIs.
- Layman Report: A simplified, non-technical explanation suitable for someone with no formal medical education.

### Guidelines:

- Generated number of tokens: Try to match the number of tokens of the original Radiology Report, adjusting as needed based on report complexity.
- Avoid Speculation: Do not add interpretations beyond what is stated in the original report.

- Maintain a Reassuring and Neutral Tone: Use clear, calm, and factual language.

- Structure: Present the information in a single, coherent paragraph.

- The single paragraph can be composed of one or several sentences.

- Adhere to Reported Diagnoses: Only summarize what is already reported; do not include diagnoses not explicitly stated.

- Avoid redundancy.

### Guidelines for Output:

- Format: Clear and concise prose.

- Redundancy: Avoid repeating information unnecessarily.

- Length: Should closely match the number of tokens in the original Radiology Report, adjusting as needed based on report complexity.
- Audience: A general reader with no medical background or clinical training.

### Examples:

-> Example 1

##### Radiology Report:
{example_radiology_report_1}
####H# Response (Layman Report):
{example_layman_report_1 }

-> Example 2

####HHt Radiology Report:
{example_radiology_report_2}
####H Response (Layman Report):
{example_layman_report_2}

-> Example 3

##### Radiology Report:
{example_radiology_report_3}
####HHt Response (Layman Report):
{example_layman_report_3}

-> Example 4

#i#### Radiology Report:
{example_radiology_report_4}
##### Response (Layman Report):
{example_layman_report_4}

-> Example 5

##### Radiology Report:
{example_radiology_report_5}
####H Response (Layman Report):
{example_layman_report_5}

### Analyze the Following Radiology Report Based on the Given Criteria:

### Radiology Report:
{radiology_report}

### Response (Layman Report):

Table 14: Few-Shot Structured Prompt Template with random examples for Task 2.1, S2 and S4.
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#i## Task:

You are an expert medical communicator. Your task is to translate radiology reports, originally written for healthcare professionals, into plain language
that an average person without a medical background can understand. The rewritten report, referred to as Layman Report, should preserve all essential
medical findings and implications suitable for the general public.

### Definitions:
- Radiology Report: A medical document that describes findings from imaging studies such as X-rays, CT scans, or MRIs.
- Layman Report: A simplified, non-technical explanation suitable for someone with no formal medical education.

### Instructions:

- Use the examples below as a guide, matching their structure and writing style in your layman report.

- The rewritten report should be in layman terms.

- Briefly define any technical terms that must be included.

- Try to match the number of tokens of the original Radiology Report, adjusting as needed based on report complexity.
- Maintain a Reassuring and Neutral Tone: Use clear and factual language.

- Structure: Present the information in a single, coherent paragraph.

- The single paragraph can be composed of one or several sentences.

- Adhere to Reported Diagnoses: Only rewrite what is already reported; do not include diagnoses not explicitly stated.

#i## Guidelines for Output:

- Format: Clear, flowing prose in one paragraph.

- Content: Capture the essential meaning and logic of the radiology report.

- Length: Should closely match the number of tokens in the original Radiology Report, adjusting as needed based on report complexity.
- Audience: A general reader with no medical background or clinical training.

#i## Examples:

-> Example 1

##### Radiology Report:
{similar_example_radiology_report_1}
###HHt Response (Layman Report):
{similar_example_layman_report_1}

-> Example 2

#i#### Radiology Report:
{similar_example_radiology_report_2}
##### Response (Layman Report):
{similar_example_layman_report_2}

-> Example 10

##### Radiology Report:
{similar_example_radiology_report_10}
###HHt Response (Layman Report):
{similar_example_layman_report_10}

#i## Now, rewrite the following radiology report based on the given criteria and using the same style of the examples:

### Radiology Report:
{radiology_report}

### Layman Report:

Table 15: Few-Shot Structured Prompt Template with Cosine Similarity-Based Examples for Task 2.1, S5.
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Llama-3.3-70B-Instruct GPT-4.10

Description Metric E1l E2 E3 E4 ES Eé6
ROUGE 1 0.3070 | 0.3593 | 0.3899 | 0.4806 | 0.3590 | 0.4434
BLEU 1 8.2984 | 11.7237 | 14.8005 | 20.3253 | 12.8078 | 17.5307
METEOR 1 | 0.4132 | 0.4583 | 0.4645 | 0.5352 | 0.3949 | 0.4723
BERTScore T | 0.8875 | 0.8886 | 0.9141 | 0.9170 | 0.9136 | 0.9238
FKGL | 9.3505 | 10.3292 | 9.7895 | 7.9905 | 10.6400 | 9.5130
Readability DCRS | 8.9585 | 10.3663 | 9.4053 | 9.3723 | 10.3322 | 10.1358
CLI | 8.4965 | 10.1607 | 9.1438 | 9.0414 | 9.9672 | 9.8145
Similarity 1 | 0.7045 | 0.7320 | 0.7888 | 0.7964 | 0.7697 | 0.8112
Factuality RadGraph 1+ | 0.1512 | 0.1722 | 0.2167 | 0.1938 | 0.2109 | 0.2252
F1CheXbert 1 - - 0.7200 | 0.7100 | 0.7700 | 0.7450

Relevance

Table 16: Task 2.1 experiments run on Llama-3.3-70B-Instruct and GPT 4.10 models. E1: Unstructured zero-shot
prompt. E2: Unstructured few-shot prompt with 5 random examples. E3: Structured zero-shot prompt. E4:
Structured few-shot prompt with 5 random examples. ES: Structured zero-shot prompt. E6: Structured few-shot
prompt with 5 random examples.

231



MIRAGES at BioLaySumm2025: The Impact of Search Terms and Data
Curation for Biomedical Lay Summarization

Benjamin Pong

Ju-Hui Chen
Abimael Hernandez Jimenez

Jonathan Jiang
Melody Vahadi

Department of Linguistics, University of Washington, Seattle, WA, USA
{benpong, juhuic, jjiang85, abimaelh, mvahadi}@uw.edu

Abstract

Biomedical articles are often inaccessible to
non-experts due to their technical complex-
ity. To improve readability and factuality of
lay summaries, we built on an extract-then-
summarize framework by experimenting with
novel extractive summarization strategies and
employing Low Rank Adaptation (LoRA) fine-
tuning of Meta-Llama-3-8B-Instruct on data
selected by these strategies. We also explored
counterfactual data augmentation and post-
processing definition insertion to further en-
hance factual grounding and accessibility. Our
best performing system treats the article’s title
and keywords (i.e. search terms) as a single
semantic centroid and ranks sentences by their
semantic similarity to this centroid. This con-
strained selection of data serves as input for
fine-tuning, achieving marked improvements
in readability and factuality of downstream
abstractive summaries while maintaining rel-
evance. Our approach highlights the impor-
tance of quality data curation for biomedical
lay summarization, resulting in 4th best overall
performance and 2nd best Readability perfor-
mance for the BioLaySumm 2025 Shared Task
at BioNLP 2025.

1 Introduction

Biomedical research journals contain the latest find-
ings on public health but highly technical language
prevents the general public from understanding
their content, which poses a challenge to health
literacy (Guo et al., 2021). One solution is creat-
ing lay summaries — short, readable versions of
scientific texts that use plain language and provide
contextual information to bridge knowledge gaps.

This paper presents our submission to the Bio-
LaySumm 2025 shared task 1.1 (Xiao et al., 2025),
which focuses on generating lay summaries for
biomedical articles. This task builds on previ-
ous editions of the shared task introduced in 2023
(Goldsack et al., 2023) and further developed in

2024 (Goldsack et al., 2024), which emphasize the
challenges of readability, factuality, and accessibil-
ity in biomedical lay summarization. We built on
the success of an extract-then-summarize pipeline
(You et al., 2024) by developing novel sentence se-
lection strategies that identify the most salient con-
tent from each article, prior to summarization, us-
ing titles and key words (i.e search terms). Unlike
You et al. (2024) who explored the use of keywords
for definition retrieval, and (Zhou et al., 2024) who
explored title infusion for prompting, we explored
the impact of these search terms at the level of
extractive summarization. Our system ! aims to
balance relevance, readability, and factuality.

2 Dataset

The datasets used for this task are the PLOS and
eLife datasets (Goldsack et al., 2022). The PLOS
dataset comprises text from articles from life sci-
ences. The eLife dataset contains articles on life
sciences and medicine. The PLOS data set contains
24,773 training instances and 1,376 validation in-
stances, while eLife contains 4,346 training and
241 validation instances.

3 Methods

Our system includes a preliminary retrieval-based
extractive summarization process, and model fine-
tuning and inference using Meta-Llama-3-8B-
Instruct > (AI@Meta, 2024).

3.1 Preliminary Experiment: Preprocessing
and Extractive Summarization

We first investigated which extractive summariza-
tion strategy would be most useful for finetuning
and downstream abstractive summarization. We re-
moved information in parentheses and citations. To

"https://github.com/Abimaelh/bio-laysum.git
Zhttps://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct
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extract salient content, we employed seven extrac-
tive strategies using SpaCy’s sentence tokenizer
(Honnibal et al., 2020), BioBERT’s (Lee et al.,
2019) embeddings, and cosine similarity for simi-
larity scoring.

Strategy 1 (Control): Selects the first 4096 to-
kens for abstractive summarization.

Strategy 2: Converts the title to an embedding,
ranks sentences by cosine similarity to the title
embedding and selects the top 40.

Strategy 3: Enhances Strategy 2 by concatenat-
ing keywords into the title to form an embedding
before computing similarity and selecting the top
40 sentences.

Strategy 4: Inspired by the utility of singu-
lar value decomposition (SVD), for topic model-
ing and text summarization Steinberger and Jezek
(2004), we apply SVD to group sentences by topic
and select the top 40 sentences from the topics
ranked closest to the gold summary.

Strategy 5: Compute the article’s mean embed-
ding and extract the top 40 sentences that are most
semantically similar.

Strategy 6: Prepends title and keywords to the
article and segment the article into four core sec-
tions(abstract, introduction, results, and discus-
sion)>. From this condensed content, we rank sen-
tences according to their similarity to the mean
embedding of the uncondensed article, and select
the top 40 sentences.

Strategy 7: The reverse of 6, where we segment
the article to the same four core sections, extract
the top 40 sentences and prepend the title and key-
words.

The outputs of the following seven extractive
strategies were summarized by Meta-Llama-3-8B-
Instruct (prompt in Section 3.2) and are evaluated
on the eLife validation set using Strategy 1 as a con-
trol and comparing their relative performance. The
articles were trimmed to 4096 tokens for inference,
due to computational constraints. Appendix A
shows the evaluation results and analysis. Strategy
2 and 3 showed reasonable potential to influence
downstream abstractive summarization.

3We simply segmented the article into chunks according
to the number of section headings, used these chunks as prox-
ies for sections and removed the chunks corresponding to
Materials and Methods since they are less relevant for summa-
rization.

3.2 Baseline: Zero-shot prompt

As our baseline, we prompted Meta-Llama-3-8B-
Instruct to generate abstractive lay summaries for
articles on Strategy 1 using the following zero-shot
prompt template:

System: You are a chatbot
expertise in summarizing documents
User: Provide a lay summary of the
following text: {article}

with

3.3 Meta-Llama-3-8B-Instruct Finetuning

To evaluate how the best performing extractive
strategies influence downstream summarization
quality, we finetuned Meta-Llama-3-8B-Instruct
on the unprocessed data (Strategy 1), and top-
performing Strategies 2 and 3 using Low Rank
Adaptation (LoRA) (Hu et al., 2022), and compared
these finetuned instances against the baseline.

The data for finetuning was prepared by ran-
domly selecting 650 training instances from both
eLife and PLOS, totaling 1300 shuffled samples for
finetuning. For evaluation, we used 150 randomly
selected validation samples from both datasets, to-
taling 300 shuffled samples.

We present the set of hyperparameters consid-
ered in Appendix B, Table 4, and refer to them as
sets 1 to 3 for the rest of this paper. Our exper-
iments are incremental, starting from finetuning
on 200 samples across Sets 1 and 2. Based on
our results, finetuning on Strategy 1 using Set 1
did not improve over the baseline, but finetuning
on Strategy 2 and 3 boosted Readability and Fac-
tuality scores. Finetuning on Set 2 did not show
improvements.

Following this near-positive results, we per-
formed a sample-size ablation study on 1000 sam-
ples and 1300 samples using set 1, to test if sample
size further improves model performance. Since
our results show that a sample size beyond 1000
does not induce improvements, we conducted fur-
ther experiments on hyperparameter sets 3 on 1000
training samples.

3.4 Counterfactual Data Augmentation

Prior work (Rajagopal et al., 2022) claim that train-
ing on counterfactually augmented data can im-
prove factual consistency of general-domain ab-
stractive summaries by inducing entity-errors, and
attempt to extend this hypothesis for lay summa-
rization. To develop the counterfactual data, we
used the same 1000 training samples that were
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Table 1: Finetuning evaluation scores (Systems 1-16) on 300 randomly sampled data instances from both

eLife and PLOS’ validation set .

Entries under model configuration for systems 1-15 are interpreted as:

1llama_{hyperparameter set}_{strategy}_{sample size}

System  Model Configuration R-1 R-2 R-L BERTScore FKGL DCRS CLI SummaC  AlignScore

Baseline No-finetuning 04316 0.1130 0.4015 0.8500 12.7278 10.5846  13.0331 0.5654 0.6424
1 llama_1_1_200 0.3985 0.1148 0.3701 0.8482 13.3061 11.1538  13.2315 0.5078 0.6125
2 llama_1_2_200 04174 0.1069 0.3906 0.8477 12.6564 10.3625 12.4354 0.5692 0.6296
3 llama_1_3_200 0.4221 0.1095 0.3936 0.8488 12.9245 10.5067 12.4350 0.5555 0.6248
4 llama_2_1_200 04172 0.1172  0.3846 0.8482 14.0118 11.1758  13.7989 0.5078 0.6346
5 llama_2_2_200 0.4238 0.1116  0.3949 0.8492 13.1023 10.5741  13.0970 0.5509 0.6337
6 llama_2_3_200 04252  0.1117 0.3946 0.8496 12.9096 10.6275 13.0385 0.5572 0.6434
7 llama_1_1_1000 0.4130 0.1125 0.3868 0.8399 12.4096 10.6496  12.0954 0.6300 0.7122
8 llama_1_2_1000 0.4057 0.1025 0.3814 0.8448 11.3494 99221 11.6261 0.6300 0.6557
9 llama_1_3_1000 0.4045 0.1014  0.3799 0.8441 11.0981 9.7785  11.3806 0.6300 0.6846
10 llama_1_1_1300 04153 0.1115 0.3886 0.8464 127704  11.0471  12.8860 0.7100 0.7032
11 llama_1_2_1300 0.4156 0.1138  0.3893 0.8453 12.1517 10.5510 12.4498 0.6738 0.6255
12 llama_1_3_1300 04112 0.1072 0.3861 0.8424 11.5830 10.1520 11.8491 0.644 0.6094
13 llama_3_1_1000 0.4157 0.1125 0.3892 0.8399 12.3269 10.7378  12.4745 0.6385 0.7514
14 llama_3_2_1000 0.4158 0.1162 0.3880 0.8427 12.8280 10.9584  12.7057 0.6720 0.6223
15 llama_3_3_1000 0.4069 0.1025 0.3814 0.8445 11.2793  9.8721  11.5129 0.6133 0.6066
16 counterfactual 0.4001  0.0989 0.3770 0.8427 11.3365 10.0515 11.6893 0.6469 0.625

used to finetune System 9* but selected 250 sam-
ples to be modified by employing BERN2 (Sung
et al., 2022), a multitask Named Entity Recogni-
tion (NER) model to extract biomedical entity men-
tions from their gold summaries. These entity men-
tions were masked out with their corresponding
categories. We used Meta-Llama-3-8B-Instruct to
substitute each category with a random entity be-
longing to that category, followed by a finetuning
experiment on a data mixture of counterfactual data
(See Appendix C for training templates and prompt
template).

3.5 Postprocessing: Lay definition Insertion
using LLM and UMLS

To enhance the readability and relevance of the gen-
erated summaries by our best performing model in
Table 1 (i.e., System 9) we added a postprocess-
ing strategy by using LLMs and UMLS as external
knowledge bases of lay definitions. The goal is
to simplify some biomedical terms from the sum-
maries, and provide contextual knowledge through
definitions °.

We used SciSpacy’s Biomedical NER model
(Neumann et al., 2019) to extract biomedical en-
tity mentions, and their definitions through its
connection with the Unified Medical Language
System (UMLS) database. For entity mentions
that are absent, we employed Meta-Llama-3-8B-
Instruct to provide definitions. With this hybrid

“This turned out to be our best performing model. See
Results.

>Note that this experiment was conducted on test set sum-
maries produced by our highest-achieving model, and was
evaluated on the system provided by the organizers.

approach to definition retrieval, we constructed a
term-definition dictionary for each generated sum-
mary. For each generated summary, we randomly
extracted 10 pairs of terms and definitions to be
incorporated into a prompt for postprocessing. The
prompt templates can be found in Appendix D.

4 Evaluation

All experiments except postprocessing were done
using a subset of the metrics given by the organiz-
ers, on 300 randomly chosen validation samples as
mentioned. For relevance, ROUGE-1, ROUGE-
2, and ROUGE-L (Lin, 2004), and BERTscore
(Zhang et al., 2020) were used. For readabil-
ity, Flesch-Kincaid Grade Level (FKGL) (Kincaid
et al., 1975), Dale-Chall Readability Score (DCRS)
(Chall and Dale, 1995), and Coleman-Liau index
(CLI) (Coleman and Liau, 1975) were used. Lower
FKGL, DCRS and CLI scores represent superior
readability. Finally, for factuality, SummaC (Laban
et al., 2022) and AlignScore (Zha et al., 2023) were
used. Postprocessing experiment, as well as our
best performing model, were (re)evaluated on the
test set using the organizers’ evaluation pipeline.

5 Results and Analysis

5.1 Experimental results

We report the results of our experiments in Table 1.
The system that we submitted to the leaderboard
for BioLaySumm?2025 is system 9.
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Table 2: Comparison of best system with and without post-processing. These systems were evaluated on the test set
using the evaluation pipeline provided by the organizers of Biolaysumm. We submitted our best performing model,

(i.e., system 9.)

ROUGE BLEU METEOR BERTScore FKGL DCRS CLI

LENS AlignScore SummaC

System
Best (submission) 0.2877 4.6323  0.2305 0.8461
Bestypostprocessing  0.2498  3.1827  0.2021 0.8345

11.7109 8.4596 11.9899 71.2714  0.6811 0.6047
12.9000 8.3068 11.7878 61.9381 0.6026 0.5916

5.1.1 Impact of hyperparameters and
sample-size ablation study

The results of systems 1 to 3 show that finetuning
on filtered articles using hyperparameter set 1 gen-
erally outperform the zero-shot baseline in terms of
readability, while finetuning on unfiltered ones did
not. Hyperparameter set 2 did not improve model
performance. Our ablation study on hyperparam-
eter set 1 shows that increasing the sample size to
1000 for finetuning has a larger positive effect on
both readability and factuality (Systems 7-9) com-
pared to the baseline, but a sample size beyond that
did not (Systems 10-12). However, finetuning does
not seem to improve relevance scores across the
board.

5.1.2 Impact of extractive summarization
strategies

The effect of extractive summarization strategies is
compounded on by the effect of sample size. Sys-
tem 2 outperforms system 3 in terms of readability
and factuality, suggesting that keywords are inert.
However, when the sample size increases to 1000,
while they both outperform the baseline, system 9
outperformed system 8 in readability and factuality.
This suggests that while the title is capable of ex-
tracting pivotal sentences in the article, the impact
of keywords scales with data volume.

5.2 Impact of data augmentation

As expected from (Rajagopal et al., 2022), finetun-
ing on counterfactually augmented data showed im-
provements in SummacC score, but a slight decrease
in relevance and readability scores (Compare sys-
tems 9 and 16). This experiment verifies the re-
producibility of (Rajagopal et al., 2022)’s work on
using counterfactual data augmentation improves
factuality for summarization with tradeoffs in rel-
evance. In addition, our experiment sparks the
promise of extending their methodology to the con-
text of biomedical lay summarization. We leave
this exploration to future work.

5.3 Impact of Post-processing using definition
insertions

As presented in Table 2, our result for post-
processing surprisingly showed marginal improve-
ments in readability scores (DCRS and CLI), and
a drop in other evaluation metrics. We speculate
that while definition insertions helped with text
simplification, the NER model is flawed in that it
also extracts non-technical terms like "blood" and
"human". Redundant definitions of these terms
could have been incorporated into the summary,
hence affecting factual consistency, and inducing
verbosity.

5.4 Results of Final System Submission

Table 2 shows the results of our best performing
model, which we submitted to the leaderboard.
Our model was ranked 4th on the leaderboard, and
achieved 2nd place in terms of Readability scores.

6 Discussion and Conclusion

Our study highlights the trade-offs in biomedical
lay summarization between input selection, model
fine-tuning, and postprocessing. Strategically cu-
rating input—particularly by leveraging document
titles and keywords—can significantly improve the
readability of generated summaries. Finetuning
Meta-Llama-3-8B-Instruct on such targeted con-
tent surpasses using unfiltered inputs.

A comparison of extractive strategies reveals that
title-based selection performs better with smaller
training sets, while the inclusion of keywords be-
comes more effective as the models handle more
data, suggesting that keywords provide additional
semantic information that enhances generalization,
particularly in data-rich settings across different
topics.

Our ablation study shows that increasing fine-
tuning sample size from 200 to 1000 improves
performance across readability scores (FKGL,
Dale-Chall), factuality (SummaC and AlignScore),
but increasing sample sizes up to 1300 samples
plateaus (System 10-12) or slightly reverses gains,
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possibly due to noise from lower quality training
samples. These findings emphasize that high qual-
ity extractive pre-processing can have a more posi-
tive impact than increasing fine-tuning sample vol-
ume alone in domain-specific summarization tasks.

Regarding hyperparameters, Set 1 was consis-
tently effective, especially when used with 1000
samples (e.g., Systems 7-9). Raising LoRA rank
to 13 and increasing the effective batch size (Set 3)
yielded only marginal improvements (e.g., System
13 vs. System 7), suggesting limited benefit from
increasing model capacity under our current setup.

However, we do not see improvements in Rele-
vance scores across the board, possibly due model
capacity and hyperparameter issues. Another rea-
son for this is, improved readability may have over-
simplified the summaries, resulting in information
loss.

Overall, our results demonstrate that thoughtful
input design and targeted fine-tuning are critical for
effective biomedical lay summarization. Our future
work may explore adaptive extractive techniques
and multiphase generation pipelines to further en-
hance summary clarity and trustworthiness.

7 Limitations

Our study has several limitations that inform
opportunities for future work. First, we only
evaluated decoder-only LLM-based architectures—
specifically Meta-Llama-3-8B-Instruct—-and did not
explore neural encoder-decoder models, such as
T5 or BART, which are commonly used for sum-
marization tasks. This architectural constraint ex-
plains the limited improvement in BERTscore and
Relevance Scores, which often favor outputs more
closely aligned with gold summaries at the token
or phrase level. Secondly, while our resource-
constrained hyperparameter search identified work-
able configurations, future work should prioritize
expanded hyperparameter optimization to fully ex-
ploit the model’s capacity. Thirdly, our counterfac-
tual data augmentation experiment, requires more
complexity and development to investigate the
tradeoffs between relevance and factuality. Afore-
mentioned, in our postprocessing step, using NER
to extract technical biomedical terms fails to suffi-
ciently exclude non-technical medical terminolo-
gies, which may have contributed to redundant ad-
ditions and edits to the summaries. Furthermore,
randomly selecting 10 term-definitions does not
circumvent this issue. Future work in this direction

should consider more discriminate ways to filter
out non-technical terms from biomedical texts, so
that actual technical terms can be easily identified
for simplification. Finally, while our system did
reasonably well for readability, we did not explic-
itly investigate the effect of readability control (Luo
et al., 2022) since the degree of simplicity is sub-
jected to each individual’s demands and technical
expertise.
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A Evaluation Results for preliminary
experiments

Based on our evaluation of the preliminary experi-
ment using the metrics described in Section 4, we
observed that Strategy 2 did the best for readabil-
ity scores, clearly surpassing the baseline, while
Strategy 4 (SVD topic modeling) did the best for
BERTscore. As for ROUGE-L, ROUGE-1, and
SummaC, Strategy 2 and 3 did comparable to the
control. The low scores for factuality are to be ex-
pected (Zhou et al., 2024) from just LLM prompt-
ing techniques without further finetuning. But the
scores for Strategies 2 and 3 follow the control.
Hence, we chose Strategies 1, 2 and 3 for finetun-
ing. Full evaluation results can be found below in
Table 3.

B Hyperparameters

Table 4 shows the hyperparameters that we used
for our experiments.

Across all sets, we applied the AdamW opti-
mizer, a LoORA dropout rate of 0.1, a LoRA alpha
of 16 and a linear learning rate scheduler.

C Prompt Templates for Counterfactual
Data Augumentation

We provide the following prompt templates for
counterfactual data augmentation process.

The {text} refers to the gold summary and the *
represents the entity mention that has been masked
out and replaced with the entity category. The
prompt below replaces * with a random entity men-
tion of that category, and its output is an entity-
error-induced gold summary:

System: You are a chatbot with

knowledge in medical terms and their
definitions in context.
User: The following text contains words
enclosed in *These words are categories
for biomedical entities. Replace the
words with randomly chosen biomedical
entities from your wealth of knowledge,
and then enumerate a 1list of the
replacements. {text}’

The output of the above is used for finetuning,
where the model is trained to recognize factual
deviance:
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Table 3: Preprocessing Methods Performance Metrics Comparison

Preprocessing R-1 R-2 R-L BERTScore FKGL DCRS CLI SummaC  AlignScore
1 (baseline) 0.4031 0.1017 0.3779 0.8412 13.0715 109113 13.6171 0.5893 0.4521
2 0.4048 0.0967 0.3788 0.8417 12.8065 10.4800 13.2654 0.3885 0.3988
3 0.4070 0.0978 0.3802 0.8420 13.0214 10.5933  13.5069 0.3767 0.4147
4 0.4089 0.1020 0.3830 0.8423 12.9394  10.7197 13.6397 0.3464 0.3727
5 0.3929 0.0945 0.3675 0.8387 12.8777 10.7964  13.2739 0.3912 0.3625
6 0.3799 0.0894 0.3541 0.8310 13.8133  10.9826 13.1877 0.3523 0.3588
7 0.3851 0.0926 0.3580 0.8366 14.4809 11.0687 13.8176 0.3665 0.3444
Table 4: Hyperparameters

Hyperparameters Set 1 Set 2 Set 3

Learning Rate 2x107° 8x107% 2x107°

Batch Size 4 8 4

Epochs 3 5 3

Grad. Accumulation 2 1 2

r (Rank) 10 10 13

LoRA dropout 0.1 0.1 0.1

Ir scheduler linear linear linear

Optimizer AdamW AdamW AdamW

<|begin_of_text|><|start_header_id|>
system<|end_header_id|> You are
a chatbot with expertise in
summarizing documents. <|eot_id|>
<|start_header_id|>user
<|end_header_id|>

Provide a wrong lay
summary of this article:
{preprocessed article} <J|eot_id|>
<|start_header_id|>assistant
<|end_header_id|>

Wrong lay Summary:
{entity-error-induced gold summary}
<|eot_id|>

Note that the template above is only for the 250
samples that were selected for counterfactual aug-
mentation. For the rest of the 750 samples, we had
the <assistant> prompt to indicate "lay summary".
A mixture of original data and counterfactual data
is used as training data for this finetuning experi-
ment.

D Prompt Templates for Postprocessing
Step

The prompt template used to extract definitions of
entity mentions from Meta-Llama-3-8B-Instruct
is as follows: System: "You are an expert
who can provide informative and lay
definitions to biomedical terms.”

User: Provide only the definition of the
biomedical term: term’

As mentioned in the main text, term-definition
dictionaries were constructed and incorporated into
a prompt to generate a postprocessed summary.
The prompt template used is:

System: "You are an expert biomedical
editor skilled at simplifying complex
medical terms for a lay audience. Use the
provided dictionary to replace technical
terms with their lay definitions while
preserving the original meaning.”

User: **Biomedical Lay Definitions
Dictionary:** {term_dictionary}

*Task: xx Read the following summary:
{summary}

Replace all technical terms in the
summary with their lay definitions from
the dictionary.

- Do not add or remove key information.

- If a term isn’t in the dictionary, retain
the original term.

*Return only the paraphrased summary in
one line, without any commentary*x

239



SUWMIT at BioLaySumm?2025:
Instruction-based Summarization with Contrastive Decoding

Priyam Basu, Jose Cols, Daniel Jarvis, Yongsin Park, Daniel Rodabaugh
Department of Linguistics, University of Washington
{pbasu77,jcols,dljarvi,yongsinp,drodaba}@uw.edu

Abstract

In the following paper, we present our team’s
approach to subtask 1.1 of the BioLaySumm
2025 shared task, which entails the automated
generation of lay summaries from biomedical
articles. To this end, we experiment with a
variety of methods for text preprocessing, ex-
tractive summarization, model fine-tuning, and
abstractive summarization. Our final results are
generated on a fine-tuned Llama 3.1 Instruct
(8B) model, notably achieving top scores on
two out of four relevance metrics, as well as
the highest overall ranking among this year’s
participating teams on the plain lay summariza-
tion subtask.

1 Introduction

Biomedical articles often contain information of in-
terest to audiences beyond the community of medi-
cal researchers and practitioners; however, the large
volume of content, in combination with domain-
specific technical language, often leaves such text
unsuited for consumption by non-experts. The auto-
mated generation of lay summaries may, therefore,
serve as a tool for improving the accessibility of sci-
entific publications to a broader public by offering a
non-technical glance to potential readers (Goldsack
et al., 2024). Following previous iterations initiated
by Goldsack et al. (2023), the BioLaySumm 2025
shared task presents precisely this objective, call-
ing for teams to make use of the PLOS and eLife
datasets (Goldsack et al., 2022; Luo et al., 2022b)
to build automated summarization systems with a
focus on ease of understanding while maintaining
relevance and factuality (Xiao et al., 2025).
Winners of the BioLaySumm 2023 shared task
(Turbitt et al., 2023) saw success in generating
summaries based on the abstracts of articles and
leveraging domain knowledge of GPT-style models,
with summaries generated by their system offering
better relevance and factuality scores than the fine-
tuned BioGPT (Luo et al., 2022a) model they tested

against, though at the cost of readability. Winners
of the BioLaySumm 2024 (You et al., 2024) sub-
sequently investigated an alternative approach to
the fine-tuning of the model, using TextRank (Mi-
halcea and Tarau, 2004) to extract the most salient
content before passing it to a GPT model for sum-
marization, augmented by a BERT-based clustering
technique and a keyword-based method to extract
definitions from the Wikipedia dataset. Another
team, Modi and Karthikeyan (2024), achieved top
factuality scores by running preprocessing meth-
ods over article abstracts before passing content
through an LLM.

Building on the success of these previous teams,
we develop and publicly release an open-source,'
end-to-end pipeline to facilitate rapid experimen-
tation in summarization (Section 3.1). Our best
model results from experiments conducted through
this pipeline.

2 Data

The shared task organizers have made available
two datasets, PLOS and elLife (Goldsack et al.,
2022; Luo et al., 2022b), which include biomedical
research articles and their corresponding expert-
written lay summaries. Together, these datasets
comprise a total of 29,119 training instances and
1,617 validation instances, with approximately 85%
of instances sourced from PLOS, and the remaining
15% from eLife. Additional dataset statistics are
provided in Appendix B.

3 Methods

In this section, we provide an overview of the
methodology used for our final submission, which
is an abstractive summarization model based on
Meta’s Llama 3.1 Instruct (8B) (Grattafiori et al.,
2024). Although this model did not perform the

1https: //github.com/whopriyamuw/
biolaysumm2025-task
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Figure 1: Our proposed pipeline for rapid experimentation comprises four toggleable modules: data transformation,
model fine-tuning, model inference, and post-processing. We conducted over 20 experiments using distinct
combinations of these modules. Dashed boxes denote optional or composable functionality.

best in all our experiments (Section 4), it offers the
most balanced performance across the three groups
of evaluation metrics: relevance, readability, and
factuality (see Section 3.4).

3.1 Pipeline

Our proposed pipeline, illustrated in Figure 1, is
designed to facilitate experimentation through mod-
ular and composable functionality, consisting of
four components: data transformation, parameter-
efficient fine-tuning, model inference, and post-
processing. These modules are implemented as
Python scripts, on top of the transformers (Wolf
et al., 2020) and torchtune (torchtune maintain-
ers and contributors, 2024) libraries, and can be
configured using command-line arguments.

Initially, articles undergo a data transforma-
tion phase comprising optional preprocessing (Sec-
tion 4.1), extractive summarization (Section 4.2),
and abstract segmentation (Section 4.3). We apply
an identical transformation procedure to each of the
three splits from the eLife and PLOS datasets. The
resulting transformed texts are then stored as a sep-
arate column within a newly derived dataset, along-
side the original “article” and “summary” columns.
This derived dataset serves as input for all subse-
quent stages of the pipeline.

The model inference module uses the Llama
Instruct model, optionally combined with a LoORA

adapter (Hu et al., 2021) that was fine-tuned on
the transformed text to generate abstractive sum-
maries. During inference, multiple decoding strate-
gies are available: greedy decoding, beam search,
and DoLa (Chuang et al., 2024).

Finally, the post-processing module can be used
to refine further the pipeline’s output, which can be
the abstractive summary or the text resulting from
the data transformation stage.

3.2 Fine-tuning

The Llama model was fine-tuned using LoRA (Hu
et al., 2021) for 2 epochs, training separate mod-
els for the PLOS and el ife datasets, with varying
batch sizes depending on the GPU and input length.
When fine-tuning on full articles on an A40 GPU,
a batch size of 2 was used for the PLOS dataset
and 1 for the eLife dataset. The model employed
bf16 precision, and activation checkpointing, acti-
vation offloading, and torch.compile were used
to reduce VRAM usage.

LoRA was applied to the query, value, output
projection layers within the attention layers, as well
as the MLP layers, with a rank of 8, a of 16, and
dropout set to 0.0. The model was optimized using
fused AdamW (Loshchilov and Hutter, 2019), with
a learning rate of 3e-4 and weight decay of 0.01.
A cosine learning rate scheduler with 100 warmup
steps was used.
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The random seed was set to 4 for reproducibility,
and prompts from Table 4 were used to instruct the
model.

3.3 Abstractive summarization

We add the LoRA adapters trained on full-text arti-
cles to the base Llama instruct model to generate
the abstractive summaries. The model instructions
follow the system, user, and assistant structure
defined by the Chat Markup Language. Further-
more, the system messages, summarized in Ta-
ble 4, include specific target grade-level drawing on
the instruction-based readability control outlined
by Ribeiro et al. (2023).

To decode the output tokens, we apply Decod-
ing by Contrasting Layers (DoLa) (Chuang et al.,
2024) on the lower layers, 0, 2, and 20, using a rep-
etition penalty of 1.2. Compared to beam search
and greedy decoding, we found DoLa to provide
the best balance between readability and factuality.

Model inference is performed on a single
NVIDIA A40 GPU with a batch size of 1, using the
EOS token for padding, which takes an average run-
time of 62 minutes on the test split. Furthermore,
we limit the maximum number of tokens generated
to 384. We selected this value based on the median
summary lengths of the training splits and empir-
ical evaluation comparing output lengths of 256
and 512 tokens (see Figure 4). Furthermore, each
submission file, plos. txt and elife. txt, is cre-
ated using adapter weights tuned to the respective
dataset. Except for the system message version, all
inference parameters remain constant across runs.

3.4 Evaluation

For experimental validation, we train models on
the train split of the data and evaluate them on the
validation split using a pipeline made available
by the shared task organizers.> Summaries are as-
sessed across 11 automated metrics falling into one
of three criteria: relevance, readability, and fac-
tuality. To compare results, we adopt the ranking
approach used in the previous iteration of BioLay-
Summ (Goldsack et al., 2024). Specifically, we
apply min-max normalization to each metric and
average the scores within each criterion before cal-
culating an overall average across all criteria. Our
model selection is based on achieving the highest
average score from this methodology. The metrics
are categorized as follows:

Zhttps://github.com/gowitheflow-1998/
BiolLaySumm2025

Relevance ROUGE (Lin, 2004), BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), and BERTScore (Zhang et al., 2020).

Readability Flesch-Kincaid Grade Level (Kin-
caid et al., 1975), Dale-Chall Readability Score
(Dale and Chall, 1948), CLI (Coleman and Liau,
1975), and LENS (Maddela et al., 2023).

Factuality AlignScore (Zha et al., 2023) and
SummaC (Laban et al., 2022).

4 Results and Analysis

In this section, we present our experimental setup
and findings obtained through our end-to-end
pipeline. Table 1 summarizes the results of these
experiments.

4.1 Preprocessing

We replicate the preprocessing approach from
Modi and Karthikeyan (2024) to remove content
within parentheses, braces, and brackets. Addition-
ally, we apply a number-aware regular expression
to collapse additional spacing around punctuation
marks and other special characters. In Table 1, we
denote experiments that utilized preprocessed in-
puts with a “pre” suffix. Our findings indicate that
preprocessing leads to improved relevance scores
and a better FKGL score, especially when combined
with fine-tuning. However, these improvements are
nullified by lower LENS and SummaC scores. We
hypothesize that removing parentheticals from the
input prevents the model from including chunk
cues in the output, thereby reducing lexical overlap
and potentially lowering entailment scores.

4.2 Extractive summarization

Our extractive summarization method follows from
You et al. (2024), using TextRank (Mihalcea
and Tarau, 2004) and embedding-based similar-
ity matching. For the latter, we experiment with
five pre-trained language embedding models ex-
plicitly built for processing biomedical text data,
namely: BioBERT (Lee et al., 2019), MedEmbed
(Balachandran, 2024), PubMedBERT (Gu et al.,
2021), PubMedBERT-MS-MARCO (Deka et al., 2022),
and Medical-MiniLM-L6.> Sentence embeddings
created using these models are used to measure
semantic similarity between them. We also test dif-
ferent embedding models using k-values of 20, 30,

3https://huggingface.co/Mana1®8®9/
medical-term-similarity
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Input PEFT k Relevance Readability Factuality
=4
m o) )
) m 195}
= 8 5§ £ g & 5 £ = :
& /M = @ i A O - < a
x 10 0.323 4.561 0.242 0.833 10.154 7.917 11.342 71.258 0.532 0.528
x 20 0.338 5.266 0.256 0.834 10.408 7.965 11.574 68.262 0.532 0.527
x 30 0.342 5.530 0.261 0.834 10.868 8.040 11.938 66.199 0.526 0.512
Ext v 10  0.366 7.253 0.272 0.854 9.334 7.529 10.075 77.782 0.615 0.622
v 20 0.373 7.730 0.278 0.856 9.037 7.523 9.901 78.760 0.626 0.637
v 30 0.373 7.650 0.277 0.856 9.062 7.526 9.954 79.118 0.633 0.640
v 40 0.379 8.421 0.285 0.857 9.004 7.534 10.008 78.472 0.643 0.645
x 10  0.328 4.767 0.247 0.834 10.185 10.589 11.316 71.154 0.533 0.529
EXt pre x 20 0.337 5.181 0.259 0.834 10.348 10.739 11.501 68.144 0.516 0.517
x 30 0.341 5.386 0.261 0.835 10.640 10.927 11.770 67.053 0.531 0.513
v 10 0.379 8.279 0.292 0.855 8.924 10.304 9.966 78.128 0.634 0.610
Abs v 20 0.380 8.332 0.294 0.856 8.999 10.261 10.033 77.653 0.635 0.614
+Ext v 30 0.380 8.373 0.293 0.855 8.829  10.226 9.950 76.940 0.648 0.614
v 40 0.382 8.651 0.297 0.855 8.956 10.232 9.934 76.674 0.646 0.608
v 10  0.356 7.462 0.278 0.848 8.885 10.171 9.728 76.015 0.594 0.604
Abs v 20 0.365 7.845 0.282 0.853 8.869  10.326 9.850 77.129 0.637 0.637
+Ext(ps)y v° 30 0.372 8.109 0.284 0.854 9.020 10.376 9.975 78.025 0.643 0.643
v 40  0.372 8.200 0.289 0.852 8.857 10.283 9.847  75.797 0.641 0.614
Abs Ve 0.369 7.532 0.277 0.854 8.783 10.278 9.803 179.448 0.634 0.663
AbS pre V- 0.373 8.126 0.289 0.853 8.733 10.250 9.809 77.527 0.637 0.599
Full v o - 0.385 8.694 0.289 0.859  9.308 7.674 10.143 78.670 0.643 0.663
X = 0.344 5.766 0.259 0.840 12.483 8.450 12.896 67.947 0.600 0.483
Full post VAR 0.384 8.523 0.287 0.859 9.329 10.455 10.153 79.206 0.644 0.662

Table 1: Performance of our abstractive summarization experiments on the eLife validation split. We use PEFT
to denote models fine-tuned with LoRA and k to represent the extractive summary length. Data inputs are: (Ext)
extractive summary, (Ext pr.) preprocessed extractive summary, (Abs+Ext) abstract concatenated with extractive
summary, (Abs+Ext ,ps)) abstract concatenated with extractive summary that excluded the abstract during extraction,
(Abs) abstract only, (Abs pre) preprocessed abstract, (Full) entire article, and (Full 505) entire article, with post-

processing applied to the generated summary.

and 40 for summary length. The results indicate
a consistent preference for the BioBERT embed-
ding model, regardless of the number of sentences
selected. As shown in Figure 3, the overall evalua-
tion score correlates positively with the summary
length.

4.3 Training data

We fine-tuned the base instruct model at different
levels of input granularity and transformations.

Extractive summary In these experiments, we
use the summaries extracted via BioBERT embed-
dings as the only input. Our results indicate that
performance generally improves with more con-
text, although this leads to longer training times.
We found that the model fine-tuned on extracted
summaries with £ = 40 is comparable to our best
model while requiring less training time.

Abstract-only In this setting, the model is
trained solely on the abstract, which is the first
paragraph of the input article and serves as a con-
densed, high-level overview of the study. Even
without additional context, the model demonstrated
solid performance in terms of readability and fac-
tual accuracy. This combination offered the best
balance between summarization quality and com-
putational efficiency (see Appendix C).

Abstract and extractive summary We concate-
nate abstracts with extractive summaries to enrich
the input, aiming to provide the model with addi-
tional context to improve the factual accuracy and
clarity of the generated summaries. We explore two
configurations: in Abs+Ext, the abstract is concate-
nated with an extractive summary generated from
the full article, whereas in Abs+Ext (abs), we first
remove the abstract from the article before produc-
ing the extractive summary. Our evaluation indi-
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Decoding Runtime Relevance Readability Factuality
ROUGE BLEU METEOR BertS FKGL DCRS CLI LENS AlignS SummaC
DoLa 02:35:41 0.39 9.21 0.30 0.86 9.16 10.39 10.10 77.82 0.67 0.65
Greedy 02:17:50 0.39 9.13 0.30 0.86 9.23 10.38 10.16 78.19 0.66 0.64
Beam search 07:32:55 0.37 6.56 0.29 0.85 11.31 10.39 10.55 79.61 0.55 0.49

Table 2: Runtime and evaluation comparison of the three decoding strategies implemented in our pipeline.

cates that repeating key information (as evidenced
by comparing Ext, Abs+Ext, and Abs+Ext(abs))
yields improved relevance scores; however, we ob-
serve a decline in both readability and factuality.
We hypothesize that the concatenation disrupts the
logical ordering of information, which is crucial
for these criteria.

Full-text The model is trained on the entire arti-
cle without any data transformation. This setting
showed the best performance, possibly due to hav-
ing more context, and was our model of choice.
Our final submission was trained both on the train
split and the validation split. The models were
trained on eLife for 2 epochs and on PLOS for 1.4
epochs.

4.4 Decoding strategies

We investigate the effect of three decoding strate-
gies on our evaluation criteria: greedy decoding,
beam search, and DoLa (Chuang et al., 2024). As
demonstrated in Table 2, beam search performed
poorly, showing significantly lower factuality and
relevance scores while also requiring additional
hours for inference. Summaries generated using
DoLa and greedy decoding had comparable perfor-
mance and runtimes, with the former achieving the
best scores in eight out of eleven metrics. Notably,
contrastive decoding yielded the highest factuality
results.

4.5 Post-processing

In these experiments, we applied the same text
processing method detailed in Section 4.1. Addi-
tionally, we removed incomplete sentences arising
from the decoding limit on the maximum output
token length. Specifically, we identified summaries
that did not end with a period and discarded all to-
kens that appeared after the final complete sentence.
Surprisingly, this post-processing step resulted in
decreased performance across seven of eleven eval-
uation metrics, including three readability scores,
despite the intuitive assumption that truncated sen-
tences negatively affect summary quality.

5 Conclusion

In this study, we presented an end-to-end pipeline
for generating lay summaries of biomedical arti-
cles. Our approach achieved the highest overall
rank in subtask 1.1 of BioLaySumm 2025. Our
method balances readability and factuality by em-
ploying instruction-based readability control and
contrastive decoding (Chuang et al., 2024). In par-
ticular, we include the Flesch-Kincaid grade-level
target in the system message to improve readability,
and control over the LoRA weights enabled the
application of contrastive decoding for improved
factual accuracy.

We posit that investigating more advanced in-
struction strategies, such as self-reflection and
synthesized chain-of-thought (CoT), represents a
promising direction for future research. These
strategies could incorporate factual claims and lay
terminology to improve the model’s relevance and
factual accuracy. Furthermore, adding a reinforce-
ment learning component, such as Direct Prefer-
ence Optimization (Rafailov et al., 2023), to our
pipeline could help select outputs that better align
with the evaluation framework of this task.
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A Instruction Messages

Table 4 details the system messages used to instruct
the model in generating the summaries. We found
that including the target domain and grade level
contributed to better readability scores. The eLife
summaries were created with version 1, while the
PLOS summaries were produced with version 2.

B Dataset Statistics

The Public Library of Science (PLOS) is a non-
profit, open-access publisher launched in 2000
with the goal of providing free access to full-text
scientific articles. It currently publishes 14 aca-
demic journals in a range of fields such as biology,
medicine, and computational biology. elLife is
likewise a non-profit, peer-reviewed, open-access
publisher for articles in the biomedical and life sci-
ence domains established in 2012. Articles in the
two datasets cover various topics and specialties
within the biomedical domain. We report length
statistics for the PLOS and elLife datasets in Ta-
ble 3.

Dataset # Docs Doc Summary
#words # words # sents

PLOS 27,525 5,366.7 175.6 7.8

eLife 4,828 7,806.1 347.6 15.7

Table 3: Average word and sentence counts for each
dataset. Adapted from Goldsack et al. (2022).

C Computational Efficiency

Although using full article texts as model input
yielded the highest performance, this approach is
significantly more resource-intensive than relying
only on extractive summaries or abstracts. This
difference is clearly illustrated in Figure 2, which
compares average inference runtimes on the eLife
and PLOS datasets. Specifically, inference on full-
text inputs required over 30 times the runtime of
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# Message

1 You are a specialist medical communicator responsible for translating biomedical articles into a
clear, accurate 1020 sentence summary for non-experts. The summary should be at a FleschKincaid
grade level of 1014 and explain any technical terms.

2 You are a specialist medical communicator responsible for translating biomedical articles into
a clear, accurate 10 to 20 sentence summary for non-experts. The summary should have a
FleschKincaid grade level of 10 to 14, explaining any technical terms in simple language. Ensure
factual accuracy by using terminology from the source article, and omit all in-text citations.

Table 4: The two system messages used to generate the abstractive summaries. Generative language models were

used to refine the messages.

abstract-only inputs, while providing only a 14.86%
improvement in the overall average score.

Runtime (minutes)
N w B (&) [}
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-
o
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Abstract
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Extractive

Figure 2: Inference runtime comparison of the summa-
rization model based on different input types: full-text
articles, extractive summaries, and abstracts.

D Training Challenges and Workarounds

There is a peculiarity that we would like to mention
about our training setup. While University of Wash-
ington’s high-performance computing cluster Hyak
offers powerful hardware, GPU jobs are prone to
preemption and can run at most for 8-9 hours be-
fore being requeued. However, a full epoch ex-
ceeded that limit, sometimes taking over 24 hours.
At the time of our experiment, torchtune did not
support mid-epoch checkpointing, so we had to
split the data into smaller sections to ensure each
partial epoch could finish within the time limit.
The actual split sizes were smaller to accommo-
date preemption and were dynamically adjusted
along with the batch size based on the number and
model of the GPU in use. The total number of
epochs was set to m X (number of epochs)
to have torchtune save the training state between

partial epochs. Training processes were killed
and restarted after each partial epoch to force
torchtune to reload the training configuration
file with updated data splits. This part is specific
to Hyak, and the code will only be included in
the release/class branch and excluded from the
main branch and future releases.
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Abstract

The growing need to make biomedical research
accessible to non-expert audiences has moti-
vated the development of effective lay summa-
rization systems. While large language mod-
els (LLMs) have set recent benchmarks, their
computational demands limit widespread adop-
tion. This paper explores the use of small-
scale, state-of-the-art LLMs (4B—7B parame-
ters) for biomedical lay summarization in the
BioLaySumm 2025 shared task. Leveraging
dynamic 4-bit quantization, extractive prepro-
cessing, prompt engineering, data augmenta-
tion, and Direct Preference Optimization, our
system, based on Gemma3 4B, Qwen3 4B, and
GPT-4.1-mini, ranked second in its category,
showing that compact models can deliver high-
quality, factually accurate summaries.

1 Introduction

Recent advances in large language models (LLMs)
have demonstrated exceptional performance in gen-
erating lay summaries of biomedical literature,
supporting the critical goal of making complex
scientific content accessible to non-expert audi-
ences (Goldsack et al., 2024, 2023). However,
most state-of-the-art approaches rely on very large
models—often with tens of billions of parameters—
posing significant barriers for practical deployment
and reproducibility due to hardware and computa-
tional requirements.

The BioLaySumm 2025 Shared Task challenges
participants to develop automated systems for lay
summarization of biomedical research articles,
with evaluation based on relevance, readability, and
factuality across established benchmark datasets
(eLife and PLOS) (Xiao et al., 2025; Goldsack
et al., 2022). The official baselines for this task,
such as Llama3 8B and Qwen2.5 7B, set a high
standard for both scale and performance.

This paper presents the approach developed by
BDA-UC3M for BioLaySumm 2025, aiming to

demonstrate that small-scale, state-of-the-art LLMs
(4B-7B parameters), when carefully optimized and
fine-tuned, can achieve competitive—and in some
cases, superior—performance to larger baselines.
Our system leverages recent advances in LLM effi-
ciency, notably:

* Parameter-efficient models and training:
Utilizing compact LLMs, including Gemma3
4B (Dynamic 4-bit Instruct) (Team, 2025),
Qwen3 4B (Dynamic 4-bit Safetensor, fine-
tuned) (Yang et al., 2025), and GPT-4.1-mini
(via OpenAl API), all selected for their strong
performance-to-size ratio.

Accessible compute and deployment: All
model training and inference is performed
on consumer-grade GPUs!, with deployment
streamlined using RunPod pods?.

Advanced pipeline building on prior SoTA:
Our approach systematically integrates and
improves strategies from the top BioLay-
Summ 2024 systems (You et al., 2024; Zhao
et al., 2024; Kim et al., 2024)—combining ro-
bust extract-then-summarize frameworks, ad-
vanced prompt engineering, targeted data aug-
mentation, and factuality-aware fine-tuning
(DPO).

While retrieval-augmented generation (RAG)
has shown promise in biomedical summarization
by enriching model inputs with external knowledge
sources such as Wikipedia, this work does not in-
corporate RAG due to timeline constraints. Future
iterations may revisit lightweight retrieval solutions
for even greater factuality.

1ht’cps: //docs.unsloth.ai/
Zhttps://docs. runpod.io/pods/overview
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2 Methods

2.1 Datasets

We used the official BioLaySumm 2025 task
datasets: eLife and PLOS (Xiao et al., 2025; Gold-
sack et al., 2022). Table 1 summarizes the dataset
splits:

Dataset | Train | Validation | Test
eLife 4346 241 142
PLOS 24773 1376 142

Table 1: Dataset splits for BioLaySumm 2025.

Tokenization (using c1100k_base) revealed sub-
stantial variation in article lengths, consistent with
previous dataset reports (Goldsack et al., 2022):

* eLife: Train articles averaged 14,140 tokens
(max 46,150), summaries averaged 428 to-
kens.

* PLOS: Train articles averaged 8,925 tokens
(max 32,623), summaries averaged 233 to-
kens.

Test sets do not include reference summaries.
eLife summaries are typically longer and more ab-
stracted, while PLOS summaries are shorter and
more closely tied to the article content (Luo et al.,
2022).

2.2 Preprocessing

TextRank Extraction. To efficiently compress
long articles and highlight salient content, we used
a custom TextRank implementation (adapted from
methods described in (You et al., 2024)):

* Articles were segmented into sentences us-
ing spaCy (en_core_web_sm), with only sen-
tences over 20 characters retained.

» TF-IDF vectors and cosine similarity were
used to construct a similarity matrix.

» Sentences were ranked with PageRank over
the similarity graph, and the top NV (N = 50)
were selected.

Chunking + TextRank. For models with
smaller context windows (notably Qwen3 4B, 32K
tokens (Yang et al., 2025)), we applied chunking:

* Articles were split into chunks of ~40 sen-
tences.

» TextRank was run independently within each
chunk, and the top sentences (e.g., 10 per
chunk) were extracted.

* If the total number of selected sentences
across all chunks exceeded the limit, we ap-
plied a global re-ranking step: all previously
selected sentences were pooled and TextRank
was run again on this subset to select the fi-
nal top 50, ensuring the most salient content
across the full article was retained. This step
was used when the combined top sentences
from all chunks could not fit in the model’s
input context.

For GPT-4.1-mini and Gemma3 4B (Team, 2025),
chunking and re-ranking were not required due to
their larger context capabilities.

Data Augmentation. Training diversity was
enhanced by using GPT-4.1-mini to paraphrase and
augment summaries, especially where extractive
strategies omitted lay-relevant detail. This data
augmentation step follows insights from previous
top systems (Zhao et al., 2024).

2.3 Model Setup and Training

We focused on small yet state-of-the-art LLMs for
efficiency and reproducibility:

* Gemma3 4B (Dynamic 4-bit Instruct)
* Qwen3 4B (Dynamic 4-bit Safetensor)
* GPT-4.1-mini (via OpenAl API)

Fine-tuning and inference for Gemma3 and
Qwen3 models leveraged the Unsloth framework,
which combines two key techniques for maximal
efficiency:

* Dynamic 4-bit quantization reduces mem-
ory usage by compressing model weights to 4
bits on-the-fly, enabling large LLMs to run on
consumer-grade GPUs (Han et al., 2024).

* LoRA (Low-Rank Adaptation) introduces
lightweight, trainable adapter layers, allowing
only a small subset of parameters to be fine-
tuned while the core model weights remain
frozen (Hu et al., 2021).

Together, these methods allowed efficient training
and adaptation of large models on standard hard-
ware (RTX 3090, 24GB VRAM). For comparison,
GGUF format is intended only for inference.
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2.4 Fine-Tuning and Hyperparameters

* Gemma3 4B: Fine-tuned with Unsloth us-
ing LoRA adapters (Hu et al., 2021) and de-
fault settings: temperature=1.0, top_k=64,
top_p=0.95. Training used per-device batch
size 2, gradient accumulation 4, max_steps
30, learning rate 2 x 10~4, weight decay 0.01,
AdamW 8-bit optimizer.

¢ Qwen3 4B: Followed Unsloth’s effective
setup: rank=32, lora_alpha=32, dropout=0,
“unsloth” gradient checkpointing. Training
used the same batch, learning rate, and opti-

mizer setup as above, with memory optimized
for 32K context (Yang et al., 2025).

* GPT-4.1-mini: Utilized OpenAl API with
recommended temperature and top_p settings.
SFT used standard instruction-following tem-
plates; context window up to 32K tokens.
Prompt design followed OpenAl’s best prac-
tices>.

2.5 Prompt Engineering

We systematically developed and tested a suite of
prompts, evaluating both zero-shot and few-shot
settings as well as dataset-specific refinements. Our
approach was influenced by prior competition lead-
ers (You et al., 2024; Zhao et al., 2024; Kim et al.,
2024) and included:

* Baseline Prompts (V1): Focused on clarity
and accessibility for lay readers.

¢ Structured/Prescriptive Prompts (V2): Pro-
vided numbered guidelines for better output
organization.

* Competition-Optimized Prompts (V3): Ex-
plicitly referenced BioLaySumm metrics
(ROUGE, BLEU, METEOR, BERTScore,
LENS, AlignScore, SummaC, FKGL, CLI,
DCRS) (Xiao et al., 2025), instructing models
to optimize relevance, readability, and factual-

ity.

* Refined Prompts (V4): Further emphasized
factuality, accuracy, and discouraged specula-
tive language or fabricated author names.

Model-Specific Prompts:

3https ://cookbook.openai.com/examples/gpt4-1_
prompting_guide

* Owen3 4B and Gemma3 4B: Used instruction-
tuned prompts with explicit, structured guid-
ance for one-paragraph, factually accurate lay
summaries (Yang et al., 2025; Team, 2025).

* GPT-4.1-mini: Incorporated OpenAlI’s prompt
engineering best practices (OpenAl, 2025b),
with iterative refinements based on validation.

Prompt selection was finalized for each dataset
and model through ablation, guided by the best
combination of metric performance and qualitative
validation. For full prompt templates, refer to
Appendix A.

3 Results and Analysis
3.1 Main Results

Table 2 reports the primary evaluation metrics for
our three models—GPT-4.1-mini, Gemma3 4B,
and Qwen3 4B—on both the eLife and PLOS test
sets. Each metric is averaged per dataset, followed
by the overall average across datasets.

All three models performed closely, with GPT-
4.1-mini slightly outperforming on relevance and
semantic similarity, while Qwen3 4B showed a
small edge on factuality metrics (AlignScore, Sum-
maC) (You et al., 2024; Kim et al., 2024; Zhao
et al., 2024; Team, 2025; Yang et al., 2025).

3.2 Ablation and Component Analysis

We performed ablation studies to analyze the effect

of prompt style, DPO training (Kim et al., 2024),

and extractive chunking (You et al., 2024).
Prompt Style:

* GPT-4.1-mini achieved best results with a gen-
eral, clarity-focused prompt.

* Gemma3 4B benefited from
constraint-driven prompts.

refined,

* Qwen3 4B excelled with explicit, stepwise
prompts.

DPO: Direct Preference Optimization (DPO)
improved factuality and readability metrics (Align-
Score, SummaC, FKGL, DCRS) (Kim et al., 2024),
but slightly reduced ROUGE/BLEU due to priori-
tizing factual alignment over surface-level overlap.

Chunking/Extraction: Chunking was crucial
for Qwen3 4B due to its limited context win-
dow (Yang et al., 2025), ensuring representation
across all article sections.
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Model Dataset | ROUGE | BLEU | METEOR | BERTS | FKGL | DCRS | CLI | LENS | Align | SummaC
GPT-4.1-mini | eLife 0.371 8.07 0.298 0.869 9.94 8.28 | 11.47 | 70.70 | 0.619 0.545
PLOS 0.335 8.08 0.290 0.870 14.71 10.24 | 14.87 | 57.49 | 0.764 0.533
Avg 0.353 8.08 0.294 0.870 12.32 9.26 | 13.17 | 64.10 | 0.691 0.539
Gemma3 4B | eLife 0.370 7.57 0.297 0.869 9.97 8.30 | 11.60 | 69.54 | 0.618 0.555
PLOS 0.335 .71 0.284 0.871 14.73 | 10.39 | 15.05 | 56.96 | 0.767 0.526
Avg 0.352 7.67 0.290 0.870 12.35 935 | 1332 | 63.25 | 0.693 0.541
Qwen3 4B eLife 0.367 7.16 0.287 0.869 10.32 852 | 11.89 | 69.41 | 0.631 0.558
PLOS 0.334 8.01 0.288 0.871 14.80 | 10.41 | 15.10 | 57.07 | 0.774 0.530
Avg 0.351 7.59 0.288 0.870 12.56 947 | 13.49 | 63.24 | 0.702 0.544

Table 2: Performance of our models on eLife and PLOS test sets for BioLaySumm 2025. FKGL, DCRS, and
CLI: lower is better (readability). All other metrics: higher is better. For BERTScore, values are rounded to three
decimals; Gemma3 4B achieved the highest score at full precision.

3.3 Discussion of Findings

Our experiments confirm that carefully optimized
small-scale LLMs (<7B parameters) can approach
the performance of much larger models in biomed-
ical lay summarization (Team, 2025; Yang et al.,
2025; Xiao et al., 2025). While none of our mod-
els surpassed last year’s BART/LED-based sys-
tems in extractive metrics such as ROUGE and
BLEU (You et al., 2024; Goldsack et al., 2024),
all achieved high semantic similarity and factuality,
with Gemma3 4B posting the highest BERTScore
among our submissions.

Ablation studies highlighted that prompt engi-
neering and DPO training have strong, model-
specific impacts, introducing a clear trade-off: opti-
mizing for factuality and readability can reduce
surface-level overlap with reference summaries,
and vice versa (Kim et al., 2024; Zhao et al., 2024).
Chunking strategies for models with limited con-
text windows (e.g., Qwen3 4B) proved essential
for consistent performance. As the datasets were
unchanged year-on-year (Goldsack et al., 2022),
our results indicate that further gains with small
LLMs may require new architectures or additional
external knowledge integration.

4 Conclusion

This work shows that well-optimized, small-scale
LLMs can produce high-quality biomedical lay
summaries, rivaling larger models in semantic and
factual metrics while remaining accessible for train-
ing on standard hardware.

Limitations
Despite these strengths, certain limitations remain:
* Performance Gap to Large Models: Despite

competitive scores, small LLMs still lag be-
hind last year’s best large-scale (BART/LED)

and generative models on overlap-based met-
rics (ROUGE, BLEU), which likely benefit
from larger pretraining corpora and parameter
capacity.

* Resource and Timeline Constraints: All
training was performed on single consumer
GPUs, restricting the scope of hyperparameter
search, ablation, and deeper multi-stage fine-
tuning that could further boost results.

* No External Knowledge Integration: We
did not implement retrieval-augmented gener-
ation (RAG). As a result, factual consistency
may suffer for highly novel, underrepresented
topics.

Future Work

Several avenues for further research and improve-
ment are suggested by our findings:

* Extended Fine-Tuning: Implementing ex-
tended and curriculum-based training, in-
cluding domain-adaptive pretraining or self-
supervised objectives, to bridge the gap with
larger models.

* Hybrid and Ensemble Approaches: Com-
bining small LLMs with external retrieval
modules to maximize both efficiency and fac-
tual accuracy.

* Cross-Domain and Multilingual Expansion:
Testing the generalizability of our methods
to other scientific fields and non-English cor-
pora.

Our findings suggest that with further refinement,
small and hardware-efficient LLMs can play a key
role in making biomedical research broadly acces-
sible, supporting both researchers and the general
public.
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A Prompt Examples

This appendix contains the full prompt templates
used in our experiments for PLOS, eLife, and
instruction-tuned models.

A.1 PLOS Prompts (GPT-4.1-mini)

Listing 1: PLOS V1 — Baseline Prompt

system_prompt = (

"You are a biomedical science writer tasked with
rewriting research article summaries for the general
public. "

"The original summaries were written by the researchers
themselves and may include technical language or
academic phrasing.\n\n"

"Your goal is to rewrite each summary so it is:\n”

"1. Clear and easy to understand without specialized
knowledge\n"

"2. Focused on the study's background, question,
findings, and significance\n”

"3. Free from jargon, unless the term is briefly
explained\n\n"

"Do not speculate or exaggerate findings. Aim for
accuracy, simplicity, and a neutral, informative
tone."”

Listing 2: PLOS V2 — Structured Style Prompt

system_prompt = (

"You are a professional biomedical writer. Your task is
to rewrite research article summaries for a public
audience. "

"Each summary should:\n\n"

"1. Start with a plain-language introduction of the
topic\n”

"2. Explain the problem or motivation for the research\n”

"3. Describe the key findings clearly and accurately\n”

"4. Conclude with a statement about the significance or
impact\n\n"

"Use clear language and avoid jargon unless briefly
explained. "

"Write in a calm, educational tone that avoids
exaggeration or speculation.”
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Listing 3: PLOS V3 — Competition-Optimized Prompt

system_prompt = (

"You are a language model participating in a biomedical
summarization competition (BioLaySumm 2025). "

"You are given compressed scientific article inputs from
PLOS journals. "

"Your task is to generate accurate, clear, and concise
lay summaries that perform well across automated
evaluation metrics.\n\n"

"Your summary should be optimized for the following
metrics:\n"

"~ ROUGE (surface overlap)\n”

"- BLEU & METEOR (fluency and lexical alignment)\n”

"~ BERTScore (semantic similarity)\n”

"~ LENS, AlignScore, SummaC (faithfulness and factual
consistency)\n"

"- FKGL, CLI, DCRS (readability)\n\n"

"Guidelines for the summary:\n"

"1. Use the language of the source where appropriate to
maximize ROUGE and BLEU\n"

"2. Be faithful to the article and avoid hallucinations
to improve factual scores (AlignScore, LENS)\n”

"3. Use simple, fluent language to keep readability
scores (FKGL, DCRS) low\n”

"4. Prioritize the article's main research question,
methods, findings, and relevance\n”

"5. Avoid speculative language or overstatements\n”

"6. Stay within ~500 tokens (max 512) for the summary\n”

"7. Minimize technical terms unless they are clearly
explained\n\n"

"You are writing for an educated non-expert audience.
Your tone should be professional, informative, and
neutral - avoid promotional language. "

"The compressed article is provided below.”

"Do not invent results or speculate beyond the article.”

Listing 6: eLife V2 — Structured Educational Prompt

system_prompt = (

"You are a science writer tasked with converting
biomedical articles into lay summaries for the
public.\n\n"

"Your summary should:\n"

"1. Clearly introduce the topic and research question\n”

"2. Summarize the key findings\n”

"3. Explain why the findings matter\n\n"

"The summary should be factual, readable, and free of
technical jargon unless explained. "

"Keep the tone educational and avoid speculation. Use one
paragraph only.”

Listing 7: eLife V3 — Evaluation-Aware Prompt (Com-
petition Specific)

Listing 4: PLOS V4 — Refined Prompt (Author Names,
Readability Emphasis)

system_prompt = (

"You are a language model assisting in a biomedical
summarization competition (BioLaySumm 2025). "

"You are given compressed versions of PLOS journal
articles and must produce high-quality lay summaries
for a non-expert audience.\n\n"

"Key goals:\n"

"~ Maximize ROUGE, BLEU, METEOR (surface-level match and
lexical fluency)\n”

"~ Ensure semantic similarity (BERTScore)\n”

"- Maintain factual alignment with the source (LENS,
AlignScore, SummaC)\n"

"- Ensure readability (FKGL, DCRS, CLI)\n\n"

"Writing Instructions:\n"

"1. Clearly present the study's background, question, and
key findings\n”

"2. Avoid speculation or exaggeration\n”

"3. Do NOT invent or assume author names (e.g., avoid
phrases like 'Smith et al.') unless provided\n”

"4. Avoid generic phrasing and repetition\n”

"5. Keep language simple, clear, and free from jargon
unless defined\n”

"6. Structure your summary in a single coherent
paragraph, max 512 tokens\n\n"

"Your tone should be professional and informative. Write
as if explaining the findings to an educated,
non-specialist reader.”

system_prompt = (

"You are a scientific language model participating in a
summarization challenge (BioLaySumm 2025). "

"Your task is to convert compressed biomedical articles
from the eLife journal into highly readable and
factually accurate lay summaries.\n\n"

"Your summary should be crafted to optimize the following
competition metrics:\n"

"- ROUGE, BLEU, METEOR - surface and structural

similarity\n"”

"~ BERTScore - semantic similarity to expert-written
summaries\n”

"~ LENS, AlignScore, SummaC - factual accuracy and
grounding\n”

"- FKGL, CLI, DCRS - high readability and clarity\n\n"

"Writing instructions:\n"”

"1. Begin with a simple introduction of the topic\n”

"2. State the motivation or problem addressed by the
research\n”

"3. Clearly describe the core findings\n”

"4. Mention the significance or implications\n”

"5. Avoid speculative statements or exaggeration\n”

"6. Avoid technical terms unless defined in context\n”

"7. Write in one paragraph, maximum 512 tokens\n\n"

"Keep your tone calm, neutral, and educational. Imagine
you are explaining the study to a scientifically
curious reader without specialized knowledge. "

"The following input has been pre-selected using TextRank
to reflect the most important parts of the article.”

Listing 8: eLife V4 — Author Attribution Correction +
Precision-Oriented

A.2 eLife Prompts (GPT-4.1-mini)

Listing 5: eLife V1 — Baseline Prompt

system_prompt = (

"You are a science writer specializing in biomedical lay
summaries for the public. "

"For each article, your goal is to write a summary
that:\n\n"

"1. Introduces the topic clearly and simply\n”

"2. Explains the motivation for the research\n”

"3. Summarizes the main findings (without exaggeration)\n”

"4. Describes potential relevance or impact if known\n\n”

"Avoid technical terms, define any necessary jargon, and
write in a warm but professional tone. "

system_prompt = (

"You are a summarization model participating in
BioLaySumm 2025, tasked with converting compressed
biomedical articles from eLife into accurate,
easy-to-understand summaries for a general
audience.\n\n"

"Key Requirements:\n"

"- Optimize for ROUGE, BLEU, METEOR (lexical match)\n”

"- Optimize for BERTScore, LENS, AlignScore, SummaC
(semantic similarity and factuality)\n”

"~ Maintain readability: FKGL, DCRS, CLI\n\n"

"Instructions:\n"

"1. Clearly explain the study's background, motivation,
and findings\n"

"2. Do not invent author names or citations - only use
names explicitly present in the article\n”

"3. Write one concise paragraph (less than 512 tokens)\n"”

"4. Avoid promotional or speculative language\n”

"5. Use plain, accurate language suitable for a
scientifically curious but non-expert audience\n\n"”

"Input below contains compressed sentences extracted via
TextRank. Focus on factual precision and clear
communication.”
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A.3 Instruction-Tuned Prompts (Qwen3 4B
and Gemma3 4B)

Listing 9: Qwen3 4B: System/User Prompts

{

"system”: "You are a biomedical summarization assistant
participating in the BiolLaySumm 2025 competition. Your
task is to generate accurate, clear, and concise lay
summaries from compressed scientific articles. Focus
on maximizing performance across evaluation metrics
such as ROUGE, BLEU, METEOR, BERTScore, LENS,
AlignScore, SummaC, FKGL, CLI, and DCRS."

}
{

"user”: "Please read the following compressed article and
generate a lay summary that:\n\n1. Clearly introduces
the topic and research question.\n2. Summarizes the
main findings accurately.\n3. Explains the
significance or implications of the study.\n4. Avoids
speculative language and technical jargon unless
defined.\n5. Maintains a professional and informative
tone suitable for a non-expert audience.\n6. Does not
invent or assume author names unless explicitly
provided.\n7. Is structured in a single coherent
paragraph, not exceeding 512 tokens.\n\nCompressed
Article:\n{insert compressed article here}"

Listing 10: Gemma3 4B: System/User Prompts

{

"system”: "You are a scientific summarization model
participating in the BiolLaySumm 2025 competition. Your
goal is to convert compressed biomedical articles into
highly readable and factually accurate lay summaries,
optimizing for metrics like ROUGE, BLEU, METEOR,
BERTScore, LENS, AlignScore, SummaC, FKGL, CLI, and
DCRS."

}
{

"user”: "Read the following compressed article and produce
a lay summary that:\n\n1. Introduces the topic and
research question in simple terms.\n2. Summarizes the
key findings accurately.\n3. Explains the significance
or implications clearly.\n4. Avoids speculative
statements and technical jargon unless defined.\n5.
Maintains a neutral and educational tone suitable for
a non-expert audience.\n6. Does not fabricate or
assume author names unless explicitly mentioned.\n7.
Is written in a single paragraph, not exceeding 512
tokens.\n\nCompressed Article:\n{insert compressed
article here}”
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Abstract

Though access to one’s own radiology reports
has improved over the years, the use of complex
medical terms makes understanding these re-
ports difficult. To tackle this issue, we explored
two approaches: supervised fine-tuning open-
source large language models using QLoRA,
and refinement, which improves a given gen-
erated output using feedback generated by a
feedback model. Despite the fine-tuned model
outperforming refinement on the test data, re-
finement showed good results on the validation
set, thus showing good potential in the genera-
tion of lay radiology reports. Our submission
achieved 2nd place in the open track of Subtask
2.1 of the BioLaySumm 2025 shared task.

1 Introduction

There has been a growing demand in recent years
for patients’ ability to access their own medical
records, particularly their radiology reports (Steitz
et al., 2023, Vincoff et al., 2022). However, even
when made accessible, radiology reports, as writ-
ten by radiologists, are difficult to understand due
to highly technical vocabulary. A 2019 review
showed that the majority of radiology reports re-
quired at least college-level reading skills, with
only 4.2% of radiology reports being readable
at the 8th-grade reading level or below (Martin-
Carreras et al., 2019). The BioLaySumm 2025
shared task addresses this issue by introducing a
new task which aims to create patient-friendly (i.e.
layman) versions of radiology reports (Xiao et al.,
2025).

Large language models (LLMs) such as Qwen
(Bai et al., 2023), LLaMA (Touvron et al., 2023)
and GPT-4 (OpenAl et al., 2024b) have demon-
strated notable ability in summarising medical texts
(Das et al., 2025, Zhou et al., 2024). Likewise, the
results of previous editions of the BioLaySumm
shared task (Goldsack et al., 2023, Goldsack et al.,

»] Radiology b Final Lay
Report % Report

SFT Model

\

Refinement
Model

Lay
Report

until stop condition
s 2 0 or n iterations

3xd
Feedback Model E'g Feedback

w

/

Figure 1: Our refinement framework for the lay radiol-
ogy report generation task.

-

2024) have shown that LLLMs are capable of pro-
ducing lay versions of biomedical texts. Therefore,
there is potential in using LLMs for the generation
of lay radiology reports.

Recent research (Zhao et al., 2024, Sterling et al.,
2024) has demonstrated the ability of OpenAl’s
GPT-3 (Brown et al., 2020) and GPT-4 models to
generate lay radiology reports. However, OpenAl
models can be costly over time thus potentially
making lay radiology reports financially infeasible.
As such, fine-tuning open-source LLMs may be
more viable down the line for lay radiology report
generation. Furthermore, fine-tuning allows open-
source models to adapt to domain- or task-specific
data. In the context of healthcare, this allows mod-
els to become familiar with medical vocabulary
which, in turn, improves the quality of generated
lay reports.

Welleck et al. (2022) and Madaan et al. (2023)
have shown that, just as humans evaluate and edit
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their own work, LLMs are not only capable of eval-
uating and refining their own outputs but also ben-
efit from doing so. At the same time, lay reports
must be readable and maintain factual accuracy.
Despite the ability of LLMs to produce medical
summaries, the results obtained are still riddled
with hallucinations (Das et al., 2025). Therefore,
we see refinement as a potential approach in ensur-
ing readability whilst being faithful to the original
professional lay reports.

We experimented with two approaches for the
shared task: (1) supervised fine-tuning an open-
source LLM and (2) refinement. We fine-tuned
an LLM using QLoRA (Dettmers et al., 2023) on
pairs of radiology reports and their corresponding
lay reports to generate layman versions of radiol-
ogy reports, and we used the GPT-40-mini model
(OpenAl et al., 2024a) to refine the output gener-
ated by the fine-tuned model. Although refinement
showed promising results on the validation set, the
model that performed best on the test data was a
fine-tuned Qwen3-4B (Yang et al., 2025) model,
which achieved 2nd place in the shared task.

2 Methods

2.1 Supervised Fine-Tuning (SFT)

We fine-tuned open-source large language models
on pairs of radiology reports and their correspond-
ing lay reports to train the model to generate a lay
report given a professional radiology report. We
performed SFT with QLoRA to optimise memory
usage and increase efficiency. The prompt we used
to fine-tune our models can be seen in Appendix A.

2.2 Refinement

We adapted the Self-Refine framework by Madaan
et al. (2023) for lay radiology report generation
(Figure 1). The refinement framework can be bro-
ken down into three steps: (1) Generation, (2) Feed-
back, and (3) Refinement.

Generation. We used an SFT model, Mg g7, for
the initial generation. We used a few-shot prompt
Dgen to generate the initial lay report yo given a
professional radiology report x so that:

Yo = Msrr(pgen||). (D

Feedback. Given a radiology report and gen-
erated lay report pair < z,y; >, where ¢ € n is
the iteration step and n is the maximum number
of iteration steps, feedback is generated for the lay

report y; using few-shot prompting on our feedback
model, M gy:

fbi = Myy(pyol|z[yi),

We generated a synthetic dataset containing ra-
diology reports, generated lay reports and their
feedback for our few-shot prompt p ;. The lay re-
ports used in our feedback dataset were generated
by GPT-40, and base open-source instruction mod-
els (particularly Llama-3.1-8B-instruct (Grattafiori
et al., 2024) and Qwen2.5-7B-instruct (Yang et al.,
2024)). We used the few-shot examples only on
the first feedback pyy, .

To prevent My, from generating feedback that
contradicts feedback from previous iterations, we
appended previous feedback to ps,, where 1 <7 <
n in lieu of the examples from the feedback dataset
for iterative refinement so,

1bi = Mppopllalyil - lwollbo)- 3

As per Madaan et al. (2023), we prompted the
model to encourage actionable feedback i.e. feed-
back that specifically pointed out sections of the
text that should be improved on (see Figure 5 in
Appendix A).

Refinement. We use a refinement model, Mg,
to generate the refined lay report given the gener-
ated feedback, fb; and radiology report-lay report
pair < x,y; > so that

yi+1 = Mr(prllz|yill fb:)- )

Similar to the feedback step, we appended previ-
ous feedback and refined lay reports from previous
iterations to the prompt for iterative refinement (see
Figure 8 in Appendix A) to prevent My from gen-
erating outputs similar to previous iterations i.e. to
learn from previous iterations so that

Yit1 = Mgr(prllzlly| foill - - - llvoll fbo).  (5)

Stop Condition. For iterative refinement, we
employed a stop condition to control the number
of iterations in the refinement framework. For this,
we used two stop conditions: (1) a score thresh-
old, & = Nyspects X 9, where the score is extracted
from fb;, and (2) a set number of maximum itera-
tions n. Refinement is performed iteratively until
0 is reached or exceeded, or until n iterations are
performed (whichever occurs first).

We detail our experiments with the refinement
framework further in Section 3.3, where we discuss
the different models used for feedback and refine-
ment and the different aspects used by the feedback
model to evaluate the lay reports.

i=0,1,...,n. (2
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3 Experiment Setup

The prompts we used for generation, feedback and
refinement are detailed in Appendix A.

3.1 Data

We used the open-source track dataset provided
by Xiao et al. (2025) for the second task of the
BioLaySumm shared task, which is based on the
LaymanRGG dataset by Zhao et al. (2024). The
dataset comprises radiology images and their corre-
sponding radiology reports and lay reports from the
PadChest, BIMCV-COVID19 and Openl datasets.
Out of the three data sources, the PadChest dataset
makes up the majority of the dataset, followed
by the BIMCV-COVID19 and Openl datasets (Ta-
ble 1).

Source Train Validation Test
PadChest 116,847 7,824 7,130
BIMCV-COVID19 31,364 2,042 3,221
Openl 2,243 134 186
Total 150,454 10,000 10,537

Table 1: Number of samples from each data source in
the dataset.

As we did not participate in the multi-modal
version of the task, we did not use the radiology
images in our experiments.

3.2 Supervised Fine-Tuning

We experimented with fine-tuning Qwen2.5-3B-
Instruct and Qwen3-4B using QLoRA, which in-
jects trainable low-rank adapter layers (LoRA) into
specified model layers. We injected these layers
into all the model’s linear projection layers, as that
tended to result in performance comparable to a
fully fine-tuned model according to Dettmers et al.
(2023).

We performed our experiments on an NVIDIA
GeForce RTX 3090 graphics processing unit
(GPU). We trained our models for 5 epochs with
a learning rate of 5e-4 and an effective batch size
of 128. For QLoRA, we set our rank R = 64
and o = 128 to maximise performance whilst still
training the model efficiently.

3.3 Refinement

We chose Qwen3-4b-SFT as our generation model
as it showed the best performance on the valida-
tion set. For the feedback and refinement models,
we experimented with using the SFT model for

both feedback and refinement, using GPT-40-mini
(which performed best among the GPT models
(see Table 2) on the validation set) for only feed-
back whilst using the SFT model for only refine-
ment, and using GPT-4o0-mini for both feedback
and refinement (see Appendix B). Subsequently,
we found that the framework that worked best was
when we used GPT-40-mini as both the feedback
and the refinement models.

We initially had our feedback model evaluate the
generated report on seven aspects: factuality, read-
ability, completeness, conciseness, writing style (to
avoid conversational language), format (to avoid
verbose commentary), and structure (to discourage
bullet points and lists). However, when examin-
ing the impact of each aspect on a single sample
(see Appendix C), the aspects that showed signifi-
cant improvement when used were completeness,
factuality and format. Readability was shown to
negatively impact the overall quality of the report,
with improvements to the readability scores (sec-
tion 4.1) being minimal compared to most of the
other aspects.

We also experimented with iterative refinement
on our validation sample set (see Section 4.2) with
n = 1,3,5, where n is the number of iterations.
Experiments show that a single iteration (i.e., with-
out looping) consistently outperformed n = 3
and n = 5 when max_new_token = 256 for
the first generation, but 3 iterations and 5 itera-
tions consistently outperformed one iteration when
max_new_token = 512 for the first generation,
with n = 3 performing better than n = 5. Of
the three iteration settings, the setting that per-
formed the best was the 3-iteration setting with
max_new_token = 512.

Furthermore, based on the scores extracted from
the feedback, experiments conducted to evaluate
the necessity of few-shot feedback prompting and
the inclusion of past history found that few-shot
feedback prompting on the first iteration and the
inclusion of past history in subsequent iterations
consistently resulted in an improvement of scores
with each iteration across all model and iteration
settings (provided that n # 1), whilst using only
few-shot feedback prompting (in all iterations) or
only including past history or using neither tended
to result in a decrease in scores with each iteration.

These experiments found that the best refinement
setting was max_new_token = 512, n = 3 with
few-shot feedback prompting on the first iteration
and the inclusion of past history.

258



Relevance

Readability Clinical

Model ROUGE BLEU METEOR BERTScore Semantic| FKGL DCRS CLI|F1CheXbert F1RadGraph|r28¢
GPT-4o-mini 5827 3679  62.66 9469  68.19 | 759 959 840| 83.42 3431 6261
GPT-40 4790 2615  48.86 9351 6665 | 659 9.08 8.10| 81.86 28.24 56.17
GPT4.1 4375 2668 4872 9273 6247 | 650 877 7.03| 79.22 22.49 5372
Qwen2.5-3b-Instruct-SFT| 56.95 2082  63.30 9478 6553 | 774 9.68 873 79.12 28.68 58.45
Qwen3-4b-SFT 5684 3157  65.67 94.69 668 | 802 953 798/ 8243 33.09 61.58
+Refinement: iter=1 | 5912 2869  63.50 9494 6889 | 778 926 8.07| 8245 38.01 6223
+ Refinement: iter=3 | 56.07 2853  64.87 9443 7273 | 784 926 9.21| 82.68 43.40 63.24
+ Refinement: iter=5 | 5496 28.16  62.70 9436 69.89 | 657 875 8.14| 83.08 38.57 61.67

Table 2: Evaluation results of our experiments based on 100 validation samples. Refinement here refers to our
refinement framework using GPT-40-mini as our feedback and refinement model. Readability is excluded in the

calculation of the average scores.

Model Relevance Readability Clinical Average
ROUGE BLEU METEOR BERTScore Semantic| FKGL DCRS CLI|F1CheXbert FlRadGraph‘ 2

Qwen3-4B-SFT 5293 28.66 57.73 93.49 84.26 753 929 825 82.69 26.54 59.01
+ Refinement: iter=1| 5229 27.84  57.50 93.34 83.70 847 9.65 9.09 81.51 26.84 58.55
GPT-40-mini 52.66 26.61 53.92 93.42 82.50 6.89 9.28 7.52 83.47 25.83 58.24

Table 3: Evaluation results of selected models across relevance, readability, clinical accuracy, and their averaged
metrics based on the test set. Readability is excluded in the calculation of the average scores.

4 Results and Discussion

4.1 Metrics

We use the official evaluation script provided by
the organisers (Xiao et al., 2025) to evaluate our
models on three aspects: relevance, readability
and clinical. Relevance metrics include averaged
ROUGE-1, -2, and -L (Lin, 2004) scores, BLEU
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), BERTScore (Zhang et al., 2020) and
semantic scoring based on SentenceTransformer’s
fine-tuned MiniLM' (Wang et al., 2020). Flesch-
Kincaid Grade Level (FKGL) (Kincaid et al., 1975),
Dale-Chall Readability Score (DCRS) (Dale and
Chall, 1948) and the Coleman-Liau Index (CLI)
(Coleman and Liau, 1975) were used to evaluate
readability, and F1CheXbert (Smit et al., 2020) and
F1RadGraph (Jain et al., 2021) were used for the
clinical metrics.

4.2 Results

We used GPT-40-mini, GPT-40 (OpenAl et al.,
2024a) and GPT-4.12 as baselines. Due to Ope-
nAl costs, we randomly sampled 100 samples from
the validation split to be used for evaluation. To
make the results comparable, we performed all our
experiments on the 100 samples set. We detail our
results for each metric in Table 2.

1https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2
https://openai.com/index/gpt-4-1/

We calculated the averages of the metrics (ex-
cluding the readability metrics) after evaluation to
be able to calculate the average of all metrics for
each model. From this, we determined that the best
performing model was the 3-iteration refinement
framework. However, due to limited resources,
we submitted the 1-iteration refinement framework
instead.

We submitted our fine-tuned Qwen3-4b model
and 1-iteration refinement framework for the shared
task, along with GPT-40-mini for our baseline (Ta-
ble 3). Upon our submissions, we found that the
refinement framework underperformed on the test
set compared to the fine-tuned model. Calculating
the averages of these scores (without the readability
metrics) showed that the best model was Qwen3-
4b-SFT, which we used as our final submission.

4.3 Analysis

The results in Table 2 show that the refinement
framework, particularly when iterations n = 1 or
n = 3, succeeded in improving generations from
the fine-tuned model. However, a drop was ob-
served on the test set (Table 3). This section aims
to explore possible reasons as to why this had oc-
curred.

4.3.1 Readability and Clinical Metrics

Both tables 2 and 3 show that there is a cor-
relation between the readability metrics and the
F1RadGraph metric. To analyse this further, we
calculate the correlation between each readability
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Metric Corr

FKGL vs. F1RadGraph | -0.46
DCRS vs. F1RadGraph | -0.11
CLI vs. F1RadGraph | -0.68

Table 4: Correlations between each readability metric
and the F1RadGraph metric (after normalisation).

metric and the F1RadGraph metric (Table 4). From
this, a negative correlation can be observed be-
tween the readability metrics and F1RadGraph. It
can then be inferred that models that scored higher
in the F1RadGraph metric tended to have higher
readability scores (i.e. produced less readable lay
reports). This can be observed in tables 2 and 3,
where all the GPT models tended to have better
readability scores at the expense of F1RadGraph,
and the refinement framework tended to have better
F1RadGraph scores at the expense of readability.
This is also evidenced by the test set (Table 3),
where refinement had the best F1RadGraph scores
and the worst readability scores, whereas GPT-4o-
mini had the best readability scores but the worst
F1RadGraph scores. Our best model on the test set,
Qwen3-4B-SFT, was able to balance both readabil-
ity and F1RadGraph scores.

4.3.2 Affect of Feedback on Refinement
Outputs

Madaan et al. (2023) observed that instances where
their framework did not improve the original out-
put were primarily caused by erroneous feedback.
Therefore, we analysed particular instances within
the validation set where using refinement improved
on the original generated lay report and where us-
ing refinement resulted in worse output to confirm
this.

Specific examples are noted in Appendix D. We
noticed the feedback model tended to suggest the
use of more technical medical terms despite being
explicitly instructed that the aim was the generation
of lay (i.e. readable) reports, which could affect
readability scores. Furthermore, Table 7 shows
that poor suggestions could result in less accu-
rate reports (e.g. ’long-term changes’ generated
by the SFT model vs. ’ongoing changes’ gener-
ated by the refinement model to describe the term,
"chronic’ due to the feedback describing the former
as ’vague’).

Refined lay reports that achieved higher scores
than the initial lay report were those that were ac-

curate but could be written better according to the
generated feedback (Tables 8, 9). This implies that
refinement works well as an editor for language,
but may need fine-tuning on domain data in order
to increase factual accuracy.

4.3.3 Lexical Overlap vs. Semantic Overlap

Table 10 in Appendix D shows an example where
the refined version of a lay report scored lower
than the initial generated report despite being more
factually accurate. The term ’interstitial opacities’
in the original radiology report could refer to is-
sues such as inflammation or growths; thus, the use
of the phrase ’fluid buildup’ could be considered
an instrinsic hallucination, and the refined report’s
use of the phrase ’increased density’ more faithful
to the original radiology report. As metrics such
as F1CheXbert and F1RadGraph uses named en-
tity recognition (NER) to evaluate factual accuracy
(Smit et al., 2020, Jain et al., 2021), this could lead
to bias towards outputs with more overall n-gram
overlap with the reference reports. That the refined
lay reports that outperformed the initial generated
report were primarily those that simply rephrased
the initial generated report without changing its
meaning (see Section 4.3.2) also supports this hy-
pothesis.

5 Conclusion

By fine-tuning Qwen models, we show that open-
source LLMs such as Qwen are capable of gen-
erating lay radiology reports that can be easily
understood by patients. Despite the refinement
framework’s performance on the test set, it showed
significant results on the validation set and did not
underperform the SFT model by a large margin;
hence, it has potential for future work. We also
analysed potential causes behind the discrepancy
in performance between the validation set and the
test set. Both approaches exceeded GPT-40-mini
during evaluation, thus proving to be viable ap-
proaches in the lay radiology report generation.

Limitations

Due to limited resources, we were unable to utilise
the full validation set (which contained 20K sam-
ples), which potentially led to a discrepancy when
running our models on the full test set. Future work
could expand refinement further by experimenting
with fine-tuning GPT models and/or open-source
LLMs for feedback and refinement to improve per-
formance and increase potential.
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A Prompts

A.1 Few-shot Prompting For Generation

We used the following prompt to fine-tune our mod-
els.

### Radiology Report: {example[’radiology_report’]1}
### Layman Report: {example[’layman_report’]1}

Figure 2: Prompt used for SFT.

We used a 3-shot prompt to generate lay reports
(Figure 3).

### You are translating professional radiology
reports into layman’s terms. Do not include any
medical jargon. Write concisely. When rewriting the
radiology reports, follow these examples:

Radiology Report: {example[@][’radiology_report’]}
Layman’s Report: {example[@][’layman_report’]1}

Radiology Report: {example[1][’radiology_report’]}
Layman’s Report: {example[1][’layman_report’]1}

Radiology Report: {example[2][’radiology_report’]}
Layman’s Report: {example[2][’layman_report’]1}

### Radiology Report: {radiology_report}
### Layman’s Report:

Figure 3: 3-shot prompt used for generation
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### You are an expert medical language reviewer. You are given a radiology report and the full
output generated by a language model in response to it. Evaluate the quality of the **entire
model outputx* (not just the lay report section) based on the following 3 criteria.

For each, provide a **concise explanation (1-2 sentences max)*x and a **score in the format
x/10**. At the end, provide the total score as the x*sum of all three criteriax*, formatted as
*%n/30%* .

1. =x*xFactuality (x/10)**: How factually consistent is the output with the original radiology
report? Highlight factually incorrect or inconsistent phrases and penalize accordingly.

2. **Completeness (x/10)**: Does the output include all important information from the radiology
report? Penalize omissions.

3. x*xFormat (x/1@)**: Penalize any commentary or non-report language, such as “Here is your
revised report,” “Translation:”, or any explanation of changes. Full marks only if the output
**onlyx* contains the lay summary, without extra headers or commentary.

4. *xTotal Score (n/30)#*x: Sum of the seven individual scores.

Here are some examples of evaluations:
Original Radiology Report: \n {examples[@][’radiology_report’]}

Lay Report:\n {examples[@][’lay_report’]1}
Feedback:\n {examples[@][’feedback’]}

Lay Report:\n {examples[1][’lay_report’]1}
Feedback:\n {examples[1][’feedback’]}

Lay Report:\n {examples[2][’lay_report’]1}
Feedback:\n {examples[2][’feedback’]}

## Lay Report:\n {lay_report}
## Feedback:

Original Radiology Report:\n {examples[1][’radiology_report’]}

Original Radiology Report:\n {examples[2][’radiology_report’]}

## Original Radiology Report:\n {radiology_report}

Figure 4: Few-shot feedback prompt for the first iteration.

A.2 Feedback and Refinement Prompts

We detail the feedback generation prompts we used
in figures 4 and 5. Figure 4 is our few-shot feed-
back prompt for the single iteration model and the
first iteration of the iterative model, whilst Figure 5
is our feedback prompt with past history for sub-
sequent iterations of the iterative model. Figure 6
shows the prompt that includes all seven aspects.

Our prompts for refinement can be seen in fig-
ures 7 and 8. Figure 7 is the prompt we use for the
first iteration, and Figure 8 is the prompt we use
for subsequent iterations.
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### You are an expert medical language reviewer. You are given a radiology report and the full
output generated by a language model in response to it. Evaluate the quality of the x*xentire
model output** (not just the lay report section) based on the following 3 criteria.

For each, provide a #*xconcise explanation (1-2 sentences max)** and a **score in the format
x/10x*. At the end, provide the total score as the x*sum of all three criteriax*, formatted as
**n/30%* .

1. =*xFactuality (x/1@)x*x: How factually consistent is the output with the original radiology
report? Highlight factually incorrect or inconsistent phrases and penalize accordingly.

2. **Completeness (x/10)**: Does the output include all important information from the radiology
report? Penalize omissions.

3. #*xFormat (x/1@)**: Penalize any commentary or non-report language, such as “Here is your
revised report,” “Translation:”, or any explanation of changes. Full marks only if the output
**onlyx* contains the lay summary, without extra headers or commentary.

4. *xTotal Score (n/30)*x: Sum of the seven individual scores.

Here are past edits for your reference:
{past_history}

## Original Radiology Report:
{radiology_report}

## Lay Report:

{lay_report}

## Feedback:

Figure 5: Few-shot feedback prompt for the first iteration.

### You are an expert medical language reviewer. You are given a radiology report and the full
output generated by a language model in response to it. Evaluate the quality of the **xentire
model output** (not just the lay report section) based on the following 7 criteria.

For each, provide a #*xconcise explanation (1-2 sentences max)** and a **score in the format
x/10x*. At the end, provide the total score as the x*sum of all seven criteriax*, formatted as
*%N/TOx* .

1. =**Factuality (x/10)**: How factually consistent is the output with the original radiology
report? Highlight factually incorrect or inconsistent phrases and penalize accordingly.

2. x*Readability (x/1@)**: Is the output easy to understand for a patient with no background in
medicine? Identify medical terms or unclear phrasing and penalize as needed.

3. **Completeness (x/10)**: Does the output include all important information from the radiology
report? Penalize omissions.

4. x*Conciseness (x/10)**: Is the output concise and succinct? Penalize unnecessarily verbose
outputs (e.g., Outputs that over-explain, or repetitive outputs).

5. **Writing Style (x/10)x*: Is the tone formal, objective, and clinical? Penalize conversational
phrasing, direct address (e.g., “you”), or quoting of the original report.

6. **Structure (x/10)**: Does the output follow a clear paragraph-based structure similar to
clinical reports? Penalize if it uses headings, bullet points, or numbered lists.

7. *xFormat (x/1@)**: Penalize any commentary or non-report language, such as “Here is your
revised report,” “Translation:”, or any explanation of changes. Full marks only if the output
**onlyx* contains the lay summary, without extra headers or commentary.

8. *xTotal Score (n/70)**: Sum of the seven individual scores.

Figure 6: Few-shot feedback prompt for the first iteration.
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### You are translating radiology reports into layman’s terms. You are given feedback for a lay
report. Use the given feedback to improve and rewrite the lay report.

Do not include any commentary, section titles, or explanation of any changes made. The output
should contain only the lay report, written clearly.

### Original Radiology Report: {radiology_report}

### Model Output: {lay_report}

### Feedback: {feedback}

### Use the feedback to improve the lay report. ### Revised Lay Report:

Figure 7: Refinement prompt for the first iteration.

### You are translating radiology reports into layman’s terms. You are given feedback for a lay
report. Use the given feedback to improve and rewrite the lay report.

Do not include any commentary, section titles, or explanation of any changes made. The output
should contain only the lay report, written clearly.

Here are past feedbacks for your reference:

{past_feedbacks}

### Original Radiology Report: {radiology_report}

### Model Output: {lay_report}

### Feedback: {feedback}

### Use the feedback to improve the lay report. #i## Revised Lay Report:

Figure 8: Refinement prompt for the first iteration.
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Generation  Feedback Refinement |Few-shot Past History Iter | Relevance Readability Clinical Avg
Qwen3-4b-FT Qwen3-4b-FT Qwen3-4b-FT v v 3 78.17 88.77 50.00 72.31
Qwen3-4b-FT GPT-40-mini GPT-40-mini First v 1 88.80 63.38 50.00 67.39
Qwen3-4b-FT GPT-40-mini Qwen3-4b-FT v X 3 71.99 57.98 50.00 59.99
Qwen3-4b-FT - - - - 3 71.99 57.98 50.00 59.99
Qwen3-4b-FT GPT-40-mini GPT-40-mini First v 5 87.69 40.73 50.00 59.47
Qwen3-4b-FT GPT-40-mini Qwen3-4b-FT | First X 3 62.91 59.72 50.00 57.54
Qwen3-4b-FT GPT-40-mini GPT-40-mini First v 3 87.64 30.87 50.00 56.17
Qwen3-4b-FT Qwen3-4b-FT Qwen3-4b-FT All X 3 54.12 57.43 50.00 53.85
Qwen3-4b-FT Qwen3-4b-FT Qwen3-4b-FT All v 3 55.10 54.51 50.00 53.20
Qwen3-4b-FT Qwen3-4b-FT Qwen3-4b-FT| First X 3 62.19 36.53 56.25 51.66
Qwen3-4b-FT GPT-40-mini Qwen3-4b-FT | First v 3 66.85 28.02 50.00 48.29
Qwen3-4b-FT GPT-40-mini Qwen3-4b-FT All v 3 55.21 36.33 50.00 47.18
Qwen3-4b-FT GPT-40-mini Qwen3-4b-FT v v 3 55.02 33.05 50.00 46.02
Qwen3-4b-FT Qwen3-4b-FT Qwen3-4b-FT| First v 3 49.64 29.33 50.00 42.99
Qwen3-4b-FT Qwen3-4b-FT Qwen3-4b-FT v X 3 12.50 49.59 50.00 37.36
Qwen3-4b-FT GPT-40-mini Qwen3-4b-FT All X 3 47.55 8.15 50.00 35.23

Table 5: Comparison of refinement configurations on one validation sample. Few-shot denotes the use of few-shot
feedback prompts (First = only on first iteration; All = in every iteration). Past History indicates whether or not past
iterations were included in the prompts. Iter is the number of refinement iterations.

B Setting-level Inspection

We also compared the results of different models
for feedback and/or refinement with different re-
finement settings (Table 5).

C Aspect-level Inspection

Aspect ‘Relevance Readability Clinical ‘ Total Average
Completeness| 42.77 67.46 89.28 66.50
Factuality 95.11 37.67 50.00 60.93
Format 62.50 64.53 50.00 59.01
Writing Style | 61.65 0.00 100.00 53.88
Conciseness 5.44 100.00 50.00 51.81
Structure 17.95 84.39 50.00 50.78
None 43.25 58.90 50.00 50.72
Readability 37.97 61.78 50.00 49.92

Table 6: Average scores across each aspect for relevance,
readability, clinical metrics, and overall total on one
validation sample.

We inspect the influence each aspect we initially
used on the lay report generation. The scores show
the average of the evaluation metrics after applying
min-max normalisation (Table 6).

D Case Study

We examined specific samples where the initial
generation (SFT model) outperformed the refine-
ment framework and vice versa in tables 7, 8, 9 and
10 for the analyses in sections 4.3.2 and 4.3.3.
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Original Radiology Report

| First Generation

Feedback

| Refined

Cardiomegaly. Aortic elongation.
Chronic parenchymal lung changes.

An enlarged heart is seen. The main
blood vessel (aorta) is longer than usual.
There are long-term changes in the lung
tissue.

1. **Factuality (7/10)**: The output accurately
reflects the findings of the original report, but
the phrase "long-term changes in the lung tis-
sue" could be interpreted as vague compared to
"chronic parenchymal lung changes." This slight
discrepancy in terminology affects the factuality
score.

2. **Completeness (8/10)**: The lay report
captures all key findings from the original report,
but it could be more specific regarding the nature
of the lung changes. The term "parenchymal" is
omitted, which is a significant descriptor in the
context of lung changes.

3. **Format (9/10)**: The output is mostly
well-formatted, containing only the lay summary
without additional commentary or headers. How-
ever, the phrase "is seen" in the first sentence
could be considered unnecessary and slightly
detracts from the directness of the report.

4. **Total Score (24/30)**: The total score
reflects the evaluation across all three criteria,
indicating a generally good quality of the model
output with some areas for improvement.

The heart appears larger than normal.
The major blood vessel leaving the heart,
called the aorta, is stretched out. There
are ongoing changes in the breathing
part of the lungs.

Table 7: Sample where refinement performed worse

feedback.

in the evaluation metrics than the first generation due to

Original Radiology Report

| First Generation

Feedback

| Refined

Cardiomegaly. Pulmonary parenchyma
without significant alterations. Correlate
clinically.

The heart appears larger than normal.
The lung tissue looks fine without major
issues. Discuss this with your doctor for
further evaluation.

1. **Factuality (8/10)**: The output accurately
conveys the essence of the original report, but
the phrase "the heart appears larger than normal"
could be more precise by using the term "car-
diomegaly" directly. Additionally, "lung tissue
looks fine" lacks the nuance of "without signif-
icant alterations," which could imply a more
technical assessment.

2. **Completeness (7/10)**: The lay report
captures the main findings but omits the recom-
mendation to "correlate clinically," which is an
important aspect of the original report indicating
the need for further clinical correlation.

3. **Format (9/10)**: The output is presented in
a clear and straightforward manner without un-
necessary commentary or headers, but the phrase
"Discuss this with your doctor for further eval-
uation" could be seen as slightly extraneous, as
it doesn’t directly reflect the original report’s
wording.

4. **Total Score (24/30)**: The overall output is
mostly accurate and well-formatted, with minor
issues in factual precision and completeness.

The heart is enlarged. The lungs look
normal without any major problems.
Work with your doctor to discuss these
results.

Table 8: Sample where refinement performed better in the evaluation metrics than the first generation.

Original Radiology Report

| First Generation

Feedback

| Refined

No pulmonary alterations suggestive of
lung infection or other relevant abnor-
malities are observed.

The lungs look fine, showing no signs of
infections or other serious problems.

1. **Factuality (8/10)**: The lay report accu-
rately reflects the findings of the original radi-
ology report, stating that there are no signs of
infection or serious problems in the lungs. How-
ever, the phrase "the lungs look fine" could be
seen as overly simplistic and not as precise as
the original wording, which may warrant a slight
deduction.

2. **Completeness (10/10)**: The lay report
includes all important information from the orig-
inal report, effectively conveying that there are
no pulmonary alterations or relevant abnormali-
ties.

3. **Format (8/10)**: While the lay report is
mostly straightforward, it includes the phrase
"The lungs look fine," which could be inter-
preted as informal commentary. A more direct
paraphrase of the original report would have
been preferable for a formal report format.

4. **Total Score (26/30)**: The overall score
reflects a strong performance, with minor deduc-
tions for factual precision and format.

There are no signs of lung infections or
other significant issues in the lungs.

Table 9: Sample where refinement performed better in the evaluation metrics than the first generation.
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Original Radiology Report

| First Generation

| Refined

| Reference

Findings in the lung parenchyma show

interstitial opacities with a diffuse dis-
tribution throughout the lung fields, par-
ticularly in the middle and lower regions
of the right lung and the middle and
lower regions of the left lung. Con-
clusion: Findings are consistent with
COVID-19.

The lungs show signs of fluid buildup
between the air sacs, spread all over
both sides of the lungs, especially in
the middle and bottom parts of the right
lung and the middle and bottom parts of
the left lung. Conclusion: These find-
ings match what we see in people with
COVID-19.

The images show areas of
increased density within the lung
tissue that are evenly distributed across
both lungs, mainly affecting the central
and lower sections on both sides. It
looks like these patterns are typical
of what you would expect to see in

someone with COVID-19.

The examination of the lung tis-
sue shows a widespread pattern of
haziness affecting the lung fields, es-
pecially in the middle and lower parts
of both the right and left lungs. Conclu-
sion: These findings are typical of what
is seen in COVID-19.

Table 10: Sample where refinement performed worse in the evaluation metrics than the first generation despite being
more factually accurate. The highlighted phrases represent different interpretations of the same finding from the

original radiology report with varying degrees of faithfulness to the original text, as mentioned in Section 4.3.3.
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Abstract

In this study, we presented a prompt based lay-
man summarization framework for the biomed-
ical articles and radiology reports developed
as part of the BioLaySumm 2025 shared task
at the BioNLP Workshop, ACL 2025. For
Subtask 1.1 (Plain Lay Summarization), we
utilized the abstract as input and employed
Meta-LLaMA-3-8B-Instruct with a Tree-of-
Thought prompting strategy and obtained 13™
rank. In Subtask 1.2 (Lay Summarization with
External Knowledge), we adopted an extractive
plus prompt approach by combining LEAD-K
sentence extraction with Meta-LLaMA-3-8B-
Instruct. Medical concepts were identified us-
ing MedCAT, and their definitions were taken
from Wikipedia to enrich the generated sum-
maries. Our system secured the 2™ position in
this subtask. For Subtask 2.1 (Radiology Re-
port Translation), we implemented a Retrieval-
Augmented Generation (RAG) approach using
the Zephyr model to convert professional radi-
ology reports into layman terms, achieved 3
place in the shared task.

1 Introduction

In recent years, it has become much easier for
people to access scientific and medical informa-
tion online. Research papers and clinical reports
like radiology reports are now widely available.
In particular, biomedical articles and radiology
reports often use difficult terms and specialized
language that is difficult for reading and under-
standing for most people(Tariq et al., 2024). This
makes it harder for the students or general public
to understand medical information and reduce the
impact of the scientific research. Lay summariza-
tion, which means rewriting scientific or medical
content in simple language for the general pub-
lic, is a helpful solution to this problem. Previous
studies have shown the value of creating patient-
friendly versions of radiology reports(Tariq et al.),

and have also highlighted the need to make sci-
entific communication more suitable for different
types of readers(Fonseca and Cohen, 2024). How-
ever, writing good lay summaries is still a difficult
task. Large Language Models (LLMs) like GPT-
3.5 and LLaMA are good at general summarization,
but they often struggle to produce easy to read to
summary due to the technical jargon present in the
medical text and the models are not customized
for the medical text(Fonseca and Cohen, 2024). In
this paper, we describe our system for the BioLay-
Summ 2025 Shared Task(Xiao et al., 2025). We
combine prompt-based language models, extractive
summarization techniques, and background knowl-
edge from external sources. Our contributions are:

1. We introduced the use of the Tree-of-Thought
(ToT) prompting strategy in biomedical lay
summarization to generate more readable, log-
ically organized, and controllable summaries.

2. We leveraged Chain-of-Thought (CoT)
prompting and role based prompting for
lay summarization of biomedical articles
improving the clarity and factual consistency
without requiring large scale supervised data.

3. We developed a retrieval-augmented summa-
rization pipeline for radiology reports by stor-
ing medical concepts and definitions from
the dataset and Wikipedia in ChromaDB, en-
abling definition retrieval to improve clarity
for lay readers.

2 Related Work

Recent studies in biomedical text summarization
have focused on making complex medical artciles
to be easier to understand for general audience,
especially because of the fast growing number
of scientific articles. Researchers have explored
both extractive methods and abstractive methods to
create summaries that are easier for non-experts
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to read. Traditional extractive techniques such
as Lead-K, TextRank, and TF-IDF help pick the
most important sentences from a text. Tools like
SciSpacy (Neumann et al., 2019) and MedCAT
(Kraljevic et al., 2021) are useful for identify-
ing medical terms that might need simpler expla-
nations in the summaries. New large language
models (LLMs) such as Meta’s LLaMA-3-Instruct
(Touvron et al., 2023) and OpenAl’s GPT-3.5/4
(Achiam et al., 2023) have shown strong abilities to
write summaries using prompts, even without much
extra training. Models that are fine-tuned to fol-
low instructions produce better results and clearer
outputs that matches with the result user wants.
Tree-of-thought prompting (Yao et al., 2023) and
chain-of-thought reasoning (Wei et al., 2022) have
demonstrated improvements in factuality and co-
herence for complex text generation tasks, includ-
ing medical content. In the context of radiology
report translation, recent shared tasks (e.g., BioLay-
Summ, MEDIQA) and benchmark datasets such
as MIMIC-CXR (Johnson et al., 2019) and PadCh-
est(Bustos et al., 2020) have helped the develop-
ment of models that generate layman friendly sum-
mary of professional reports. Prior studies (You
et al., 2024) have used Retrieval-Augmented Gen-
eration (RAG) to supplement missing background
knowledge and improve factual accuracy. To evalu-
ate how good the summaries are, common tools in-
clude ROUGE, BLEU, METEOR, and BERTScore
for relevance, as well as readability scores like
FKGL and DCRS. To check if the summary facts
match the source text, tools like AlignScore and
SummacC are often used.

3 Methodology

For this biomedical articles summarization task, we
used the PLOS and eLife dataset provided by the
organizers as described in (Goldsack et al., 2022;
Luo et al., 2022; Goldsack et al., 2023, 2024). The
PLOS dataset is the larger of the two, compris-
ing 24,773 training and 1,376 validation instances,
while the eLife dataset contains 4,346 training and
241 validation instances. For the radiology re-
port summarization task, we used the close track
setup which includes Open-i, PadChest, BIMCV-
COVID19, along with MIMIC-CXR (Zhao et al.,
2025; Xiao et al., 2025).

3.1 Plain Lay Summarization

We used the Meta-LLaMA-3-8B-Instruct model to
simplify medical texts into layperson-friendly sum-
maries along with Tree of Thought algorithm( 1).
To ensure high-quality simplification, we designed
a prompt that instructed the model to (i) shorten and
simplify long sentences, (ii) replace complex med-
ical terms with everyday language and (iii) keep
the original meaning accurate. After generating the
summaries, we cleaned them using regular expres-
sions to remove extra characters, model tags, and
formatting issues. This gave us a neat version of
the simplified text. For each input, we asked the
model to generate two versions (n = 2). Although
creating more versions (like 3-5) can give better re-
sults, we chosen two to save time. We then picked
the best one using a custom scoring formula called
wrb(Readbility-Bertscore based): wrb = 0.55 x
br_score + 0.45 x avg_read. Here, br_score is (1
— BERTScore) x 100, and avg_read is the average
of two readability scores: Flesch-Kincaid Grade
Level and Dale-Chall Readability Score. We used
BERTScore to check how close the simplified sum-
mary was to the original abstract. After choosing
the best summary in the first round, we fed it back
into the model to generate more refined outputs.
This was done for up to two rounds (m = 2). If the
first summary already scored well (above a quality
threshold of 12), we skipped the second round to
save time.

3.2 Lay Summarisation with External
Knowledge

We presented a layman summary system[Figure 1]
designed for biomedical articles, using two differ-
ent extractive—abstractive hybrid models. The first
model used Meta’s LLaMA-3-8B-Instruct, combin-
ing section-wise leading sentence extraction and
medical term definitions from MedCAT. The sec-
ond model used GPT-3.5-turbo with TF-IDF-based
sentence selection and medical terms identified us-
ing SciSpacy. Both models used specially written
prompts and the GPT model used a step-by-step
reasoning prompt to improve accuracy and struc-
ture. In the first setup, each article from the Bio-
LaySumm dataset is splitted into its usual sections
(like Introduction, Methods, Results, Discussion)
using newlines as markers. From each section, the
first 10 sentences are picked (Lead-10 method),
since these usually carry the main ideas. These
sentences are joined with the abstract to make a
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Figure 1: This flowchart illustrates the subtask 1.2
pipeline for biomedical lay summarization using ex-
ternal knowledge. Extracted summaries and abstract are
combined with medical term definitions from sources
like Wikipedia, and a LLaMA-3-Instruct model gener-
ates simplified summaries for the general public.

shorter input for the summarization model. To get
the cleaned text, we preprocessed the text data by
removing the contents in brackets like citations. To
make the summary easier to understand for non-
experts, we extract medical terms from the abstract
and Lead-10 sebtences using MedCAT. This tool
links terms to standard medical databases. We re-
moved common English words using a dictionary
and fetched simple definitions for up to 10 terms
from Wikipedia. These definitions are added to the
prompt to give extra background. The final prompt
includes: The abstract, sentences picked from each
section, up to 10 definitions of medical terms. The
second setup uses GPT-3.5-turbo through OpenAl’s
APIL. Instead of section wise extractive summary,
this setup used TF-IDF to pick the top 40 most im-
portant sentences from the full text. We then used
SciSpacy model to find medical terms, based on
known databases like UMLS and MeSH. Defini-
tions are again retrieved from Wikipedia and added
to the prompt. The GPT model uses a step-by-step
reasoning prompt (Chain-of-Thought) to improve
its output. This prompt asks the model to think
through the abstract and sentences, explain hard
terms, and then write a clear summary in simple
words. This helps reduce errors and improves clar-

ity.
3.3 Radiology Report Translation

To generate layman-friendly summaries from com-
plex radiology reports, we developed a structured
pipeline [Figure 2] integrating biomedical entity
recognition, semantic definition retrieval, large lan-
guage model prompting and post-processing. We
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Figure 2: Pipeline for the radiology report translation

began with the BioLaySumm/LaymanRRG-closed
track dataset and used the full dataset to construct
a comprehensive dictionary of medical definitions.
Each report was processed using the SciSpacy
model to extract medical terms and their definition
was retrieved from Wikipedia using their API. We
then encoded each definition using the BAAI/bge-
base-en sentence transformer and indexed them in
a ChromaDB vector database, facilitating fast and
semantically meaningful retrieval. For inference,
we focused on the test split of the dataset. Each test
report underwent entity extraction, and the corre-
sponding terms were matched with the most seman-
tically relevant definitions from our vector database.
These definitions, combined with the original re-
port, were formatted into a context-rich prompt and
passed to the zephyr-7b-beta model using Hugging
Face’s text-generation pipeline. The model, de-
ployed in half-precision (FP16) on GPU, produced
concise and coherent lay summaries. To ensure
clarity and fluency, we applied a post-processing
step to the generated summaries. This included re-
moving redundant phrases, fixing formatting incon-
sistencies, and refining grammar and sentence flow.
Each report’s full pipeline output including the orig-
inal report, extracted terms, definitions used, gener-
ated summary, and the final cleaned summary was
saved in a CSV file. This allowed for incremental
saving and supported recovery in case of interrup-
tions, ensuring robustness and reproducibility of
the process.

4 Result and Discussion

The performance of our submission were presented
in the Table 1



Task Model used ROUGE BLEU METEOR

BERTScore

FKGL DCRS CLI LENS(Taskl) | AlignScore(Taskl) | SummaC(Task1)

SubTask 1.2 GPT 3.5

0.2961816563 | 4.081113931 | 0.2281900631 | 0.8549233545

13.36619718 | 10.25193662 | 14.74401408 | 80.00152005 0.6890650382 0.5070385472

SubTask 1.2 LLaMA-3-8B-Instruct

0.2894793205 | 4.127686909 | 0.2682454109 | 0.8340255209

9.892605634 | 7.869929577 | 11.38640845 | 75.58860065 0.5547797396 0.737774146

SubTask 1.1 LLaMA-3-8B-Instruct with TOT | 0.2681919676

3.24775969 | 0.2263706053 | 0.8484312852

10.52429577 | 8.835915493 | 11.43105634 | 84.14457219 0.5888629015 0.5489283793

SubTask 1.1 Preprocessed Abstract

0.3281246986 | 7.120012357 | 0.2833030102 | 0.8612545194

16.90774648 | 11.35848592 | 17.51320423 | 40.15254495 0.9937086519 0.9464885324

Task Model used ROUGE BLEU METEOR

BERTScore

Similarity(Task2) FKGL DCRS CLI Flchexbert(Task2) | Radgraph(Task2)

SubTask 2.1_close | zephyr-7b-beta 0.4038681644 | 14.89689754

0.427866722 | 0.9128268815

0.7975429296 | 7.358711512 | 8.527076782 | 7.360385788 0.7041964506 0.2162386679

Table 1: Evaluation results demonstrates the performance of our submission across Subtasks 1.1 and 1.2 of
biomedical lay summarization, and Subtask 2.1 of radiology report translation.

4.1 Lay Summarisation with External
Knowledge

We tested our system on 142 biomedical articles
from the BioLaySumm?2025-PLOS test set. Both
models (LLaMA-3 with Lead-10 + MedCAT and
GPT-3.5 with TF-IDF + SciSpacy + Chain-of-
Thought) were run on the same dataset for com-
parison. We evaluated the results using relevance,
readability and factuality metrics. GPT-3.5 per-
formed better than LLaMA-3 in readability, fac-
tual correctness, and overall ROUGE-L scores, es-
pecially when it explained complex terms using
step-by-step reasoning. In general, GPT-3.5 cre-
ated summaries that explained key findings and
terms more clearly for general readers. LLaMA-3
sometimes skipped important context. The combi-
nation of TF-IDF extraction with reasoning-based
prompts worked especially well when extra back-
ground knowledge was needed for understanding.

4.2 Radiology Report Translation

In the radiology report translation task, we devel-
oped an approach using a retrieval-augmented gen-
eration (RAGQG) strategy with the Zephyr model to
produce summaries that are not only accurate but
also easier to understand for non-experts. The sum-
maries generated through this method gave high
relevance. The scores of readability metrics con-
firmed that the simplified texts were written at an
accessible level, making them more understandable
to the general public. From a clinical perspective,
our approach maintained a good balance between
simplifying the language and retaining important
medical content.

5 Conclusion

In this work, we explored prompt-based summa-
rization techniques to convert complex biomedical
articles and radiology reports into simple, easy-
to-understand summaries for general readers. We
used a combination of extractive methods (such
as Lead-10 and TF-IDF) and large language mod-
els like Meta-LLaMA-3-Instruct and GPT-3.5. For
Subtask 1.1, we focused on section-wise summa-

rization, while in Subtask 1.2, we added medical
definitions retrieved using MedCAT and Wikipedia
to enrich the knowledge gaps. In Subtask 2.1, we
applied a Retrieval-Augmented Generation (RAG)
approach with the Zephyr model to generate lay-
man summaries from professional radiology re-
ports. Our approach produced strong results across
the shared task subtasks, showing the effectiveness
of combining external knowledge, extractive sum-
marization, and instruction-tuned language models.
Even though our system produced good results, it
still has has some limitations. First, the quality
of extracted summaries using Lead or TF-IDF de-
pends on the structure of the original article. If the
article is not organized properly, important informa-
tion might be missed. Second, retrieving accurate
definitions from Wikipedia or other public sources
may introduce inconsistencies, not having clear
explanations or no explanations. Each and every
retrieval of wikipedia definitions takes too much
time and that limited the medical definition to only
10 terms. Finally, while chain-of-thought prompt-
ing improved factuality in GPT-based generation, it
occasionally produced longer or slightly off-topic
outputs when trying with llama that requires fur-
ther refinement. In future work, we plan to improve
summarization by fine-tuning the models instead
of prompt tuning on more diverse medical datasets.
We will also be focusing on controllable summa-
rization and exploring the ways to get definitions
from other medical resources that can increase the
terms count and layman definitions. We want to
incorporate user feedback mechanisms to assess
how helpful the generated summaries are for real
patients and the general public.

6 Declaration of Al usage

We used generative Al tools like chatGPT for para-
phrasing, grammar checking while writing this ar-
ticle. After using this tool, the author(s) reviewed
and edited the content as needed and take(s) full re-
sponsibility for the content of the published article.
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Algorithm 1 Tree of Though Based Iterative Text
Simplification with Readability and Content Preser-
vation

1:

A A Tl

10:

11:

12:

14:

15:
16:

17:
18:
19:
20:

21:
22:
23:

Input: Abstract
max_rounds < 2
branches_per_round <— 2
current_text <— complex_text
for round_num = 0 to max_rounds - 1 do
candidates < [ ]
for i = 0 to branches_per_round - 1 do
generated — SIM-
PLIFY_TEXT_WITH_LLAMA(current_text)
simplified —
CLEAN_SIMPLIFIED_OUTPUT(generated)
avg_read — READABIL-
ITY_SCORES(simplified)
input_fc <~ BERTSCORE(simplified,
complex_text) > or AlignScore / SummaC
br_score < (1 — input_fc) x 100
wrb < 0.55 x br_score + 0.45 X
avg_read
candidates.append([simplified, wrb,
readability, input_fc])
end for
best_candidate < candidate with lowest
wrb
if best_candidate.wrb < target_grade then
return best_candidate.simplified
else
current_text —
best_candidate.simplified
end if
end for
return current_text
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Abstract

We present a multi-stage pipeline for BioLay-
Summ 2025 Subtask 1.1 that improves readabil-
ity, relevance, and factuality. First, we select
the top-5 relevant sections and generate sum-
maries with BioBART. Next, we retrieve a K-
shot demonstration using BGE embeddings to
prompt Llama 3 8B and fine-tune it with LoRA.
We then merge section summaries via a second
BioBART pass. Finally, we apply reinforce-
ment learning (PPO and GRPO) with a compos-
ite reward combining factuality (AlignScore,
SummaC), relevance (ROUGE-L, BERTScore),
and readability (LENS, FKGL, DCRS, CLI).
On PLOS and eLife validation sets, our pipeline
reduces DCRS from 9.23 to 8.56 and CLI from
12.98 to 12.65, and boosts AlignScore from
0.722 to 0.862, demonstrating balanced gains
in lay-summary quality.

1 Introduction

Biomedical articles are rife with technical jargon
and complex discourse that hinder comprehension
by non-specialist readers (Goldsack et al., 2023).
Lay summaries—concise paraphrases in accessible
language—rplay a critical role in democratizing sci-
entific knowledge for patients, policy-makers, and
the general public. The BioLaySumm shared task
(ACL 2023-2025) has steadily advanced method-
ologies for abstractive biomedical summarization,
evolving from pure encoder—decoder models to
modern large language model (LLM)-based sys-
tems with controllable generation capabilities (?).

Recent years have seen three major trends in
lay summarization: (1) Section-wise summariza-
tion, which breaks long articles into manageable
chunks (Zhang and Roberts, 2021), (2) Few-shot
prompting of LLMs to leverage in-context learning

without full fine-tuning (Dong et al., 2022), and
(3) Reinforcement learning (RL) to directly opti-
mize non-differentiable metrics such as readabil-
ity indices and factuality scores (Kryscinski et al.,
2020; Henderson et al., 2022). Parallel advances in
parameter-efficient adaptations—LoRA (Hu et al.,
2021) and adapters (Pfeiffer et al., 2020)—have
made LLM fine-tuning practical under compute
constraints.

In this work, we integrate these strands into a
cohesive pipeline: structured section selection, Bio-
BART summarization, Llama 3 8B prompting with
K-shot retrieval, LoRA adaptation, summary merg-
ing, and final RL-based fine-tuning. Our contribu-
tions are:

* A detailed, modular architecture that com-
bines supervised and RL stages to address
readability, relevance, and factuality.

* A retrieval-augmented K-shot prompting strat-
egy using BGE embeddings for demonstration
selection.

* An RL fine-tuning regimen employing both
PPO and the lightweight GRPO algorithm
with a multi-component reward aligned to
shared task criteria.

* Empirical validation on PLOS and eLife show-
ing significant improvements in readability
indices (e.g., DCRS [0.67), CLI |0.33, and
factuality (AlignScore 70.14).

2 Related Work

2.1 Biomedical Lay Summarization

Biomedical lay summarization focuses on translat-
ing complex scientific content into language that
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is understandable to non-expert audiences. Early
approaches to this task leveraged encoder—decoder
architectures such as BART and BioBART, fine-
tuned on biomedical literature (Beltagy et al., 2020;
GanjinZero, 2023). These models demonstrated
promising results on short texts but struggled with
full-length documents. To address this, section-
level summarization strategies were introduced,
which broke down scientific articles into segments
and generated summaries for each part (Cohan
et al., 2020). Recent developments have led to
benchmark efforts such as BioLaySumm, which
provide standardized evaluation settings to advance
the generation of accessible biomedical summaries.

2.2 Prompting and Few-Shot LLMs

In-context learning with large language models
such as GPT-3 and LLaMA variants has shown
that providing carefully selected task demonstra-
tions within the input prompt can enable strong
performance on new tasks without the need for ad-
ditional fine-tuning (Brown et al., 2020). Retrieval-
augmented generation (RAG) enhances language
model outputs by incorporating relevant external
knowledge retrieved from a large corpus (Lewis
et al., 2020). RAG systems improve factual ac-
curacy and adaptability, addressing limitations in
static model parameters.

2.3 Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning methods such as
LoRA (Hu et al., 2021) and AdapterFusion (Pfeif-
fer et al., 2020) have emerged as effective strategies
for adapting large pretrained models to new tasks
while reducing the number of trainable parame-
ters. These approaches introduce small, trainable
modules to integrate into the model’s architecture.
Recent work has demonstrated the effectiveness
of these techniques in domain-specialized summa-
rization, particularly in biomedical settings (Pakull
etal., 2024).

2.4 Reinforcement Learning

Reinforcement learning (RL) has been widely
adopted in text generation tasks to optimize
ROUGE scores (Rennie et al., 2017), factual con-
sistency (Kryscinski et al., 2020), and controllable
text attributes like simplicity and politeness (Liu
et al., 2022). Among various RL algorithms, Prox-
imal Policy Optimization (PPO) has gained pop-
ularity for its stability during fine-tuning (Schul-
man et al., 2017). More recently, GRPO has been

introduced as a memory-efficient alternative that
eliminates the need for a separate critic network
by grouping and scoring sampled outputs together,
halving memory usage while maintaining competi-
tive performance (Stooke and Abbeel, 2021).

2.5 BioLaySumm2024

In the previous iteration of BioLaySumm, Gold-
sack et al. provided an overview of the 2023 com-
petition (Goldsack et al., 2023), and in 2024 they
extended this with an in-depth summary of that
year’s results and tasks (Goldsack et al., 2024). Top
teams found that while direct prompting of LLMs
improves readability, it may reduce factual accu-
racy and relevance. To address this, several adapta-
tion techniques were incorporated—including ti-
tle infusion, K-shot prompting, LLM rewriting,
and instruction fine-tuning—that effectively bal-
ance these quality aspects and secured first place in
readability at the 2024 BioLaySumm competition.

2.6 BioLaySumm2025

Xiao et al. present an overview of the 2025 shared
task, which now also includes radiology-report
summarization in addition to standard biomedi-
cal articles (Xiao et al., 2025). They highlight
how the community moved toward more retrieval-
augmented pipelines and multi-objective optimiza-
tion for readability and factuality.

3 Problem Formulation

Given article x = (z1,...,%,) and reference lay
summary y = (y1,...,Ym), we learn fp to maxi-
mize the conditional log-likelihood:

m
0* = 1 .
arg meax; og po (Yt | Y<t, )

4 Method

4.1 Section Selection

To systematically assess relevance, we parse each
article into J distinct structural sections denoted as
s;j, where j € {1,...,J} (e.g., Abstract, Introduc-
tion, Methods, Results, Discussion). Each section
s; is encoded into a high-dimensional vector repre-
sentation using a pre-trained sentence-transformer
model. We then compute the cosine similarity be-
tween each section’s embedding and a predefined
domain-specific query that captures the target do-
main, quantifying how relevant each section’s con-
tent is. After computing similarity scores for all J
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sections, we rank them in descending order. Finally,
we select the top J' = 5 sections with the highest
similarity scores as the most domain-relevant con-
tent for downstream processing.

4.2 Section-Wise Summarization

Each selected section s; of the biomedical docu-
ment is summarized independently. Specifically,
the summarization for each section is performed by
applying the BioBART model, denoted as

z; = BioBART (s; ¢) ,

where ¢ represents the set of model parameters
of BioBART-v2-base that have been fine-tuned on
the training fold of the dataset. By summarizing
sections individually, this approach mitigates the
challenges posed by input length limitations of
transformer-based models and allows the model
to focus on the unique content and semantic struc-
ture of each section.

4.3 K-Shot Demonstration Retrieval

For a given test article z*, we first compute its em-
bedding using the BGE M3 encoder, denoted as
epgr(z*). To leverage relevant contextual infor-
mation, we retrieve the single most similar training
instance (x;,y;) by finding the training example
whose embedding has the highest cosine similar-
ity:
i* = arg max cos (eBGE ("), eBGE(Z'i)) .

The retrieved pair D1 = (z;+,y;+) is then served
as the input prompt of the large language model
(LLM) to provide an example demonstration for
in-context learning.

4.4 LoRA Fine-Tuning

We inject adapters into the LLaMA 3 8B model
to enable parameter-efficient fine-tuning. Specif-
ically, for each weight matrix W € R%* within
the model, we learn a low-rank update defined as

W' =W + AB,

where A € R¥™" and B € R"™ " are trainable
matrices with a small rank » = 8. This low-rank
decomposition significantly reduces the number of
parameters that must be updated during training.
We train the adapter parameters for 3 epochs using
a learning rate of 5 x 10~ and a batch size of 16.
Early stopping based on performance on the vali-
dation fold is employed to prevent overfitting and
to select the best-performing model checkpoint.

4.5 Summary Merging

After independently summarizing each selected
section to obtain the set of partial summaries
{z; }3-]’:1, we concatenate them into a single com-
bined representation Z. This concatenated input
serves as the basis for a second pass through the
BioBART model, expressed as

§ = BioBART(Z; ¢'),

where ¢’ denotes the parameters of BioBART fine-
tuned specifically for this second-stage summariza-
tion task. By leveraging this two-step process, the
approach addresses the challenges posed by lengthy
biomedical texts while improving the consistency
and readability of the final output.

4.6 Reinforcement Learning Fine-Tuning

After completing the supervised training stages,
we further refine the model using reinforcement
learning (RL) to directly optimize multiple quality
metrics. For each input, we generate m = 4 candi-
date summaries and compute a composite reward
IR that balances several evaluation metrics:

R = AlignScore + SummaC +

factual
ROUGE-L + BERTScore +
relevance

LENS — o(FKGL + DCRS + CLI) .

readability

Each individual metric score is normalized to the
range [0, 1] via min-max scaling based on the train-
validation distributions, ensuring balanced contri-
butions across diverse metrics. We perform RL fine-
tuning using two algorithms: Proximal Policy Op-
timization (PPO) with clipping parameter ¢ = 0.2
and KL-penalty coefficient 5 = 0.1, and Grouped
Reward Policy Optimization (GRPO) with a group
size of 4. Both methods are run for one epoch over
the training set with a learning rate of 1 x 1076,

4.7 Pseudo-Code

Here is our RL implementation:

S System Architecture

The figure 1 shows the flow chart of our method.
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Algorithm 1: Two-stage training: LoRA
fine-tuning followed by RL optimization

Input: Training corpus Diin
Output: Fine-tuned parameters 6

for each article x € Dyuin

S < select_sections(z) // top 5
relevant sections
z + [BioBART(s) | s € 5] // latent

embeddings
prompt < retrieve_demo(x) || concat(z)
0 < LoRA_finetune(@, prompt, yret)

for each article © € Dy,

{9}, + generate(x,m, )
R <« {R(gD)}™, // compute rewards
0 < update_r1(8,R,PPO/GRPO)

¥ PREPROCESSING

Input Article
C

Section-wise
Summarization

Section
Summaries

e
OPTMZATION
RL Fine-Tuning
Candidate
Summaries
Reward
Computation

Model Update

LLM Prompt
Construction

vvvvv

Figure 1: Overview of our method

6 Experiments

6.1 Setup

Datasets We evaluate on PLOS (24,773
train/1,376 val) and eLife (4,346 train/241 val) as
per Goldsack et al. (2022).

Metrics We report relevance (ROUGE-1/2/L,
BERTScore), readability (FKGL, DCRS, CLI,
LENS), and factuality (AlignScore, SummacC) us-
ing the shared task evaluation scripts (Goldsack
et al., 2024).

Baselines We compare against Few-shot Llama3-
8B and BioBART-only, and Baseline-qwen2.5-7B-
sft, plus our supervised pipeline without RL (“Ours
(no RL)”).

FKGL] DCRS| CLI] LENST
Baseline Llama 3 12.21 9.23 12.98 72.86
8B
Baseline-qwen2.5-  12.71 9.65 13.70  60.22
7B-sft
Ours (methodl: 12.59 8.56 12.65 63.22
Llama3 ft)

Table 1: Readability on test set (| better except LENST).

AlignScoreT  SummaC?

Baseline Llama 3 8B 0.722 0.644
Baseline-qwen2.5-7B-sft 0.754 0.644
Ours (method2: section_sum 0.862 0.528
+ BioBART)

Table 2: Factuality on test set (T better).

FKGL] DCRS| CLI] LENST

Baseline Llama 3 12.21 9.23 12.98 72.86
3B
Ours (no RL) 12.59 8.56 12.65 63.22
Ours + RL 11.78 8.32 1240 74.71

Table 3: Readability on validation set (| better except
LENSY).

AlignScoreT  SummaC?

Baseline Llama 3 8B 0.722 0.644
Ours (no RL) 0.862 0.528
Ours + RL 0.891 0.613

Table 4: Factuality on validation set (1 better).

6.2 End-to-End Performance

Table 1 shows readability improvements: our fine-
tuned Llama3 without RL (methodl: Llama3 fine-
tune) reduces DCRS from 9.23 to 8.56 and CLI
from 12.98 to 12.65. This method obtains high
readability, ranking top 3 among all teams this year.
Table 2 reports factuality of our method2: section-
wise summarization + BioBART: our system boosts
AlignScore from 0.722 to 0.862 and maintains high
AlignScore. This method reaches top 5 in factuality
among all teams this year.

6.3 Ablation Study: Impact of RL
Fine-Tuning

Table 3 and Table 4 quantify gains from RL: it fur-
ther reduces FKGL by 0.81 points and increases
LENS by 11.49, while factuality AlignScore im-
proves from 0.862 to 0.891 and SummaC from
0.528 t0 0.613.
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7 Conclusion

We present a comprehensive pipeline that systemat-
ically improves biomedical lay summaries through
section-wise summarization, retrieval-augmented
prompting, LoRA fine-tuning, and RL fine-tuning.
Experimental results and ablations confirm bal-
anced gains in readability, relevance, and factuality
over both baselines and leading LLMs.
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A Implementation Details

All training stages are implemented using the Hug-
gingFace Transformers framework and executed
on a cluster of 8 NVIDIA A100 GPUs. During
supervised fine-tuning, we use a batch size of 16 to
maximize GPU utilization, while for reinforcement
learning stages, the batch size is reduced to 8 to ac-
commodate the additional computational overhead
incurred by sampling multiple outputs per input.
We plan to release all code and configuration files
publicly upon acceptance to facilitate reproducibil-
ity and further research.
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VeReaFine: Iterative Verification Reasoning Refinement RAG for
Hallucination-Resistant on Open-Ended Clinical QA
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Abstract

Large language models (LLMs) can gener-
ate medical responses, but they often “hallu-
cinate” unsupported or incorrect clinical asser-
tions, risking patient safety and trust. We in-
troduce VeReaFine, a “Verifier-RAG” pipeline,
an iterative fact-checking — retrieval process:
(1) Given a medical query, we fetch the top-
k passages from a large biomedical corpus
(e.g., PubMed, StatPearls) using a two-stage
dense retriever and reranker, (2) employ a small
LLM verifier to extract a concise “ground-truth”
context from the retrieved data, (3) dynami-
cally issue up to three targeted retrieval queries
whenever evidence is lacking, (4) draft an an-
swer with a 7-B generator grounded solely
in groundtruth context, and (5) re-verify and
refine the Generator LLM response to purge
any remaining hallucinations. By iteratively
fetching only the missing facts, VeReaFine en-
sures that every generated response is grounded,
yielding performance uplifts with minimal ex-
tra cost. On the BioNLP 2025 ClinIQLink
“LLM Lie-Detector” challenge, our 7-B gen-
erator augmented with VeReaFine rivals or
surpasses a 32-B medical model on open-
ended reasoning, reduces multi-hop inverse
step-identification errors by 26%. These re-
sults demonstrate that moderate-size LLMs and
our proposed pipeline can improve the result
in open-ended Question Answering in clinical

QA.

1 Introduction

Open-ended question answering in medical domain
demands two aspects in answers: coherence and
factuality. Large language models (LLMs) are
usually coherent and able to produce human-like
responses, but common issues found in their re-
sponses are hallucinations. Hallucinated responses
can look convincing while misrepresenting clinical
facts, which compromise patient safety and clinical
decision-making (Maynez et al., 2020). Existing

Rapepong Pitijaroonpong!-
Amrest Chinkamol?

Jitkapat Sawatphol?”
2PreceptorAl Tech

Kiartnarin Udomlapsakul?
Piyalitt Ittichaiwong?”

studies have proposed several strategies to help re-
duce the hallucination issue. Retrieval-Augmented
Generation (RAG) mitigates some of these risks by
providing relevant documents to the model, yet it
cannot ensure that the LLM correctly incorporates
all retrieved facts or refrains from utilizing incor-
rect contextual information (Lewis et al., 2020b).
Chain-of-Thought (CoT) prompting results in in-
termediate reasoning text and improves multi-step
problem-solving (Zhang et al., 2022), but remains
vulnerable when its internal knowledge is incom-
plete or outdated (Madaan et al., 2023). Likewise,
self-verification approaches - where the model cri-
tiques its own outputs help post-hoc error detection
but lack systematic integration of external evidence,
limiting their efficacy in specialized domains such
as medicine (Dhuliawala et al., 2023; Manakul
et al., 2023).

One key driver of hallucinations in medical
LLMs is simply a shortage of domain knowledge:
if the model’s internal parameters don’t “know”
enough about specific drugs, anatomy, or clinical
guidelines, it will confidently fabricate plausible-
sounding—but wrong—information (e.g., see M 1-
32B’s analysis in (UCSC-VLAA, 2024; Huang
et al., 2025; UCSC-VLAA, 2024)). A naive RAG
approach attempts to compensate by overloading
the generator with large bundles of retrieved text,
but this often backfires: too much loosely related in-
formation can confuse the LLM, leading it to latch
onto irrelevant or outdated facts. Prior work has
tried three main remedies—pure RAG grounding,
chain-of-thought prompting, and self-verification
loops—but none simultaneously guarantees that
(a) the generator truly receives “just enough” high-
precision medical context, and (b) each claim is
checked against external evidence before being
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emitted. To address these challenges, we intro-

duce VeReaFine, a “Verifier-RAG” pipeline that

alternates between retrieval, verification, and col-
lection medical groundtruth in up to three attempts

(Figure 1). At each iteration, VeReaFine performs:

1. Query-Driven Retrieval. Embed the input
question and retrieve top k& biomedical pas-
sages from a curated corpus (PubMed ab-
stracts (U.S. National Library of Medicine,
2023, 2024), StatPearls (MedRAG Team, 2024;
StatPearls Publishing, 2024) etc.) using BM-
Retriever-410M(Hugging Face, 2024b; Xu et al.,
2024), then rerank them with a BM-Retriever-
2B(Hugging Face, 2024a).

2. Relevance Verification. Use an 8B medical rea-
soning verifier (MedReason-8B(Hugging Face,
2024c; Wu et al., 2025)) to assess direct rele-
vancy of each retrieved passage to the question.
Passages deemed germane are marked as the
“ground-truth” context; irrelevant ones are dis-
carded.

3. Adaptive Context Expansion. If the current
ground-truth set is insufficient to answer the
query, the verifier formulates a focused “feed-
back query” identifying exactly what evidence
is missing. This feedback drives another re-
trieval round. We repeat this at maximum of
three iterations.

4. Answer Generation. Condition a 7B genera-
tor (Qwen2.5-7B-Instruct) on the final ground-
truth context to draft an answer free of unsup-
ported facts (Qwen Team, 2025, 2024; Yang
et al., 2024).

5. Answer Re-Verification & Refinement. The
verifier re-checks the generated draft against
the ground-truth context. If any residual
hallucinations are flagged, the generator is
prompted to refine and/or excise those hallu-
cinated claims. This final pass ensures every
assertion is evidence-backed.

By fusing targeted retrieval with in-loop verifi-
cation and refinement, VeReaFine guarantees that
each claim in the answer is sanctioned by the cu-
rated biomedical evidence.

We evaluate VeReaFine on the BioNLP
2025 ClinlQLink “LLM Lie-Detector” shared
task(BioNLP Shared Task Organizers, 2025), fo-
cusing on open-ended formats—short answer, short-
inverse, multi-hop, and multi-hop-inverse—where
hallucinations are most prevalent. Our experiments
show that, despite using a moderate-size 7B gener-
ator, VeReaFine achieves recall gains of +60-100%

at the 75th percentile (P75) over the same model
without verification, and recovers over 90% of the
step-identification fidelity of a 32B baseline (Sub2:
M1-32B (UCSC-VLAA, 2024; Huang et al., 2025;
UCSC-VLAA, 2024)) in multi-hop inverse ques-
tions. These results highlight that carefully orches-
trated retrieval and verification can allow smaller
models to match or surpass much larger ones in
clinical factuality.

1.1 Our Contributions

VeReaFine advances open-ended medical QA by
embedding an explicit verifier into every stage of
the RAG cycle. Specifically, we contribute:

1. Tri-Loop Verifier-RAG Architecture. We in-
troduce a tightly integrated three-stage feedback
loop (Figure 1) whereby:

* Retrieval: A bi-encoder (BM-Retriever-
410M) retrieves top-k passages, which are
then precisely ranked by a cross-encoder
(BM-Retriever-2B(Hugging Face, 2024a)
(Karpukhin et al., 2020).

o Verification: An 8B medical reason-
ing model (MedReason-8B(Hugging Face,
2024c)) examines each passage for rele-
vance and sufficiency, discarding irrele-
vant snippets and—when evidence is lack-
ing—issuing focused “feedback queries”
to retrieve missing context.

* Generation: A 7B LLM (Qwen2.5-7B-
Instruct) produces the final answer condi-
tioned only on the fully vetted “ground-
truth” context (Yang et al., 2024).

By interleaving verification with both retrieval
and generation, every claim in the output is ex-
plicitly sanctioned by external evidence.

2. Iterative Verification Refinement. We
cast VeReaFine’s operation as an Expecta-
tion—Maximization analogue:

e Verification step: The verifier extracts con-
straints by flagging unsupported assertions
in the draft answer.

* Refinement step: The generator revises the
answer to satisfy those constraints, thereby
increasing evidence alignment with ground
truth.

We show that, assuming a verifier with non-
negative correction fidelity, each iteration can-
not reduce the system’s overall factuality score.

3. Improve performance Open-Ended QA with
Modest Models. On the BioNLP 2025
ClinIQLink “LLM Lie-Detector” shared task,
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VeReaFine’s 7B-parameter generator—with its
verifier nearly or surpass in some category
against a M1-32B (state of the art medical
medium size LLM finetuned) on key open-
ended metrics (P75 recall, step-identification
rate), demonstrating that strategic verification
can compensate for model scale.

2 Related Work

The problem of hallucination in large language
models (LLMs) has motivated a range of ap-
proaches to ground generation in external knowl-
edge and to verify internal reasoning (Maynez et al.,
2020). We survey three major strands—retrieval-
augmented generation, self-verification and reason-
ing chains, and evidence-backed medical QA—and
conclude with a unified view of their limitations
and the desiderata that motivate VeReaFine.

2.1 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) was in-
troduced by Lewis et al. to tether LLM outputs
to retrieved documents, yielding substantial gains
in open-domain QA (Lewis et al., 2020a). Graph-
RAG extended this by organizing retrieved snip-
pets into a knowledge graph for cross-validation
(Wu et al., 2024), and TC-RAG modeled retrieval
as a stateful process that adaptively decides when
to stop fetching (Jiang et al., 2024). Hierarchi-
cal RAG pipelines first select coarse documents
then refine to fine-grained passages (Izacard et al.,

aFine tri-loop pipeline.

2022). Despite these enhancements, RAG meth-
ods do not enforce that every generated claim is
actually supported by the retrieval, allowing hal-
lucinations to persist when models misinterpret or
ignore evidence (Maynez et al., 2020).

2.2 Chain-of-Thought and Self-Verification

Chain-of-Thought (CoT) prompting elicits explicit
reasoning steps from LLMs, improving perfor-
mance on multi-step tasks (Wei et al., 2022). How-
ever, when the model’s internal knowledge is
flawed, the entire reasoning chain may still hallu-
cinate (Zhang et al., 2022). Self-verification meth-
ods ask the model to critique and refine its own
outputs: Self-Refine generates free-form feedback
and then revises the answer (Madaan et al., 2023),
while Chain-of-Verification (CoVe) structures ver-
ification into question planning, sub-question an-
swering, and answer revision stages (Dhuliawala
et al., 2023). SelfCheckGPT flags unsupported
sentences via internal likelihood probes but lacks
mechanisms to fetch or integrate corrective evi-
dence (Manakul et al., 2023). These approaches
enhance self-consistency but remain limited by re-
liance on parametric knowledge rather than dy-
namic evidence acquisition.

2.3 Evidence-Backed Medical QA

In clinical domains, hallucinations can endanger
patient safety. WebGPT taught GPT-3 to cite web
snippets via reinforcement learning from human
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feedback (Nakano et al., 2022), and GopherCite
trained a 280B model to back every fact with a ref-
erence (Menick et al., 2022). Med-PaLM?2 demon-
strated near-expert accuracy on medical exams but
still hallucinates under zero-shot settings (Singhal
et al., 2023). RAG-HAT trains detectors to spot
hallucinated segments given retrieval context but
relies on post-hoc human correction (Song et al.,
2024). IRCoT interleaves retrieval within a reason-
ing chain for multi-hop QA (Trivedi et al., 2023),
yet does not include an explicit verifier to adjudi-
cate each step.

2.4 Limitations and Desiderata

Despite significant progress, existing methods
share key shortcomings:

* Lack of explicit verification: RAG and CoT
systems do not guarantee that each generated as-
sertion is cross-checked against evidence, allow-
ing unsupported claims to slip through (Maynez
et al., 2020).

* Static retrieval context: Most pipelines fetch
once (or interleave ad hoc) without systematically
expanding context when evidence is insufficient,
leading to extrinsic hallucinations (Jiang et al.,
2024).

* Reliance on parametric memory: Self-
verification approaches depend on the model’s
existing knowledge, struggling to correct gaps
that require external information (Manakul et al.,
2023).

* No mechanism for insufficient-context detec-
tion: Systems typically assume retrieved pas-
sages suffice, failing to detect and handle cases
where key evidence is missing (Song et al.,
2024).

* Absence of convergence guarantees: Iterative
refinement loops lack formal assurances that fac-
tuality monotonically improves over successive
passes.

To address these gaps, a medical QA pipeline
must integrate explicit verification, adaptive re-
trieval expansion, and monotonic convergence
guarantees. VeReaFine meets these desiderata by
embedding a dedicated verifier into every retrieval
and generation step, issuing targeted feedback
queries when context is insufficient, and framing
the end-to-end process as a constraint-satisfaction
with provable non-decreasing factuality.

3 VeReaFine Pipeline

VeReaFine is built around three interleaved
loops—retrieve, verify, and generate/refine—that
together enforce evidence grounding and eliminate
hallucinations. Algorithmically, given a question
@ and a corpus D, the system proceeds as follows:
1. Stage 1: Initial Retrieval
(a) Encode @ and all passages in D with BM-
Retriever-410M.
(b) Use a FAISS index to fetch the top 10 can-
didate passages.
(c¢) Rerank these candidates with a BM-
Retriever-2B {Dy, ..., Do}
2. Stage 2: Context Verification Loop
(a) Initialize an empty ground-truth pool G.
(b) For up to three iterations:

i Prompt the MedReason-8B(Hugging
Face, 2024c¢) verifier with {D;} and Q,
asking it to select passages relevant to
Q. Append those marked “relevant”
into G.

ii If |G| is sufficient to answer @, break;
else, have the verifier generate a feed-
back query identifying missing evi-
dence.

iii Retrieve and rerank new candidates for
that feedback query, replacing {D;}
with the new result set.
3. Stage 3: Answer Generation
(a) Prompt Qwen2.5-7B with:

Context: [2al]l passages
in G]

Question: Q

Answer:

to produce an initial draft Ag.
4. Stage 4: Hallucination Check & Refinement
(a) Ask MedReason-8B(Hugging Face, 2024c)
to label each claim in A; as “supported” or
“unsupported” given G and Q.
(b) If unsupported claims exist and refinement
round t < 1:
i Prompt Qwen2.5-7B with the list of un-
supported claims and only the context
G, asking it to revise Ay.
ii Produce new draft A;,1; increment ¢
and repeat verification.
5. Stage 5: Return Final Answer
(a) Once all claims in A; are supported or the
refinement cap is reached, output A; as the
final answer.
This tri-loop design ensures that:
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* Retrieval is focused and adaptive—new evi-
dence is fetched only when needed.

* Verification acts as a gatekeeper, filtering out
irrelevant or insufficient passages and isolat-
ing hallucinated statements.

* Generation/Refinement is constrained to pro-
duce only evidence-backed content.

4 Experimental Setup

4.1 Dataset and Baselines

We conduct our experiments on the hidden BioNLP
2025 ClinlQLink test set, comprising 500 expert-
curated medical QA pairs spanning four open-
ended formats: short answer, short-inverse, multi-
hop, and multi-hop-inverse (BioNLP Shared Task
Organizers, 2025). This testbed is explicitly de-
signed to surface subtle hallucinations in LLM
outputs, as it provides ground truth and requires
evidence-grounded answers.

We compare three systems:

* Subl (VeReaFine): Our proposed pipeline,
which couples Qwen2.5-7B with an 8B medi-
cal reasoning verifier in an iterative RAG loop.

* Sub2 (M1-32B): A 32B-parameter domain-
tuned GPT-style model fine-tuned on medi-
cal QA data, representing the state-of-the-art
medium-scale clinical LLM with strong test
time-scaling properties are optimized for real
world implementation (Huang et al., 2025).

* Sub3 (Qwen2.5-7B): The 2.5B-parameter
Qwen instruct model but without any
hallucination-aware verification loop.

We focus our analysis on the open-ended QA be-

cause close-end questions do not have much im-

provement, and our pipeline is not designed to fo-

cus on solving the problems with closed-ended QA
metrics most sensitive to hallucination:

1. Quantile-based Recall at the 25th and 75th
percentiles (P25/P75) over semantic partial
matches (higher indicates the system covers
more of the ground truth answer distribution)
(Liu et al., 2023).

2. Multi-Hop Inverse Step-Identification Rate,
the fraction of gold reasoning steps correctly
extracted in the model’s explanation.(Trivedi
et al., 2023).

We also report standard text-generation metrics

(BLEU, METEOR, ROUGE) for completeness,

though these often under-capture hallucination

severity (Maynez et al., 2020).

P25 Recall by Model and Category
0.44 0.43

M1-32B
= Qwen2.5-7B
mmm \VeReaFine
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e
-
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Figure 2: P25 recall across open-ended question types.

4.2 TImplementation Details

* Retrieval: We index a curated 8 GB biomedi-
cal corpus (PubMed abstracts, clinical guide-
lines) via FAISS (Johnson et al., 2017). A two-
stage dense retriever (BM-Retriever-410M)
identifies the top k£ = 10 chunks, which are
then reranked by a lightweight 2B-parameter
cross-encoder (Karpukhin et al., 2020).

* Generation & Verification: We set
both generator (Qwen2.5-7B) and verifier
(MedReason-8B) temperature to 0.7 to
balance creativity and precision. Each
verification loop comprises: (i) prompting
the verifier to label each claim in A; as
supported or unsupported with textual
evidence citations; (ii) conditioning the
generator on this feedback to produce A;1.
We cap at 2 iterations to avoid diminishing
returns (Madaan et al., 2023).

* Prompting: Detailed prompt templates (in-
cluding example-driven chain-of-verification
scaffolds) are provided in Appendix A.

S Open-Ended QA Analysis

We now delve into a fine-grained comparison of
open-ended performance across the three systems,
isolating where the verifier loop yields the greatest
factuality improvements.

5.1 P75 Recall by Question Type

Figure 3 plots the 75th-percentile recall (P75) for
each open-ended category. We choose P75 as it
highlights the system’s ability to capture the major-
ity of gold reference variations while being robust
to outliers.

Short Answer Sub3 (Qwen2.5) achieves
P75=0.168, indicating it covers only the top 17%
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Figure 3: P75 recall across open-ended question types.

of gold variants. Sub2 (M1-32B) improves to
0.338 (+101%), leveraging its larger capacity and
fine-tuning. VeReaFine achieves P75 to 0.269—in-
creasing by +60% relative to Sub3—despite using
the same base 7B generator, demonstrating that the
verification loop recovers critical answer fragments
otherwise hallucinated or omitted.

Short-Inverse In the inverse setting—where
the model must explain why a given wrong an-
swer is incorrect—hallucinations often manifest
as misattributed knowledge. Here, VeReaFine at-
tains P75=0.559, surpassing both Qwen2.5 (0.358,
+56%) and even M1-32B (0.539, +4%). The veri-
fier loop is especially potent at catching subtle log-
ical missteps in inverse explanations, forcing the
generator to ground its critique in actual evidence.

Multi-Hop & Inverse Multi-step reasoning am-
plifies hallucination risk.  Sub3’s multi-hop
P75=0.236 and inverse P75=0.387 reflect weak
chain integrity. M1-32B reaches (0.396, 0.387),
while VeReaFine hits (0.394, 0.475)—a +22%
boost on inverse steps. Interestingly, in standard
multi-hop (non-inverse), Sub2 slightly outperforms
VeReaFine; we hypothesize that M1-32B’s larger
model can internally chain-reason when evidence
is abundant. Yet VeReaFine shines when the task
pivots to validating or correcting a proposed chain.

5.2 Multi-Hop Inverse Step-Identification

Figure 4 compares the multi-hop inverse step-
identification rate—the proportion of discrete rea-
soning steps correctly recognized and cited.

Sub3 lags at 0.508, often failing to extract or
verify all required steps. Sub2 reaches 0.826, ow-
ing to its stronger internal reasoning. VeReaFine
achieves 0.751 (+48% over Sub3), recovering most
of the gap by explicitly verifying each step against

Multi-hop Inverse Step Identification Rate

MI-328-1K Qwen2.578
Model

Figure 4: Multi-hop inverse step-identification rate.

retrieved evidence. This underscores that verifiers
help to provide the sufficient source ground truth
for generator LLM for each verification loop to
help generator LLM to have any source for explain
step verification.

6 Discussion

Our experiments with VeReaFine demonstrate
that an iterative verifier-augmented RAG pipeline
can help to improve the results of open-ended
medical QA, even when using a modest 7B-
parameter generator. By explicitly categorizing
unsupported claims and steering the generator to
correct them, we observe marked gains in recall
quantiles (P25/P75) and step-identification rates
compared to both a similarly sized vanilla LLM
and a 32B medical model. This highlights the
power of LLLM-as-judge paradigms in high-stakes
domains: the verifier effectively enforces evidence
sufficiency, closing the factuality gap between mod-
erate and large-scale models (Madaan et al., 2023;
Dhuliawala et al., 2023).

However, our shared-task constraints limited us
to only three submissions, preventing direct com-
parison against a RAG without verifier and preclud-
ing evaluation of VeReaFine on larger backbones
(e.g., 30-70B models). Thus, while VeReaFine
outperforms or nearly achieve in some tasks on
open-ended questions against M1-32B, a controlled
ablation against RAG-only within our testbed re-
mains future work. Furthermore, our verifier cur-
rently relies on a single 8B reasoning model; em-
ploying an ensemble of specialized verifiers (e.g.,
fact-checkers, NLI models) could further improve
robustness (Manakul et al., 2023; Nakano et al.,
2022).

7 Conclusion and Future Work

We have presented VeReaFine, a novel Verifier-
RAG architecture that interleaves retrieval, genera-
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tion, and verification to mitigate hallucinations in
open-ended medical question answering. Despite
using a relatively small 7B generator, VeReaFine
matches or exceeds the factuality of much larger
baselines by enforcing an iterative feedback loop.
Our results on the BioNLP 2025 ClinIQLink shared
task underscore the feasibility of using small mod-
els rather than large medical LLM sizes for QA
assistants.

Future Work

* Benchmark Against Standard RAG: Extend
evaluations to directly compare VeReaFine
against retrieval-only baselines within the
same corpus, quantifying the verifier’s
marginal benefit.

* Scale to Larger Models: Integrate
VeReaFine with 30B-70B LLMs to as-
sess whether verification yields further
improvements or diminishing returns at scale.

* Multi-Verifier Ensembles: Investigate en-
sembles of diverse verifier models (e.g.,
NLI, chain-of-thought checkers, external fact-
check APIs) to capture a broader spectrum of
hallucination types.

* Human-in-the-Loop: Incorporate clinician
feedback in the verification loop to calibrate
verifier thresholds and ensure clinical rele-
vance.

« Efficient Verification: Explore knowledge
distillation or lightweight verifier architec-
tures to reduce latency and computational
overhead in real-time clinical settings.
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