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Foreword from the General Chair

As president of the International Association for Machine Translation (IAMT) and General Chair of the
20th Machine Translation Summit, it is my utmost pleasure to write these opening words. Be most wel-
come to our MT Summit 2025!

The European Association for Machine Translation (EAMT) Executive Committee (EC) has been very
busy. Mikel Forcada (treasurer) and Sara Szoc (secretary) have been tirelessly supporting all initiatives.
Carolina Scarton and Sara Szoc took great care of our bursaries. Patrick Cadwell, André Martins, and
Manuel Lardelli were our chairs for the Research Projects. Manuel Lardelli was also our policies chair,
revisiting all our policies and contributing to inclusivity strategies. Our very own Mary Nurminen, chair
of the bid proposals for our next events, has been busy selecting our next venue! EAMT 2026 venue will
be disclosed in our closing ceremony in Geneva!

One of our core initiatives, the best thesis award — Rachel Badwen and Barry Haddow, chairs of the Best
Thesis Award, had a very difficult time selecting a candidate, since the submissions were of very high
quality. Our congratulations to Ricardo Rei’s thesis “Robust, Interpretable and Efficient MT Evaluation
with Fine-tuned Metrics” (Unbabel, INESC-ID, Instituto Superior Técnico, Portugal), supervised by Ma-
ria Luisa Torres Ribeiro Marques da Silva Coheur and Alon Lavie. We would also like to congratulate
for the highly commended thesis of Sara Papi (University of Trento & Fondazione Bruno Kessler), en-
titled “Direct Speech Translation in Constrained Contexts: the Simultaneous and Subtitling Scenarios”
and supervised by Marco Turchi and Matteo Negri.

EAMT, as full sponsor of the MT Marathon, would also like to thank the Institute of Formal and Applied
Linguistics (UFAL), Charles University for organizing the 17th MT Marathon. The event included MT
lectures and labs, covering the basics and tutorials; keynote talks from experienced researchers and prac-
titioners; presentations of research and open source tools related to MT; and hacking projects to advance
tools or research in one week or start new collaborations. A special thank you to Jindfich Helcl his com-
mitment and passion for this event!

MT Summit 2025 will be a moment to celebrate our IAMT Award of Honour!! We celebrate Professor
Mikel Forcada, unanimously supported by all sister organizations (EAMT, AAMT, and AMTA), in re-
cognition of his long-standing distinguished contribution to the EAMT and IAMT communities and for
his impactful research on Machine Translation. Thank you for being an inspiration to us all!

Geneva, Switzerland, MT Summit 2025! Our conference will have a three-day, four-track programme
put together by our chairs: Catarina Farinha and Marco Gaido (research: technical track chairs); Dorothy
Kenny and Joke Adaems (research: translators & users track chairs); Samuel Liubli and Martin Volk
(implementations & case studies track chairs); Miguel Espla and Vincent Vandeghinste (products & pro-
jects track chairs) and Francgois Yvon and Sheila Castilho (workshop and tutorial chairs). Our filters of
quality and alignment! We really appreciate your work. We will continue with our tradition and also
have a two-day workshops and tutorials event.

Our gratitude to all our keynotes speakers. Sarah Ebling, Full Professor of Language, Technology and
Accessibility at the University of Zurich. Joss Moorkens, Associate Professor at the School of Applied
Language and Intercultural Studies in Dublin City University (DCU). Eva Vanmassenhove, Assistant
professor in the Department of Cognitive Science and Artificial Intelligence at Tilburg University (TiU).
Our outstanding keynote speakers will demonstrate their extensive and global impactful work in transla-
tion studies and translation technologies, in a multidisciplinary motto which is the core of our community.

"https://eamt.org/iamt-award-of-honour/
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MT Summit 2025 is the result of a very aligned, sharp, engaged, and hard working local organising team!
What a diligent team! Our local co-chairs, Pierrette Bouillon, Johanna Gerlach, Sabrina Girletti and Lise
Volkart (all from the University of Geneva, Switzerland) have put a lot of work in giving us a Geneva
unforgettable event. To Sevita Caseres, Bastien David, Céline De Graaf, Julie Humbert-Droz, Rebeka
Mali, Lucia Morado, Jonathan Mutal, Lucia Ormaechea, Aurélie Picton, Donatella Pulitano, Silvia Ro-
driguez, Raphael Rubino, Valentin Scourneau, Marianne Starlander, Irene Strasly, Nikolaos Tsourakis,
Florine Voisard (all from the University of Geneva, Switzerland) and Rico Sennrich (University of Zuri-
ch, Switzerland), our deepest appreciation.

EAMT has been supported by generous sponsors in its initiatives along the years.> This year is no ex-
ception in a summit year! In fact, it is a very exceptional year in terms of sponsoring activities. Our
gratitude to our Platinum sponsors who will also be giving a research oral presentation, BIG Language
Solution, STAR, WIPO. Our Gold sponsor Systran by ChapsVision. Our Silver sponsors: Translated,
Reverso, and Unbabel. To our Bronze sponsors: AppTek, CrossLang, TransPerfect, and Zoo Digital. To
all our Supporter sponsors: Apertium, iguanodon.ai, prompsit, Springer Nature (our Supporter sponsor
for the Best Paper award) and Supertext. Finally, to our Media sponsors, MultiLingual and Slator. Your
support is vital in our efforts to give back to our community through grants and other initiatives.

A note still to all our IAMT members and our participants! Without you no effort would make sense!
Let us take this opportunity to create scientific collaboration and give constructive feedback. To fully
enjoy the conference, please check our Code of Conduct.> I'm looking forward to seeing you all and
celebrating our community gathering!

Our sister organizations have been renewed with new board of Directors. The best wishes to AMTA’s
new board, represented by the President, Jay Marciano, and to the AAMT’s Directors, Hisahiro Adachi,
SunFlare Co., Ltd. (President of AAMT) and Masao Utiyama, National Institute of Information and
Communications Technology, Japan (Vice President of AAMT). MT Summit 2027 will be held by AM-
TA! More soon!

It is our organisation’s greatest wish to continue giving back to our community and to drive and be driven
by our community’s energy and enthusiasm. Reach out to us if you have new ideas or suggestions you
would like to implement. We will try hard to accomplish it with you. Learn more about us.

Helena Moniz

President of the IAMT
General Chair of MT Summit 2025
University of Lisbon, Portugal

https://mtsummit2025.unige.ch/sponsors.html
*https://mtsummit2025.unige.ch/about.html#codeOfConduct
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Message from the Local Organising Committee

It is our great pleasure to welcome you to the Faculty of Translation and Interpreting (FTI) for this 20th
edition of the MT Summit. We are particularly proud that for the first time in its history, the Summit
is being hosted by a translation faculty, highlighting the importance of the human factor in today’s te-
chnology. This is also a sign that technology has become an imperative in professional translation. Our
faculty has long embraced this evolution, as illustrated by its translation technology department, first
established back in the 1970s (first under the name of ISSCO, and then TIM). It was long spearheaded
by Prof Maghi King, who, as some of you may recall, received the prestigious IAMT Award of Honour
in 2005.

Our department has always been committed to building bridges between research in MT and professional
translators. The conference taking place here today is further proof that this bridge is now well establi-
shed and solid! The structure of the conference itself also reflects this dual focus, with two dedicated
research tracks, one Technical, and the other for Translators and Users.

This year also brings an important new initiative: authors of papers involving computational experiments
are encouraged to include sustainability reports. Most authors engaged with the initiative, reflecting the
willingness of our community to embrace more transparent and thoughtful research practices.

We hope you will enjoy the rich and carefully curated program put together by our dedicated track chairs
and made possible by the thorough work of our reviewers. We are also deeply grateful to our keynote
speakers, as well as the organizers of the workshops and tutorials, whose contributions are crucial to the
success of this conference.

We also want to thank our sponsors, more generous than ever before! Their presence is a strong indicator
of the fruitful and trustworthy collaboration that exists between academia and industry in our field.

When we signed up to organise this conference, we had no idea of the summit that we would have to
climb, nor how much determination, patience and endurance it would require of us. But thanks to our
experience of the mountains, a dedicated team, and the valuable support of EAMT Executive Committee
and previous organisers, we reached the (MT) Summit (almost) without problems. As in every climb, it
is the strength of the team that gets you to the top!

We wish you an excellent MT Summit!

On behalf of the MT Summit 2025 Organising Committee:
Pierrette Bouillon

Johanna Gerlach

Sabrina Girletti

Lise Volkart

Department of Translation Technology (TIM)

Faculty of Translation and Interpreting
University of Geneva, Switzerland
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Preface by the Programme Chairs

The Research Technical track received 57 submissions, out of which 28 were accepted, for an accep-
tance rate of 49%. 14 papers will be presented orally and the other 14 will be part of two poster sessions.
The topics covered by the submitted papers include named entity aware translation, context-aware ma-
chine translation, domain-specific translation, multilingual and low-resource translation, and translation
evaluation. We express our most heartfelt thanks to the 83 reviewers, who made this track possible, with
a particular gratitude for the emergency reviewers who promptly accomplished their duties, enabling us
to respect the timeline for author notification.

Catarina Farinha (Unbabel)
Marco Gaido (Fondazione Bruno Kessler, Italy)

The Translators and Users track initially received 28 submissions, of which 21 could be conside-
red for this track, the other 7 covered more technical aspects of machine translation and were therefore
considered for the Technical track instead. Of these 21, 19 were accepted (an acceptance rate of 90%,
showing the overall high quality of submission to the track). As track chairs, we noticed a few trends in
these accepted papers, and we tried to group the submissions in sessions accordingly. The large language
model trend, established in earlier EAMT conferences, clearly continues. Large language models are
used for literary translation (post-editing) and emergency response text translation, and there is a clear
interest in how these technologies are currently being used by students as well as perceived by professio-
nals. From the text types that are being studied, it is obvious that ’literary translation’ is most strongly
represented in this track, with 5 submissions covering the topic. This is particularly striking, given that
this MT Summit is also hosting a dedicated workshop on Creative-text Translation and Technology. The
intersection of creativity, literature and automatic translation has clearly arrived as a field of inquiry.
We thank all PC members for their time and dedication in delivering insightful feedback, ensuring the
quality of the submissions to this track. Special thanks to the emergency reviewers who helped us avoid
any delays. You all made this conference possible.

Joke Daems (Ghent University, Belgium)
Dorothy Kenny (Dublin City University, Ireland)

The Implementation and Case Studies track received 12 submissions out of which 9 were accepted
for presentation at the MT summit (6 talks and 3 posters). The papers cover a broad range of topics, e.g.
speech translation, LL.M-based translation, low-resource settings, productivity evaluation and translator
satisfaction. We would like to express our gratitude and appreciation to our reviewers from academia and
industry for their time and effort in commenting and grading the submissions.

Samuel Laubli (Textshuttle/Supertext, Switzerland)
Martin Volk (University of Zurich, Switzerland)

The Products and Projects track received 22 submissions, of which 20 have been accepted for a short,
two-page description and a poster presentation at the conference. Our selection highlights a diverse range
of products and projects created by our community, covering research projects and cutting-edge services
and innovations from distinguished industry and research leaders. Expect a lively session filled with
poster boasters and engaging poster presentations. We wish to thank the 26 members of the program
committee for this track for their timely and thorough reviews.



Miquel Espla-Gomis (University of Alicante, Spain)
Vincent Vandeghinste (KU Leuven, Belgium)

The Workshop and Tutorials received seven workshop proposals, five of which were finally selec-
ted: four are reiterations of workshops that have already been collocated with MT conferences in the
past: these are the “2nd Workshop on Creative-text Translation and Technology” (CTT 2025), the 3rd
“International Workshop on Gender-Inclusive Translation Technologies” (GITT 2025), the 3rd “Interna-
tional Workshop on Automatic Translation for Signed and Spoken Languages” (AT4SSL), and the 11th
“Workshop on Patent and Scientific Literature Translation” (PSLT 2025). We are also happy to see the
start of a hopefully equally successful new series, with the 1st “Workshop on Artificial Intelligence and
Easy and Plain Language in Institutional Contexts” (Al & EL/PL). With the exception of PSLT, they will
all run for a full day, on the 23rd or on the 24th of June. Five half-day tutorials were also submitted,
and three will be offered to the participants: “Understanding Large Language Model-Generated Tran-
slations”, “Leveraging Examples in Machine Translation”, and “Best practices for data quality in human
annotation of translation datasets”. Our hope is that the choice between such diverse and exciting propo-
sals will be a difficult one, and that these two pre-conference days will be as enjoyable and rewarding as
possible, sparking new ideas, collaborations, and conversations in Geneva and beyond.

Sheila Castilho (Dublin City University, Ireland)
Francois Yvon (Sorbonne University, France)
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EAMT 2024 Best Thesis Award (Anthony C. Clarke Award)

Six PhD theses defended in 2024 were received as candidates for the 2024 year edition of the EAMT Best
Thesis Award, all of which were eligible. Eight external reviewers were recruited to examine and score
the theses alongside five EAMT executive committee members. Each thesis was evaluated according to
predefined criteria: how challenging the topic was, how relevant the results were to the MT field and the
strength of its impact in terms of scientific publications. As in previous years, 2024 was another strong
year for PhD theses in machine translation.

All PhD theses were of good quality, focused on interesting topics and were all highly appreciated by
reviewers. A panel of two EAMT Executive Committee members (Barry Haddow and Rachel Bawden)
was assembled to process the reviews and select a winner that was later ratified by the EAMT executive
committee.

We are pleased to announce that the winner of the 2024 edition of the EAMT Best Thesis Award is
Ricardo Rei’s thesis “Robust, Interpretable and Efficient M T Evaluation with Fine-tuned Metrics”
(Unbabel, INESC-ID, Instituto Superior Técnico, Portugal), supervised by Maria Luisa Torres Ribeiro
Marques da Silva Coheur and Alon Lavie.

In addition, the committee judged that the thesis of Sara Papi (University of Trento & Fondazione Bruno
Kessler) entitled “Direct Speech Translation in Constrained Contexts: the Simultaneous and Subtitling
Scenarios” and supervised by Marco Turchi and Matteo Negri was “highly commended”.

The awardee will receive a prize of €500, together with an inscribed certificate. In addition, Dr. Rei
will present a summary of their thesis at the 20th Machine Translation Summit in Geneva, Switzerland,
receive complimentary membership to the EAMT in 2026 and will receive a travel bursary of €200.

Chairs of the EAMT Best Thesis Award 2024
Rachel Bawden, Inria, Paris, France
Barry Haddow, University of Edinburgh, UK
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Keynote Talk
Sign Language Machine Translation

Sarah Ebling
University of Zurich (UZH)

Abstract: In this talk, I will highlight the challenges of automatic translation between spoken languages
and sign languages, touching on the topics of representation, data, and ethics. Additionally, I will intro-
duce preprocessing tasks and discuss their state of the art. I will present research conducted in our group
in the different areas.

Bio: Sarah Ebling is Full Professor of Language, Technology and Accessibility at the University of Zu-
rich. Based in the field of computational linguistics, her research focuses on language-based assistive
technologies in the context of persons with disabilities. Specifically, Sarah Ebling’s research takes place
in the context of deafness and hearing impairment, blindness and visual impairment, cognitive impair-
ment, and language disorders. She is conducting research on sign language technologies, automatic
text simplification, technologies for the audio description process, and computer-aided language sample
analysis. Sarah Ebling is involved in international and national projects and is the PI of a large-scale
Swiss innovation project entitled Inclusive Information and Communication Technologies"(2022-2026;
https://www.iict.uzh.ch/).
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Keynote Talk
Losing Our Tail — Again: Unnatural Selection and
Translation Technologies

Eva Vanmassenhove
Tilburg University (TiU)

Abstract: Language is humanity’s primary tool to preserve and transmit knowledge, evolving alongside
and with cultural technologies. Today, multilingual large language models (LLLMs) represent the latest
leap. Emerging evidence, however, suggests that LLMs might subtly (or not so subtly) distort language
over time, amplifying frequent patterns while eroding linguistic richness, a phenomenon linked to model
collapse which had already been observed in Neural Machine Translation (NMT) systems even before
it was formally named. Unlike the visible artefacts that have already been observed in the Al-generated
images created by computer vision models, linguistic shifts, such as the loss of the long tails of language,
risk going unnoticed. Yet, they mayhave profound implications for language, translation, diversity, and
the integrity of communication across different languages. This keynote will explore these ideas and
connect them to specific translation issues, asking: What is (or will be) at stake when our world of words
becomes increasingly shaped by multilingual LLMs.

Bio: Eva Vanmassenhove is a researcher specializing in Machine Translation and Language Technology,
with a strong focus on tackling gender and algorithmic biases in translation systems. She earned her
PhD from Dublin City University and now serves as an assistant professor in the Department of Co-
gnitive Science and Artificial Intelligence at Tilburg University (TiU). At TiU, she contributes to the
Computation and Psycholinguistics Research unit and the Inclusive and Sustainable Machine Translation
Research Line. Her work aims to enhance machine translation by addressing biases, especially in gender
representation, while preserving linguistic richness.
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Keynote Talk
Ethics and MT Evaluation: An Exploded View

Joss Moorkens
Dublin City University (DCU)

Abstract: This talk reflects on ethical issues with MT using LLMs, looking particularly at a recent eval-
uation study in the medical domain. This study, and the potential for its findings to be used as a basis for
action, bring abstract ethical issues into focus. More broadly, the heightened attention and potential for
impact of MT and LLM research brings an added sense of responsibility for researchers, although this
might be balanced with opportunities to contribute to the common good.

Bio: Joss Moorkens is an Associate Professor at the School of Applied Language and Intercultural
Studies in Dublin City University (DCU), Science Lead at the ADAPT Centre, and member of DCU’s
Institute of Ethics and Centre for Translation and Textual Studies. He has published over 60 articles
and papers on the topics of translation technology interaction and evaluation, translator precarity, and
translation ethics. He is General Co-Editor of the journal Translation Spaces with Prof. Dorothy Kenny,
co-editor of a number of books and journal special issues, and co-author of the textbooks Translation
Tools and Technologies (Routledge 2023) and Automating Translation (Routledge 2024). He sits on the
board of the European Masters in Translation Network.
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Tutorial
Understanding Large Language Model-Generated
Translations: How Can They Adapt to Different Translation
Specifications and Pass the Translation Turing Test?

Longhui Zou', Michael Carl?, Alan Melby?, Brandon Torruella?, Masaru Yamada®
!University of Montana, 2Kent State University - CRITT, ®International Federation of Translators,
4Brigham Young University, °Rikkyo University

Abstract: This tutorial explores the practical application of the Translation Turing Test (TTT) within
today’s evolving generative Al landscape, addressing the growing need for human-centered approaches
to translation project management and machine translation evaluation. While substantial research has ex-
amined large language models (LLMs)’ translation quality, little attention has been paid to their potential
in managing the complex human interactions that characterize real-world translation project negotiations.

The TTT is a translation-specific adaptation of the classic Turing Test, evaluating whether a machine-
managed translation project can successfully imitate a professional human project manager. In the TTT,
a requester interacts with both human and computer systems to negotiate translation specifications and
conduct a complete translation project. The machine passes if the requester cannot distinguish between
the two managers more than 30% of the time.

This half-day tutorial guides participants through current language industry practices and the three major
TTT components: specification negotiation, target text quality assessment, and complaint negotiation.
By comparing three translation project cycles (managed by a human professional, a trained amateur, and
a generative Al agent), we evaluate whether LLM-powered agents can handle complex coordination tasks
characteristic of language service providers.

The program includes four sessions: introduction to the TTT, demonstration of requester-provider nego-
tiations, translation quality evaluation including MQM customization and syntactic complexity analysis,
and complaint negotiations. Participants gain both theoretical understanding and practical experience
assessing the feasibility of integrating LL.Ms into real-world translation projects that support or enhance
human project managers’ roles.
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Tutorial
Leveraging Examples in Machine Translation: A Guide to
Retrieval and Integration Strategies

Maxime Bouthors', Josep Maria Crego?
!ISIR - Sorbonne Université - CNRS, 2SYSTRAN by ChapsVision

Abstract: Retrieval-Augmented Generation (RAG) systems are growing popular in the era of Large
Language Models (LLM). Nonetheless, retrieval augmentation has a long time story tied to Machine
Translation (MT). This tutorial aims to put in perspective the various techniques used to (1) retrieve re-
levant examples for databases; (2) integrate them into MT models. We will uncover how the selection
of examples can be performed (fuzzy matching, cross-lingual retrieval), some of the model architectures
(edit-based models, augmented encoder-decoder generation models, LL.Ms), as well as how the aug-
mentation affects the output. The target audience are academics and industry professionals wishing to
incorporate examples to improve their translation quality.
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Tutorial
Best Practices for Data Quality in Human Annotation of
Translation Datasets

Marina Sanchez Torrén!, Jennifer Wong!
!Smartling

Abstract: High-quality human annotations are essential for developing and evaluating machine learning
(ML) models. However, annotation is a complex task, and creating reliable annotation datasets requi-
res addressing multiple challenges. This tutorial provides comprehensive guidance on best practices for
managing data quality in human annotation of translation datasets using the Multidimensional Quality
Metrics (MQM) framework. Drawing from both academic research and industry experience, we cover
the complete annotation lifecycle: from initial setup and annotator management to quality evaluation and
improvement strategies. Through theoretical foundations and a practical demonstration, participants will
learn concrete guidelines they can apply to create more reliable and consistent annotation datasets.
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Robust, interpretable and efficient M T evaluation with fine-tuned metrics

Ricardo Rei
Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
INESC-ID HLT lab, Rua Alves Redol, 9 1000-029 Lisboa, Portugal
Unbabel Research, R. Castilho 52, 1250-069 Lisboa, Portugal
Supervisors: Luisa Coheur and Alon Lavie
ricardo.rei@tecnico.ulisboa.pt

With the increasing need for Machine Transla-
tion (MT) in a world which is becoming globalized,
there is also an increasing need to constantly eval-
uate the quality of the produced translations. This
evaluation can be achieved through human annota-
tors performing quality assessments or by employ-
ing automatic metrics. While human evaluation is
preferred, it is expensive and time-consuming. Con-
sequently, over the past decade, MT progress has
primarily been measured using automatic metrics
that assess lexical similarity against reference trans-
lations. However, numerous studies have demon-
strated that lexical-based metrics do not correlate
well with human judgments, casting doubt on the
reliability of research in MT. Motivated by these
challenges, the main goal of this thesis was to im-
prove the current state of MT evaluation by devel-
oping new automatic metrics that satisfy four crite-
ria: 1) strong correlation with human judgments, 2)
robustness across different domains and language
pairs, 3) interpretability, and 4) efficiency.

Based on recent advancements in cross-lingual
language modeling, we hypothesize that a super-
vised metric incorporating the source-language in-
put into the evaluation process will produce a more
accurate MT evaluation. To validate this hypothe-
sis, we introduce COMET (Crosslingual Optimized
Metric for Evaluation of Translation), a neural frame-
work for training multilingual MT evaluation mod-
els that serve as metrics. Models developed within
the COMET framework are trained to predict hu-
man judgments of MT quality, such as Direct As-
sessments (DA), Multidimensional Quality Metrics
(MQM), or Human-mediated Translation Edit Rate
(HTER). Our results demonstrate that metrics de-
veloped within our framework achieve state-of-the-
art correlations with human judgments across vari-
ous domains and language pairs.

© 2025 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
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Nevertheless, lexical metrics still possess re-
deeming qualities in terms of interpretability and
lightweight nature. In contrast, fine-tuned neural
metrics like COMET are considered “slow black-
boxes”. To address this, we employ neural ex-
plainability methods to reveal that these metrics
leverage token-level information directly associ-
ated with translation errors. We showcase their
effectiveness for interpreting state-of-the-art fine-
tuned neural metrics by comparing token-level neu-
ral saliency maps with MQM annotations. Addi-
tionally, we present several experiments aimed at
reducing the computational cost and model size of
COMET while maintaining its state-of-the-art cor-
relation with human judgments, thus bridging the
performance gap between lexical and model-based
metrics. That work, titted COMETINHO: THE LIT-
TLE METRIC THAT COULD, was recognized with
the Best Paper Award at EAMT 2022.

Realizing that system-level MT metrics alone
are insufficient for comprehensive evaluation, this
thesis also presents MT-TELESCOPE, a contrastive
analysis tool that provides fine-grained segment-
level insights into MT quality. By identify-
ing the factors behind system performance, MT-
TELESCOPE enables a deeper understanding of
translation accuracy at the phenomenon level (e.g.,
named entities).

Over the past years, my thesis work has signif-
icantly influenced the field, inspiring research on
quality-aware decoding — a paradigm that closely
aligns with recent advances in test-time compute
for large language models. By introducing high-
performing, interpretable, and efficient evaluation
metrics, my thesis work represents a substantial
step forward in MT evaluation and has set a new
standard for assessing translation quality. Receiv-
ing the EAMT 2022 Best Paper Award along with
the Best Thesis Award at EAMT 2024 is a great
honor and further solidifies the strength and recog-
nition of my work in MT by the EAMT organizers.

Proceedings of Machine Translation Summit XX Volume 1, pages 1-1, June 23-27, 2025



Thesis Title:

“Direct Speech Translation in Constrained Contexts: the
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SUMMARY:
1 Motivation

The shift to online communications in various sec-
tors like business, education, and entertainment
has highlighted the need for effective language
translation to enable seamless interaction among
users with diverse linguistic and accessibility needs.
Speech-to-text translation (ST) emerges as a core
technology for overcoming language barriers and
facilitating communication by converting spoken
words into another language, offering a natural un-
derstanding of language. However, developing ST
systems is challenging due to the inherent com-
plexities of speech, such as variations in accents,
speaking rates, and background noise. These chal-
lenges are further complicated by constraints such
as time (e.g., output latency), space (e.g., charac-
ters to be displayed on the screen), computational
resources (e.g., using CPUs or GPUs), or limited
data availability (e.g., low resource languages).

2 Research Questions

The objective of ST is to achieve the highest quality
of automatic textual translations. However, many
applications require more than just high translation
quality. When additional constraints are present,
the challenge becomes balancing translation qual-
ity with these specific requirements. This PhD
© 2025 The authors. This article is licensed under a Creative

Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
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Figure 1: Simultaneous Translation Constraints.

thesis focuses on two constrained scenarios: simul-
taneous speech translation and automatic subtitling.
Both tasks are of significant scientific and industrial
interest.

2.1 Simultaneous Translation

Simultaneous Speech Translation (SimulST) aims
to minimize latency—the delay from when an ut-
terance is spoken in the source language to when
it is translated into the target language. This re-
quires translations to be displayed promptly and
aligned with the natural pace of speech. Balancing
translation quality and latency is essential for user
comprehension and experience (Figure 1). Cur-
rent SimulST systems face challenges in achieving
this balance and often require complex training
procedures with multiple training stages and some-
times the need to develop several models for dif-
ferent latency requirements. This PhD research
explored whether existing ST systems possess in-
trinsic knowledge that can be leveraged for real-
time applications without complex, ad-hoc training
procedures. The main research questions were:

* Are complex training procedures necessary
for SimulST?

* Can the knowledge acquired by standard ST
models be used to guide them during simulta-
neous inference?

Proceedings of Machine Translation Summit XX Volume 1, pages 2-3, June 23-27, 2025



Figure 2: Automatic Subtitling Constraints.

2.2 Automatic Subtitling

Automatic Subtitling translates spoken dialogue
in audiovisual media into text, which has to con-
form to spatial constraints (subtitle length) and
temporal constraints (synchronization with audio-
visual content). Long subtitles may overwhelm
viewers, while short ones risk losing information;
thus, proper subtitle length and synchronization en-
sure they remain on screen long enough to be read
without disrupting the video’s flow (Figure 2). In
this scenario, prosody and speech cues are crucial
for subtitle segmentation and timing, but current
cascade architectures lose this information. There-
fore, this PhD research aimed to leverage direct
models that have direct access to this information,
addressing two key questions:

* Is there a way to exploit prosody and speech
cues to build automatic subtitling datasets
starting from already existing ST corpora,
overcoming data scarcity?

* Can a direct ST model produce fully seg-
mented and timed subtitles?

3 Contibutions

3.1 Simultaneous Translation

In SimulST, the goal was to assess if standard ST
systems could be repurposed for real-time use by
leveraging their intrinsic knowledge, advocating a
paradigm shift in model development. The contri-
butions can be summarized in the findings below:

* Standard ST systems used for simultaneous in-
ference achieve competitive or superior qual-
ity and latency compared to those ad-hoc
trained for the tasks (Papi et al., 2022a);

e Intrinsic knowledge, particularly cross-
attention, can be effectively used for SimulST,
resulting in low-latency translation with

minimal computational costs (Papi et al.,
2023b);

» Using cross-attention for aligning speech and
translation to guide simultaneous inference
achieves an optimal balance between quality
and latency (Papi et al., 2023c).

3.2 Automatic Subtitling

In Automatic Subtitling, the goal was to use direct
systems, able to exploit speech cues, for subtitle
segmentation and to generate complete subtitles.
Specifically, the main findings are:

* To cope with data scarcity, direct multilingual
multimodal models, which utilize both audio
and textual cues to identify optimal segmen-
tation points, revealed their effectiveness in
automatic subtitle segmentation, delivering
performance comparable to gold segmenta-
tion (Papi et al., 2022b);

* Direct ST models demonstrate the capabil-
ity of generating full subtitles, which consist
of segmented translations with correspond-
ing timestamps, showing competitive perfor-
mance against existing production tools (Papi
et al., 2023a).
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Abstract

Transformer architectures are increasingly ef-
fective at processing and generating very long
chunks of texts, opening new perspectives for
document-level machine translation (MT). In
this work, we challenge the ability of MT sys-
tems to handle texts comprising up to several
thousands of tokens. We design and implement
a new approach designed to precisely measure
the effect of length increments on MT outputs.
Our experiments with two representative ar-
chitectures unambiguously show that (a) trans-
lation performance decreases with the length
of the input text; (b) the position of sentences
within the document matters, and translation
quality is higher for sentences occurring earlier
in a document. We further show that manip-
ulating the distribution of document lengths
and of positional embeddings only marginally
mitigates such problems. Our results suggest
that even though document-level MT is com-
putationally feasible, it does not yet match the
performance of sentence-based MT.

1 Introduction

Statistical and neural machine translation (MT) ar-
chitectures (Koehn, 2020) have been designed to
process isolated sentences, limiting their ability
to properly handle discourse phenomena, such as
coherence and cohesion, the modelling of which
requires longer contexts (Fernandes et al., 2023).
A first step to address this shortcoming has been
to augment the source and/or the target side with
a couple of preceding sentences (Tiedemann and
Scherrer, 2017). Multiple approaches to encode
and fully exploit such extended contexts have been
proposed (Popescu-Belis, 2019; Maruf et al., 2021;
Castilho and Knowles, 2024) and have been shown
to improve the ability of MT engines to preserve lo-
cal discourse coherence and cohesiveness through
© 2025 The authors. This article is licensed under a Creative

Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
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word-sense disambiguation or the resolution of
anaphoric references (Bawden et al., 2018; Voita
et al., 2018). Most of these approaches continue
to process texts on a per-sentence basis with an
extended context, even though attempts have also
been made to process continuous chunks of texts
comprising several sentences (Scherrer et al., 2019;
Lopes et al., 2020; Ma et al., 2020, 2021; Lupo
et al., 2022a; Wu et al., 2023).

The ability of today’s neural MT models—
relying on encoder-decoder or decoder-only
architectures—to handle large context lengths, up
to thousands of tokens (Peng et al., 2024), opens
new perspectives to go beyond context-augmented
MT and develop fully-fledged document-level MT,
where the entire document context is available at
once, and where the target text is generated in a sin-
gle pass.! Two main technical novelties have made
this possible: (a) more efficient computation in the
attention layers (Tay et al., 2022) and (b) changes in
the design of positional encodings (PEs). In partic-
ular, replacing the sinusoidal absolute PEs (APEs)
of (Vaswani et al., 2017) with methods like AL-
IBI (Press et al., 2022) and RoPE (Su et al., 2024),
which lend themselves well to length extrapolation
(Sun et al., 2023; Zhao et al., 2024), seems to make
today’s transformers amenable to the processing of
arbitrarily long contexts (Mohtashami and Jaggi,
2023; Han et al., 2024).

In this work, we challenge the ability of contem-
porary MT models to effectively handle long spans
of texts. For this, we develop a new methodology
for assessing the impact of length variations on MT
performance. We perform a series of controlled ex-
periments with two representative neural MT sys-
tems, where the same documents are processed by
chunks of increasing lengths in a document-level
manner and show that (a) MT performance tends

!These perspectives are, for instance, explored in the latest edi-
tion of the WMT shared task on General Machine Translation
(Kocmi et al., 2024).
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to degrade with the length of the source document,
(b) length issues happen even for in-distribution
lengths and get worse when extrapolating to un-
seen document lengths, and (c) most of the degra-
dation happens in the final parts of the translation.
Hypothesising that this may be due to a mismatch
between the distribution of train and test PEs, we
explore a possible mitigation, which flattens the
distribution of PEs during training. We observe a
consistent improvement of automatic metric scores
for the APE-based vanilla encoder-decoder model,
while the RoPE based decoder-only model remains
mostly unaffected. In summary, our main contri-
butions are: (a) a new approach to the detection
and diagnosis of length issues in document-level
MT, (b) a new variant of the SHAPE (Kiyono
et al., 2021) method, which improves the distribu-
tion of PEs during training, and (c) a confirmation
that (perhaps for lack of an appropriate document-
level evaluation tool) sentence-level MT remains a
strong baseline in most settings.

2 Related work

2.1 Document-level MT

Previous attempts to incorporate more contextual
information in MT models can be roughly cate-
gorized into two categories: context-augmented
MT, also called Doc2Sent in (Sun et al., 2022), and
document-level MT, also called Doc2Doc. Recent
surveys of this field include (Popescu-Belis, 2019;
Maruf et al., 2021; Castilho and Knowles, 2024).
Translation of discourse phenomena, such as lex-
ical consistency, reference, and word sense disam-
biguation, requires inter-sentential context (Baw-
den et al., 2018; Wong et al., 2020; Fernandes et al.,
2023). This has motivated the integration of ex-
tended (local) contexts in Doc2Sent models. Such
approaches include concatenation-based methods
(Tiedemann and Scherrer, 2017); architecture adap-
tations to process context in different components
of the same encoder (Ma et al., 2020; Wu et al.,
2023), in a dedicated encoder (Voita et al., 2018;
Zhang et al., 2018), or via hierarchical attention net-
works (Miculicich et al., 2018; Maruf et al., 2019;
Yin et al., 2021); cache-based methods using a
short-term MT memory (Maruf and Haffari, 2018;
Tu et al., 2018; Yang et al., 2019; Dobreva et al.,
2020) and multi-pass decoding algorithms (Voita
et al., 2019; Yu et al., 2020; Kang et al., 2020).
Translating sentence by sentence, even with aug-
mented contexts, still fails to capture phenomena

related to coherence and consistency (Fernandes
et al., 2023), motivating Doc2Doc approaches to
process documents as a whole. This can be done
with concatenation-based methods (Tiedemann and
Scherrer, 2017; Sun et al., 2022; Karpinska and
Iyyer, 2023), along with sliding window attention
(Zhuocheng et al., 2023; Liu et al., 2023) and group
attention (Bao et al., 2021) to address the issue of
quadratic complexity. Other strategies include fo-
cusing on improving training through data augmen-
tation with a balanced length distribution (Sun et al.,
2022) and richer context-dependent phenomena
(Lupo et al., 2022a; Wu et al., 2024), or on better
training strategies with multilingual denoising pre-
training (Lee et al., 2022), adapted loss functions
(Lupo et al., 2022b), and enriched positional encod-
ings (Li et al., 2023; Lupo et al., 2023). Multiple
methods have recently emerged for large language
models (LLMs) (Wang et al., 2023), which also
show a decline in translation quality as input length
increases (Wang et al., 2024).2 These include a
two-stage training recipe with the use of a mono-
lingual corpus and high-quality parallel documents
(Xu et al., 2024; Alves et al., 2024), and applying
LLMs as post-editors (Koneru et al., 2024).

2.2 Extrapolating PEs

Since self-attention is position-agnostic, PEs are
used to provide position information in Trans-
former models. PEs embed the absolute token
position (APEs) (Vaswani et al., 2017), or the rela-
tive distance between tokens (RPEs) (Shaw et al.,
2018; Raffel et al., 2020; Press et al., 2022), with
ROPE (Su et al., 2024) being the go-to approach
in recent LLMs such as Llama2 (Touvron et al.,
2023). Despite RPEs yielding better length extrap-
olation ability than APEs, both of them struggle
to efficiently extrapolate input lengths beyond the
predefined maximum training length (Dai et al.,
2019; Chen et al., 2023; Peng et al., 2024; Zhao
et al., 2024), motivating the development of input
extension methods for PEs.

For APEs, SHAPE (Kiyono et al., 2021) offsets
all indices in a sequence by some random values.
Its authors show that this simple technique mim-
ics the computation of RPEs at a much smaller
cost and helps to improve the interpolation abili-
ties of a vanilla encoder-decoder model, as mea-
sured by BLEU (Papineni et al., 2002) with long
pseudo-documents. Our experiments confirm that

They also confirmed the effectiveness of training LLMs on
documents of varied sizes (similar to Sun et al. (2022)).



this technique is effective using actual document
contexts and a sounder experimental methodology,
based on paired tests, and using COMET (Rei et al.,
2020). Sinha et al.’s (2022) experiments adopt a
setting similar to ours, offsetting the absolute value
of APEs’ input to evaluate their ability to capture
relative distances between tokens. Their results,
like ours, illustrate the lack of robustness of APEs
and suggest that they overfit their training data.
For RPEs, especially RoPE, both position inter-
polation (PI) and position extrapolation methods
have been proposed. PI methods interpolate posi-
tions to extrapolate context length directly during
inference or through fine-tuning (Chen et al., 2023;
Peng et al., 2024). The position extrapolation meth-
ods aim to extend context using documents that are
shorter than the predefined maximum length. For
example, RandPos (Ruoss et al., 2023) randomly
maps position indices to a much larger interval with
the original word order, and PoSE (Zhu et al., 2024)
divides each training sequence into N chunks and
adjusts the position indices of every chunk except
the first one by adding a uniformly sampled offset,
within the scope of a predefined maximal length.

3 Methods and Metrics
3.1 Holistic Document-Level MT

Compared to sentence-based MT, holistic
document-Level MT (Doc2Doc) possesses several
appealing features, as it gives access to all the
available textual context. This should enable the
MT system to improve on global aspects pertaining
for instance to coherence and cohesion. However,
Doc2Doc also introduces several new challenges
compared to the Sent2Sent scenario:

1. in Doc2Doc, input texts are longer, causing a
computational overhead due to the quadratic
complexity of attention (Tay et al., 2022).

2. for longer inputs, attention weights are spread
over a larger number of tokens (Herold and
Ney, 2023); however, at each decoding step,
most attention needs to remain concentrated
on the corresponding local source context
(Bao et al., 2021). This is in contrast with
Doc2Sent, where sentence alignment is read-
ily available.

3. decoding longer sequences increases the im-
pact of search errors and of exposure bias
(Ranzato et al., 2016). Beam search also be-
comes more difficult due to the input length.

4. output sentences may not always stand in one-
to-one correspondence with source sentences,
which complicates the computation of auto-
matic metrics, which are designed to evaluate
one-to-one mappings between hypotheses and
references.

These differences motivate our main research ques-
tions, which we rephrase as: (a) For existing mod-
els, does Doc2Doc bring more benefits than disad-
vantages compared with Sent2Sent? (b) How do
these results vary with the input document length?
(c) Which methods and metrics can we use to auto-
matically evaluate the impact of length differences?

3.2 Shades of BLEU

Answering such questions requires metrics for com-
paring holistic translations with sentence-based
translations: as the number of segments produced
by the former may differ from the number of source
segments, a basic requirement is that they allow the
evaluation of translation hypotheses with more (or
fewer) sentences than the source (for quality esti-
mation scores) and/or the reference (for reference-
based metrics). However, most existing document-
level MT approaches still rely on BLEU (Papineni
et al., 2002), despite its well-documented short-
comings (Callison-Burch et al., 2006; Reiter, 2018;
Mathur et al., 2020; Dahan et al., 2024); or rather a
variant dubbed d-BLEU by Liu et al. (2020).> We
accordingly focus on BLEU in this section, noting
that the same questions would need to be addressed
with any metric relying on sentence-based surface
comparison (e.g., METEOR (Banerjee and Lavie,
2005), TER (Snover et al., 2006), BertSCORE
(Zhang et al., 2020), PRISM (Thompson and Post,
2020), COMET (Rei et al., 2020), and many oth-
ers).?

BLEU is computed by counting, sentence by
sentence, the number of n-grams (for n € [1:4])
shared by each translation hypothesis and its hu-
man reference. These counts are aggregated and
turned into frequencies, then averaged (geometri-
cally) at the corpus level. Finally, a length penalty

3Hendy et al. (2023) also consider a variant of COMET (Rei
et al., 2022) while Zhuocheng et al. (2023) introduce d-ChrF,
a document-level version of ChrF (Popovi¢, 2015).

*We choose to evaluate using the standard metrics, BLEU
and COMET, rather than evaluation approaches specifically
designed to test the use of increased context. This choice is
motivated by the fact that the score differences we observe
reveal a significant degradation in translation quality for longer
documents, indicating greater problems than those targeted by
finer-grained evaluation techniques.



is applied to degrade the score when the cumu-
lated length of the hypotheses is shorter than that
of the references. BLEU is a corpus-level score
that depends on sentence alignments. d-BLEU is
also a global score but counts common n-grams at
the document level. As a consequence, d-BLEU,
which records matches for larger spans than BLEU,
delivers higher scores, as the opportunities to match
n-grams are greater for a wider window.” These
two scores cannot be compared, and we contend
that their shortcomings make them inappropriate
for analysing length-related issues in MT.

An alternative to d-BLEU is to perform evalua-
tion at the document level, rather than the corpus
level. This can be implemented either as (a) calcu-
lating one BLEU score (with realignment) per doc-
ument, then averaging at the corpus level or (b) cal-
culating the equivalent of sentence-level BLEU
scores (Lin and Och, 2004) but where each segment
is a concatenated full document rather than a sen-
tence. However, (a) counts matches at the sentence-
level, which requires a realignment between trans-
lated and reference sentences and may introduce
some measurement noise. Therefore, our experi-
ments use method (b) to compute document-level
scores, hereafter referred to as ds-BLEU scores.

3.3 Evaluating Length Issues in MT

Another recurring methodological caveat with
length-related evaluation is related to the way
scores are compared. For instance, in (Sun et al.,
2022, Figure 1) BLEU scores are reported for buck-
ets of sentences of varying lengths in a plot which
suggests that performance increases with length
(up to a certain extent). Such vizualisations are
misleading, as global BLEU scores should only be
compared when measured with the same corpus.
What we propose instead is to compare matching
automatic translation scores for a set of inputs S =
{s1...sr}, systematically varying the translation
models M in {M; ... My} and the length of the
translation window W € {W; ... W }. For each
pair of settings, we can perform a paired t-test for
the average score difference and decide whether
two configurations (M;, Wy,) and (M;, W), each
associating a system and a length, are statistically
different, and if so, which of the two is the best.
SThis effect is well known, e. g. in (Koehn and Knowles, 2017,
Figure 7), where BLEU increases when considering sentence
groups of increasing lengths (at least for a certain length
range), where we would expect a decrease, as the length is of-

ten linked to syntactic complexity and therefore to translation
difficulty. We reproduce this observation in Figure 2.

0 100 200 300 400 500 "0 100 200 300 400 500
i i
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unifPE
= SHAPE

P(i)

0 500 1000 1500 2000

= origin
unifPE
—— SHAPE

P(i)
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i

Figure 1: Top: probability of observing training position
i (P(4)) for a sentence of length [ = 200, with standard
training (k; = 0, left) and with our uniform sampling
scheme (right) for M = 512. Middle: original, ,
and SHAPE P(i) for training set TED-G and M =
2048. Bottom: original, and SHAPE P(i) for
TED-U and M = 2048.

In our experiments, we consider two ways of pre-
senting S: (a) at the document level, where each s;
is a document and the evaluation is the ds-BLEU
score introduced in Section 3.2,° and (b) at the sen-
tence level, where each s; is a sentence and the
associated metric is COMET (Rei et al., 2020).”
For (b) we need to realign translation hypotheses
with their references. This can be performed with
the method of Wicks and Post (2022),® or with that
of Matusov et al. (2005),” which has long been
used for evaluating speech translation systems, and
which we adopt.!® Variations in configurations
(M, W) are obtained by changing the translation
engine and the length of input source texts. In all
cases, score comparisons are performed on identi-
cal source texts.

SWe use SacreBLEU (Post, 2018) with signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.4.0;
the parameter eff is set to yes for ds-BLEU.

"Using the library https://github.com/Unbabel/COMET
with the default model wmt22-comet-da.

8 Junczys-Dowmunt (2019)’s approach includes a set of tags
that constrain input and output to have the same number of
sentences, see also (Li et al., 2023).

9https ://www-16.informatik.rwth-aachen.de/web/
Software/mwerSegmenter.tar.gz/.

10The per-sentence COMET scores are averaged at the docu-
ment level to be associated with document lengths, or at the
corpus level to assess global translation quality.
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The same technique is also used to measure the
impact of the position within a document on trans-
lation quality. The question we study is whether
quality remains constant across a document, or
whether it tends to decrease when sentences are
processed at higher position indices. For this, we
consider groups of sentences translated at varying
starting positions with multiple systems and com-
pare the differences between COMET scores with a
paired difference test. Details regarding the corpus
and window sizes are given in Section 5.1.

4 Manipulating the Distribution of PEs

A basic requirement for document-level systems is
that they should be trained, or at least fine-tuned,
with long text inputs, ideally with complete docu-
ments. Using the empirical document length dis-
tribution may however not be ideal, as it yields
very skewed distributions of PEs where small posi-
tion indices are over-represented. We discuss two
approaches to obtain more balanced distributions.

4.1 Distribution of PEs

A training sequence of length [ yields examples for
all indices in {1, .. .,}. For a complete corpus, po-
sition index 1 will be observed for all inputs, while
the last index of the longest sequence will likely
only be observed once. Training with the “natu-
ral” distribution of document lengths is therefore
likely to overfit to smaller position indices while
underfitting to larger ones, hindering the ability to
handle long texts or extrapolate to lengths unseen
in training (Peng et al., 2024; Zhu et al., 2024).

A first way to improve the distribution of token
positions seen in training is to increase the repre-
sentation of long documents in the training data
while keeping a good balance with shorter ones
(Bao et al., 2021; Sun et al., 2022). This is easy to
do in our controlled setting (see Section 5.1). As
our experiments show, this significantly improves
automatic scores for the context lengths seen during
training. An alternative, which allows us to better
study the effect of PE distributions in training, is to
directly manipulate the indices (for a fixed length
distribution). The UNIFPE algorithm, introduced
below, is one way to achieve this.

4.2 Uniform SHAPEs (UNIFPE)

We assume a training set of texts s ...sy of re-
spective lengths [; . .. [y, and a maximum model
length of M, with Vi, M > [;. Training with text

s; creates training samples for positions i in [1:17;].
For the whole corpus, positions from 1 (observed
N times) to L4, = max;—1. n(l;) are observed,
with larger indexes being less trained than smaller
ones. Positions indices in [l;;q, : M] are never
observed. We wish to make the training PE distri-
bution more even, so that all positions in [1 : M]
are equally well-trained, which should also help to
extrapolate PEs for indices larger than [,,,4;.

This can be achieved by shifting the starting
index of every s; by some offset k;, making it pos-
sible to train with PEs in [1 + k; : [; + k;]. How
should k; be chosen? Randomly choosing k; = 0
or k; = [; with probability 1/2 makes the probabil-
ity of observing any index in [1:2l;] equal to 1/2.
This can be generalised to choose k; with uniform
probability 1/m among {0,1;,...,(m — 1) x [;},
with m = | M/I;|. However, doing so implies that
indices in [m * [; : M] are never observed. We
compensate for this as follows: before sampling
ki, we modify the set of possible shifts by adding
r; = M — m x[; to all values larger than a random
index [ € [1:m]. In other words, k; is sampled
from {j*l;+7];,7 =0...m—1}, withr}; = 0if
j < land r; otherwise. Sampling k; independently
for each text s; in each training batch ensures that
all indices are uniformly represented. A formal
description of UNIFPE is given in Algorithm 1.
Figure 1 illustrates the difference between always
starting at position 1 (Vi, k; = 0) and using our
UNIFPE strategy.

This approach is reminiscent of SHAPE (Kiy-
ono et al., 2021); while SHAPE chooses the offset
k; uniformly at random in a fixed interval to simu-
late relative PEs, which reduces the frequency of
small position indices, we sample k; non-uniformly
to ensure that all indexes are equally represented in
training.

5 Experimental Settings

5.1 Datasets

For our experiments, we prepare multiple sets of
parallel pseudo-documents based on the EN-FR
part of the TEDtalks corpus (Cettolo et al., 2012).

Training and validation sets Our training set
consists of pseudo-documents from both the train-
ing and validation splits of IWSLT-2016.'! Our
goal is to simulate real corpora of parallel docu-
ments with source documents shorter than a certain

"https://wit3.fbk.eu/2016-01


https://wit3.fbk.eu/2016-01

| sent 256 512 768 1024 1200 1600 2048 doc

TED-full TED-G TED-U
train dev train  dev train  dev
Count ‘ 1831 19 ‘ 15625 160 ‘ 10582 106

Length | 2915 2861 341 339 504 512

Count
Length

5103 503 261 184 142 123 100 80 52
23 233 450 638 827 955 1175 1468 2259

Table 1: Left: Statistics of the TED talks training and dev sets. Right: Statistics of the TED talks test sets from
IWSLT tst2014, tst2015, tst2016 and tst2017. ‘Count’ denotes the number of parallel pseudo-documents, ‘Length’
denotes the average length of source (i.e. English) pseudo-documents (in NLLB tokens).

2014

sent | 45.1 (0.97)
256 | 33.9 (0.82)
512 | 14.6 (0.44)
768 | 7.3 (0.27)
1024 | 8.8 (0.56)

2015

43.9 (0.98)
35.4 (0.84)
16.0 (0.56)
7.9 (0.32)
7.4 (0.51)

42.9 (0.99)
42.8 (0.98)
39.8 (0.98)
39.0 (0.97)
33.1 (0.99)
35.5 (0.98)
34.9 (0.96)
27.7 (0.95)

2016

41.7 (1.00)
33.3 (0.86)
15.2 (0.52)
10.0 (0.46)

7.5 (0.50)

39.7 (1.00)
40.9 (1.00)
39.9 (1.00)
38.1 (0.99)
35.4 (1.00)
36.2 (1.00)
26.7 (0.94)
27.2 (0.96)

2017

41.8 (1.00)
33.5(0.87)
13.8 (0.49)
6.7 (0.27)
6.5 (0.48)

lmam ‘

NLLB

sent | 43.4 (0.98)
256 | 44.0 (0.96)
512 | 42.9 (0.96)
768 | 39.6 (0.98)
1024 | 38.5 (0.98)
1200 | 37.4 (0.92)
1600 | 33.3 (0.96)
2048 | 24.0 (0.97)

38.7 (1.00)
39.4 (1.00)
40.6 (1.00)
39.9 (1.00)
35.4 (0.98)
35.6 (0.98)
31.0 (0.97)
23.5 (0.87)

TOWERBASE

Table 2: ds-BLEU scores (and brevity penalty) for
NLLB200-DISTILLED-600M and TOWERBASE-7B.

length ;4 — using l,q., = 1024. We split all
document pairs whose source side is longer than
1024 tokens into fragments.'? For each document
pair, we iterate the following procedure: (1) sample
a maximum pseudo-document length I} following
the same Gaussian-like length distribution as the
full TED talks with I} < l,,q4, (2) concatenate con-
secutive sentence pairs up to [/} to form a training
pseudo-document s;. The resulting distribution of
document lengths is displayed in Figure 3 in Ap-
pendix A.3. The development set is built similarly,
using document pairs from IWSLT tst2010 and
tst2011. We denote these training datasets as TED-
G (G for Gaussian). As discussed in Section 4, we
consider another dataset generation strategy, which
produces a more balanced length distribution, for
which we do as above but we sample uniformly:
I} ~ U(128,lmaz)."> Fine-tuning with the result-
ing TED-U corpus allows us to contrast two distri-
butions with differences in document length.

Test sets To evaluate MT systems for their
ability to handle documents of varying sizes
and extrapolate beyond the training samples, we

"2All statistics counted in tokens use the tokeniser of NLLB
(Costa-jussa et al., 2024).

3Short pseudo-documents continue to be slightly over-
represented, because the last pseudo-document in any given
talk is often strictly shorter than the desired length ;.

build a series of test sets of increasing docu-
ment lengths. For each document in IWSLT
tst2014, tst2015, tst2016 and tst2017, we accu-
mulate consecutive sentence pairs into parallel
pseudo-documents such that all resulting source
texts have a length close to 4z, With e, €
{256, 512, 1024, 1200, 1600, 2048}.'* Contrarily
to training sets, test sets are homogeneous in length.
Statistics are in Table 1 with more details in Ap-
pendix A.3. Evaluation is always performed with
complete original talks, after concatenating and
aligning all the corresponding parts.

5.2 Models

We used the UNIFPE algorithm to fine-tune two
pre-trained MT systems that were not trained with
TED talks. As UNIFPE is designed for APEs,
we considered NLLB200-DISTILLED-600M'> or
NLLB for short (Costa-jussa et al., 2024) as a rep-
resentative encoder-decoder model based on APEs.
NLLB is a 12-layer encoder-decoder multilingual
MT model pre-trained on 200 languages. We used
the HuggingFace implementation, which relies on
sinusoidal APEs (Vaswani et al., 2017). We also
perform fine-tuning with SHAPE for comparison.
We refer to the specific MT systems with respect to
their fine-tuning method (FT, UNIFPE or SHAPE),
backbone model (e.g. NLLB) and training corpus
(U for TED-U or G for TED-G. More precisely,
we denote MT systems trained on TED-U (resp.
TED-G) as FT-NLLB-U (resp. FT-NLLB-G),
UNIF-NLLB-U (resp. UNIF-NLLB-G) when fine-
tuning with UNIFPE, and SHAPE-NLLB-U (resp.
SHAPE-NLLB-QG).

We also experiment with an LL.M-based archi-
tecture, TOWERBASE-7B!¢ (Alves et al., 2024)
(TOWERBASE for short), derived from Llama2
(Touvron et al., 2023) using translation-related

14At the end of each talk, we concatenate the last parallel
sentences into the last pseudo-document if they are shorter
than 50 to avoid exceedingly short parallel sequences.
Bhttps://huggingface.co/facebook/
nllb-200-distilled-600M
16h’ctps://huggingface.co/Unbabel/TowerBase—7B—v®.
1
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NLLB FT-U Unif-U SHAPE-U FT-G Unif-G SHAPE-G

TowgR FT-U Unif-U SHAPE-U FT-G Unif-G SHAPE-G

sent-256 92 08 -2.1 25 04 -0.7 -1.7 sent-256 - - - - - -
256-512  19.1 - -0.4 1.4 - - 2.1 256-512 0.9 0.8 0.8 0.6 0.6 0.5
512-768 6.9 - -0.6 - 59 2.5 53 512-768 - - - 06 - -

768-1024 - 05 - - 72 3.0 3.7 768-1024 3.4 1.0 1.2 1.7 1.2 2.1
1024-1200 22 35 1.9 41 40 33 4.1 1024-1200 - - - - - -
1200-1600 - 68 6.5 54 58 5.5 49 1200-1600 47 1.7 2.1 - 1.6 2.0 1.5
1600-2048 1.9 52 45 3.1 42 5.7 6.0 1600-2048 59 15 6.5 73 8.1 7.8 7.3

sent-256  16.7 3.5 1.7 1.3 27 2.1 1.9 sent-256 39 23 2.4 23 23 2.3 22
256-512  20.7 - -0.4 24 06 - 42 256-512 - 04 - - 02 0.3 0.3
512-768 5.6 - - - 116 72 8.1 512-768 - - - 05 03 -

768-1024 52 23 0.8 - 104 7.6 7.8 768-1024 29 10 0.5 1.1 0.8 1.2
1024-1200 - 74 43 69 38 4.7 4.6 1024-1200 - - 1.0 0.9 - - -
1200-1600 6.1 9.6 134 83 54 55 5.6 1200-1600 62 1.7 1.8 - - 1.9 1.8
1600-2048 - 51 5.0 59 39 5.6 5.0 1600-2048 8.7 10.0 8.9 9.1 11.0 102 9.2

Table 3: Average differences evaluated on ds-BLEU (top) of full TED talks and on 100x COMET (bottom) of
realigned parallel sentences, between translations in increasing context size, for NLLB (left) and TOWERBASE
(right) models. U and G respectively denote TED-U and TED-G. A positive value means that shorter segments
result in higher scores than longer ones. Text in olive for p-values > 0.01. - for p-values > 0.05.

tasks. TOWERBASE uses RoPE (Su et al., 2024)
to encode RPEs. As mentioned by Peng et al.
(2024), they nonetheless encode some form of APE
signal in some dimensions, and may therefore be
also mildly impacted by the PE training distribu-
tion. We refer to the models based on TowerBase
as FT-TOWER-U (resp. FT-TOWER-G), UNIF-
TOWER-U (resp. UNIF-TOWER-G) and SHAPE-
TOWER-U (resp. SHAPE-TOWER-G) the model
fine-tuned on TED-U (resp. TED-G) with original
PEs, UNIFPE or SHAPE.

Both backbone models were pretrained with
large amounts of EN-FR data; we focus exclu-
sively on the EN into FR direction. Details on
fine-tuning and decoding parameters can be found
in Appendix A.4.

6 Results and Analyses

6.1 Length Issues

We report the ds-BLEU (Table 2) and COMET
(Appendix, Table 7) scores of the pretrained models
NLLB and TOWERBASE for multiple test sets,
varying the average input segment lengths from
one sentence to the maximum input length used in
training.!” For NLLB, we observe a drop of around
10 ds-BLEU points and about 0.2 COMET points
when translating test sets of ,,,, = 256 instead
of isolated sentences. Scores and their associated
brevity penalties (BPs) only get worse with larger
context lengths. For TOWERBASE, the decrease in
BLEU is more progressive, with a sharp decline for
all test sets for [,,,, > 1024. The related COMET
scores plummet immediately with a context size

17As explained in Section 3.2, these COMET scores require
the realignment of target sentences with the reference.
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of 256. Even though TOWERBASE is based on
Llama?2, which accepts inputs up to 4096 tokens,
the continued pretraining that was used mostly uses
isolated sentences, which introduces an inductive
bias affecting its ability to translate long texts.

As expected, document-level fine-tuning (DLFT)
has a strong positive impact (see Appendix, Ta-
ble 11). However, the length issues remain.

Length Bias We performed paired comparisons
for the translation of our test sets with increasing
text lengths for each MT system as presented in
Section 3.3. Results are given in Table 3, where
a positive difference (e.g. 9.2 for NLLB in line
“sent-256’) means that the translation of shorter
segments (here: sentences) yield better scores than
that of longer ones (256 tokens). Scores in the
same column are comparable. Except for a handful
of configurations, translating longer texts is never
better than translating short ones. We conclude that
in our experimental settings, the disadvantages as-
sociated with long inputs (Section 3.1) overwhelm
the benefits of a complete context. These length
issues result in large score degradations and are not
easily fixed by simple manipulation of PEs. We
also observe that results obtained with COMET
and ds-BLEU sometimes disagree. These cases are
rare, though, suggesting that our results are robust.

Document-level Tuning with UNIFPE Again
using the paired comparison methodology, we com-
pare the performance of DLFT with original PEs,
UNIFPE and SHAPE. As shown in the left and
middle parts of Table 4, fine-tuning using UNIFPE
leads to steady improvements in translation scores
for all test lengths, especially for systems fine-



TED-U TED-G FT Unif SHAPE

FT vs Unif  FT vs SHAPE | FT vs Unif FT vs SHAPE Uvs G Uvs G Uvs G

sent 3.3 (0.00) 4.0 (0.00) 1.2 (0.00) 2.4 (0.00) - -2.1(0.00) -1.6(0.00)
256 - 0.7 (0.00) - - - -0.6 (0.01) -0.7 (0.00)
512 -0.5 (0.01) 1.7 (0.01) - 2.3 (0.00) | -0.7 (0.00) -0.4 (0.01) -
768 -0.8 (0.00) 2.7 (0.00) -3.7 (0.00) - 5.5 (0.00) 2.6 (0.00) 4.5 (0.00)
1024 - 1.6 (0.00) -7.8 (0.00) -1.8(0.04) | 12.2 (0.00)  5.1(0.00) 8.8 (0.00)
1200 -2.3 (0.00) 2.3 (0.02) -8.5 (0.00) - | 12.7 (0.00) 6.5 (0.00) 8.8 (0.00)
1600 -2.6 (0.01) - -8.8 (0.00) -2.6 (0.01) | 11.8 (0.000 5.6 (0.00) 8.3 (0.00)
2048 -3.3 (0.00) - -7.3 (0.00) - | 10.7 (0.00) 6.8 (0.00) 11.3(0.00)
sent 1.9 (0.00) 2.9 (0.00) 0.9 (0.00) 1.4 (0.00) - -0.90.000 -1.4(0.00)
256 - 0.8 (0.00) 0.4 (0.00) 0.7 (0.00) | -0.8 (0.00) -0.5(0.01) -0.9 (0.00)
512 -0.6 (0.02) 2.9 (0.00) - 4.3 (0.00) | -0.4 (0.03) - -
768 -0.7 (0.00) 4.7 (0.00) -4.7 (0.00) - | 11.2 0.00)  7.2(0.00) 7.3 (0.00)
1024 -2.2 (0.00) 3.3 (0.00) -7.5 (0.00) -1.8 (0.02) | 19.3 (0.00) 14.0 (0.00) 14.2 (0.00)
1200 -5.3 (0.00) 2.7 (0.02) -6.5 (0.00) - | 15.7 (0.00) 14.50.00) 11.9 (0.00)
1600 - - -6.4 (0.00) - | 11.50.000 6.6 (0.000 9.2 (0.00)
2048 - 2.1 (0.04) -4.7 (0.00) - | 104 (0.00)  7.2(0.000 8.3 (0.00)

Table 4: Average difference (and p-values) in ds-BLEU (top) evaluated on full TED talks and 100x COMET
(bottom) evaluated on realigned sentences for NLLB. Left and middle: paired comparison between fine-tuning
with the original PEs (FT), UNIFPE (Unif) and SHAPE on TED-U and TED-G respectively. Right: differences
between fine-tuning on TED-U (U) and TED-G (G). - for p-values > 0.05. Bold values when the two metrics

disagree on significativity.

NLLB FT-U Unif-U SHAPE-U FT-G Unif-G SHAPE-G

po-p1 127 - - 40 1.6 3.0 5.0
P1-p2 72 - - 220 1.9 2.4 -
p2-p3 29 10 -13 - 24 - 2.1
P3-p4 72 55 4.6 73 261 107 13.9
Pa-Ds 39 - - 83 4.7 43
P5-D6 33 316 271 195 6.1 154 15.3

TowegR FT-U Unif-U SHAPE-U FT-G Unif-G SHAPE-G

pm 12 - - - :
P1-D2 - - - - 06 0.6 -
Pp2-p3 - - - - - - -
P3-pa 49 1.1 0.6 14 1.1 1.3 1.1
Pa-Ds 1.7 14 2.1 1.7 20 1.8 22
P5-P6 263 245 26.0 252 27.1 26.4 27.0

Table 5: Average difference of 100 x COMET-score eval-
uated on 794 sentence pairs, translated at different posi-
tions (e.g. po and p; with pg < p1) by NLLB-based sys-
tems (top) and TOWERBASE-based systems (bottom).
Olive text for p-values > 0.01. - for p-values > 0.05.

tuned with the unbalanced corpus (TED-G). The
only exception is for sentence-level translations,
which remain marginally better using standard
DLFT than with UNTFPE. In contrast, SHAPE only
improves DLFT performance on the TED-G cor-
pus and for translation windows greater than 1024
tokens, due to the under-representation of small
position indices during training, as shown in Fig-
ure 1. As Tables 11 to 15 show, these improvements
remain moderate, and the length issues continue
to strongly impact translation scores, especially
for test documents of 1024 tokens or more. For
TOWERBASE, UNIFPE does not yield any signifi-
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cant difference with standard DLFT, and SHAPE
occasionally delivers slight improvements (see Ap-
pendix, Table 16), likely because this model relies
on RPEs. From these comparisons, we conclude
that UNIFPE partly resolves length issues for NLLB,
but hardly changes the situation for TOWERBASE.

Impact of Data Distribution In the right part of
Table 4, we evaluate the impact of the length distri-
bution during fine-tuning for NLLB: the balanced
distribution (TED-U) slightly but consistently un-
derperforms the use of TED-G for short documents
(fewer than 512 tokens), a trend that is reversed for
longer documents with strong improvement (over
768 tokens). Manipulating the distribution of PEs
with UNIFPE reduces the gap between the two fine-
tuning corpora and makes the model more robust
to document lengths rarely observed (or even un-
observed) during fine-tuning. This analysis again
reveals small differences between using ds-BLEU
and COMET scores: in nine cases out of 56 com-
parisons (marked in bold), one metric detects a
difference that is non-significant for the other.

6.2 Position Bias

To investigate potential translation issues related
to large position indices, we collected the 794
sentences that come from the final part of long
talks and for which varying the window length
also varied the position index. For each of them,
we have seven translations, corresponding to po-
sitions {p?,...,pt},7 € {1,...,794}. The av-



256 512 768 1024 1200 1600 2048
NLLB 0.04 035 049 0.66 064 074 0.81
FT-U 0.01 0.03 0.08 0.09 0.13 026 044
Unif-U 0.01 0.03 0.07 0.10 020 034 032
SHAPE-U 0.03 0.08 0.11 0.20 036 039 046
FT-G 0.01 0.03 0.11 031 040 057 0.69
Unif-G 0.01 0.04 0.16 020 027 025 036
SHAPE-G 0.02 0.05 0.12 0.17 021 024 0.28

256 512 768 1024 1200 1600 2048
TOWER 0.01 0.05 0.13 030 029 045 0.64
FT-U 0.01 0.05 0.10 0.15 0.13 023 0.59
Unif-U 0.02 0.05 0.09 0.15 0.16 028 0.61
SHAPE-U 0.02 005 0.08 0.15 0.17 021 0.59
FT-G 0.02 0.05 0.10 0.I5 0.19 0.26 0.62
Unif-G 0.02 0.07 0.10 0.16 020 028 0.64
SHAPE-G 0.02 0.05 0.07 0.17 0.17 027 0.62

Table 6: Percentage of pseudo-documents among
IWSLT tst2014-2017 in which 10-gram repetition is
detected in the translation given by NLLB-based (top)
and TOWERBASE-based models (bottom).

erage values for {pg), e ,pé} are {po,...,pe} =
(66, 173, 262, 335, 585, 779, 1477). For this subset

of sentences, we performed a paired t-test to com-
pare the impact of the position on the translation
score (using COMET as the only metric). We ob-
serve in Table 5 that in almost all comparisons
but three, a small position index is preferable to
a larger one. This suggests that one of the main
challenges faced by Doc2Doc with large context
lengths is to control the quality degradation for the
final parts of the input text. Here again, UNIFPE
slightly mitigates the problem for NLLB models
compared with original PEs and SHAPE, but no
such improvement is observed for TOWERBASE.

6.3 Repeated n-grams in Translation

One obvious problem with holistic translations pro-
duced by NLLB is the generation of outputs that
are too short. A closer look at translation outputs
also reveals that outputs contain many instances of
repeated texts, usually occurring in the final part
of the translation. To quantify this problem, we
compute the percentage of translations of pseudo-
documents in which the repetition of a long n-gram
(with n > 10) is detected. Detailed results are
given in Table 6. For all systems and fine-tuning
strategies, the percentage of repetitions increases
with the length, a problem that seems (for large
text lengths) slightly more severe for TOWERBASE,
which has a much better BP, than NLLB.
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7 Conclusion

In this work, we have studied the ability of current
MT architectures to handle long input texts, ideally
entire documents, and to translate them holistically.
Our analyses are based on systematic comparisons
of translation outputs computed with varying input
lengths, which are then evaluated with two auto-
matic metrics. They consistently show that, even
when the test document lengths match that of the
training set and remain within the model limits, the
translation scores tend to decrease with the source
length, a degradation that mostly impacts sentences
occurring far from the beginning of the document.
We also show that manipulating the training distri-
bution of lengths or PEs has a positive effect for
APE-based models, which vanishes in RoPE-based
models like TOWERBASE. These results finally
confirm the robustness of sentence-level baselines.
They hint at the need to improve existing models
to truly benefit from the potential of document-
level MT, for instance by constraining the attention
mechanism to simulate a form of sentence align-
ment, by improving the memorization capacities of
existing architectures, or by ensuring that the gener-
ation algorithm does not eventually get trapped in
repetition loops. These are some of the directions
we wish to explore in future work.

8 Limitations

The empirical observations reported in this paper
are based on one single language direction, and
one domain (TEDtalks). This experimental design
is motivated by (a) the fact that French-English
is considered an easy pair for MT, with large sets
of parallel training data; (b) TEDtalks data are a
standard benchmark for document-level MT, and
crucially contain very long parallel documents, al-
lowing us to implement our evaluation methodol-
ogy on a large range of length values. Furthermore,
these datasets are not included in the training data
of our models. We contend that the length issues
observed in these favorable conditions for two rep-
resentative systems would only be worse for more
difficult or less-resourced language pairs.

9 [Ethics Statement

This study has been performed with standard bench-
marks and open-weight models. We do not see any
ethical problems with this work.



10 Carbon Impact Statement

The experiments were conducted on a private in-
frastructure using a single A100 SXM4 GPU, with
a carbon efficiency of 0.432 kgCO2eq/kWh. The
average time required for fine-tuning and check-
point selection was 14.21 hours for the six NLLB
models, and 5.6 hours for the TOWERBASE mod-
els. The average emissions are estimated to be
2.45 kgCOqeq for NLLB-based models and 0.97
kgCOqeq for models derived from TOWERBASE,
with no offset applied. These estimations were
based on the Machine Learning Impact calculator'®
(Lacoste et al., 2019).
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A Appendix

A.1 The UNIFPE Algorithm

The UNIFPE algorithm briefly described in Sec-
tion 4.2 is formalised in Algorithm 1.

Data: /;: The input length
Data: M: The target max context length
Data: List,, : the distribution of py, for each offset k
in [0, M — ll]
Listp, «— Initialized to O for each element
m <— | M/l;] nb. of possible non-zero py,
R, <— the remainder of M divided by I;
Po — %the probability of each non-zero py
if M < 2[; then
| Listp, «— p(k’
else

O) =1lie. Pk=0 = 1
k* +— arandom integer in [0, m)
for k € [0, M — I;] do
if k%l; == 0 and k < k™ then
| Listp, < p(K = F) = po
end
if (k — Rn)%l; == 0 and
k™ <k <M —I; then
| Listy, «— p(k' = k) = po
end
end

end
return Listp,

Algorithm 1: UNIFPE: the pseudo-uniform po-
sition indices mapping algorithm.

A.2 A Call for Correctly Using BLEU Scores

As illustrated in Figure 2, d-BLEU and ds-BLEU
are always larger than BLEU. When BLEU de-
creases due to the degradation of translation quality,
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d-BLEU remains stable because of the higher prob-
ability to find n-gram matches in longer sequences.
In contrast, ds-BLEU consistently decreases when
BLEU diminishes, as it applies a macro-average to
compute the corpus-level score, which is more sen-
sitive to the translation quality of each document
than d-BLEU. Therefore, d-BLEU, ds-BLEU and
BLEU are not comparable and d-BLEU is not suit-
able for analysing length issues in document-level
evaluation of MT.
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Figure 2: BLEU, ds-BLEU and d-BLEU scores for
IWSLT tst2015, translating and evaluating pseudo-
documents of increasing lengths [256, 512, 768, 1204],
using FT-NLLB-U (top) and UNIF-TOWER-U (bot-
tom). Note that d-BLEU is computed for pseudo-
documents while ds-BLEU is computed for concate-
nated full talks.

A.3 Data Statistics and Other Details

Full data statistics are given in Tables 8 and 9. All
the full TED talks in our corpora start with the
title, then the description and the talk before being
split into pseudo-documents. <description> and
<title> tags are removed. When preparing our
training and validation sets TED-U and TED-G
(see Section 5.1), if concatenating the last sentence
pair (x,,, Y, ) into the current pseudo-document pair
exceeds lnaz, (Tn, yn) will yield a single parallel
sequence, to respect the maximum length l,,4,.
The length distribution is illustrated in Figure 3.
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Figure 3: Source document length distribution in the
training set of TED-G (top) and TED-U (bottom).

| 2014 2015 2016 2017

sent| 84 8 85 84

m 256| 68 69 68 66
H 512 49 47 47 46
Zo 768 | 43 42 40 41
1024 | 36 37 36 36
sent| 8 8 8 85

L 256 80 81 8 80
2 5120 79 80 8 80
= 768 78 78 80 80
21024 76 73 7876
S 1200 73 74 77 76
1600 | 70 72 65 68
2048 | 52 63 65 57

Table 7: 100xCOMET scores for NLLB (top) and
TOWERBASE (bottom).

A.4 Experimental Settings

This section presents detailed experiment settings
for fine-tuning NLLB and TOWERBASE.

For NLLB, we fine-tuned the pretrained model
with learning rate 5e—4, 500 warm-up steps, 4 par-
allel pseudo-documents per batch and 32 gradient
accumulation steps. An early stopping criterion
with a patience of 5 epochs is also applied, accord-
ing to the d-BLEU evaluated on the validation set.
For inference on test sets, the beam size is set to 5
and the batch size is set to 4.

For TOWERBASE, We performed supervised
fine-tuning using QLoRA (Dettmers et al., 2023)
and bfloat16.2 The batch size is 8 with 2 gradi-

The prompt for fine-tuning is “Translate the following text
from English into French.\nEnglish: SRC\nFrench: TGT”,
and the zero-shot prompt for the pretrained model TOWER-
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‘ count mean min max

TED-full train | 1831 2915/3515 56 /62 8706 /9706
dev 19 2861/3460 680/867 6076 /7590
TED-G train | 15625 341 /411 372 1022 /1460
dev 160 339/410 12/17  959/1203
TED-U train | 10582 504 /608 3/1 1020/1527
dev 106 512 /620 42/41  991/1276

Table 8: Statistics of the TED talks training and dev
sets. ‘count’ denotes the number of parallel pseudo-
documents. ‘mean’, ‘min’ and ‘max’ represent the aver-
age, minimum and maximum lengths of English/French
pseudo-documents respectively, in NLLB tokens.

ent accumulation steps. The learning rate is 2e—5
adjusted by a cosine schedule, without warm-up
steps nor packing. We fine-tuned the model for two
epochs and saved checkpoints every 50 steps in the
second epoch. We then chose the checkpoint with
the best d-BLEU on the validation set. Inference is
performed without additional in-context examples,
with bfloat16 and greedy search.

A.5 Detailed Evaluation Results

The paired comparison and the complete BLEU
and COMET scores for each test set are given in
Tables 11 to 15.

Document-level Fine-tuning Table 11 reports
average differences of automatic scores between
fine-tuned MT systems and the corresponding pre-
trained models (NLLB or TOWERBASE), for vary-
ing test document lengths. ds-BLEUs are aver-
aged over 52 complete TED talks and COMET
scores are averaged over 5, 103 sentences. Fine-
tuning significantly improves over base conditions
for all lengths, with larger increases for longer test
texts, where the baseline scores were initially very
poor. Both metrics yield consistent conclusions,
except for the sentence-level assessment of NLLB
fine-tuned on TED-U, which is slightly worse than
the baseline according to ds-BLEU (-0.8), but for
which COMET detects no difference. For TOWER-
BASE, DLFT is always beneficial.

Realignment Issues Since the COMET score is
sentence-based, its computation requires a realign-
ment between hypotheses and reference sentences
in the Doc2Doc scenario. However, due to issues
with long documents, translation hypotheses can be
incomplete, resulting in empty alignment for some
sentences. These untranslated sentences often oc-
cur in the final part of long documents. Table 10

BASE is “English: SRC\nFrench:”.



2014 2015 2016 2017
lmaz |COUNt  min max mean|count min max mean|count min max mean|count min max mean
sent| 1335 2 112 23| 1104 2 119 23| 1185 1 151 24| 1479 2 162 23
256 129 65 286 234 107 71 325 234 123 61 255 232| 144 65 271 234
512 68 85 511 443 56 53 510 447 63 56 511 454 74 73 511 456
768 48 116 767 628 40 86 766 626 45 104 767 635 51 57 767 662
5 1024 37 83 1022 815 30 68 1023 835 35 115 1023 817 40 65 1023 844
1200 32 54 1218 942 26 71 1198 963 31 73 1216 922 34 125 1203 992
1600 26 135 1597 1160 24 114 1599 1043 23 191 1616 1243 27 229 1635 1250
2048 20 569 2091 1507 16 176 2072 1565 21 247 2046 1361 23 65 2045 1467
doc 15 995 4116 2010 12 1256 3359 2086 13 842 3366 2199 12 1909 3722 2812
sent| 1335 2 158 28| 1104 2 145 271 1185 1 180 29| 1479 2 211 27
256 129 80 380 295| 107 85 355 282 123 69 345 276| 144 78 375 275
512 68 106 717 559 56 62 679 540 63 70 672 539 74 83 737 535
768 48 142 1065 792 40 102 1009 755 45 112 985 755 51 68 1083 776
% 1024 37 100 1436 1027 30 64 1349 1007 35 125 1314 970 40 80 1431 990
1200 32 61 1641 1188 26 85 1577 1162 31 93 1511 1096 34 134 1714 1164
1600 26 173 2188 1462 24 156 2116 1259 23 209 2074 1477 27 279 2261 1466
2048 20 657 2613 1901 16 218 2602 1889 21 280 2626 1617 23 80 2714 1721
doc 15 1289 4983 2534 12 1609 4013 2518 13 1004 4179 2613 12 2473 4464 3299

Table 9: Statistics of the test sets based on talks from IWSLT tst2014, tst2015, tst2016 and tst2017 (see Section 5.1).
‘count’ refers to the number of parallel pseudo-documents. ‘mean’, ‘min’ and ‘max’ denote the average, minimum
and maximum lengths of the source (i.e. English, top) or the reference (i.e. French, bottom) pseudo-documents. All
lengths are counted in NLLB tokens.

NLLB FT-U Unif-U FI-G Unif-G

sent 0 0 0 0 0
256 557 6 6 6 6
512 1231 5 9 12 11
768 1618 6 10 250 280
1024 886 53 34 491 486
1200 1179 437 207 576 675
1600 352 465 657 789 840
2048 456 644 843 801 1089
TowgErR FT-U Unif-U FI-G Unif-G

sent 0 0 0 0 0
256 79 3 8 2 3
512 58 2 2 3 2
768 65 4 3 3 5
1024 45 17 21 19 22
1200 107 19 17 13 19
1600 91 73 50 40 54
2048 151 94 84 66 98

Table 10: Number of empty alignments across all the
5,103 sentences in our test sets for NLLB (top) and
TOWERBASE (bottom) models.

displays the statistics of empty alignments across
all the 5,103 sentences. This issue is more se-
vere for NLLB models than TOWERBASE models,
which is consistent with the poor BP reported in
Tables 12 and 13.
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ds-BLEU COMET
FT-U FT-G FT-U FT-G
sent | -0.8 (0.00) -0.8 (0.01) - -0.3 (0.01)
m 256 | 7.6(0.000 8.0 0.00) | 13.0(0.00) 13.8 (0.00)
= 512263000 27.00.00) | 33.40.00) 33.8(0.00
Z 768 | 33.5(0.00) 28.0(0.00) | 39.0 (0.00) 27.8 (0.00)
1024 | 33.50.00) 21.2(0.00) | 41.9 (0.00) 22.6 (0.00)
sent | 2.40.00 2.60.00 | 0.70.00 0.7 (0.00)
- 256 | 2.1(0.00) 1.60.00) | 2.30.00 2.3 (0.00)
2 512| 210000 20000 | 24000  2.6(0.00
8 768 | 35000 3.2(0.00) | 37000 3.7 (0.00)
L; 1024 | 5.6 0.00) 5.0(0.00) | 5.6(0.00) 5.5(0.00)
2 1200 | 540000 5.10.00) | 5.50.00 5.4 (0.00)
1600 8.4 (0.00) 8.3 (0.00) | 10.1 (0.00) 10.3 (0.00)
2048 6.8 (0.00) 6.1 (0.00) 8.8 (0.00) 7.9 (0.00)

Table 11: Average difference (and p-values) in ds-BLEU or 100 x COMET between fine-tuned models (FT) and the
corresponding pretrained models NLLB (top) and TOWERBASE (bottom). U and G denote the corpora TED-U and
TED-G respectively. - for p-values > 0.05. Positive values indicate that the fine-tuned model improves over the
baseline.

2014 2015 2016 2017 2014 2015 2016 2017

FT 43.8(0.98) 44.0(0.99) 40.4(1.00) 41.3 (1.00) FT 84 85 85 84

sent  Unif 42.4(0.98) 42.5(0.99) 39.7(1.00) 40.2 (1.00) sent  Unif 82 84 84 83

SHAPE | 40.7 (0.97) 41.50.98) 38.3(1.00) 39.4 (1.00) SHAPE 82 83 83 83

FT 43.5(0.98) 43.1(0.99) 40.4(1.00) 40.8 (1.00) FT 81 82 82 81

256  Unif 43.9(0.98) 43.2(0.99) 39.7 (1.00) 40.6 (1.00) 256  Unif 81 82 82 81

SHAPE | 43.3(0.98) 43.2(0.99) 39.8(1.00) 40.2(0.99) SHAPE 80 82 81 80

FT 43.50.98) 43.40.98) 40.2 (1.00) 40.4 (1.00) FT 81 82 81 80

512 Unif 43.8 (0.98) 43.8(0.99) 39.8 (1.00) 41.0 (1.00) 512 Unif 81 82 81 81

SHAPE | 40.6 (091) 40.50.92) 37.00.9) 40.4(0.98) SHAPE 77 78 76 77

FT 36.6 (0.87) 36.4(0.88) 35.3(0.92) 35.6(0.93) FT 69 69 70 69

768  Unif 41.8 (095 39.1(0.88) 38.1(0.95) 39.4(0.97) 768  Unif 74 75 74 73

SHAPE | 34.0 (0.75) 34.9(0.77) 33.8 (0.84) 34.9(0.85) SHAPE 68 69 68 68

FT 28.6 (0.70) 29.1 (0.75) 28.9 (0.80) 28.7 (0.79) FT 58 59 60 58

1024  Unif 36.1 0.81) 38.70.87) 34.9 0.87) 37.2(0.92) 1024  Unif 67 65 67 67
SHAPE | 32.4(0.73) 30.9 (0.69) 30.8 (0.75) 28.0 (0.69) SHAPE 60 62 61 59

FT 25.2 (0.64) 25.8(0.74) 24.10.71) 24.3(0.73) FT 56 56 55 53

1200  Unif 34.6 (0.80) 36.4(0.82) 30.0(0.74) 32.4 (0.80) 1200  Unif 61 65 62 60
SHAPE | 27.2 (0.61) 30.3 (0.68) 24.6 (0.64) 23.9 (0.60) SHAPE 55 59 55 54

FT 18.2(0.53) 19.30.62) 19.2(0.62) 19.6(0.59) FT 50 49 49 49

1600 Unif 25.50.59) 30.1(0.70) 26.9 (0.68) 29.4 (0.72) 1600 Unif 55 58 54 56
SHAPE | 22.0 (0.50) 21.7 (0.50) 22.1(0.56) 20.6 (0.57) SHAPE 51 52 50 48

FT 154 (0490 12.40.52) 16.7(0.58) 14.8 (0.61) FT 47 42 48 45

2048  Unif 22.0 (0.51) 21.6 (0.50) 24.3 (0.60) 20.6 (0.53) 2048 Unif 51 49 51 48
SHAPE | 18.7 (043) 15.1 (044) 14.6(0.38) 13.4(0.48) SHAPE 46 43 47 44

Table 12: ds-BLEU (and brevity penalty) (left) and 100x COMET (right) scores for FT-NLLB-G (FT), UNIF-
NLLB-G (Unif), and SHAPE-NLLB-U (SHAPE) trained on TED-G with target max source document length
M = 2048.
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2014 2015 2016 2017 2014 2015 2016 2017

FT 44.2 (0.99) 43.50.99) 40.4 (1.00) 41.4(1.00) FT 84 85 85 84

sent  Unif 40.1 (0.95) 40.4 (0970 38.0(1.00) 38.1(0.99) sent Unif 82 83 83 83
SHAPE | 39.4 (097) 40.0(0.98) 36.3(1.00) 37.8(0.99) SHAPE 81 82 82 82

FT 43.2 (0.98) 42.8(0.99) 39.7(1.00) 40.5 (1.00) FT 80 81 81 81

256  Unif 42.8 (0.98) 42.4(0.99) 39.5(1.00) 40.3 (1.00) 256  Unif 30 81 81 81
SHAPE | 42.0 (0.97) 42.50.99) 39.6(1.00) 39.4 (1.00) SHAPE 79 81 81 80

FT 42.9 (0.98) 43.1(0.99) 39.2(1.00)0 39.4 (1.00) FT 80 81 81 81

512 Unif 43.4(098) 43.0(0.99) 39.8(1.00) 40.5 (1.00) 512 Unif 81 82 81 81
SHAPE | 39.7 (0.89) 41.10.94) 38.2(0.95) 39.0(0.98) SHAPE 75 79 79 78

FT 43.50.98) 43.0(0.99) 39.4(1.000 39.8 (1.00) FT 80 81 81 81

768 Unif 44.0 (0.98) 43.7(0.99) 40.4(1.00) 40.9 (1.00) 768 Unif 81 82 82 81
SHAPE | 39.6 (0.88) 41.40.93) 37.4(0.93) 36.8(0.91) SHAPE 75 78 75 75

FT 42.6 (0.96) 42.6 (0.97) 39.2(1.00) 39.6 (1.00) FT 78 79 78 78

1024 Unif 42.6 (0.96) 44.1(0.98) 39.6 (1.00) 40.6 (0.99) 1024 Unif 80 81 81 80
SHAPE | 40.3 (091) 42.8(0.96) 36.8(0.92) 37.8(0.94) SHAPE 74 78 75 73

FT 38.3(0.88) 39.3(0.91) 36.3(0.92) 36.4(0.92) FT 71 73 70 69

1200  Unif 39.50.89) 43.0(0.97) 38.0(0.95) 39.2(0.98) 1200  Unif 76 79 76 75
SHAPE | 36.9 (0.84) 37.2(0.87) 32.6(0.82) 34.3(0.86) SHAPE 68 70 69 66

FT 31.5©0.77) 30.40.73) 30.9 0.83) 30.3 (0.80) FT 61 60 61 60

1600  Unif 31.5(0.72) 34.40.82) 342088 33.8(0.84) 1600  Unif 62 61 61 64
SHAPE | 28.0 (0.68) 29.4(0.68) 31.1(0.79) 31.7 (0.82) SHAPE 57 59 62 59

FT 27.4 (069 24.0(0.63) 26.7(0.75) 23.6(0.71) FT 57 53 57 54

2048 Unif 30.2 (0.68) 25.3(0.60) 31.5(0.79) 28.0(0.68) 2048 Unif 59 57 57 54
SHAPE | 26.1 (0.63) 27.9(0.66) 26.8 (0.69) 26.9 (0.74) SHAPE 51 52 57 53

Table 13: ds-BLEU (and brevity penalty) (left) and 100x COMET (right) scores for FT-NLLB-U (FT) UNIF-
NLLB-U (Unif), and SHAPE-NLLB-U (SHAPE) trained on TED-U with target max source document length
M = 2048.

2014 2015 2016 2017 2014 2015 2016 2017

FT 46.5 (0.98) 45.1(0.99) 42.3(1.00) 41.0 (1.00) FT 85 86 85 85

sent  Unif 46.5(0.98) 45.0(0.99) 42.3(1.00) 41.1 (1.00) sent  Unif 85 86 85 85
SHAPE | 46.4 (0.98) 45.2(0.99) 42.4(1.00) 41.2(1.00) SHAPE 85 86 85 85

FT 44.6 (0.98) 45.1(0.99) 42.3(1.00) 41.9 (1.00) FT 83 84 83 83

256  Unif 44.50.99) 45.1(0.99) 42.2(1.00) 41.8(1.00) 256  Unif 83 84 83 83
SHAPE | 46.2 (0.98) 45.2(0.99) 42.4(1.00) 42.1 (1.00) SHAPE 83 84 83 83

FT 43.7 (0.98) 45.0 (1.00) 41.4 (1.00) 41.6 (1.00) FT 82 84 83 82

512 Unif 43.7(0.98) 44.8(1.00) 41.4(1.00) 41.4(1.00) 512 Unif 82 84 83 82
SHAPE | 45.5(0.98) 45.1(0.99) 41.6(1.00) 41.6 (1.00) SHAPE 82 84 33 82

FT 44.0 (0.98) 44.2 (0.99) 40.3 (1.00) 40.7 (1.00) FT 82 83 33 82

768  Unif 44.0 0.98) 44.2(0.99) 40.2 (1.00) 40.7 (1.00) 768  Unif 82 83 83 82
SHAPE | 45.6 (0.98) 44.40.99) 41.3(1.00) 41.5(1.00) SHAPE 82 84 33 82

FT 42.7(0.98) 40.6 (0.99) 38.9(1.00) 40.4 (1.00) FT 81 81 82 81

1024 Unif 42.2 (0.97) 42.6(0.99) 39.4 (1.00) 40.1 (1.00) 1024 Unif 81 82 83 81
SHAPE | 44.5(0.98) 40.9 (0.99) 39.2(1.00) 39.7 (1.00) SHAPE 81 81 33 81

FT 42.6 (0.98) 43.0(0.99) 38.9(1.00) 40.8 (1.00) FT 78 82 81 81

1200  Unif 42.5(0.98) 42.7(0.99) 39.3(1.00) 40.6 (1.00) 1200  Unif 78 82 81 81
SHAPE | 44.0 (0.98) 42.8(0.99) 39.3 (1.00) 40.6 (1.00) SHAPE 80 82 82 81

FT 42.00.97) 41.10.98) 37.0(1.00) 38.7 (1.00) FT 80 79 79 80

1600  Unif 42.0 (0.97) 40.0 (0.98) 37.51.00) 37.3 (1.00) 1600  Unif 79 78 79 78
SHAPE | 42.2 (0.97) 40.6 (0.98) 38.5(1.00) 39.2(0.99) SHAPE 79 79 80 79

FT 33.00.99) 32.50.99 31.6(1.00) 29.2(0.97) FT 68 69 68 64

2048 Unif 33.1(0.99) 33.70.99) 32.2(0.98) 26.5(0.97) 2048 Unif 69 70 70 62
SHAPE | 34.1 (0.97) 35.1(0.98) 32.1(1.00) 30.2(0.97) SHAPE 65 73 70 68

Table 14: ds-BLEU (and brevity penalty) (left) and 100x COMET (right) scores for FT-TOWER-G (FT), UNIF-
TOWER-G (Unif) and SHAPE-TOWER-G (SHAPE) trained on TED-G with target max source document length
2048 (M = 4096).
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2014 2015 2016 2017 2014 2015 2016 2017

FT 46.2 (0.99) 45.1(0.99) 42.1(1.00) 40.8 (1.00) FT 85 86 85 85

sent  Unif 46.4 (0.98) 45.1(0.99) 42.2(1.00) 40.9 (1.00) sent  Unif 85 86 85 85

SHAPE | 46.3 (0.98) 45.2(0.99) 42.4(1.00) 41.0(1.00) SHAPE 85 86 85 86

FT 46.3 (0.98) 45.1(0.99) 42.3(1.00) 41.8 (1.00) FT 83 84 83 83

256  Unif 44.5(0.98) 452099 42.3(1.00) 41.9 (1.00) 256  Unif 83 84 83 82

SHAPE | 46.0 (0.98) 45.3(0.99) 42.4(1.00) 42.0 (1.00) SHAPE 83 84 33 82

FT 44.4 (0.98) 44.9(0.99) 41.2(1.00) 41.6 (1.00) FT 82 84 83 82

512 Unif 43.0 (0.98) 45.0(0.99) 41.4(1.00) 41.6 (1.00) 512 Unif 82 84 33 82

SHAPE | 44.5 (0.98) 45.0(0.99) 41.3 (1.00) 41.6 (1.00) SHAPE 82 84 33 82

FT 44.1 (0.98) 44.6(0.99) 41.1(1.00) 40.8 (1.00) FT 82 83 83 82

768  Unif 43.2 (0.99) 44.50.99) 41.41.000 41.0(1.00) 768  Unif 82 84 83 82

SHAPE | 44.2 (0.99) 44.50.99) 41.2(1.00) 41.7 (1.00) SHAPE 82 83 83 82

FT 43.9 (0.97) 41.6(0.99) 39.6 (1.00) 39.7 (1.00) FT 81 81 33 81

1024 Unif 42.7 (0.98) 43.8(0.99) 39.7 (1.00) 39.6 (1.00) 1024 Unif 81 83 33 81
SHAPE | 44.1 (0.98) 42.90.99) 39.8 (1.00) 39.5 (1.00) SHAPE 81 82 83 81

FT 43.2.(0.97) 429099 39.51.00) 40.8 (1.00) FT 80 82 81 81

1200 Unif 43.2 (0.98) 43.1(0.99) 38.2(1.00) 40.9 (1.00) 1200 Unif 80 82 81 81
SHAPE | 43.8 (0.98) 43.2(0.99) 39.2(1.00) 39.7 (1.00) SHAPE 80 82 81 80

FT 41.6 (0.95) 40.50.97) 37.6(1.00) 39.8 (0.99) FT 79 79 80 80

1600  Unif 41.1 (0970 41.6(0.98) 36.5(1.00) 38.0 (1.00) 1600  Unif 80 80 78 79
SHAPE | 42.6 (0.96) 42.10.98) 37.3(1.00) 40.5 (1.00) SHAPE 79 81 78 80

FT 34.40.96) 35.30.97) 31.20.99 28.2(0.96) FT 68 72 69 64

2048 Unif 34.6 (0.97) 35.50.98) 30.2(1.000 30.9 (0.97) 2048 Unif 70 72 69 67
SHAPE | 35.2(097) 34.6(0.95) 31.9(0.99) 31.5(0.96) SHAPE 70 73 70 68

Table 15: ds-BLEU (and brevity penalty) (left) and 100 x COMET (right) for FT-TOWER-U (FT), UNIF-TOWER-
U (Unif) and SHAPE-TOWER-U (SHAPE) trained on TED-U with target max source document length 2048
(M = 4096).

TED-U TED-G FT Unif  SHAPE

FT vs Unif FT vs SHAPE | FT vs Unif FT vs SHAPE Uvs G Uvs G Uvs G

sent | -0.1(0.20) -0.2 (0.01) -0.0 (0.60) -0.1(0.18) | -0.1 (0.05) -0.1 (0.19) -0.1 (0.36)

256 0.5 (0.32) -0.0 (0.87) 0.1 (0.22) -0.50.24) | 0.5(0.32) 0.1021) -0.10.48)

512 0.3 (0.55) -0.1 (0.10) 0.1 (0.08) -0.6 (0.23) | 0.1 (087) -0.1(0.82) -0.4(0.28)

768 0.2 (0.46) -0.2 (0.67) 0.0 (0.84) -0.9 (0.05 | 0.3 .11) 0.2(0.65 -0.40.19

1024 | -0.2 (0.82) -0.3 (049) | -0.4 (0.44) -0.5(035 | 0.6029 04034 0.50.38)
1200 0.2 (0.44) 0.1 (0.82) 0.0 (0.70) -0.4 (0.06) | 0.3 (.24 0.1(0.71) -0.2(0.50)
1600 0.6 (0.45) -0.7 (0.01) 0.4 (0.58) -0.50.40) | 0.1 (084) 0.0(1.00) 0.4 (0.49)
2048 | -0.5 (0.61) -1.0 (0.22) 0.2 (0.84) -1.30.19) | 0.7 (0.46) 1.3(0.13) 0.4 (0.44)
sent | -0.0(0.52) -0.0 (0.93) 0.0 (0.38) 0.0 (0.60) | -0.0 (0.95) 0.0 (0.24) 0.0 (0.56)

256 0.0 (0.60) 0.0 (0.85) 0.0 (0.73) -0.1 (0.07) | -0.0 (0.63) -0.1 (0.46) -0.2 (0.05)

512 -0.1 (0.15) -0.2 (0.04) 0.1 (0.16) -0.1(0.27) | -0.2 0.09) 0.0 0.76) -0.0 (0.62)

768 | -0.1(0.29) 0.1(0.28) | -0.1(0.34) -0.3(0.00) | 0.0087) 0.0(0.69) -0.4 (0.00)

1024 -0.6 (0.22) -0.5 (0.32) -0.3 (0.46) -0.2(0.09) | 0.1 045 03 @©.100 0.4 042
1200 0.1 (0.69) 0.2 (0.51) 0.1 (0.50) -0.4 (0.16) | 0.1 (0.61) 0.0(0.93) -0.4(0.12)
1600 0.2 (0.69) -0.4 (0.27) 0.6 (0.37) 0.10.70) | -0.20.62) 0.2 0.73) 0.4 (0.49)
2048 | -0.9 (0.40) -1.30.16) | -0.2 (0.84) -1.7.0.13) | 0.90.50) 1.5(0.100 0.4 (0.47)

Table 16: Average difference (and p-values) in ds-BLEU (top) evaluated on full TED talks and 100x COMET
(bottom) evaluated on realigned sentences for TOWERBASE. Left and middle: paired comparison between the
original fine-tuning (FT), UNIFPE and SHAPE on TED-U and TED-G respectively. Right: differences between
fine-tuning on TED-U (U) and TED-G (G). A positive value indicates that in the comparison pair, the translation of
the first item achieves higher scores than that of the second. Significant differences with p-values < 0.05 are in bold.
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Abstract

In recent years, Large Language Models
(LLMs) have demonstrated exceptional
proficiency across a broad spectrum of
Natural Language Processing (NLP) tasks,
including Machine Translation. However,
previous methods predominantly relied
on iterative processes such as instruction
fine-tuning or continual pre-training, leaving
unexplored the challenges of training LLMs
solely on parallel data. In this work, we
introduce PLUME (Parallel Language Model),
a collection of three 2B LLMs' featuring
varying vocabulary sizes (32k, 128k, and 256k)
trained exclusively on Catalan-centric parallel
examples. These models perform comparably
to previous encoder-decoder architectures on
16 supervised translation directions and 56
zero-shot ones. Utilizing this set of models,
we conduct a thorough investigation into the
translation capabilities of LLMs, probing their
performance, the role of vocabulary size, the
impact of the different elements of the prompt,
and their cross-lingual representation space.
We find that larger vocabulary sizes improve
zero-shot performance and that different layers
specialize in distinct aspects of the prompt,
such as language-specific tags. We further
show that as the vocabulary size grows, a larger
number of attention heads can be pruned with
minimal loss in translation quality, achieving a
reduction of over 64.7% in attention heads.

O

1 Introduction

We release our code at
https://github.com/
projecte-aina/Plume

Neural Machine Translation (NMT) has tradition-
ally relied on encoder-decoder architectures, where

© 2025 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

'We release our models on HuggingFace: Plume 32k, Plume
128k and Plume 256k.
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an encoder processes the source sentence and a de-
coder generates the target sentence based on the
encoder’s output. However, recent advancements
have moved away from this paradigm, with the
introduction of decoder-only Large Language Mod-
els (LLMs). In these models, the source sentence
acts as a prompt, eliminating the need for a conven-
tional encoder.

With the rise of LLMs, research has increasingly
focused on adapting these models for translation
tasks by using techniques such as prompt-tuning
(Zhang et al., 2023), instruction-finetuning (Xu
et al., 2024), or continual pretraining (Rei et al.,
2022a). While these methods have shown impres-
sive results, they open new questions about the
performance of LLMs when trained exclusively
on parallel data, and therefore, the possibility of
having models that are trained directly on the task
of machine translation. Additionally, the major-
ity of these models are trained predominantly on
English-centric-corpora.

To address these questions, our paper proposes a
new approach consisting of training LLMs solely
on parallel corpora to evaluate their efficacy in
machine translation (MT). Our investigation re-
volves around questions such as: How does an
LLM trained exclusively on parallel data perform?
And how does the model leverage prompt informa-
tion to ensure accurate translations?

Our contributions are twofold: Firstly, we intro-
duce PLUME (Parallel Language Model), an inno-
vative ensemble comprising three multilingual 2B
LLMs, trained from scratch on Catalan-centric par-
allel data. Each model has a different vocabulary
size (32k, 128k and 256k). All models are profi-
cientin 16 supervised translation directions, as well
as 56 zero-shot translation directions. Results show
comparable results to previous encoder-decoder
architectures of similar size.

Secondly, to understand how these models work,
we study how they utilize contextual information
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across different layers to execute translation tasks
effectively. Our experiments show distinctive atten-
tion patterns associated with the different parts of
the prompt, and how they vary through the different
attention blocks. We also observe how languages
use the source tag information differently, leading
to a large performance variability when this token is
missing. As a byproduct, we propose a strategy to
remove attention heads with minimal performance
loss and study how vocabulary size impacts the ap-
pearance of redundant heads. Finally, we study the
cross-lingual space learned by the models and how
it progresses through the model’s attention blocks.

2 Related work

Neural Machine Translation (NMT) has predom-
inantly relied on encoder-decoder architectures
(Cho et al., 2014; Bahdanau et al., 2015; Sutskever
et al., 2014). These methods have proven effective
by conditioning language models to generate trans-
lations that accurately retain the meaning of the
source sentence. Moreover, these systems are eas-
ily extendable to multilingual scenarios, enabling
zero-shot translation between language pairs that
have not been seen together during training (Firat
etal., 2016; Wu et al., 2016).

Over the years, some approaches to NMT have
dropped the traditional encoder-decoder setup to
adopt decoder-only architectures (Fonollosa et al.,
2019; He et al., 2018). Although these methods
showed promise, they did not become the standard
due to issues with context loss and hallucinations
(Fu et al., 2023).

Recent advancements in training Large Lan-
guage Models (LLMs) (Touvron et al., 2023; Jiang
et al., 2023; Gemma Team et al., 2024; Abdin et al.,
2024), including techniques like scaling and Rotary
Embeddings (Su et al., 2024b), have significantly
enhanced the ability of decoder-only architectures
to handle long contexts of hundreds or even thou-
sands of tokens. Consequently, several studies have
proposed leveraging pretrained LLMs for NMT
through continual pretraining and instruction tun-
ing (Alves et al., 2024; Xu et al., 2024; Yang et al.,
2023). These methods have demonstrated results
comparable to traditional encoder-decoder systems,
while also supporting multiple translation direc-
tions.

However, training and adapting these systems to
various languages remains challenging (Ali et al.,
2024). Creating a vocabulary that accurately rep-
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resents all supported languages can lead to per-
formance disparities of up to 68% on some down-
stream tasks. Additionally, interpretability methods
have gained popularity in order to understand bet-
ter how models utilize provided information and to
guide further improvements (Voita et al., 2019b,a;
Ferrando et al., 2024).

3 Methodology

3.1 Catalan-Centric Dataset

In order to study zero-shot translation using a
decoder-only architecture, we employ a Catalan-
centric dataset. This dataset pairs Catalan sentences
with their counterparts in one of eight other lan-
guages: Spanish, French, Italian, Portuguese, Gali-
cian, German, English, and Basque. Specifically,
for each language, we include translation direc-
tions both to Catalan (xx—ca) and from Catalan
(ca—xx). The dataset consists of 783.6M sentences
and 30.9 billion words. We show in Table 1 the
number of sentences and number of words per lan-
guage pair in the created dataset.

Pair N sentences N words

casyn « de 187,483,456  6,847,140,698
ca+de 12,516,544 603,121,312
casyn < it 181,034,146  6,526,304,128
ca it 18,965,862 577,243,404
cav—es 171,907,026  8,252,262,032
casyn <> pt 62,858,532 2,429,548,286
ca <+ pt 12,319,262 504,959,082
ca+<en 60,046,068 2,429,961,320
ca«~fr 37,269,716 1,114,635,790

ca syN < eu 17,998,782 749,042,034
ca <+ eu 2,091,356 61,237,122

ca sy~ ¢ gl 11,434,180 531,773,730
ca« gl 7,713,022 263,280,596
Total 783,637,952 30,890,509,534

Table 1: Number of sentences and words for each lan-
guage pair. We label languages with their BCP-47 lan-
guage code. SYN means synthetic data generated on
the source side for the ca-xx direction.

Data preprocessing All data is first filtered using
LaBSE (Feng et al., 2022) to embed both source
and target sentences then compute a cosine similar-
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Figure 1: Prompt strategy used to train PLUME.

ity score between both?. Off-target translations are
removed using the Lingua® library*. Following the
filtering process, the data undergoes deduplication
and punctuation normalization using the Bifixer
library (Ramirez-Sénchez et al., 2020). Further de-
tails about the dataset are provided in Appendix
A.

3.2 Tokenizer

Prior studies have shown that vocabulary overlap
plays a crucial role in zero-shot translation for
encoder-decoder architectures (Stap et al., 2023;
Tan and Monz, 2023). More related to our work
concerning tokenizer size in decoder-only architec-
tures is the study by Ali et al. (2024), who found
that larger vocabulary sizes lead to improved down-
stream performance in multilingual settings. The
main difference is that our focus is in Multilingual
Neural Machine Translation (MNMT) while Ali
et al. (2024) focused on more general multilingual
tasks (Natural language inference, Question An-
swering, etc.).

To investigate the impact of vocabulary shar-
ing on zero-shot MNMT for decoder-only architec-
tures, we train 3 tokenizers using BPE (Sennrich
etal., 2016) from the Huggingface tokenizer library
(Moi and Patry, 2023) with different vocabulary
sizes; 32k, 128k, and 256k. Regarding the train-
ing data used to train the tokenizer, recent work
has shown that while NMT performance is rela-
tively robust to language imbalance, better perfor-
mance is often achieved when languages are more
equally represented in the training data (Zhang
et al., 2022). In this work, we equally sample
Romance languages and we oversample English,
Basque, and German to avoid underrepresenting
these languages and to achieve near parity (Petrov
et al., 2024) and fertility among all language pairs.
Average fertility (average of fertility per each lan-
guage) per vocabulary size as well as the number of

2We use a cosine similarity threshold of 0.75 for LaBSE filter-
ing.

3h’ctps: //github.com/pemistahl/lingua-py

*We use a threshold of 0.5 for the language probability score.
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tokens in the dataset are shown in Table 2 °. More
details about tokenizer experiments can be found
in Appendix B.

Avg. Fertility N tokens

PLUME 32k 1.77 54.7B
PLUME 128k 1.52 46.8B
PLUME 256k 1.44 44.6B

Table 2: Fertility and number of tokens in the dataset
grouped by vocabulary size.

3.3 Model

We trained one model for each of our three tokeniz-
ers using the same architecture as GEMMA 2B
(Gemma Team et al., 2024) to train a 2 billion pa-
rameter, transformer-based, decoder-only model.
Following the scaling law proposed by (Hoffmann
et al., 2022), each model was trained on 30.9 bil-
lion words, corresponding to 54.7, 46.8, and 44.6
billion tokens for vocabularies of 32k, 128k, and
256k respectively. Details about the model size and
model architecture are shown in Table 3.

Hyper-Parameter Value
Hidden size 2048
Layers 18
Feedforward size 16384
Attention-Heads 8
Head size 256
Num KV Heads 1
Max Seq Length 2048
Position Embeddings Rotary (Su et al., 2024a)
Rope Theta 10000
Precision float-32
RMSNorm e le-06
Activation GeGLU (Shazeer, 2020)

Table 3: Model architecture of PLUME models.

SWe compute the number of tokens as Average Fertility *
Number of words in the dataset. The number of words is
30,890,509,534.
Shttps://huggingface.co/google/gemma-2b
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3.4 Training

We train all PLUME models with a context win-
dow of 2048 tokens, utilizing the Adam optimizer
(Kingma and Ba, 2015) and the causal language
modeling objective. The learning rate is warmed
up from 1 x 107 to a maximum of 3 x 10~* over
the first 2000 steps. We apply a weight decay of 0.1
and a gradient clipping of 1.0. During training, we
set an effective batch size of 81,920 tokens per gra-
dient step distributed over 40 NVIDIA H100-64GB
GPUs using the Deepspeed framework”.

Note that the main focus of this study is to un-
derstand how LLMs perform translation. Thus,
PLUME models are not trained for state-of-the-art
performance on MNMT. A more detailed descrip-
tion of the training configuration can be found in
Appendix C.

Formatting Figure 1 presents an example of a
formatted sentence for the Catalan to Spanish trans-
lation direction. During batching, we concate-
nate formatted sentences up to a context length
of 2048 tokens, mixing different translation direc-
tions within a single batch. Padding is added to fill
out the remainder of the sequence.

3.5 Evaluation

To compute reference-based translation quality we
use COMET-22 (Rei et al., 2022a) and BLEU
(Papineni et al., 2002) metrics on the FLORES-200
devtest (NLLB Team et al., 2022) and NTREX-101
(Federmann et al., 2022) datasets. We additionally
report CHRF (Popovié, 2015) and COMET-KI1wI-
22 (Rei et al., 2022b) in appendix G. We use TOW-
EREVAL® (Alves et al., 2024) to compute all the
evaluation metrics. For inference, we use beam
search decoding with a beam size of 5 and limiting
the translation length to 512 tokens.

We compare PLUME models with the following
bilingual and multilingual models.

e NLLB (NLLB Team et al., 2022): A trans-
former encoder-decoder model that supports
202 languages. We use the 600 million, the
1.3 billion, and the 3.3 billion parameter vari-
ants.

* Bilingual models BSC: Transformer encoder-
decoder models, trained from scratch on lan-
guage pairs that include Catalan. These mod-

7https://www.deepspeed.ai/

STOWEREVAL uses the sacreBLEU implementation to com-
pute BLEU and CHRF metrics.
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els were developed as part of the Aina Project’
and follow the Transformer-XLarge architec-
ture (Subramanian et al., 2021) featuring 500
million parameters in total.

It is important to note that NLLB has seen par-
allel data for our zero-shot directions, therefore
zero-shot only describes the condition in PLUME
models. Our setup is designed to study the potential
of a decoder-only architecture to perform zero-shot
translation, specifically using Catalan as the pivot
language.

4 Results

Table 4 shows results for all PLUME models ag-
gregated by supervised and zero-shot directions.
The PLUME 32k, 128k and 256k variants per-
form equally well in supervised directions, achiev-
ing similar BLEU and COMET scores for both
NTREX and FLORES-200 datasets. In supervised
directions, PLUME models demonstrate competi-
tive performance, matching the COMET scores of
the Bilingual BSC models and achieving scores
comparable to the NLLB variants.

In zero-shot directions, the PLUME models ex-
hibit a decline in performance compared to super-
vised directions. However, the decline is more pro-
nounced in the BLEU scores than in the COMET
scores, indicating that the overall quality remains
relatively robust. Specifically, the PLUME 256k
variant achieves a COMET score of 0.84 on the
FLORES-200 dataset and 0.81 on the NTREX
dataset, which, although lower than its supervised
performance, still demonstrates its zero-shot trans-
lation capabilities when training using only Catalan
as the bridge language.

Larger vocabulary sizes improve zero-shot
translation. The results in Table 4 show that
higher vocabulary sizes consistently yield better
zero-shot capabilities. Specifically, the PLUME
256k variant outperforms the 32k and 128k vari-
ants in zero-shot scenarios for both FLORES-200
and NTREX datasets.

To further understand the influence of the vo-
cabulary size in zero-shot translation quality, we
calculated the vocabulary overlap (Tan and Monz,
2023) for each zero-shot translation direction as
follows:

H/src N ‘/tgt’
|Vtgt|

9https ://huggingface.co/projecte-aina

Overlap = (D
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Supervised directions

Zero-shot directions

FLORES-200 NTREX FLORES-200 NTREX
BLEU COMET BLEU COMET BLEU COMET BLEU COMET

NLLB-3.3B 32.02 0.87 30.48 0.85 28.97 0.86 28.74 0.84
NLLB-1.3B 31.02 0.86 29.68 0.85 28.48 0.86 28.37 0.84
NLLB-600M 29.24 0.85 28.37 0.84 27.04 0.85 27.25 0.84
Bilinguals BSC 31.93 0.86 29.77 0.84 - - - -
PLUME 32k 30.44 0.86 28.46 0.84 23.25 0.83 23.03 0.80
PLUME 128k 30.81 0.86 28.78 0.84 23.97 0.83 23.53 0.81
PLUME 256k 30.72 0.86 28.87 0.84 24.42 0.84 23.81 0.81

Table 4: Averaged BLEU and COMET scores on supervised and zero-shot directions for FLORES-200 devtest

and NTREX.

where V., Vi4 are the set of unique words in
the source and target language vocabulary respec-
tively. We show the correlation between vocab-
ulary overlap and both BLEU and COMET for
zero-shot directions in table 5. On average there is
a positive correlation between the vocabulary over-
lap and the translation quality of 0.3 for BLEU and
0.57 for COMET, which diminishes as vocabulary
size increases. This suggests that vocabulary over-
lap between the source and target languages further
helps explain zero-shot performance, particularly
for smaller vocabulary sizes.

prome 32k pLome 128k pLume 256k
BLEU 0.351 0.280 0.255
COMET 0.593 0.588 0.538

Table 5: Correlation between vocabulary overlap and
BLEU, COMET metrics for different vocabulary sizes
in zero-shot directions.

4.1 Understanding translation with an LLM

Our goal is to understand how an LLM performs
translation. We start by examining which parts
of the prompt the model focuses on. This helps
us determine the most important attention heads
for each section of the prompt. Then, we study
the model’s cross-lingual representation space by
extracting contextualized token embeddings.

4.2 Attention

For each attention head, we assess its importance
by calculating coverage as defined by (Tu et al.,
2016). Originally, coverage was proposed for
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encoder-decoder attention and refers to the total
attention a source token receives from target to-
kens. We adapt coverage for masked-self attention.
Given a set of prompt’s tokens /, the coverage for-
mula for a single sentence is defined as:

)

icl
where «; ; denotes the attention weight from
token ¢ to token j and J represent the set of the
decoded (target) tokens.
Each coverage metric is computed and averaged
over the FLORES-200 devtest for each head in the
model and for each translation direction. To under-

covy(head) = Z

jedJ

<s>
[cat_Latn]

I

qui
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ell?
\n[eng_Latn]
Who
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he?
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[cat_Latn]

Who

Figure 2: Illustration of the regions in the attention
matrix used to compute coverage for each part of the
prompt. We show the cross-attention regions between
decoded tokens and the BOS, source tag, source sen-
tence and target tag tokens in green, yellow, blue, and
red, respectively.
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Figure 3: Coverage evaluating on FLORES-200 devtest using PLUME 32k. Each heatmap for each studied part of
the prompt shows the coverage scores for each layer (on the vertical axis) and for each head (on the horizontal axis)

in the model.

stand which part of the prompt the model is focus-
ing on in each head we study coverage separately
for different parts of the prompt: BOS, source tag,
source sentence and target tag. Figure 2 shows a
graphical illustration of the regions in the attention
matrix that are used to compute coverage based on
the part of the prompt.

In Figure 3, we show the average coverage across
all translation directions for each part of the prompt,
employing PLUME 32k. We note that heads within
the same layer generally exhibit similar coverage
patterns. Future work may investigate how these
patterns arise and how they are related to the usage
of Multi-Query attention'? (Shazeer, 2019).

We find that source tag is the part of the prompt
with least coverage. However, BOS, source sen-
tence and target tag tokens exhibit varying degrees
of coverage with some coverage spikes in specific
layers and heads. Interestingly, layers 5, 6, 10
and 11 show coverage uniquely for the BOS token
which suggests that all attention mass is given to the
BOS token, leaving the residual stream unchanged.
This patterns have recently been observed in auto-
regressive language models and are named atten-
tion sink mechanisms (Xiao et al., 2024; Ferrando
and Voita, 2024; Ferrando et al., 2024; Cancedda,
2024). For instance, Cancedda (2024) demon-

%When we use Multi-Query attention with num_kv_heads set
to 1, the keys and values are shared across all heads from a
specific layer and is only the query that differs which may
hinder the specialization of the heads.

strates that in Llama 2, the feed-forward blocks
embed crucial information into the residual stream
of the BOS token, enabling the attention sink mech-
anism to happen in subsequent layers. We show
in appendix D the coverage heatmaps for PLUME
128k and 256k.

Source tag importance As previously pointed
out, the source tag receives less attention than
the other parts of the prompt. Specifically, it has
an average coverage of 0.56 which is 3.7 times
less coverage than the target token or 18.5 times
less coverage than the BOS token. This motivates
our next experiments which consist of evaluating
PLUME models without indicating the source lan-
guage. Specifically, we replace the source tag with
another BOS token to mantain the same learned
positional encodings and evaluate the model’s per-
formance on FLORES-200 devtest using BLEU.
Table 6 shows the relative BLEU change with re-
spect to the original model aggregated by language
pair. Results show varying impacts across differ-
ent language pairs when the source tag is omitted.
For languages like English, French and Basque,
the drop in BLEU scores is particularly significant.
However, for other translation directions like Span-
ish and Catalan, the decrease in BLEU scores is
negligible. This suggests that the model is more
reliant on the source tag to represent certain lan-
guages, particularly those which are less related
to the bridge language or those that the model has
seen less during training.
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prume 32k Prume 128k PLumE 256k

ca—XxX -1.80 -0.54 -0.83
es—XX -0.43 0.23 -0.33
pt—xx -8.13 -6.01 -5.54
gl—xx -6.52 -4.18 -4.92
it—XxXx -6.57 -10.79 -5.03

fr—xx -13.16 -19.90 -17.63

de—xx -7.54 -2.73 -6.73
en—xx -19.83 -25.52 -20.03
eu—Xxx -16.73 -11.03 -13.23
Avg. -8.97 -8.94 -8.25

Table 6: Relative BLEU change with respect to PLUME
models after ignoring the source tag. We label languages
according to their BCP-47 language code (see Table 9
from Appendix A).

Regarding the vocabulary size, the model with
a 256k vocabulary shows the smallest average de-
crease in BLEU scores, suggesting that a larger
vocabulary may improve the model’s representa-
tion of the source language.

Redundant heads Previous work on MNMT has
shown that coverage is a good indicator for pruning
cross attention heads in encoder-decoder architec-
tures and can be used to improve model’s efficiency
without sacrificing the model’s performance (Kim
et al., 2021). Following Kim et al. (2021), we use
coverage to prune heads in a decoder-only architec-
ture to study the amount of redundant heads that
are introduced as vocabulary size grows.

Specifically, we mask all attention heads within
a specific layer that fall below a predetermined
coverage threshold. We compute coverage per layer
for a specific direction as follows:

H

COV[ = ¢(Z Z COV; (headl,i))

i=1 jePr

3

Pr = {BOS, Source tag, Source sentence, Target tag}

where COV,; represents the coverage of layer
[, H is the total number of attention heads in the
model, and Pr is a set that contains sets of tokens
for each part of the prompt. Finally, ¢ is a MinMax
Scaler used to normalize the metric between 0 and
1.

We use FLORES-200 devtest to evaluate the im-
pact of masking heads per layer based on the cover-
age criterion (Equation 3). Figure 4 (left) illustrates
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the evolution of BLEU scores as we mask heads
in PLUME 32k for the Spanish to Catalan direction
(supervised). The right axis indicates the number of
heads that are masked. We find that up to 64 heads
can be masked without degrading the model’s per-
formance using a threshold of 0.2, representing
47.05% of the model’s total heads. In Figure 4
(right), we show the cumulative coverage for the
different parts of the prompt. We observe that for a
threshold of 0.2, the masked heads represent 9.05%,
2.61%, 36% and 58.9% total coverage for the BOS,
source tag, source sentence and target tag tokens
respectively. This indicates that the majority of the
masked heads are paying attention to the target tag
token and to a lesser extent to the source sentence
tokens. This suggests that these heads are less criti-
cal for maintaining translation quality. Specifically,
when masking these 64 heads we are only using
heads from layers 5, 6, 8, 9, 10, 11, 15, and 16
which are the layers with higher coverage for the
BOS, source tag and source sentence tokens (see
Figure 3). Regarding the source tag, we find that
even though it is the part of the prompt with the
lowest coverage, it is still useful for maintaining
the translation quality. This observation aligns with
our previous findings from section 4.2.

pLuMme 32k PLumEe 128k PLuMmE 256k
de—ca 64 64 88
de—en 32 72 88
de—pt 64 64 88
es—rca 64 104 88
es—en 64 72 88
es—pt 64 104 88
fr—ca 64 64 88
fr—en 24 72 88
fr—pt 64 0 88
gl—ca 64 104 88
gl—en 24 72 88
gl—pt 64 64 88
it—ca 64 80 88
it—en 64 72 88
it—pt 64 0 88
Avg. 56.53 67.2 88

Table 7: Number of masked heads across different lan-
guage pairs and vocabulary sizes such that BLEU drop
is less than 2 points.

In Table 7, we report the number of heads that we
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Figure 4: Impact of masking on BLEU score and number of masked heads across different coverage thresholds (left).
Accumulated coverage of masked heads for source tag, target tag, source sentence, and BOS (right). Experiments

are evaluated on the Spanish to Catalan direction.

can mask without losing more than 2 BLEU points
for the translation directions from German (de),
Spanish (es), French (fr), Galician (gl), and Italian
(it) into Catalan (ca), English (en), and Portuguese
(pt) for different vocabulary sizes. We find that
for larger vocabulary sizes we can mask a higher
number of heads without hurting the model’s per-
formance. Specifically, on average we can mask
41.56%, 49.41% and 64.7% of the model’s heads
for PLUME 32k, PLUME 128k and PLUME 256k
respectively. Future work may investigate whether
having more redundant heads is related with zero-
shot translation, especially since larger vocabulary
sizes appear to improve zero-shot translation capa-
bilities.

4.3 Language subspaces

To further understand the multilingual capabilities
of PLUME models, we study how different lan-
guages are represented within the model’s internal
representations by measuring the distances between
language embeddings across layers and how do
these representations differ across different vocab-
ulary sizes.

Subspace distances We first extract sub-word
tokens output by each layer in the Transformer.
Specifically, we use the first 300 sentences from
FLORES-200 devtest for each source language, de-
noted as s. These sentences are used to create
translation prompts from s to each target language
(300 * 8 = 2,400 prompts). For each prompt, we
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Figure 5: Mean distance between language subspaces
grouped by vocabulary size. Additional plots grouped
by languages and vocabulary sizes are included in Ap-
pendix E.

extract the token embeddings from each layer of
the model and concatenate the consecutive tokens
to form Hj. Then, we apply singular value decom-
position (SVD) on Hj after substracting the mean.
We calculate pairwise distances among the 9 lan-
guages using the affine subspace for each language
computed by the SVD, utilizing the Riemannian
metric on the space of positive definite matrices
described in (Chang et al., 2022), which is both
symmetric and invariant to affine transformations.

Figure 5 shows the mean distance between lan-
guage subspaces in each layer. As we can see,
the distance between language subspaces decreases
with model depth. Initially, from the embeddings
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Figure 6: UMAP representations for token embeddings. From left to right: Representations at the embedding layer,
the penultimate layer, and the last layer of PLUME 32k grouped by source language. See Appendix F for more

additional plots.

layer to layer O we can observe a significant de-
crease of approximately 5.07%, and from layer O to
layer 1, a further reduction of 7.23%. In middle lay-
ers (layers 3 to 11), distances are relatively stable
and show minimal variations. This suggests that
the model applies only minimal transformations
to the representations along these layers. Interest-
ingly, in layer 8 we can observe a small decrease
in the distance of 0.05% which we hypothesize
may be due to the model’s attention focusing more
on the source token at this layer (see Figure 3).
As we move to the deeper layers, the distances
continue to decrease, with a significant drop of ap-
proximately 8.88% from layer 11 to layer 12, a
trend that persists through layers 12 to 16. How-
ever, in the last layer, there is a notable increase in
distance by approximately 23.06%. These results
align with previous work on encoder-only models,
which suggest that in intermediate layers the model
representations diverge more from the embedding
layer representation and from the final layer. Both
the embedding layer and the final layer are highly
language-sensitive (Chang et al., 2022; Libovicky
et al., 2020; Pires et al., 2019).

Regarding the vocabulary size, as shown in Fig-
ure 5, we observe that for PLUME 32k the distance
between embeddings are higher than PLUME 128k
or PLUME 256k until layer 12, where distances be-
come similar. This can be attributed to the higher
vocabulary overlap between languages in PLUME
32k, where each embedding represents a more di-
verse concept, limiting its ability to learn language-
agnostic representations which necessitates each
embedding to represent more diverse concepts and
suggests that a small vocabulary size might limit
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the model’s ability to learn agnostic representations
in earlier layers. In contrast, a larger vocabulary
seems to help the model more readily disentangle
language-specific features earlier in the network,
allowing embeddings to remain closer.

Visualization In the previous subsection, we
found that the distances between embeddings ini-
tially decrease, and the embedding space becomes
narrower, then in the last layer, the embeddings
spread out. To understand this phenomenon, we vi-
sualize the token embeddings using Uniform Man-
ifold Approximation and Projection (UMAP)'!
(Mclnnes et al., 2018). We construct prompts from
each source language to Galician. Token embed-
dings per layer are concatenated to form P}, then
we apply UMAP to reduce the dimensionality of
the representations.

Figure 6 shows the UMAP visualizations for
token embeddings in the embedding layer and the
two last layers of the model coloured by source
language. As we can see, token embeddings remain
language-neutral as they pass through the model
until the last layer, where token embeddings group
by source language. This suggests that the model
must align embeddings cross-linguistically until
reaching the last layer where it clusters by source
language. This explains the distance of the last
layer (see Figure 5). See Appendix F for additional
plots!? corresponding to each vocabulary size and
each layer.

""We employ the cosine distance and we set the number of
neighbours to 8 for computing UMAP’s embeddings.

12 Additionally, we include UMAP Spherical Voronoi diagrams
as supplementary materials in the anonymous code: link (see
Appendix E.1).


https://anonymous.4open.science/api/repo/Plume-D152/file/representation_space/voronoi_plots_32k.zip?v=7717f92a&download=true

5 Conclusions

This work demonstrates the successful training of
an LLM-based machine translation system from
scratch using only parallel data. The achieved re-
sults are comparable to those of existing encoder-
decoder architectures for supervised translation
tasks. We identified that larger vocabulary sizes
consistently improve translation quality across
zero-shot directions, suggesting the potential bene-
fits of experimenting with even larger or language-
specific vocabularies.

Further analysis revealed that different layers fo-
cus on distinct aspects of the prompt, particularly
the source language tag, which exhibits significant
language variation. By employing an appropri-
ate criterion, we achieved a performance reduction
of less than 2 BLEU score while removing over
64.7% of attention heads. We also showed that with
larger vocabularies, the model gains additional rep-
resentational flexibility that allow for more heads
to be pruned without significantly degrading per-
formance.

Additionally, our exploration of the learned
cross-lingual space demonstrates that languages
get closer in the cross-lingual space as they get to
deeper layers and highlight the layers with the most
significant impact on the learned space.

This research opens doors for further investi-
gation. We identified "sink heads" that primarily
focus on the BOS token. Exploring their utility
and relationship to the learned cross-lingual repre-
sentations presents an opportunity for future work.
Additionally, further research into the optimization
of vocabulary size along model size could also lead
to better NMT models.

6 Limitations

This study focused on understanding the capabili-
ties of an LLM trained solely on parallel data, with-
out aiming to achieve state-of-the-art translation
quality or extensive language support. Here are
some key limitations to consider when interpreting
the results:

Data Scope: The experiment employed non-
English centric data with a focus on Western, Latin-
script languages. This approach aimed to isolate
the impact of vocabulary size and overlap, but
limits generalizability to languages with different
scripts or historical connections. However, the in-
clusion of Basque, a non-Indo-European Subject-
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Object-Verb (SOV) language, provides valuable
insights into the model’s handling of structural vari-
ations.

Scalability: The study did not explore the impact
of model scale and data availability on translation
across diverse languages and scripts. Further re-
search is necessary to understand how these factors
influence performance in more complex settings.

These two main aspects will be considered as
future work by studying the scalability of these
architectures on both model size and translation
directions.
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A Dataset

For each target language, we collected all openly
licensed parallel data with Catalan from OPUS
(Tiedemann, 2012). To augment dataset size, we
also gathered parallel corpora with Spanish as
the source language into Catalan using the Plan-
TL Spanish-Catalan neural machine translation
model'3, yielding synthetic Catalan corpora. These
were concatenated with the original Catalan data
and processed identically. In addition to OPUS
data, we also used the Aina-ca-en-Parallel-Corpus

for Catalan—Spanish pairs'#.

13 Available on HuggingFace: https://huggingface.co/
datasets/projecte-aina/CA-EN_Parallel_Corpus

4 Available on HuggingFace: https://huggingface.co/
PlanTL-GOB-ES/mt-plantl-es-ca
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Aina-ca-en-Parallel-Corpus
CCAligned
Covost2

DOGC
EUBookshop
Europarl
Globalvoices
Gnome

HLPT

KDE4
MultiCCAligned
NLLB
OpenSubtitles
ParaCrawl
Tatoeba
TildeModel
Ubuntu
Wikimatrix
Wikimedia
XLEnt

Table 8: Data sources.

Language Id
Catalan ca
German de
English en
Spanish es
Basque eu
Italian it
Galician gl
French fr
Portuguese  pt

Table 9: List of BCP-47 language codes.

B Tokenizer

In our experiments, we utilized the BPE algorithm
(Sennrich et al., 2016) from the Huggingface Tok-
enizer library (Moi and Patry, 2023). The settings
used for training the tokenizer are detailed in Table
10. Every language tag is represented by a BCP-47
tag sequence where the base subtag is a three-letter
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ISO 639-3 code, followed by ISO 15924 script
subtags.

Hyper-Parameter Value(s)
model_type BPE
vocab_size 32k & 128k & 256k
nfkd_normalizer True
lowercase_normalizer False
pre_tokenizer ByteLevel
add_prefix_space False

special_tokens <8>, </s>, <pad>, <mask>, [deu_Latn],
[eng_Latn], [eus_Latn], [fra_Latn], [glg_Latn],

[ita_Latn], [por_Latn], [spa_Latn], [cat_Latn]

Table 10: BPE tokenizer configuration.

We trained various tokenizers employing two
distinct sampling strategies for each vocabulary
size, then we evaluated them on fertility and parity
(Petrov et al., 2024) metrics on FLORES-200 de-
vtest. For a given tokenizer T and a set of sentences
S, fertility is determined by dividing the total num-
ber of tokens generated from S (using T) by the
total number of words in S. Parity is defined as
achieving a balanced tokenization ratio between
two languages. Specifically, a tokenizer T achieves
parity for language A with respect to language B
if the ratio % ~ 1, where s4 and sp denote
the sets of all sentences for languages A and B,
respectively.

We experimented with both unigram and BPE
implementations from the Huggingface Tokenizer
library. We tested two sampling strategies: one
involving the sampling of 1 million sentences from
all languages, and another involving the equal sam-
pling of 1 million sentences from Romance lan-
guages, with an oversampling of 3 million sen-
tences for English, Basque, and German. Figure
7 presents the fertility metrics on English, Basque,
and German. Given the results, we decided to use
the BPE algorithm with the oversampling strategy
for our final experiments. We also report obtained
parity metrics by vocabulary size in figure 8.

s

4 unigram sampling equal 1M ~@- bpe.sampling equal 1M unigram samplingover cus.den eng 1M @ bpesampling

Figure 7: From left to right: fertility evaluated on
Basque, English and German. Fertility is in the ver-
tical axis, and vocabulary size is in the horizontal axis.

C Training

Hyper-Parameter

Batch size 40
Number of Epochs 1
Optimizer Adam
Adam-(3; 0.9
Adam-[, 0.999
Adam-¢ 1e-08
Learning rate 3e-04
LR Scheduler Linear
Warmup Steps 2000

Table 11: Model training hyper-parameters

Num examples 26,301,993
Num tokens = Num examples * 2048 (considering pad tokens) 53,866,481,664
Num Epochs 1

Instantaneous batch size per device 1

Total train batch size (w. parallel, distributed & accumulation) 40

Gradient Accumulation steps 1

Total optimization steps 657,550
Number of trainable parameters 2,047,420,416

Table 12: Training and performance information for
PLUME 32k.

Num examples 23,093,719
Num tokens = Num examples * 2048 (considering pad tokens) 47,295,936,512
Num Epochs 1

Instantaneous batch size per device 1

Total train batch size (w. parallel, distributed & accumulation) 40

Gradient Accumulation steps 1

Total optimization steps 577,343
Number of trainable parameters 2,244,028,416

Table 13: Training and performance information for
PLUME 128k.

Num examples 22,213,825
Num tokens = Num examples * 2048 (considering pad tokens) 45,493,913,600
Num Epochs 1

Instantaneous batch size per device 1

Total train batch size (w. parallel, distributed & accumulation) 40

Gradient Accumulation steps 1

Total optimization steps 555,346
Number of trainable parameters 2,506,172,416

Table 14: Training and performance information for
PLUME 256k.
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Figure 8: Parity for the different vocabulary sizes.
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Figure 9: Training loss.

D Coverage metrics

We show in Figure 11 and Figure 12 the coverage
heatmaps for PLUME 32k, 128k and 256k respec-
tively. In Figure 13 we show the average coverage
per layer for the different vocabulary sizes. We
notice that PLUME 32k, 128k and 256k exhibit a
similar coverage pattern across layers.

BOS

Target tag

Head

Figure 10: Coverage evaluating on FLORES-200 de-
vtest using PLUME 32k. Each heatmap for each part
of the prompt shows the coverage scores for each layer
(vertical axis) and for each head (horizontal axis) in the
model.
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Figure 11: Coverage evaluating on FLORES-200 devtest
using PLUME 128k. Each heatmap for each part of
the prompt shows the coverage scores for each layer
(vertical axis) and for each head (horizontal axis) in the
model.

BOS Sourc tag

100

Figure 12: Coverage evaluating on FLORES-200 devtest
using PLUME 256k. Each heatmap for each part of
the prompt shows the coverage scores for each layer
(vertical axis) and for each head (horizontal axis) in the
model.

B80S Source tag, Soutce sentence

Target tag

Figure 13: Average coverage per layer for each part of
the prompt across various vocabulary sizes.

D.1 Attention matrices

An attention sink mechanism occurs when all the
attention mass is given to some special tokens. We
visualize the attention matrices for the first head of



layer 9 and layer 17 (last layer) in Figure 14. We
observe that in layer 9, the model is giving all the
attention mass to the BOS token'> which allows the
model to keep the residual stream of the network
unchanged.

Figure 14: Attention weights for head 1 in layer 9 (left)
and head 1 in layer 17 (right).

E Subspace distances

We show in Figure 15 the distances between lan-
guage subspaces computed using the Riemannian
metric on the space of positive definite matrices
as detailed in (Chang et al., 2022) grouped by lan-
guage and for each vocabulary size. We observe
that for all the vocabulary sizes, Basque’s subspace
is further from the rest of the languages subspaces
which could explain why model’s performance on
Basque is lower compared to other languages.

F UMAP Plots

Below we show the token representations!'® using

Uniform Manifold Approximation and Projection
(UMAP) (Mclnnes et al., 2018) for all the layers in
PLUME 32k, 128k and 256k.

F.1 Spherical Voronoi diagrams

To better visualize high-dimensional token embed-
dings in PLUME models, we used spherical voronoi
diagrams. Specifically, we reduced the embeddings
to a 2D space, optimizing for cosine similarity us-
ing UMAP. Then, the 2D UMAP embeddings were
projected onto a unit sphere. Specifically, each
2D point (z,y) was mapped to 3D coordinates
(X,Y, Z) as follows:

SThere is a special token created by Huggingface BPE im-
plementation, which is positioned between the BOS and the
source tag tokens. We consider this special token as part of
the BOS token.

1We use the first sentence from FLORES-200 devtest in each
source language to construct the prompts: "We now have
4-month-old mice that are non-diabetic that used
to be diabetic,” he added.
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Z = cos(x)
C))
Then, for each language, we calculated the cen-
troid of its corresponding tokens on the sphere and
using these centroids, we computed Voronoi re-
gions (where each region contains all the closest
points to a specific centroid). We add as supple-
mentary material the spherical voronoi diagrams
for each layer in PLUME 32k.

X =sin(z) - cos(y) Y =sin(z) - sin(y)

G Detailed results

We report in the following tables the results of
PLUME models for each translation direction. We
also provide comparisons for TOWERBASE 7B
(Alves et al., 2024) in those directions that PLUME
and TOWERBASE 7B share, as well as comparisons
with NLLB 3.3B (NLLB Team et al., 2022).
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Figure 18: UMAP representations at the token embeddings in each layer grouped by source language using PLUME

256k.
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Table 15: Results for ca—xx.

FLORES-200 NTREX
Pair Model BLEU CHRF COMET COMET-kwi BLEU CHRF COMET COMET-kiwi
ca-de BSC Bilinguals  33.30  61.12 0.85 0.84 25.04 55.00 0.83 0.83
NLLB 3.3B 31.19 5841 0.85 0.84 21.72 5341 0.81 0.82
PLUME 128k 28.00 57.53 0.83 0.82 2198 53.36 0.80 0.81
PLUME 256k 28.55 57.63 0.83 0.82 21.39 5272 0.80 0.81
PLUME 32k 27.81  57.00 0.83 0.82 2779  56.66 0.83 0.84
ca-en BSC Bilinguals 46.29  70.44 0.88 0.86 41.20 66.57 0.87 0.86
NLLB 3.3B 49.65 71.68 0.89 0.86 3322 62.82 0.85 0.85
PLUME 128k 4291  68.69 0.88 086 3373  63.07 0.85 0.85
PLUME 256k 4247 6847 0.88 085 3282 6214 0.85 0.84
PLUME 32k 4192  68.15 0.87 0.85 37.61 64.98 0.87 0.85
ca-es BSC Bilinguals 24.70 53.42 0.86 0.86 36.89 61.83 0.86 0.85
NLLB 3.3B 25.62  53.73 0.86 0.86 3544  61.27 0.86 0.85
PLUME 128k 24.66 53.44 0.86 0.86 3566 61.23 0.86 0.85
PLUME 256k 2459  53.37 0.86 0.85 3570 61.24 0.86 0.85
PLUME 32k 2450  53.37 0.86 0.86 3597 6140 0.86 0.85
ca-eu BSC Bilinguals  18.26  57.03 0.86 0.81 9.83 4647 0.80 0.74
NLLB 3.3B 13.13  50.47 0.83 0.75 12.40  49.99 0.82 0.78
PLUME 128k 1488 5341 0.84 0.79  12.09  49.96 0.82 0.78
PLUME 256k 1497  53.75 0.84 0.78 12.17  49.58 0.81 0.77
PLUME 32k 1438 53.29 0.84 0.78  14.08 52.70 0.84 0.81
ca-fr  BSC Bilinguals  38.25  63.23 0.85 0.84 27.60 56.73 0.84 0.85
NLLB 3.3B 39.89  64.05 0.86 085 2520 54.13 0.81 0.82
PLUME 128k 3546  61.08 0.84 0.83 2548 54.16 0.81 0.82
PLUME 256k 3572 61.18 0.84 0.83 2494 53.76 0.81 0.82
PLUME 32k 3432  60.68 0.83 082 2771 5553 0.82 0.83
ca-gl BSC Bilinguals  31.96  59.66 0.87 0.84 3407 60.52 0.86 0.84
NLLB 3.3B 3278  59.25 0.87 0.85 3323 60.22 0.86 0.84
PLUME 128k 3222 59.73 0.87 0.84 33.37  60.24 0.86 0.83
PLUME 256k 3207 59.51 0.87 0.84 3323 60.27 0.86 0.84
PLUME 32k 32.21 59.73 0.87 0.85 32.59  59.76 0.85 0.82
ca-it  BSC Bilinguals  26.92  56.55 0.87 0.85 29.46  58.00 0.87 0.85
NLLB 3.3B 26.38  55.66 0.88 086 2791 5743 0.86 0.84
PLUME 128k 2577  55.78 0.87 0.85 2811 57.62 0.86 0.84
PLUME 256k 2576 55.94 0.87 085 2780 57.33 0.85 0.84
PLUME 32k 2545 5551 0.87 0.85 29.07 5795 0.86 0.84
ca-pt BSC Bilinguals  37.18  62.73 0.88 0.84 3146 57.67 0.86 0.84
NLLB 3.3B 36.68 61.97 0.88 085 2779 5597 0.85 0.83
PLUME 128k 3627  62.12 0.88 0.84 2850 56.29 0.85 0.83
PLUME 256k 35776  61.88 0.88 0.84 27.92 5591 0.85 0.83
PLUME 32k 3581 61.67 0.88 0.84 28.19 56.17 0.85 0.83
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Table 16: Results for de—xx.

FLORES-200 NTREX

Pair Model BLEU CHRF COMET COMET-kimi BLEU CHRF COMET COMET-kiwi
de-ca  BSC Bilinguals 30.15 57.65 0.83 0.82 28.24  55.02 0.83 0.84
NLLB 3.3B 3145 57.99 0.86 0.85 28.34  55.03 0.82 0.82

PLUME 128k 3223 59.02 0.85 0.83 28.13  54.66 0.82 0.82

PLUME 256k 31.76  58.73 0.85 0.83 27.94 5458 0.82 0.81

PLUME 32k 31.76  58.56 0.85 0.83 2449  53.60 0.78 0.80

de-en NLLB 3.3B 46.02  69.30 0.90 0.85 41.01 66.16 0.88 0.84
TOWERBASE 7B 43.69  68.56 0.89 0.84 41.01 66.16 0.88 0.84

PLUME 128k 36.17 6349 0.86 0.82 29.73  59.26 0.84 0.81

PLUME 256k 3699 64.04 0.87 0.83 29.80 59.39 0.84 0.81

PLUME 32k 3412  62.13 0.86 0.81 28.73  58.11 0.83 0.80

de-es NLLB 3.3B 23.86  51.39 0.84 0.86 31.13  57.36 0.84 0.85
TOWERBASE 7B 21.66  50.94 0.83 0.85 31.13  57.36 0.84 0.85

PLUME 128k 22.00 5041 0.82 0.83 28.41 54.92 0.81 0.82

PLUME 256k 22.35  50.80 0.82 0.83 28.76  54.89 0.81 0.82

PLUME 32k 2090 49.74 0.82 082 2783 54.18 0.81 0.81

0.69

PLUME 128k 9.91 46.23 0.78 0.73 8.18  42.65 0.75 0.72

PLUME 256k 1148  47.52 0.79 0.74 8.93 43.59 0.76 0.73

PLUME 32k 10.77  46.22 0.77 0.72 8.46  42.39 0.74 0.71

de-fr NLLB 3.3B 37.62  62.60 0.86 0.85 28.06 56.03 0.83 0.85
TOWERBASE 7B 3484  61.23 0.85 0.85 28.06  56.03 0.83 0.85

PLUME 128k 2850  56.32 0.80 0.80 20.26  49.16 0.77 0.78

PLUME 256k 29.01 56.15 0.80 0.79 20.84  49.13 0.77 0.78

PLUME 32k 27.13  54.89 0.79 0.78 20.37  48.30 0.75 0.76

de-gl NLLB 3.3B 28.87 55.70 0.85 0.85 29.17  56.21 0.84 0.84
PLUME 128k 26.01 54.15 0.83 0.83 2455  52.87 0.81 0.81

PLUME 256k 2520 5346 0.83 082 2487 52.86 0.81 0.81

PLUME 32k 25.31 53.11 0.82 0.82 24.11 51.92 0.80 0.80

de-it NLLB 3.3B 25.88  54.95 0.87 086 27.84 56.12 0.86 0.85
TOWERBASE 7B 2473  54.26 0.86 0.85 2784  56.12 0.86 0.85

PLUME 128k 2247 5244 0.84 0.83 2277  52.04 0.82 0.82

PLUME 256k 2274 5234 0.85 0.83 23.12  52.16 0.82 0.82

PLUME 32k 2136  51.19 0.84 0.82 2239 51.53 0.81 0.81

de-pt NLLB 3.3B 3342 59.32 0.87 0.85 2942 5597 0.85 0.85
TOWERBASE 7B 3094 5848 0.86 0.85 2942 5597 0.85 0.85

PLUME 128k 30.02  57.17 0.85 0.83 24.09 5190 0.82 0.82

PLUME 256k 3036 5746 0.85 0.83 24.06 5190 0.82 0.82

PLUME 32k 29.19 5598 0.84 0.81 23.00 51.09 0.80 0.80
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Table 17: Results for en—xx.

FLORES-200 NTREX

Pair Model BLEU CHRF COMET COMET-kimi BLEU CHRF COMET COMET-kiwi
en-ca BSC Bilinguals 44,05 67.95 0.88 0.85 3749 6238 0.85 0.83
NLLB 3.3B 4233  65.97 0.88 0.85 3580 61.29 0.83 0.81

PLUME 128k 4229  66.44 0.87 0.84 3595 61.30 0.83 0.81

PLUME 256k 42.64  66.59 0.87 0.84 3505 60.72 0.82 0.80

PLUME 32k 4232  66.39 0.86 0.84 3793  63.19 0.84 0.82

en-de NLLB 3.3B 3988 65.14 0.88 0.84 3246  60.93 0.85 0.84
TOWERBASE 7B 37.53 6447 0.87 0.84 3246  60.93 0.85 0.84

PLUME 128k 31.27  59.30 0.82 0.80 24.31 54.33 0.78 0.77

PLUME 256k 31.81 60.17 0.83 0.81 2494  55.13 0.79 0.78

PLUME 32k 20.86  58.22 0.82 0.79 23.46 5342 0.77 0.75

en-es NLLB 3.3B 28.14 55.85 0.86 0.86 3933  63.79 0.85 0.84
TOWERBASE 7B 26.38  55.02 0.86 0.86 3933 63.79 0.85 0.84

PLUME 128k 2434 53,01 0.83 0.84 3562 60.75 0.81 0.80

PLUME 256k 25.00 5343 0.84 0.84 3642 61.36 0.82 0.81

PLUME 32k 2347  52.61 0.83 0.83 3486  60.10 0.81 0.79

0.79

PLUME 128k 13.02  48.69 0.81 0.78 10.51 44.21 0.76 0.75

PLUME 256k 1295  50.05 0.81 0.79 1096  45.41 0.77 0.75

PLUME 32k 13.03  48.89 0.80 0.78 10.73  44.79 0.75 0.74

en-fr NLLB 3.3B 50.90 71.70 0.88 0.87 3477  61.69 0.84 0.85
TOWERBASE 7B 49.28  70.83 0.88 0.87 3477  61.69 0.84 0.85

PLUME 128k 36.49 6225 0.82 082 2636 54.27 0.77 0.79

PLUME 256k 38.27  63.03 0.83 0.83 2720 5495 0.77 0.79

PLUME 32k 36.11 61.92 0.81 0.81 26.36  54.15 0.76 0.78

en-gl NLLB 3.3B 3598 61.55 0.87 0.85 39.01 63.75 0.85 0.83
PLUME 128k 3226  59.64 0.85 0.83 33.28 59.53 0.81 0.79

PLUME 256k 32.61 59.66 0.85 0.83 33.13  59.59 0.81 0.79

PLUME 32k 31.16 5892 0.84 0.82 31.88 5848 0.80 0.77

en-it NLLB 3.3B 30.63 59.52 0.88 0.87 37.68 63.84 0.87 0.85
TOWERBASE 7B 29.64 59.13 0.88 0.87 37.68 63.84 0.87 0.85

PLUME 128k 2558 55.15 0.84 0.84 2884 57.37 0.82 0.81

PLUME 256k 25.64 5575 0.85 0.85 30.73 5842 0.82 0.81

PLUME 32k 24.51 54.69 0.84 084 2955 57.32 0.81 0.80

en-pt NLLB 3.3B 4945  70.54 0.90 0.85 3737 6246 0.87 0.84
TOWERBASE 7B 49.67  71.36 0.90 0.85 3737 6246 0.87 0.84

PLUME 128k 40.94  65.75 0.87 0.83 30.59 57.41 0.82 0.79

PLUME 256k 42,62  66.47 0.87 0.83 31.27 57.81 0.82 0.79

PLUME 32k 40.57 65.13 0.86 0.82 30.13  56.87 0.81 0.78
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Table 18: Results for es—xx.

FLORES-200 NTREX
Pair Model BLEU CHRF COMET COMET-kimi BLEU CHRF COMET COMET-kiw
es-ca  BSC Bilinguals 2334 5398 0.86 0.84 3447  60.52 0.86 0.84
NLLB 3.3B 25770 5524 0.86 0.84 33.16  60.59 0.86 0.83
PLUME 128k 2343 5422 0.86 0.84 33.41 60.49 0.86 0.83
PLUME 256k 2342  54.20 0.86 0.84 33.23  60.60 0.86 0.83
PLUME 32k 23.55 54.30 0.86 0.84 3414  60.73 0.86 0.83
es-de NLLB 3.3B 22.88  53.27 0.84 0.84 2463 55.15 0.83 0.84
TOWERBASE 7B 18.86 51.44 0.82 0.84 2463 55.15 0.83 0.84
PLUME 128k 17.69  50.73 0.80 0.81 1990 52.08 0.79 0.81
PLUME 256k 18.06 51.26 0.81 0.82 2041 52.30 0.80 0.81
PLUME 32k 17.63  50.19 0.80 0.80 1947  51.49 0.78 0.80
es-en NLLB 3.3B 3293  61.52 0.88 086 4188 6747 0.88 0.86
TOWERBASE 7B 3047  60.37 0.87 0.86 41.88 6747 0.88 0.86
PLUME 128k 2474  56.76 0.85 0.85 31.64 62.07 0.85 0.84
PLUME 256k 2491 57.16 0.85 0.85 3153 6224 0.85 0.84
PLUME 32k 23.79  56.29 0.84 0.85 31.05 61.38 0.85 0.84
es-eu  NLLB 3.3B 11.31  49.93 0.84 0.81 11.13  47.56 0.81 0.77
PLUME 128k 1039  49.12 0.82 0.81 1145 48.54 0.81 0.79
PLUME 256k 11.22 49.59 0.83 0.81 11.29  48.92 0.81 0.79
PLUME 32k 11.26  49.16 0.82 0.79 11.31 47.79 0.80 0.78
es-fr NLLB 3.3B 29.97 58.18 0.85 086 2792 56.77 0.84 0.85
TOWERBASE 7B 25.16  55.84 0.84 0.85 2792  56.77 0.84 0.85
PLUME 128k 21.91 52.76 0.81 0.82 2399 52.86 0.80 0.81
PLUME 256k 22.15 52.87 0.81 0.82 23.85 5299 0.80 0.81
PLUME 32k 2196 52.78 0.81 0.82 2439 53.10 0.79 0.81
es-gl NLLB 3.3B 24.64  53.77 0.87 0.84 3492 61.24 0.87 0.83
PLUME 128k 21.47  52.69 0.87 0.84 33.34  60.71 0.86 0.83
PLUME 256k 21.59 52.54 0.86 0.84 33.63 60.81 0.86 0.82
PLUME 32k 21.29 5251 0.86 0.84 33.08 60.63 0.86 0.83
es-it NLLB 3.3B 2277  52.86 0.87 0.86 29.60 58.19 0.87 0.85
TOWERBASE 7B 19.95 51.18 0.86 0.86 29.60 58.19 0.87 0.85
PLUME 128k 18.76  50.27 0.85 0.85 25.08 5531 0.84 0.83
PLUME 256k 18.86  50.53 0.85 0.84 2542 5557 0.85 0.84
PLUME 32k 19.29 5045 0.85 0.84 25.14 5555 0.84 0.83
es-pt NLLB 3.3B 26.18 55.23 0.87 0.85 3230 58.24 0.87 0.84
TOWERBASE 7B 23.11 53.87 0.87 0.85 3230 58.24 0.87 0.84
PLUME 128k 21.16  52.25 0.86 0.84 2582 54.84 0.85 0.83
PLUME 256k 21.84 5270 0.86 0.84 2727 5553 0.85 0.83
PLUME 32k 21.65 5274 0.86 0.84 27.00 55.35 0.85 0.83
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Table 19: Results for eu—xx.

FLORES-200 NTREX
Pair Model BLEU CHRF COMET COMET-kmi BLEU CHRF COMET COMET-kiw
eu-ca BSC Bilinguals  26.18  54.14 0.85 082 2456 51.56 0.83 0.81
NLLB 3.3B 26.70  53.97 0.86 0.82 2229  49.79 0.81 0.79
PLUME 128k 2433  51.85 0.84 0.80 21.70 4948 0.81 0.78
PLUME 256k 24.02  51.67 0.84 0.80  20.19  48.69 0.80 0.77
PLUME 32k 2292 50.69 0.83 0.79 2429 51.84 0.82 0.81
eu-de NLLB 3.3B 2271 51.75 0.83 0.80 1896  48.84 0.81 0.79
PLUME 128k 13.64 44.72 0.76 072 1138 41.74 0.73 0.72
PLUME 256k 13.58 4477 0.76 072  10.74  41.78 0.73 0.72
PLUME 32k 10.62  40.74 0.72 0.69 9.30  38.93 0.69 0.69
eu-en NLLB 3.3B 3344  60.57 0.87 0.86 29.59  57.37 0.85 0.85
PLUME 128k 2149  51.65 0.82 0.81 16.70  48.58 0.79 0.80
PLUME 256k 2212 5231 0.82 0.82 1641 48.54 0.79 0.80
PLUME 32k 17.52  48.60 0.79 0.78 13.84  45.54 0.77 0.77
eu-es NLLB 3.3B 20.50  48.29 0.84 0.84 2750 53.84 0.84 0.83
PLUME 128k 17.74 4598 0.81 0.81  20.71  48.75 0.79 0.79
PLUME 256k 1794 4541 0.81 0.81  20.58  48.54 0.79 0.79
PLUME 32k 15.61  43.47 0.79 0.79 18.76  47.03 0.78 0.78
eu-fr NLLB 3.3B 29.05  56.00 0.84 0.83 2263 50.58 0.81 0.82
PLUME 128k 18.58  46.77 0.75 0.75 1490 4294 0.73 0.73
PLUME 256k 18.39  46.08 0.75 074 1473  42.58 0.72 0.72
PLUME 32k 15.77  44.00 0.71 0.71 12.58  40.59 0.69 0.70
eu-gl NLLB 3.3B 25.16  52.52 0.86 0.83 2418 52.15 0.83 0.82
PLUME 128k 19.24  47.58 0.82 0.78 18.04 4691 0.79 0.77
PLUME 256k 18.53  46.92 0.81 0.78 18.23  46.74 0.79 0.76
PLUME 32k 1591  45.11 0.79 0.75 16.13  44.99 0.77 0.75
eu-it NLLB 3.3B 2127  51.07 0.86 0.84 2245 51.13 0.84 0.83
PLUME 128k 16.39  45.65 0.81 0.80 16.82 4645 0.79 0.79
PLUME 256k 1646  45.76 0.81 0.80 1596  46.05 0.79 0.78
PLUME 32k 1401 4352 0.79 0.77 1434  44.19 0.77 0.76
eu-pt NLLB 3.3B 2779  54.65 0.86 0.84 2393  50.72 0.83 0.82
PLUME 128k 20.12  48.58 0.82 0.80 16.11  44.79 0.79 0.78
PLUME 256k 20.89  48.87 0.81 0.80 16.80 45.27 0.79 0.78
PLUME 32k 17.64  46.34 0.79 0.77 14.05  42.96 0.76 0.76
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Table 20: Results for fr—xx.

FLORES-200 NTREX
Pair  Model BLEU CHRF COMET COMET-kimi BLEU CHRF COMET COMET-kiwmi
fr-ca  BSC Bilinguals 3444  60.10 0.86 0.83 29.22 5576 0.84 0.83
NLLB 3.3B 34.00 59.82 0.87 0.84 2730 54.40 0.83 0.82
PLUME 128k 3435 60.24 0.86 0.83 27.57 5440 0.83 0.81
PLUME 256k 33.63 59.83 0.86 0.83 27.00 54.18 0.83 0.81
PLUME 32k 3428 60.16 0.86 0.83 27.03  54.04 0.83 0.81
fr-de NLLB 3.3B 2996 57.73 0.85 0.84 2382 53.55 0.83 0.84
TOWERBASE 7B 2548  56.02 0.82 0.84 23.82 53.55 0.83 0.84
PLUME 128k 24.63 5496 0.81 0.80 19.07  49.59 0.78 0.78
PLUME 256k 23.85 5454 0.82 0.80 18.18  49.18 0.78 0.78
PLUME 32k 2245  53.56 0.81 0.78 18.35  48.80 0.77 0.77
frren NLLB 3.3B 48.38  70.72 0.90 0.86 4030 64.78 0.87 0.86
TOWERBASE 7B 4548  69.54 0.89 0.86 4030 64.78 0.87 0.86
PLUME 128k 3737 6447 0.87 0.85 2895 58.15 0.84 0.84
PLUME 256k 3774  64.80 0.87 0.85 29.11 58.37 0.84 0.84
PLUME 32k 3487  63.11 0.86 0.84 2836 57.38 0.83 0.83
frres NLLB 3.3B 2445  52.39 0.86 0.86 3228 57.85 0.85 0.85
TOWERBASE 7B 22.02 5142 0.84 0.85 3228 57.85 0.85 0.85
PLUME 128k 21.65 50.63 0.84 0.84 27.18 54.18 0.82 0.83
PLUME 256k 21.80 50.74 0.84 0.84 2730 5422 0.82 0.83
PLUME 32k 21.60  50.66 0.84 0.84 2723  54.00 0.82 0.82
frrew NLLB 3.3B 10.73  46.16 0.80 0.73 7.79  41.10 0.76 0.69
PLUME 128k 10.79  48.17 0.80 0.76 9.32 4451 0.78 0.75
PLUME 256k 11.78  48.71 0.80 0.77 943 4437 0.78 0.75
PLUME 32k 11.59  48.08 0.79 0.75 8.65 43.30 0.76 0.72
fr-gl NLLB 3.3B 30.59 5745 0.86 0.85 29.61 56.42 0.85 0.84
PLUME 128k 2795 5592 0.85 0.84 2465 52.84 0.81 0.81
PLUME 256k 2849 5594 0.85 0.84 2457 5294 0.82 0.81
PLUME 32k 27.69  55.65 0.85 0.83 24.11 52.42 0.81 0.81
fr-it NLLB 3.3B 27.06  56.27 0.88 0.86 2822 5647 0.86 0.86
TOWERBASE 7B 25.14  55.00 0.87 0.86 2822 5647 0.86 0.86
PLUME 128k 2445 5392 0.86 0.84 2425 53.18 0.84 0.83
PLUME 256k 2427 5392 0.86 0.84 2445 5322 0.84 0.83
PLUME 32k 2398 53.72 0.86 0.84 23.84 53.05 0.83 0.82
fr-pt NLLB 3.3B 36.18  61.28 0.88 0.85 29.11 55.64 0.85 0.84
TOWERBASE 7B 33.03 60.10 0.87 0.85 29.11 55.64 0.85 0.84
PLUME 128k 32.15 59.00 0.86 0.83 24.59  52.51 0.83 0.82
PLUME 256k 32.86 59.22 0.86 0.83 24.85 5221 0.82 0.81
PLUME 32k 31.72  58.70 0.86 0.82 2433 52.19 0.82 0.81
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Table 21: Results for it—xx.

FLORES-200 NTREX
Pair  Model BLEU CHRF COMET COMET-kimi BLEU CHRF COMET COMET-kiwm
it-ca  BSC Bilinguals 27.68  56.63 0.86 0.84 31.87 57.96 0.86 0.84
NLLB 3.3B 2777  56.56 0.87 0.86 31.18 57.64 0.85 0.83
PLUME 128k 27.92 57.34 0.87 0.85 31.00 57.62 0.85 0.83
PLUME 256k 27.86  57.25 0.87 0.85 30.69 57.35 0.85 0.83
PLUME 32k 2748 57.19 0.86 0.85 30.67 57.08 0.84 0.82
it-de NLLB 3.3B 2533 5523 0.85 0.86 2676  56.82 0.84 0.85
TOWERBASE 7B 18.14  49.13 0.82 0.86 2676  56.82 0.84 0.85
PLUME 128k 20.84 5275 0.82 0.83 20.84  51.69 0.79 0.82
PLUME 256k 21.05 53.04 0.82 0.83 21.06 52.07 0.80 0.82
PLUME 32k 19.77  51.78 0.81 0.82 20.28 51.35 0.79 0.80
itten NLLB 3.3B 36.33 64.25 0.88 0.87 4396 67.59 0.88 0.86
TOWERBASE 7B 3295 62.57 0.88 0.86 4396 67.59 0.88 0.86
PLUME 128k 27.80  58.98 0.86 0.85 3376  62.30 0.85 0.84
PLUME 256k 2891 59.82 0.86 0.86 34776  62.75 0.85 0.85
PLUME 32k 2743  58.75 0.85 0.85 3290 6149 0.84 0.84
it-es NLLB 3.3B 2270  51.45 0.86 0.87 3415 5945 0.86 0.86
TOWERBASE 7B 20.71 50.87 0.85 0.87 3415 5945 0.86 0.86
PLUME 128k 20.91 50.70 0.85 0.86 30.30 56.88 0.84 0.85
PLUME 256k 2135 51.04 0.85 0.86 30.62  56.96 0.84 0.85
PLUME 32k 20.99  50.72 0.85 0.86 30.06 56.70 0.84 0.85
itteu NLLB 3.3B 7.65  43.50 0.79 0.73 8.09 41.63 0.76 0.70
PLUME 128k 9.77 47.74 0.81 0.79 10.07 4574 0.79 0.76
PLUME 256k 11.33  49.20 0.82 0.80 10.82  46.47 0.79 0.77
PLUME 32k 10.69  48.55 0.81 0.78 10.44  45.82 0.78 0.76
it-fr  NLLB 3.3B 3324  60.44 0.87 0.87 2923 5743 0.84 0.86
TOWERBASE 7B 29.16  58.49 0.85 0.87 2923 5743 0.84 0.86
PLUME 128k 27.21 56.24 0.83 0.84 2392 52.66 0.81 0.82
PLUME 256k 27.89  56.11 0.83 0.84 2439 5283 0.80 0.82
PLUME 32k 2635 55.67 0.82 0.83 24.04  52.53 0.80 0.81
it-gl NLLB 3.3B 2572  54.62 0.87 0.86 3239 58.86 0.86 0.84
PLUME 128k 23.80  54.06 0.86 0.85 29.04  56.66 0.84 0.83
PLUME 256k 2379 5394 0.86 0.84 2934  56.60 0.84 0.82
PLUME 32k 23.59 53.88 0.85 0.84 2820 5597 0.84 0.82
it-pt NLLB 3.3B 28.17 56.94 0.88 0.86 33.41 58.86 0.87 0.85
TOWERBASE 7B 2449 5537 0.86 0.85 33.41 58.86 0.87 0.85
PLUME 128k 26.64 5624 0.87 0.84 2848 5543 0.85 0.83
PLUME 256k 27.10  56.52 0.87 0.85 28.33 5531 0.84 0.83
PLUME 32k 25.86  55.58 0.86 0.84 28.03 5524 0.84 0.82
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Table 22: Results for gl—xx.

FLORES-200 NTREX
Pair  Model BLEU CHRF COMET COMET-xim BLEU CHRF COMET COMET-xiwi
gl-ca BSC Bilinguals 3243  60.50 0.87 0.84 3427  60.27 0.86 0.84
NLLB 3.3B 3443  60.88 0.87 0.85 3425 60.34 0.86 0.83
PLUME 128k 3277 60.71 0.87 0.84 3428  60.55 0.86 0.83
PLUME 256k 33.00 60.85 0.88 0.84 3410 6042 0.86 0.83
PLUME 32k 3275 60.76 0.87 0.84 3372  60.27 0.86 0.83
gl-de  NLLB 3.3B 29.57  57.53 0.85 0.84 2513 55.12 0.83 0.83
PLUME 128k 23.05 54.44 0.81 0.81 2023 51.72 0.79 0.80
PLUME 256k 2425  55.47 0.82 0.82 2035 5231 0.79 0.80
PLUME 32k 22.89  54.11 0.80 0.80 19.75 51.46 0.78 0.79
gl-en NLLB 3.3B 44.14  68.60 0.89 086 4352 67.80 0.88 0.85
PLUME 128k 3547  64.50 0.86 0.85 3340 6242 0.85 0.84
PLUME 256k 3474 64.17 0.86 0.84 3256 6221 0.85 0.84
PLUME 32k 3415  63.48 0.86 0.84 3076 61.22 0.84 0.83
gl-es NLLB 3.3B 25.59  53.47 0.87 0.85 3699 61.92 0.87 0.84
PLUME 128k 23.67  52.86 0.86 0.85 3518 61.04 0.86 0.84
PLUME 256k 23.79  52.87 0.86 0.85 3584 61.32 0.86 0.84
PLUME 32k 23.59  52.83 0.86 085 3548 61.15 0.86 0.84
glen NLLB 3.3B 12.37  48.45 0.82 0.73 9.06 43.94 0.78 0.70
PLUME 128k 1323 51.10 0.83 0.77 11.89  48.13 0.81 0.76
PLUME 256k 13.68 51.27 0.83 0.77 1128  48.44 0.81 0.76
PLUME 32k 12.78  50.05 0.82 0.75 1094 4731 0.80 0.74
gl-fr NLLB 3.3B 38.37  63.38 0.86 0.85 29.03 56.98 0.84 0.84
PLUME 128k 29.14  57.49 0.82 0.82  23.19 52.26 0.79 0.81
PLUME 256k 3024 57.82 0.82 0.82 2380 52.55 0.79 0.80
PLUME 32k 29.84  57.65 0.81 0.81 2356 5222 0.79 0.80
gl-it NLLB 3.3B 26.14  55.52 0.88 085 30.79  58.39 0.87 0.84
PLUME 128k 2273 53.29 0.86 0.84 2647  55.68 0.84 0.83
PLUME 256k 2320  53.77 0.86 0.84  27.00 56.19 0.84 0.83
PLUME 32k 2245 5322 0.86 0.84 2636 55.84 0.84 0.83
gl-pt  NLLB 3.3B 3442 60.37 0.88 0.83 31.87 58.16 0.87 0.83
PLUME 128k 2842 57.24 0.87 0.83 2636 54.81 0.85 0.81
PLUME 256k 29.11  57.70 0.87 0.83  27.82  55.65 0.85 0.81
PLUME 32k 29.23  57.83 0.87 0.83 2750 5541 0.85 0.81
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Table 23: Results for pt—xx.

FLORES-200 NTREX
Pair Model BLEU CHRF COMET COMET-kimi BLEU CHRF COMET COMET-kiw
pt-ca  BSC Bilinguals 3575 61.22 0.87 0.84 32.04 5828 0.86 0.83
NLLB 3.3B 34.64  60.68 0.87 0.84 31.17 5791 0.85 0.83
PLUME 128k 35,50 61.41 0.87 0.84 31.05 57.84 0.85 0.83
PLUME 256k 3538  60.95 0.87 0.83 31.12  57.84 0.85 0.83
PLUME 32k 35,50 61.26 0.87 0.83 3095 57.66 0.85 0.82
pt-de NLLB 3.3B 31.27 58.75 0.85 0.85 2556  55.62 0.84 0.84
TOWERBASE 7B 2548  56.02 0.82 0.84 2556 55.62 0.84 0.84
PLUME 128k 2545 5544 0.82 0.82 19.99 51.73 0.80 0.80
PLUME 256k 26.51 55.90 0.83 0.82 20.03 51.96 0.80 0.81
PLUME 32k 25.01 54.48 0.81 0.81 20.48  51.29 0.79 0.79
pten NLLB 3.3B 52.50 73.31 0.90 0.85 4394  68.11 0.88 0.85
TOWERBASE 7B 50.16  72.76 0.90 0.85 4394  68.11 0.88 0.85
PLUME 128k 42.71 68.42 0.88 0.84 33.21 62.26 0.85 0.83
PLUME 256k 4331  68.95 0.88 0.84 3350 6246 0.86 0.83
PLUME 32k 41.73  67.58 0.87 0.83 3287 61.63 0.85 0.82
pt-es NLLB 3.3B 2576  53.31 0.86 0.86 3485 6045 0.86 0.85
TOWERBASE 7B 22.82 5190 0.85 0.85 3485 6045 0.86 0.85
PLUME 128k 2297 51.85 0.85 0.85 30.89 57.40 0.85 0.84
PLUME 256k 23.04 51.82 0.85 0.84 3132 57.66 0.85 0.84
PLUME 32k 2272  51.74 0.85 0.84 30.84 57.25 0.85 0.84
pteu NLLB 3.3B 10.38  45.45 0.79 0.72 8.14  41.30 0.76 0.69
PLUME 128k 11.18  49.09 0.82 0.79 9.93  46.18 0.80 0.77
PLUME 256k 13.37  50.70 0.82 0.79 10.26  46.86 0.80 0.77
PLUME 32k 12.68  49.77 0.81 0.78 10.50  46.72 0.79 0.76
pt-fr  NLLB 3.3B 40.85 64.94 0.87 0.86 2939 5741 0.84 0.85
TOWERBASE 7B 36.52 6244 0.85 0.85 2939 5741 0.84 0.85
PLUME 128k 3325 59.78 0.83 0.83 2391 52.93 0.80 0.81
PLUME 256k 33.80 59.69 0.83 0.82 2472 5334 0.81 0.81
PLUME 32k 32.60 58.97 0.82 0.82 24.11 52.80 0.80 0.80
pt-gl NLLB 3.3B 31.12 5792 0.88 0.83 32,55  59.00 0.87 0.82
PLUME 128k 28.83 5691 0.87 0.82 2827 5648 0.85 0.81
PLUME 256k 28.58  56.52 0.87 0.82 2854  56.57 0.85 0.81
PLUME 32k 28.64  56.61 0.87 0.82 28.01 56.32 0.85 0.81
pt-it NLLB 3.3B 2642 55.44 0.88 0.85 31.19  59.11 0.87 0.85
TOWERBASE 7B 2231  52.69 0.85 0.85 31.19 59.11 0.87 0.85
PLUME 128k 24.06  53.75 0.86 0.84 2697 56.30 0.85 0.83
PLUME 256k 2424 5375 0.86 0.84 2746 56.52 0.85 0.83
PLUME 32k 23.67 53.46 0.85 0.83 27.60 56.49 0.85 0.83
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Abstract

Large language models (LLMs) demonstrate
significant capabilities in many natural lan-
guage processing tasks. However, their per-
formance in machine translation is still behind
that of the models specially trained for machine
translation with an encoder-decoder architec-
ture. This paper investigates how to improve
neural machine translation (NMT) with LLMs.
Our proposal is based on an empirical insight
that NMT gets worse fluency than human trans-
lation. We propose to use LLMs to enhance
the fluency of NMT’s generation by integrat-
ing a language model at the target side. We
use contrastive learning to constrain fluency so
that it does not exceed the LLMs’ fluency. Our
experiments on three language pairs show that
this method can improve the performance of
NMT. Our empirical analysis further demon-
strates that this method improves the fluency on
the target side. Our experiments also show that
some straightforward post-processing methods
using LLMs, such as re-ranking and refinement,
are not effective.

1

Large Language Models (LLMs) such as GPT
(Ouyang et al., 2022; Achiam et al., 2023) and
LLama (Touvron et al., 2023; Dubey et al., 2024)
have demonstrated significant capabilities in var-
ious domains, including language understanding
and generation tasks (Chang et al., 2024). How-
ever, the evaluations (Hendy et al., 2023; Zhu et al.,
2024) show that LLMs’ performance in machine
translation is still behind the models dedicated
to the task. These dedicated models often use
an encoder-decoder architecture and are trained
with parallel corpora. This raises a question: Can
LLMs still help improve neural machine translation
(NMT)?

© 2025 The authors. This article is licensed under a Creative

Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
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A key translation challenge is the balance be-
tween adequacy and fluency. According to Laubli
et al. (2018), NMT is good at adequacy and weak
at fluency compared to human translation. There
are some post-processing methods to use LLMs on
NMT’s outputs to improve fluency. We can follow
the reranking methods in NMT (Lee et al., 2021;
Bhattacharyya et al., 2021; Fernandes et al., 2022).
LLMs can be used to rerank the candidates that
are output from NMT, and the one with the small-
est perplexity, according to LLM’s evaluation, is
chosen as the final output. Alternatively, we apply
the self-refine method in LLM (Pan et al., 2023;
Li et al., 2024; Han et al., 2024) to NMT’s out-
puts. The translations from NMT are included in
the prompt and an LLM is explicitly asked to re-
fine their fluency. These two methods are used as
baselines in our experiments. Results show that
they cannot consistently improve the performance
of NMT.

We propose to improve the fluency of NMT’s
translation by integrating the language capability
of LLMs during training the NMT model. We use
a two-pass strategy in the decoder. The first pass is
a normal one using parallel sentences. The second
pass only uses the target sentences in the training
data. The objective is to train a target language
model while training the translation model. This is
realized by assigning all ones to the context vectors
from the encoder for the second pass. Furthermore,
we use an LLM to infer the training set and get their
negative log-likelihoods. These data are used with
contrastive learning to constraint the fluency of the
target language model not to exceed the LLM’s.

We conduct experiments on three language pairs:
German-English (De-En), Russian-English (Ru—
En), and French-English (Fr—En). The results show
that our method effectively improves the perfor-
mance of NMT. Our empirical analysis further
demonstrates that our method improves fluency
on the target side, and contrastive learning with
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knowledge from the LLLM plays an important role
in achieving gains.

2 Related Work
2.1 LLMs for Translation

There is a line of research to use prompt engineer-
ing and few shot learning for LLM to translate
(Zhang et al., 2023a; Gao et al., 2023). Evaluations
(Hendy et al., 2023; Zhu et al., 2024) show that
LLMs’ performance in machine translation is still
behind the NMT models dedicated to this task.

Zhang et al. (2023b), Alves et al. (2024) and
Xu et al. (2024) also explore finetuning LLMs
with parallel corpora to get better performance.
Since LLMs have a much larger number of param-
eters than typical NMT, finetuning these models
with a dedicated parallel corpus is not a convinc-
ing method. Such a method also does not follow
the paradigm of LLMs, which aims to be general
for many tasks instead of one specific downstream
task.

Reranking is well investigated in the context of
NMT (Lee et al., 2021; Bhattacharyya et al., 2021;
Fernandes et al., 2022). The reranker is either a
reference-free evaluation method such as COMET
(Fernandes et al., 2022) or a dedicated trained score
model in Lee et al. (2021). To the best of our
knowledge, there is no research using LLMs to
reranking NMT. We implement this method as one
baseline in our experiments.

Using LLM to refine its own output has been in-
vestigated and is effective for some NLP tasks other
than translation (Pan et al., 2023; Li et al., 2024,
Han et al., 2024). Bogoychev and Chen (2023)
use LLM to refine NMT’s results. Their research
focuses on a specific use case: terminology-aware
translation.

2.2 Contrastive Learning (CL) in NLP

Contrastive Learning is applied to NMT by Yang
et al. (2019) and Pan et al. (2021). However, they
address specific issues. Yang et al. (2019) aim to re-
duce the word omission errors and Pan et al. (2021)
use CL to improve the many-to-many multilingual
NMT. We aim to improve the fluency of NMT,
which is a more general objective.

Besides NMT, CL has applications in other NLP
tasks. Sun and Li (2021) and Liu et al. (2022) apply
CL for text summarization. Sun and Li (2021) use
a pair-wise preference. The gold references are
positive samples, and low-quality predictions are
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negative ones. Liu et al. (2022) use a list-wise
preference. A group of ranked predictions are used
in CL. These two methods work at the sequence
level, while ours works at the token level.

Su et al. (2022) aim to mitigate the anisotropic
distribution of token representations. They use CL
to calibrate the representation space for tokens in
the model.

3 Methodology

3.1 Adequacy and Fluency

Our proposal is based on the insight that NMT gets
worse fluency than human translation.

There are two goals for machine translation: flu-
ency and adequacy (L&ubli et al., 2018; Kong et al.,
2019; Miao et al., 2021; Sulem et al., 2020). Flu-
ency measures whether a translation is fluent in
terms of the target language. Adequacy measures
whether the translation conveys the correct mean-
ing in the source sentence, even if the translation is
not fully fluent viewing from the target language.

While adequacy often requires human evalua-
tion, fluency can be easily evaluated using the per-
plexity (denoted as ppl) with a language model at
the target side. The relationship between perplexity
and NLL (Jurafsky and Martin, 2020) is :

NLL == log p(yily<:),

i=1

ey

ppl _ €N LL
where y; is the 7! target token and n is the total
length of the target sentence.

According to Laubli et al. (2018), NMT is good
at adequacy and weak at fluency compared to hu-
man evaluation. Their main result is illustrated in
Figure 1.

3.2 Two-Pass Decoder

We use a two-pass procedure in the decoder in
training. Each pass is related to a component in the
loss function.

The first pass is through a standard decoder
and gets the usual loss value of maximum likeli-
hood estimation (MLE), which is the negative log-
likelihood (NLL) with label smoothing (Edunov
et al., 2018):

LyvLE = — Z log p(yilXu y<i)

i=1

@
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Figure 1: There is no statistically significant difference between HUMAN (human translation) and MT in terms
of adequacy when evaluating sentences. However, raters show a significant preference for HUMAN in terms of

fluency. From Liubli et al. (2018)

where X and y; denote the source sentence and the
ground truth token for step ¢, respectively, and f is
the uniform distribution over the vocabulary. When
the size of the vocabulary is V, f = %

The objective of the second pass is to train the
decoder to learn a target language model by furning
off the context attention. It is realized by assigning
all ones to the values of context vectors from the
encoder. In this way, the cross-attention reduces to
the query from the decoder side:

) oK™
Attention(Q, K, V) = softmaz( %
Vi)
= softmax , when IC,V are all ones.
( \/ch)

Correspondingly, this second pass gets the second
loss component:

[ffluency = - Zl()g p(yl|y<l)

i=1

“

In this two-pass procedure, the same network archi-
tecture is used, and all parameters are shared.

This is a potential conflict between the L f;ency
in Equation 4 and L1 in Equation 2. When
the model is trained using the loss component in
Equation 4, log p(y;|y<;) is maximized. This may
conflict with the translation objective in Equation 2
which maximizes log p(y;|y<i, X). We use con-
trastive learning to mitigate this conflict.

3.3 Contrastive Fluency Enhancement (CFE)

Contrastive Learning (CL) has a key component: a
max function. It is defined as:

max{0,p+ S, — Sp}, (5)
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where S,, and S}, are scores for negative and posi-
tive samples, respectively. p is a hyperparameter,
the margin between the scores between negative
and positive samples.

This function outputs a positive loss when the
score of the negative sample is larger than one mar-
gin plus the score of the positive sample. The objec-
tive is to constrain the score of the negative sample
so that it is at least one margin lower than the score
of the positive sample.

We use the negative log-likelihood (NLL) of
target tokens as the scores. The values from the
training models are negative samples, while those
from LLMs are positive samples. This method
is denoted as Contrastive Fluency Enhancement
(CFE) and the corresponding loss component is:

LcrE =

max{0,p — » _ log p(yily<i) + Y _ log pum (yily<i)},

1=1 1=1

(6)
where py;;, is the probability in LLM.
The final loss function is:
L=LyvrLe+ LcFE @)

To conduct the ablation study, we implemented
a variant without CL. Its loss function is:

LyvrE + Lituency = LMLE — Z log p(yily<i) (8)
=1
4 Experiments
4.1 Datasets

We use the negative log-likelihood (NLL) from an
LLM as the positive samples during training. The



major data used to train an LLM are usually in
English. Therefore, we use English as the target
language in our experiments.

We use the corpora from WMT! as our datasets.

We use Europarl v7, News-commentary-v12,
and Common Crawl for training in De—-En. The
training data have totally 4.6 million sentences. We
use Newstest2014 for validation, and Newstest2021
for testing in De—En. For Ru-En, ParaCrawl v9,
News-commentary-v10, and Common Crawl are
used for training. These training data have totally
13.1 million sentences. Newstest2014 is used for
validation, Newstest2021 is used for testing in Ru—
En. For Fr-En, Europarl v7, News-commentary-
v10, and Common Crawl are used for training.
These training data have totally 5.4 million sen-
tences. Newstest2013 is used for validation, and
Newstest2015 is used for testing in Fr—En.

We need to use an LLM to infer each target
sentence in the training set to get its negative log-
likelihood. Therefore, we limit the size of the train-
ing set by filtering the original datasets. We ran-
domly select 350 million sentences from the orig-
inal training dataset for each language pair. We
use the condition below to further choose data with
high quality:

* Both source and target sentences have lengths
within the range of 5 to 300.

» The disparity between the source and target
sentence length does not exceed five times.

The number of sentence pairs for each language
pair is as follows: De—En 2.6 million, Ru—-En 2.9
million, Fr—En 2.7 million.

4.2 Systems

We compare our method with the vanilla Trans-
former model, three typical token-level methods
improving NMT, and two methods introduced in
Section 2 for comparison. Our method is not com-
pared with sequence-level methods such as MIXER
(Ranzato et al., 2016) and MRT (Shen et al., 2016).
These sequence-level methods use online samples
and are more than ten times slower than the token-
level methods (Edunov et al., 2018).

e TX is the vanilla Transformer.

* §S (Mihaylova and Martins, 2019) is a sched-
uled sampling method with a Transformer that

"http://www.statmt.org
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uses two-pass decoding. The Inverse Sigmoid
Decay is used for scheduling in our experi-
ments. It performs best among the scheduling
algorithms according to Liu et al. (2021).

CASS (Liu et al., 2021) is Confidence-Aware
Scheduled Sampling. It enhances the normal
scheduled sampling by sampling different to-
kens according to the model’s probability of
ground truth tokens.

TFN (Goodman et al., 2020) uses two stacking
decoders. The loss values are computed on
each decoder and the results are combined to
form the final loss value. We use the hyperpa-
rameters according to their recommendation
in the paper. The second decoder’s weight is
set to 0.4, and both decoders share the same
set of parameters.

* Refine includes the translations from NMT in
the prompt and explicitly asks LLM to refine
the fluency.

* ReRank uses LLMs to rerank the output can-
didates from NMT and choose the one with
the smallest perplexity in LLM.

We implement our proposal, Contrastive Fluency
Enhancement (CFE), as described in Section 3.

Since ReRank is a post-processing method, we
can apply ReRank to the output of CFE. This vari-
ant is denoted as CFE+ReRank.

4.3 Implementation Details

We use Llama2-13B-chat-hf 2 as the LLM for ex-
periments. Its negative log-likelihood of each token
in the target sentences in the training data is used
as described in Section3.3. For the method Refine,
this model is also used to generate refined transla-
tions. In inference, we use top-p (0.9) sampling,
and the sampling temperature is set to 0.9.

Our implementation of NMT is based on the
Fairseq toolkit (Ott et al., 2019) using a typi-
cal configuration * similar to the original Trans-
former (Vaswani et al., 2017). The Transformer
Base model with about 60 million parameters is
used. Since we use the token-level negative log-
likelihood from Llama2-13B-chat-hf, we need to

2https://huggingface.co/meta-llama/
Llama-2-13b-chat-hf
3https://github.com/facebookresearch/fairseq/
tree/main/examples/scaling_nmt
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De-En Ru-En Fr-En
Metrics BLEU Meteor Comet | BLEU Meteor Comet | BLEU Meteor Comet
Baselines

Transformer 26.19 49.18 7545 | 28.76 49.98 75.28 | 34.41 51.17 7651

SS 26.43 4920 7540 | 28.71 4982 7499 | 3455 5112 76.29

CASS 26.27 49.54 7556 | 28.96 50.14 7530 | 35.14 5172 76.67

TFN 26.31 49.54 7544 | 28.99 50.23 75.30 | 34.32 51.13 76.67

Refine 26.19 49.18 7545 | 28.76 49.98 75.28 | 34.41 51.17  76.51

ReRank 26.42 4990 75.76 | 28.99 51.05 7593 | 33.09 51.08 76.06

A (-TX) 0.23 0.72 0.31 0.23 1.07 0.65 -1.32 -0.09 -0.45
Our Proposal

CFE 26.65 4945 7591 | 29.67 50.82  76.51 | 35.50 51.88  76.86

A (-TX) 0.46 0.27 0.46 0.91 0.84 1.23 1.09 0.71 0.35

CFE+ReRank | 27.06 50.18 76.03 | 29.72 51.73  76.87 | 33.76 51.714  76.12

A (-TX) 0.87 1.00 0.58 0.96 1.75 1.59 -0.65 0.57 -0.39

Table 1: Performance of different methods. The scores of CFE and those better than CFE are highlighted in Bold,
while the scores that are worse than the vanilla Transformer (denoted as TX) are shown in Italic. A denotes the

gain compared to TX.

use the same tokenizer for NMT and Llama2-13B-
chat-hf so that one sentence has the same subwords
in two systems. We use the tokenizer of Llama2-
13B-chat-hf for subwords. The vocabulary size is
equal to 32,000, which is shared for the source and
target sentences. Both the dropout rate and the la-
bel smoothing are set to 0.1. We use beam search
for decoding with a beam size of six, and the factor
for length penalty is 0.6. The number of candidates
used for ReRank is the same as the beam size.

In our preliminary experiments for Refine, we
found that the outputs from LLMs may contain
some explanation words. This result makes it diffi-
cult to extract the refined sentence for evaluation.
Therefore, the prompt used for Refine in our evalu-
ation requires that the LLM do not give any expla-
nation. The prompt is shown below:

"initial translation”

If there are minor mistakes in the above sentence,
please correct them and make this sentence more
fluent. If there is no mistake, keep it intact. Only
output the result. No explanation.

Our method, its variant for ablation study, and
token-level baseline methods (SS, CASS, TFN) use
a common pre-trained NMT model for finetuning.
This pre-trained model is trained for a minimum
of 20 epochs on the filtered data set described in
Section 4.1, stopping if the validation loss does not
decrease for 20 consecutive epochs. For finetuning,
we adopt the same early-stop policy as Choshen
et al. (2019), where the process is terminated if the
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validation loss does not decrease for ten consecu-
tive epochs. The margin p in the loss function of
CFE is set to 0.1.

All GPUs used for training are Nvidia
GF1080Ti.

4.4 Evaluation and Results

Three metrics are used to evaluate the performance
of the methods using: BLEU, Meteor, and Comet.
We use SacreBLEU* (Post, 2018)° for BLEU. For
Meteor®, we use its version 1.5. For Comet, we use
its wmt22-comet-da model’.

Table 1 illustrates the performance of methods
for De—En, Ru—En, and Fr—En.

The vanilla Transformer model is a strong base-
line. Our method CFE outperforms it in all three
metrics for all language pairs. CPE generally
achieves the best performance compared to other
baselines except for a few cases in Meteor.

Refine gets the same performance as the vanilla
Transformer. We find that LLM almost always re-
gards the translation from NMT as fluent enough
and does not provide improved translations. The
number of intact sentences are illustrated in Ta-
ble 4.

ReRank gets better performance than the vanilla
Transformer for De-En and Ru—En, but much

*https://github.com/mjpost/sacreBLEU
3case.mixed+numrefs. 1 +smooth.exp+tok. 13a+version.2.3.1
6ht’cp ://www.cs.cmu.edu/~alavie/METEOR/
"https://github.com/Unbabel/COMET


https://github.com/mjpost/sacreBLEU
http://www.cs.cmu.edu/~alavie/METEOR/
https://github.com/Unbabel/COMET

worse for Fr—En. Table 2 and 3 illustrate that
ReRank always gets much lower perplexity than
the vanilla Transformer. The inconsistency be-
tween low perplexity and good translation reflects
the complexity of machine translation and the im-
portance of the balance between adequacy and flu-
ency.

CPE+ReRank gets gains in De—En and Ru—En.
However it has worse performance than CPE in
Fr—En. This result is consistent with the bad per-
formance of ReRank alone in Fr—En.

Model De-En Ru-En Fr-En
ppl  TX 217.9 128.5 2423
ReRank 73.0 62.4 94.9
CFE 117.6 131.5 223.0
CFE+ReRank 72.1 66.1 87.8
NLL TX 4.131 3.923 4.406
ReRank 3.823 3.631 4.019
CFE 4.108 3.895 4.404
CFE+ReRank 3.798 3.602 3.999

Table 2: Fluency measured with average perplexity
(ppD) and negative log-likelihood (NLL).

De-En Ru-En Fr-En
Better 855 835 1301
Equal 145 165 195
Worse 0 0 0

(a) ReRank, compared to Transformer

De-En  Ru-En Fr-En
Better 477 486 578
Equal 95 93 346
Worse 428 421 572

(b) CFE, compared to Transformer

De-En  Ru-En Fr-En
Better 775 767 1174
Equal 37 38 113
Worse 188 195 209

(c) CFE+ReRank, compared to Transformer

Table 3: Investigate the fluency compared to Trans-
former at sentence-level using negative log-likelihood.

5 Analysis
5.1 Loss Components in CFE

Figure 2 shows the components in the loss func-
tion of CFE for De—En during training. Both the
loss component L f;,¢p ¢y (Figure 2a) and the total
loss (Figure 2b) steadily decrease. These figures
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demonstrate the effectiveness of the CFE loss func-
tion presented in Section 3.

The results on other language pairs get to the
same conclusion as illustrated in Figure 3 and 4.

5.2 Fluency

The fluency usually is measured with perplexity,
denoted as ppl. We use Llama2-13B-chat-hf to
get the NLL of each translation, which is averaged
based on the number of tokens in the generated
sentence. These NLLs are used to calculate that
sentence’s perplexity according to Equation 1.

Table 2 illustrates each test set’s average per-
plexity and NLL. ReRank outputs the one with
the lowest NLL in the candidates. Therefore, it
consistently gets much lower perplexity and NLL
compared with the vanilla Transformer, even for
Fr—En that ReRank gets much worse performance
as shown in Table 1.

Our method CFE consistently gets lower NLL
for all language pairs than the vanilla Transformer.
CFE generally gets a lower average perplexity, with
the only exception being Ru—En. Compared to
ReRank, CFE gets larger perplexity and NLL. This
result reflects that CFE gets a better balance be-
tween fluency and adequacy.

We also compare the NLL of the vanilla Trans-
former and other methods for each translation and
count the number of cases that other methods have
lower (better), equal, or greater (worse) NLL than
the vanilla transformer. When the absolute value of
the difference in comparison is less than 0.001, two
NLL values are counted as equal. The results illus-
trated in Table 3 show that our method effectively
improves the fluency of NMT.

5.3 Refine With LLM

Table 4 illustrates that most sentences are kept in-
tact when the LLM is asked to improve fluency.
There are a few sentences in which no translations
are identified in the feedback from Llama2-13B-
chat-hf. When these empty feedback are identified,
the original translations are reasonably used before
evaluation in our implementation. This analysis
explains why Refine gets the exactly same perfor-
mance as the vanilla Transformer.

5.4 Ablation Study

Table 5 shows the performance of CFE with and
without Contrastive Learning (CL). The variant
without CL implements the loss function in Equa-
tion 8. It maximizes the target language model
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Figure 5: Investigate the performance on the validation sets during training for CFE and its variant without

contrastive learning for De—En.

and does not make use of LLM’s knowledge as a
ceiling. While CFE without CL also outperforms

the vanilla Transformer model and demonstrates its
efficacy in improving NMT, its gains are generally
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De-En Ru-En Fr-En

Total 1000 1000 1496

Intact 995 996 1480
Empty 5 4 16

Table 4: Refine with the LLM does not improve NMT.

Model | De-En Ru-En Fr-En
TX 26.19 28.76 3441
CFE 26.65 29.67 35.50

A (-TX) 0.46 0.91 1.09

w/o-CL | 26.58 29.01 34.66

ACTX) | 0.39 0.25 0.25

Table 5: Ablation test by removing Contrastive Learn-
ing from CFE, denoted as w/o-CL.

lower than CFE.

Figure 5 shows the performance on the valida-
tion sets during training for CFE (black and solid)
and its variant (blue and dashed) without CL in
De-En. It shows that the variant consistently gets
higher loss and lower accuracy during training. Fig-
ure 6 and 7 illustrate the performance on the vali-
dation set for the other language pairs, which are
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consistent with the conclusion of De—En.

These ablation tests demonstrate the importance
of Contrastive Learning in CFE.

5.5 Significance Tests

Table 6 shows the results of significance tests
for ReRank, CFE and CFE+ReRank (denoted as
CFE+RR+ST). We report mean and standard error
over five training runs with seeds 1-5. For ReRank,
these seeds are applied to pretrained models. These
results are generally consistent with Table 1.

Model BLEU Meteor Comet
TX 26.19 49.18 75.45
ReRank-ST 26.37 +£.11 49.88 £.09  75.70 +.06
A (-TX) 0.18 0.70 0.25
CFE-ST 26.654+.09 4937 +£.06  75.87 £.07
A (-TX) 0.46 0.19 0.42
CFE+RR-ST | 26.70+.11  49.84+.11  75.85 +.09
A (-TX) 0.51 0.66 0.40

Table 6: Significance tests on De—En.



6 Conclusion

This paper investigates how to improve neural
machine translation (NMT) with Large language
models (LLMs). Our experiments show that
post-processing methods like re-ranking and self-
refining are not effective. Based on the insight that
NMT is good at adequacy and weak at fluency,
we propose to use LLMs to enhance the fluency
of NMT’s generation by integrating a language
model at the target side and using Contrastive learn-
ing to constraint the probabilities to a ceiling, the
LLM’s fluency. Our experiments on three language
pairs (De-En, Ru—En, and Fr—En) show that this
method effectively improves the performance of
NMT. The empirical analysis further demonstrates
that this method improves the fluency at the tar-
get side and Contrastive Learning with knowledge
from the LLM plays an important role in achieving
the gains.

7 Sustainability Statement

We trained and finetuned the model with the early-
stop strategy as described in Section 4.3. Pretrain-
ing and finetuning the model typically took nearly
140 and 100 GPU-hours using Nvidia GF1080Ti.
The estimated energy cost for each model is illus-
trated in Table 7, according to the calculation using
Green-Algorithms?.

GPU-Hour CO2(kg) Engergy(kWh)
Pretrain 140 31.88 59.32
Finetune 110 25.05 46.61

Table 7: Estimated energy cost for each model.
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Abstract

Multilingual NMT is a viable solution for trans-
lating low-resource languages (LRLs) when
data from high-resource languages (HRLs)
from the same language family is available.
However, the training schedule, i.e. the order
of presentation of languages, has an impact on
the quality of such systems. Here, in a many-
to-one translation setting, we propose to apply
two algorithms that use reinforcement learn-
ing to optimize the training schedule of NMT:
(1) Teacher-Student Curriculum Learning and
(2) Deep Q Network. The former uses an ex-
ponentially smoothed estimate of the returns of
each action based on the loss on monolingual
or multilingual development subsets, while the
latter estimates rewards using an additional neu-
ral network trained from the history of actions
selected in different states of the system, to-
gether with the rewards received. On a 8-to-1
translation dataset with LRLs and HRLs, our
second method improves BLEU and COMET
scores with respect to both random selection of
monolingual batches and shuffled multilingual
batches, by adjusting the number of presenta-
tions of LRL vs. HRL batches.

1 Introduction

Multilingual neural machine translation (NMT)is
particularly effective to enable the translation of
low-resource languages (LRLs) when they are ac-
companied, in the training data, by related high-
resource languages (HRLs) (Gu et al., 2018; Neu-
big and Hu, 2018). Including HRLS in the training
data reduces the chance of overfitting to the LRLs
and improves translation quality.

Many-to-one NMT systems can be trained ei-
ther with monolingual or with multilingual batches.
Monolingual batches include a single language on

*Work performed while at HEIG-VD / HES-SO.

© 2025 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

the source side, while multilingual batches have
their source side sampled from several source lan-
guages. Using multilingual batches helps avoiding
catastrophic forgetting (Jean et al., 2019), but the
mixture of languages in each batch may be ineffec-
tive at early stages of training. Here, we focus on
monolingual batches, as they enable us to define the
training schedule of a NMT system as the order of
presentation of languages, but we also compare our
results to those obtained with multilingual batches.

We propose to use reinforcement learning (RL)
to optimize the training schedule of many-to-one
NMT systems, i.e. to improve the training process
and the resulting system compared to a fixed sam-
pling strategy. We enable our systems to select
the source language of the batch at each training
step, based on a learned estimate of the model’s
competence on each language in terms of loss on
a development set. Unlike fixed strategies, such as
training on the hardest language, we leverage RL
to let the model find better strategies.

We make the following contributions: '

* We apply the Teacher-Student Curriculum
Learning algorithm (Matiisen et al., 2017) to
NMT by modeling the expected return as the
smoothed loss of the NMT system over a de-
velopment set.

* Based on the Deep Q Network algorithm
(DQN) (Mnih et al., 2013), we design a RL-
based model in which the expected rewards
are generated by an auxiliary neural network
trained in parallel with the NMT system.

* We perform experiments on a dataset with four
language families on the source side, with one
HRL and one LRL for each family (Neubig
and Hu, 2018); the target language is English.

* DOQN outperforms in terms of BLEU and

'Source code is made available at https:/github.com/alexis-
allemann/OpenNMT-py/tree/curriculum_learning.
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COMET scores previous training schedules
used for multilingual NMT: monolingual mini-
batches sampled equally, or in proportion of
each language, or multilingual batches.

* Algorithms are robust to the setting of hyper-
parameters, and increase the proportions of
LRLs in the training schedule from less than
1% to at least 4% while decreasing those of
HRLs.

2 Related Work

Curriculum learning. In many applications of
machine learning, the order of presentation of items
from the training set may influence the outcome of
the training, i.e. the quality of the final model, or
the training speed. For instance, presenting items
by increasing levels of difficulty is often beneficial,
an approach known as curriculum learning (Wang
et al., 2021). The difficulty can be measured di-
rectly on the data, or it can be inferred from the
observed competence of the model during training,
an approach known as self-paced learning (Kumar
et al., 2010; Jiang et al., 2015). The competence
of a model can be estimated intrinsically, e.g. from
its loss values on a subset of the data, or extrinsi-
cally, by using a teacher model that observes the
behavior of the target model, called ‘student’ (Mati-
isen et al., 2017). Competence can be used by the
teacher model to adjust the training schedule of the
student model. In the case of systems that can per-
form several tasks, the training schedule consists
of the selection of tasks and related data.

When the teacher model is in charge of the train-
ing schedule of the student, it may use reinforce-
ment learning (RL), with the student model playing
the role of the environment (Shen and Zhao, 2024).
RL has proved particularly useful at training large
language models to follow instructions (Ouyang
et al., 2022), initially using PPO (Proximal Pol-
icy Optimization, Schulman et al., 2017) and then
other algorithms (Rafailov et al., 2023; Ethayarajh
et al., 2024), but these methods are not designed to
optimize training schedules. While it is possible to
use curriculum learning to train RL-based models
(Narvekar et al., 2020), e.g. by presenting them
with increasingly difficult problems, we focus here
on the use of RL to train a teacher model, in the
field of multilingual NMT.

Training schedules for NMT. Optimizing the
training schedule of an NMT system depends in
particular on its architecture. For a system with
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a single input language and domain, the training
sentences can be presented by order of estimated
difficulty, or by order of translation reliability or
noisiness. When multiple domains must be con-
sidered, additional decisions must be made about
which domain to use first, or how to mix them based
on sizes of available data. Similar decisions must
be made if there are multiple input languages, as in
our case, or if one must train a multi-task system
including NMT along with other tasks such as lan-
guage modeling. We briefly review here previous
work along these lines.

Static scheduling in multilingual NMT. Neubig
and Hu (2018) study the upsampling of the LRL
data when building minibatches, and observe that
keeping the original proportions of HRL and LRL
performs marginally better. However, Johnson et al.
(2017) and Aharoni et al. (2019) sample each batch
uniformly from a concatenation of all language
pairs. Arivazhagan et al. (2019) compare simple
concatenation with uniform balancing, and observe
better results for LRLs when using temperature-
based upsampling, which was favored afterwards
(Conneau et al., 2020; Tang et al., 2021).

The translation capabilities of large language
models (LLMs) have also been explored: Zhu et al.
(2024) compares several recent LLMs and shows
that they can achieve state-of-the-art results when
translating HRLs, but highlights their limitations in
translating LRLs compared to NMT models. One
of the leading open-weights LLMs for MT, Tower
Instruct (Alves et al., 2024), is fine-tuned on a large
set of translation-related tasks in 10 HRLs, with no
particular scheduling of the fine-tuning data, and
no reinforcement learning.

Curriculum learning in monolingual NMT.
Self-pacing has been used in NMT at the sample
level, for instance by estimating learning confi-
dence as the variance across dropout runs, with
better performance and faster convergence com-
pared to human-designed schedules (Wan et al.,
2020). Similarly, Liu et al. (2020) design a self-
paced curriculum based on the norm of a token’s
embedding. Zhang et al. (2018) adopt a proba-
bilistic view of curriculum learning and improve
the convergence time of a DE-EN NMT system at
no loss in translation quality, but no gain either;
moreover, they note a high sensitivity to hyperpa-
rameter settings. Platanios et al. (2019) propose
a scheduling criterion combining the difficulty of
samples and the competence of the NMT model,



the latter estimated as a linear or square root func-
tion of the number of steps. This reduces training
time by up to 70% and improves BLEU scores by
1-2 points on three different language pairs. Wang
et al. (2018) extend domain-specific data selection
methods to denoise NMT training, which signifi-
cantly improves NMT performance on noisy data.
Wang et al. (2020a) introduce a method for multi-
domain data selection in NMT, using instance-level
domain-relevance features and an automated train-
ing curriculum to enhance performance across mul-
tiple domains.

Curriculum learning in multilingual NMT.
Jean et al. (2019) compare adaptively upsampling
a language depending on various criteria, observ-
ing best results on LRLs when dynamically chang-
ing the norm of the gradient. Wang et al. (2020b)
adaptively balance the languages by learning their
weights from the model’s competence on a devel-
opment set. Zhang et al. (2021) design a dynamic
sampling strategy which measures per-language
competence but also evaluates LRL competence
through a related HRL’s competence. Wu et al.
(2021) also balance the data dynamically, but mea-
sure a model’s uncertainty as the variance over
several runs of Monte Carlo dropout. Estimates of
competence using the evolution of the loss of the
NMT system have been proposed by Zaremoodi
and Haffari (2019), who use its absolute value, by
Xu et al. (2020), who use its relative decrease, and
by Atrio et al. (2024), who use Kullback-Leibler di-
vergence between consecutive states of the weights
of an entire Transformer network.

RL-based curriculum learning in NMT. In the
field of machine translation, Kumar et al. (2019)
propose a RL framework utilizing Q-Learning to
automatically learn an optimal curriculum for het-
erogeneous data, matching state-of-the-art hand-
designed curricula. Zhao et al. (2020) introduce
a RL-based data selection framework using Deter-
ministic Actor-Critic to improve pre-trained NMT
models by re-selecting influential samples from the
original training set. Kreutzer et al. (2021) use
a multi-armed bandit to dynamically select train-
ing data, thus optimizing NMT model performance
across different domains, data qualities, and lan-
guage pairs without manual schedule design.

Other applications of RL to NMT. In machine
translation, RL methods were employed by Edunov
et al. (2018) to tackle the discrepancy between
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token-level likelihood optimization during train-
ing and corpus-level evaluations using metrics like
BLEU, and to reduce exposure bias in autoregres-
sive sequence generators (Ranzato et al., 2016;
Wang and Sennrich, 2020; Wu et al., 2018b). Kiege-
land and Kreutzer (2021) emphasize the impor-
tance of exploration strategies, reward scaling, and
reward function design for improving translation
quality, particularly with respect to domain adapta-
tion. To enhance the effectiveness of RL in NMT,
Yehudai et al. (2022) show the importance of reduc-
ing the size and dimensionality of the action space.
Wang et al. (2024) introduce efficient sampling-
based RL techniques for sequence generation mod-
els, with a strong focus, however, on instruction
tuning of LLMs.

3 Two RL Algorithms for Optimizing
Training Schedules

In the RL framework, an agent observes the state
S, of the environment at each time step ¢, selects an
action A; based on its policy 7, executes the action,
and receives a reward R; from the environment.
Using the observed states, actions, and rewards,
the goal is to learn an optimal policy, i.e. one that
maximizes the cumulative reward over time. Bandit
problems are those where the agent selects actions
without considering state transitions.

In this study, as we use for training only mono-
lingual batches, the set of possible actions A is
simply the set of source languages. The states &
of the system are the values of the parameters of
the neural network and of the optimizer. However,
these are too numerous to be sensibly observed
at each step. Drawing inspiration from Wu et al.
(2018a), we compute the current state of the model
as the vector of cross-entropy loss values obtained
from the NMT system over a development batch
of sentences.> We use the score X; of the model
at time step ¢ to compute the reward R; as the de-
crease of the loss of the NMT system between the
last two time steps: R; = X; — X;—1. The loss
values are computed on a development minibatch
of data selected from the current language, or, in
some experiments, on a multilingual minibatch.

3.1 TSCL Algorithm for NMT

Our first proposal is an adaptation to NMT of the
Teacher-Student Curriculum Learning (TSCL) al-
2 Alternatively, MT-specific metrics such as BLEU or COMET

could be used instead of the cross-entropy loss, but computing
them is more costly, therefore we do not use them here.



gorithm, a bandit method introduced by Matiisen
et al. (2017), who use it to add decimal numbers
or to navigate Minecraft mazes. The gist of our
adaptation of TSCL for multilingual NMT is repre-
sented in Figure 1, and the full algorithm is given
in Appendix A.4.

RL Agent Select action Ay

Get reward Ry

Training
data

Fetch mini-batch 2
Fetch mini-hatch 1

MNMT model
Train

Figure 1: TSCL algorithm for NMT: relationship be-
tween the RL agent and the NMT system.

The action A; of the system at time step ¢ is
the selection of a batch from a specific source
language for training in the next step. The re-
ward R; of the action is the decrease of the neg-
ative cross-entropy loss of the model, X;, com-
puted on a batch of 8k tokens from the current
source language, with respect to the value Xy
computed at the latest previous time step with the
same language. Formally, R; = X; — Xy where
t' = max{s : s < tand A; = A;}. The ex-
pected return @) of the action is the exponentially
weighted moving average of the rewards for the
respective source language.

In some experiments, we start with a warm-up
phase, a period during which all HRLs are ran-
domly explored while the learning rate of the NMT
model increases. Rewards of the RL agent only
start to play a role after the warm-up phase, when
the learning rate starts decreasing. In experiments
without warm-up, each action is executed once at
the beginning of the training, so that the model
initiates training on the language that provides the
highest reward from the start.

Additionally, to strike a balance between explo-
ration and exploitation, we use an e-greedy policy
with a fixed value of €. The action with the highest
expected return is selected with probability 1 — e,
but with a small probability ¢ a random action is
selected. In experiments with a warm-up period,
this policy only starts after this period.

3.2 DON Algorithm for NMT

The Deep Q Network (DQN) algorithm (Mnih
et al., 2013) uses a neural network to approximate
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the Q-function that represents the expected reward
of an action in a given state. The algorithm iter-
atively updates the parameters of this network to
minimize the difference between the predicted Q-
values and the desired Q-values obtained from the
target system. Moreover, DQN enables experience
replay by storing past experiences in a replay buffer
and sampling them randomly during the training of
the Q network, a feature that was shown to improve
training.

Our application of DQN to multilingual NMT
is illustrated in Figure 2, and the full algorithm is
given in Appendix A.5. The RL agent is the Q
network, a feed-forward neural network with tanh
activation functions. Its input is the state of the
NMT model: specifically, each value in the input
layer represents the cross-entropy loss of the NMT
model over a batch of 10 sentences from a specific
language. Thus, an input vector of size 200 cor-
responds to a prototype batch of 2,000 sentences,
with 250 sentences from each of the 8 source lan-
guages. The input layer is followed by two hidden
layers of size 512 and by an output layer with 8
units, corresponding to the possible actions (selec-
tion of a source language for the next training step).
The Q network is trained with the RMSProp opti-
mizer® and the Huber Loss (Huber, 1964), a loss
function that reduces the influence of extreme val-
ues, to mitigate the issue of outliers during training.

At each timestep ¢, the RL agent retains a new
transition in its experience replay buffer. A tran-
sition consists of the previous state of the system
S;_1, the selected action A;_1, the obtained reward
Ry, and the current state of the system S;. These
transitions are used to train the Q network so that it
predicts the action with the best estimated reward
given the state of the NMT model.

We use an e-greedy policy to balance between
exploring actions and exploiting the Q network,
like for TSCL. During the warm-up period, which
is always applied to DQN, actions are randomly
selected, but after it, actions are selected by the
Q network with a probability of 1 — € or thy are
randomly selected with a probability of €. How-
ever, unlike TSCL, we follow Kumar et al. (2019)
and start with ¢ = 1 during warm-up, then gradu-
ally decrease this value at the end of warm-up to
a minimum of 0.01 after 50k steps. This allows
the network to randomly explore actions during

3A variant of stochastic gradient descent, proposed by G. Hin-
ton, which adapts the learning rate for each parameter based
on recent gradient averages (Ruder, 2016).
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Figure 2: DQN algorithm for NMT: relationship between the RL agent (Q network) and the NMT model.

the warm-up period before exploiting the learned
knowledge more and more. The schedule of ¢ is
represented in Figure 5 of Appendix A.1.

4 Experimental Settings

Data. Experiments were conducted using a sub-
set of the multilingual TED corpus collected by Qi
et al. (2018), with four HRLs and four LRLs.* For
comparability with prior research on multilingual
NMT (Neubig and Hu, 2018; Wang et al., 2019;
Zhang et al., 2021), we consider a 8-to-1 translation
task with English as the target language. We are
especially interested in the translation quality of the
four LRLs of the dataset: Belarusian (BE), Azerbai-
jani (Az), Galician (GL) and Slovak (SK), which
are respectively paired with a HRL from the same
family: Russian (RU), Turkish (TR), Portuguese
(PT) and Czech (Cs). Three language families are
thus represented (Romance, Slavic and Turkic) but
all scripts are Latin-based.

The numbers of sentences of the training and
testing sets for each of the 8 languages are shown
in Table 1. These numbers show that the distinction
of LRLs vs. HRLs made in previous studies is to
some extent arbitrary. Indeed, there are fewer PT
sentences (considered nevertheless as a HRL with
respect to GL) than SK sentences (considered as a
LRL with respect to CS).

Preprocessing. The original data is already to-
kenized into words. We use Byte Pair Encoding
(BPE) for subword extraction and vocabulary con-
struction (Sennrich et al., 2016).> A vocabulary
of 32k subwords is generated over a multilingual
corpus obtained by combining 10k random lines
from the training data of each language, with up-
sampling for Az and BE which have fewer than

4github.com/neulab/word-embeddings-for-nmt
3 github.com/rsennrich/subword-nmt
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Language ‘ train dev  test
Az 59k (0.95%) 671 903
BE 4.5k (0.72%) 248 664
GL 10.0k (1.60%) 682 1.0k
SK 61.5k (9.79%) 2.2k 2.4k
TR 182k (29.07%) 4.0k 5.0k
Ru 208k (33.21%) 4.8k 5.5k
PT 51.8k (8.25%) 1.2k 1.8k
Cs 103k (16.42%) 3.5k 3.8k

Table 1: Numbers of sentences for LRLs and HRLs.

10k lines. For source language identification by
the NMT model, each sentence is prefixed with a
language tag.

NMT Models. We experiment with Transformer
models from the OpenNMT-py library version
3.4.3 (Klein et al., 2017).% All models are trained
for 150k steps. The hyperparameter values are
the default ones from the Transformer-Base model
(Vaswani et al., 2017): 6 layers for the encoder and
6 for the decoder, 8 attention heads, label smooth-
ing of 0.1, hidden layers with 512 units, and feed-
forward networks with 2,048 units. The Adam
optimizer (Kingma and Ba, 2014) is used. Follow-
ing Atrio and Popescu-Belis (2022), we use a batch
size of 8k tokens and the regularization parameters
are: dropout rate of 0.3, scaling factor of 10, and
gradients are re-normalized if their norm exceeds 5.
In experiments with warm-up, there are 16k steps
during which the learning rate increases from O to
its maximum.

RL Agents. Several hyperparameters must be
set for RL Agents. Their default values are given
here, while the behavior of the systems when these
values are modified are studied in Section 5.4.

S github.com/OpenNMT/OpenNMT-py
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https://github.com/OpenNMT/OpenNMT-py/releases/tag/v3.4.3

The TSCL algorithm is run with a smoothing co-
efficient « = 0.1. The warm-up period is 16k steps,
during which batches from HRLs are presented in
a random order. For the e-greedy policy, e = 0.1.
These values correspond to those used by Matiisen
et al. (2017).

The DQN algorithm is also run with a warm-up
period of 16k steps on HRLs only. Unlike TSCL,
a new action is selected every 10 steps, and not
at every step, to reduce computing time, with no
significant differences in observed results. The Q
network underlying the RL agent has an input layer
with 200 units, two fully connected subsequent
layers with 512 units each, and an output layer
with 8 units. As explained in Section 3.2, each
value in the input layer corresponds to the cross-
entropy loss of the NMT model over a batch of 10
sentences from a specific language.

The training of the Q network has a learning
rate [r = 2.5e — 4 and a soft update smoothing
coefficient 7 = 0.005. The discount factor, which
influences the importance of future rewards in the
agent’s decision-making process, is v = 0.99.”
The experience replay buffer has minimal/maximal
sizes of 1k/10k. These values are those used by
Kumar et al. (2019).

Evaluation Metrics. Translation quality is mea-
sured using the BLEU and COMET metrics. BLEU
scores are computed with the SacreBLEU library
(Post, 2018).8 COMET scores are computed us-
ing the wmt22-comet-da model (Rei et al., 2022).°
Scores are computed using a rolling ensemble of
four checkpoints. The best ensemble in terms of
average BLEU score on the LRLs development sets
is used to translate the test set.

5 Results and Analysis

5.1 Baselines

We compare TSCL and DQN to baseline training
schedules in which source languages are selected
randomly at each step, either with a uniform dis-
tribution (P = 1/8 for each language) or with a
distribution that is proportional to the number of
sentences of the respective language in the training
data — hence between 0.95% for Az and 33.21%
for RU, as shown in Table 1. Moreover, a warm-up

"This parameter is defined in Section 2 of Mnih et al. (2013)
and is implicit in line 19 of our Algorithm 2.
8github.com/mjpost/sacrebleu, signature: nrefs:1|case:
mixed|eff:no|tok:13a|smooth:exp|version:2.3.1.
°huggingface.co/Unbabel/wmt22-comet-da
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period of 16k on HRLs can be used or not. This
results in four baseline schedules, shown in the
first four lines of Tables 2, 3 and 4. While these
baselines and the TSCL and DQN algorithms use
monolingual batches, a fifth baseline uses multilin-
gual shuffled ones, with sentences drawn randomly
from the source languages in proportion to their
frequency, and a warm-up period of 16k on HRLs.
Shuffled batches were found to perform particu-
larly well on this dataset (Neubig and Hu, 2018;
Atrio et al., 2024).

5.2 Translation Performance

The BLEU and COMET scores of the TSCL and
DQN algorithms, in comparison to the baselines,
are presented in Table 2 for the LRLs and in Ta-
ble 3 for the HRLs. The averages of BLEU and of
COMET scores over the 8 languages are presented
in Table 4, giving the same importance to each lan-
guage, regardless of its frequency in the training
data (macro-average).

The DQN algorithm outperforms on average all
baselines, as well as the simpler TSCL algorithm,
both in terms of BLEU and of COMET (Table 4).
The TSCL algorithm is second for BLEU, but third
for COMET, slightly behind the uniform training
schedule with warm-up. Considering Table 2 with
LRLs, we see that DQN often outperforms the other
methods: it ranks first on COMET for AZ and BE
and second for GL (but first on BLEU). Moreover,
DQN ranks first on COMET for PT, as seen in
Table 3. Therefore, DQN ranks first on three of the
four least represented languages in the dataset.'’
This shows that DQN improves learning of the
LRLs at the price of a small degradation in HRLs,
though still improving their macro-average. As for
TSCL, although it is competitive on average with
the baselines, it lags behind the best ones when it
comes to individual languages.

The baseline that is most often ranked first is
the one that selects batches in proportion to the fre-
quency of the language in the training data, with no
warm-up. This has best BLEU and COMET scores
on three HRLs (TR, Ru, Cs) and one LRL'? (SK),
likely because each of these languages constitutes
more than 10% of the training data. However, in
this case, the NMT model struggles to learn LRLs
because it does not see enough data from them. As
a result, when considering the macro-average, this

10As noted in Section 4, the contrast between LRLs and HRLs
made in previous work applies only within each pair of related
languages.
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Training Warm Az — EN BE — EN SK — EN GL — EN
schedule up BLEU COMET | BLEU COMET | BLEU COMET | BLEU COMET
Uniform no 13.86  62.99 19.75 60.80 | 32.85 75.09 | 31.14 72.08
Proportional no 15.82  65.66 19.81 61.85 | 35.11 76.51 | 31.07 72.65
Uniform 16k 1542  65.19 | 2029 62.13 | 34.11 76.45 | 32.74  73.84
Proportional 16k 15.14  65.70 19.22  61.48 | 3497 7626 | 31.79 72.70
Shuffled batch 16k 1437 6437 | 2008 62.15 | 3392 76.28 | 32.15 72.99
TSCL 16k 1489  65.04 | 20.10 6196 | 3435 76.23 | 32.64 73.59
DQN 16k 1562 6586 | 21.11 62.82 | 3454 76.15 | 33.02 73.73
Table 2: Results of TSCL and DQN compared to baselines on LRLs.
Training Warm TR — EN RU — EN Cs =+ EN PT — EN
schedule up BLEU CoOMET | BLEU COMET | BLEU COMET | BLEU COMET
Uniform no 2726 7541 2695 72.18 | 30.87 7430 | 39.76  78.41
Proportional no 2940 7748 | 28.14 74.04 | 3247 7579 | 37.98 76.56
Uniform 16k 2829 76.72 | 2753 7332 | 31.76  75.60 | 41.32  79.57
Proportional 16k 2897 7725 | 2796 73,53 | 32.16 7538 | 38.64 76.47
Shuffled batch 16k 2825 76.76 | 27.31 7320 | 31.30 75.37 | 40.58  79.25
TSCL 16k 2850 76.64 | 2756 7299 | 31.76  75.15 | 4238  79.52
DQN 16k 28.11 7645 | 27.66  73.28 | 31.89 75.31 42.09 79.73
Table 3: Results of TSCL and DQN compared to baselines on HRLSs.
Training Warm Average the baseline with proportional batches (both at 60k).
schedule up BLEU COMET The baseline with uniformly-drawn batches needs
: twice more steps to converge.
Uniform no 27.81 71.40
Proportional no 28.73 72.57 Distribution of source languages during training
Uniform 16k 2893  72.85 100% 1
Proportional 16k 28.61 72.35 90% 1 W:-
Shuffled batch 16k 2849  72.55 80% -
70% T
TSCL 16k | 29.02 7264 N =
DQN 16k 2930  72.92 iy
-5
Table 4: Macro-averages over all languages of the scores 30% 1 ->_£_:::_ i
of TSCL and DQN compared to baselines. 20% |
10% +
o5 ] — N e |

baseline is slightly behind the one using warm-up
on HRLs followed by selection of actions with uni-
form probability, which also has better COMET
scores for BE, GL and PT.

Moreover, the DQN and TSCL algorithms are ef-
ficient in terms of convergence speed, defined as the
number of steps needed to reach their best scores
(the macro-average of BLEU on the LRLs of the
development set). As shown more fully in Table 7
of Appendix A.2, DQN reaches best performance
after 52k steps, followed closely by TSCL and by
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"
Uniform Qriginal TSCL DQN

Figure 3: Proportions of data seen during training, as
optimized by the TSCL and DQN algorithms, in com-
parison to uniform (1/8) or original proportions.

5.3 Optimized Training Schedule

We claim that the improved average scores with
respect to the baselines are due to an optimized
training schedule, which can be observed by con-
sidering the total amount of data from each lan-



guage seen during training, shown in Figure 3. The
‘uniform’ and ‘proportional’ baselines are shown
in the first two columns. In the first case, the NMT
model likely overfits to the LRL data, which is seen
too often (12.5% of the times per language) with
respect to its diversity (ca. 1% for three LRLs). In
the second case, the number of times each LRL
batch is seen during training is insufficient.

Our two algorithms strike a balance between
these two extremes, as they are able to auto-
matically determine more suitable proportions of
batches of LRLs vs. HRLs for training. We see
in Figure 3, third column, how the proportions of
three LRLs are increased by TSCL (Az in dark
orange, BE in dark blue, and GL in dark purple).
Two other languages with similar original propor-
tions (PT in light purple and SK in dark green) see
their proportions increased too, though less than
the previous ones. Conversely, the proportions of
HRLs decrease, especially for RU and TR.

In comparison to TSCL, the DQN algorithm
appears to reach a slightly smaller proportion of
LRLs, as seen in the fourth column of Figure 3,
where proportions of the darker colors are shrunk
with respect to the third column. These proportions
are found quite quickly during training, as can be
seen from Figure 6 in Appendix A.3, where we
aggregate the proportions of actions every 1000
steps.

5.4 Role of Hyperparameters

In this section, we study the influence of hyper-
parameters on the scores of NMT systems trained
with the TSCL and DQN algorithms. We present
the scores obtained with significant variations of
one parameter at a time in Table 5 for TSCL and
in Table 6 for DQN. Globally, the scores of the
algorithms do not vary much, which shows that
they are robust with respect to the variations of the
hyperparameters, but also confirms that the algo-
rithms behave consistently from run to run. For
both algorithms, BLEU and COMET scores lead
to similar rankings.

For TSCL, we observe first that adding LRLs
during warm-up (with uniform frequencies), or
skipping warm-up entirely (thus starting with the
highest learning rate), are not good options (second
and third lines of Table 5). Instead, cross-lingual
transfer from HRLs to LRLs becomes fully benefi-
cial only with a 16k step warm-up on HRLs. More-
over, convergence is twice slower without warm-up.
The smoothing coefficient o can vary around the

72

default value of 0.3 with a small decrease in per-
formance (o = 0.1 is shown in the 4th line) and
so can ¢ for the e-greedy policy (¢ = 0.3 instead
of 0.1 is shown in the 5th line). Finally, whether
an action is selected every 10 steps or at every step
results in comparable scores.

For DQN, we examine first if the Q network is
over-parameterized, by reducing the size of the two
hidden layers from 512 to 128 (2nd line of Table 6).
This brings only a moderate decrease in average
scores, but slightly better COMET scores for Az,
SK and GL.

If we vary 7, the smoothing rate of the updates of
the Q network (see line 20 of Algorithm 2) within
a large range between 0 and 1, the scores remain
stable or even increase for some LRLs (3rd and
4th lines of Table 6, values of 0.5 and 0.995 with
respect to default of 0.005).

Similarly, if we vary -, the discount factor for
the importance of future rewards, within a large
interval between O and 1, the scores also remain
stable (5th and 6th lines of Table 6, values of 0.5
and 0.01 with respect to default of 0.99). In fact,
the value with the lowest scores is v = 0.01, i.e.
a system that gives only a marginal importance
to long-term rewards. Conversely, this is also the
system with the fastest convergence, although no
particular variant seems to be particularly slow to
converge (see Table 8 in Appendix A.2), and none
achieves highest scores on all LRLs.

We can thus conclude that the default values of
hyperparameters of TSCL and DQN used in Sec-
tion 5.2 above, inspired respectively by Matiisen
et al. (2017) and by Kumar et al. (2019), perform
well and that both algorithms are stable when these
hyperparameters vary.

5.5 Analysis of the Q Network

In this section, we propose a method to analyze the
Q network of the DQN algorithm, which predicts
on what language to train next, given a vector of
200 scores of an NMT model. Specifically, these
scores are the cross-entropy loss values on 200
monolingual batches of 10 sentences each from the
prototype set. At a given moment during training,
the Q network can be probed with a specific vector
as input, for instance a vector that represents a
specific state of the NMT system. We propose
to probe the Q network with a state in which one
language is poorly learned. This is mimicked by
assigning high loss values to the coefficients of
the vector that represent scores on batches of this



Hyperparameter Az — EN BE — EN SK — EN GL — EN
values BLEU COMET | BLEU COMET | BLEU COMET | BLEU COMET
Default 14.89 65.04 | 20.10 6196 | 3435 76.23 | 32.64 73.59
Warm-up LRL+HRL | 14.33  64.01 1993  61.86 | 33.21 75.80 | 31.83  72.59
No warm-up 14.50 64.36 19.41 61.02 | 3334 7546 | 31.75  72.17
a=0.3 1428  64.72 19.71 61.74 | 33.51 75.68 | 31.79  72.56
e=0.3 14.10 64.37 19.95 61.80 | 33.36  75.75 31.16  72.38
n =10 14.74  64.92 19.83  61.30 | 33.66 7593 31.71 72.82
Table 5: MT performance using the TSCL algorithm when hyperparameters vary.
Hyperparameter Az — EN BE — EN SK — EN GL — EN
values BLEU CoMET | BLEU COMET | BLEU COMET | BLEU COMET
Default 1562 65.86 | 21.11 62.82 | 34.54 76.15 33.02 73.73
Hidden size = 128 | 15.86 66.15 | 20.38 62.64 | 3440 76.21 32.59  73.79
7=0.5 15.55 66.13 20.17  62.47 3452 7625 | 33.13 73.81
7=10.995 16.06 66.06 | 20.19 62.18 | 3455 76.31 3245  73.46
v=0.5 15.78  65.85 20.51 62.64 | 3449 76.16 | 3294  73.63
v =0.01 1534 6538 | 2059 6236 | 33.87 7570 | 3243  73.39

Table 6: MT performance using the DQN algorithm when hyperparameters vary.

language. To avoid an entirely synthetic vector, we
pick an actual vector occurring during training and
multiply by 5 the loss values of all 25 batches from
the targeted language.

We probe the Q network with each of the 8
source languages in turn, pretending that this lan-
guage is not well learned and observing the action
selected by the network, i.e. the language that it
requires the NMT model to see next. Rather than
observing the single selected language, we con-
sidered the softmaxed output activations for all 8
languages. The result is thus an 8-by-8 matrix, rep-
resented in Figure 4 at 28k and respectively 56k
training steps. The X-axis represents the softmaxed
output activations (predicted Q-values for each lan-
guage), while the lines of the Y-axis correspond
to each probed language (the one for which loss
values were amplified).

28k steps 018

56k steps

0.15

R0RLZFIR

Poorly learned lang.

0.09 0.09

Az TrBeRu Sk Cs Gl Pt
Model prediction

Az Tr BeRu SkCs Gl Pt
Model prediction

Figure 4: Behavior of the Q network at two stages dur-
ing training.
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The state at 28k steps is typical of incomplete
training. The Q network appears to favor one HRL
language (Cz) regardless of the language that is
the least well learned according to its synthetic
vector. The Q network selects one language for a
large number of steps and gradually switches to
another. The state at 56k steps (when the NMT
trained with DQN reaches its best score) demon-
strates a more balanced behavior: if one language
is insufficiently learned, especially a LRL, then
the network predicts that more training should be
done on that language. Indeed, for several lines
(though not all), the cell on the diagonal is one of
the darkest of the line (e.g. for TR, BE, SK or PT).
These observations suggest that the DQN model’s
decisions are complex and evolve over time, rather
than always favoring the language that is currently
the least well learned.

6 Conclusion and Perspectives

In this paper, we presented two algorithms for opti-
mizing the training schedule of multilingual NMT
models when a mixture of HRLs and LRLs must
be learned on the source side. The TSCL algo-
rithm models the expected return of each action by
smoothing past observations, while DQN trains a
neural network to perform this estimation and to
select the optimal action.

Both algorithms strike a balance between a uni-
form distribution of training batches across lan-



guages and a distribution purely based on the re-
spective frequencies of these languages in the ac-
tual data. The algorithms increase the proportions
of LRLs and reduce those of HRLs, while still
enabling cross-lingual transfer from HRLs to re-
lated LRLs. The better balance of HRLs and LRLs
avoids too great a focus on the more abundant HRL
data (which would sacrifice LRLs) or too great a
focus on LRLs (which would lead to overfitting).
Without such algorithms, it would be difficult to
find extrinsic criteria to optimize the presentation
frequencies of batches. Moreover, the optimized
training schedules lead to improved macro-average
BLEU and COMET scores.

We leave for future work the study of other ways
to construct batches. One option is to use multilin-
gual batches — though, as shown above, shuffled
batches underperform with respect to an optimized
balance of LRLs and HRLs. Another option is
to define actions as specific batches or groups of
batches, which would enable the model to prior-
itize certain batches over others, but would also
increase the number of possible actions and hence
the learning complexity of the RL agent.

The relevance of our proposal should be tested
with additional datasets combining HRLs and re-
lated LRLs, and with other neural architectures for
which cross-lingual transfer may be important to
ensure acceptable performance on LRLs, particu-
larly LLMs fine-tuned on translation tasks (Alves
et al., 2024). In such cases, an optimized training
schedule across available resources may also be
beneficial.
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A Appendix

A.1 Epsilon Scheduling for DQN

The RL agent in the DQN algorithm follows, as
explained in Section 3.2, an e-greedy policy: with a
probability of 1—e, actions (i.e. the source language
of a batch) are selected using the Q network, but
with a probability of €, a random action is selected.
The exact schedule of € is shown in Figure 5.

warmup
A

exploitation

Bt = 1

Eq= 001

L J

steps

t_T_J

Edecay — UK Steps

Figure 5: Evolution of € during training with DQN.

During the warm-up period of 16k a value of 1
means that the Q network is not used and source
HRLs (in this case) are drawn randomly. Then,
during a decay of 50k steps, the importance of the
Q network in deciding the actions grows progres-
sively, while random choices decrease to a minimal
probability of 0.01 after 66k steps. This approach,
inspired by Kumar et al. (2019), achieves a balance
between exploiting the Q network and exploring
new actions.

A.2 Convergence Speed

In the experiments presented above, the scores were
computed using a rolling ensemble of 4 check-
points, and the best score was selected as the high-
est macro-average of BLEU achieved on the devel-
opment data of the LRLs. We mentioned at the end
of Section 5.2 that the DQN was the method that
reached optimal scores after the smallest number
of steps, followed by TSCL and then by the ‘pro-
portional’ scheduling. The exact numbers of steps
are given in Table 7, showing that DQN accelerates
convergence with respect to the other schedules.
Moreover, this behavior is stable when varying
some of the hyperparameters of the algorithm, as
shown in Table 8.

A.3 Learned Policies

We presented in Section 5.3 the total numbers of
actions of each type (i.e. source language of the
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Training Warm up | Best checkpoint
Uniform no 136k
Proportional  no 60k
Uniform 16k 124k
Proportional 16k 60k
Shuffle batch 16k 128k
TSCL 16k 56k
DQN 16k 52k

Table 7: Comparison of the number of steps required by
the NMT model to achieve the best scores on the LRLs.

Parameter values | Best checkpoint
Default 52k
T=0.5 60k
7 =10.995 76k
v=0.5 48k
v =0.01 36k
Hidden layer: 128 76k

Table 8: Comparison of the number of steps required for
the NMT model using the DQN algorithm to achieve the
best scores on the LRLs. The parameter values are the
default ones, except the changes shown for each line.

batch) selected during training for the TSCL and
DQN algorithms, in comparison to the ‘uniform’
and ‘proportional’ training schedules. Here, we
show in Figure 6 the evolution of the proportion
of actions during training with the DQN algorithm,
aggregated every 1000 steps.

In this representation, we first observe that the
initial 16k steps are performed only on the HRLs,
as configured. When the DQN algorithm starts
playing a role, a random selection of languages is
observed. As the algorithm learns, the proportions
of LRLs decrease, while the proportions of HRLs
increase, and tend to stabilize towards steady-state
values. The proportions averaged over the entire
training period are provided in the legend of the
chart. These are the proportions compared between
the systems in Figure 3.

A4 The TSCL Algorithm

The full specification of the TSCL algorithm in
pseudo-code is provided hereafter as Algorithm 1.
A.5 The DQN Algorithm

The full specification of the DQN algorithm in
pseudo-code is provided hereafter as Algorithm 2.
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Algorithm 1: TSCL algorithm for NMT.

Require: actions A4 < { A1, .., A;}, number of training steps ¢s, number of consecutive actions 7,
number of warm-up steps w, e-greedy policy exploration parameter €, smoothing
coefficient

1 Initialize NMT model

2 Initialize action index 7 <— 1

3 Initialize unvisited actions indexes U < {2, .., k}

4 Initialize estimated return Q)(A) < 0 for all k actions
5 Initialize rewards history H(Ay) < 0 for all k actions

6 fort < 1,...,tsdo
7 Sample mini-batch B; from action A;
8 Train NMT model using mini-batch B;
9 if ¢t mod n = 0 then
10 Observe reward R, « X; — H(A;)
1 Update reward history H (A;) < X,
12 Exponentially smooth estimated return Q(A4;) < aR; + (1 — a)Q(A;)
13 if |U| # 0 then
14 Choose action index i <— U/[0]
15 Update U < U — {i}
16 end
17 else
18 Choose random number r between 0 and 1
19 if t < worr < ethen
20 ‘ Choose action index ¢ randomly between 1 and &
21 end
2 else
23 ‘ Set 4 as the index of the max arg. of absolute values in )
24 end
25 end
26 end
27 end
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Algorithm 2: DQN Algorithm for NMT

Require: actions A < {Ay, .., Ay}, number of training steps ¢s, number of consecutive actions n,
number of warm-up steps w, e-greedy policy exploration parameter e, soft update
coefficient 7, replay memory capacity ¢, minimum replay memory capacity Cpin

1 Initialize NMT model learning algorithm

2 Initialize RL agent’s online model

3 Initialize replay memory deque D with capacity ¢

4 Initialize RL agent’s target network with same weights as RL agent’s online model
5 Initialize action index ¢ +— 1

¢ fort < 1,...,7Tdo

7 Sample mini-batch B; from action A;

8 Train NMT model using mini-batch B

9 if £ mod n = 0 then

10 if t < w then

u Choose action index ¢ randomly between 1 and &

12 end

13 else

14 Observe current state Sy

15 Observe reward R; + X; — X1

16 Store transition (S;_1, i, Ry, S¢) in replay memory D

17 if |D| >= c¢nip then

18 Sample mini-batch of transitions 7" from replay memory D

19 Train RL agent’s online model using mini-batch T’

20 Soft update RL agent’s target model weights with RL agent’s online model weights
0" <7104+ (1—7)0"

21 end

2 Choose random number r between 0 and 1

23 if » < e then

24 ‘ Choose action index ¢ randomly between 1 and &

25 end

26 else

27 Predict Q values at state S; with RL agent target network

28 Set 4 as the index of the arg. max in @)

29 end

30 Decrease € according to decay schedule

31 end

3% end

33 end
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Abstract

Understanding representation transfer in mul-
tilingual neural machine translation (MNMT)
can reveal the reason for the zero-shot transla-
tion deficiency. In this work, we systematically
analyze the representational issue of MNMT
models. We first introduce the identity pair,
translating a sentence to itself, to address the
lack of the base measure in multilingual inves-
tigations, as the identity pair can reflect the
representation of a language within the model.
Then, we demonstrate that the encoder trans-
fers the source language to the representational
subspace of the target language instead of the
language-agnostic state. Thus, the zero-shot
translation deficiency arises because the rep-
resentation of a translation is entangled with
other languages and not transferred to the tar-
get language effectively. Based on our find-
ings, we propose two methods: 1) low-rank
language-specific embedding at the encoder,
and 2) language-specific contrastive learning
of the representation at the decoder. The exper-
imental results on Europarl-15, TED-19, and
OPUS-100 datasets show that our methods sub-
stantially enhance the performance of zero-shot
translations without sacrifices in supervised di-
rections by improving language transfer capac-
ity, thereby providing practical evidence to sup-
port our conclusions. Codes are available at
https://github.com/zhiqu22/ZeroTrans.

1 Introduction

State-of-the-art neural machine translation systems
are adaptable to multilingualism, resulting in a sin-
gle encoder-decoder model that executes arbitrary
translations by adding a tag specified to the target
language at the beginning of source sentence (Firat

*This work was done during the first author’s internship at
Advanced Speech Translation Research and Development Pro-
motion Center, National Institute of Information and Commu-
nications Technology, Kyoto, Japan.

*© 2025 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
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Figure 1: Different analytical methods lead to different
conclusions. 1a means the target language family clus-
ters the representations of translations from English (en)
to other languages through the encoder. 1b indicates the
encoder semantically aligns different source languages.
Language codes in this work follow ISO 639-1, and
Appendix D provides details of those figures.

et al., 2016; Johnson et al., 2017; Wu et al., 2021).
Multilingual neural machine translation (MNMT)
is theoretically attractive because zero-shot transla-
tions, i.e., translations unseen in training, allow the
training of a multilingual model with minimal cost.
Unfortunately, the performance of zero-shot trans-
lations always lags behind (Aharoni et al., 2019;
Arivazhagan et al., 2019a; Gu et al., 2019; Yang
et al., 2021; Pan et al., 2021; Chen et al., 2023a).

Representational analysis in MNMT models can
guide the improvement of zero-shot translation.
However, two contrary opinions are demonstrated
by prior works: (1) the encoder clusters transla-
tion representations based on the target language
(Kudugunta et al., 2019; Liu et al., 2021; Tan and
Monz, 2023; Stap et al., 2023; Sun et al., 2024),
as illustrated in Figure la; (2) an ideal encoder
is expected to learn language-agnostic representa-
tions, capturing general cross-lingual features that
are transferable across languages (Pan et al., 2021;
Gu and Feng, 2022; Gao et al., 2023; Bu et al.,
2024), as shown in Figure 1b. In this work, we aim
to analyze and reconcile this discrepancy. We first
introduce the identity pair, a pseudo pair translating
a sentence to itself. Specifically, the analyses con-
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ducted by those prior works rely on real translation
pairs, leading to inaccurate results, as a translation
pair cannot serve as a base measure for another pair.
The identity pair, however, addresses this issue by
serving as a proxy for the optimal representation of
a language instead of a translation pair. Then, mul-
tiple analytical methods are employed to show the
representation transfer within MNMT models. Our
findings offer a unified perspective on these two
opinions: the encoder transfers translation repre-
sentations into the target language subspace, where
different source languages are semantically aligned.
Thus, the zero-shot translation deficiency stems
from the failure to transfer the translation represen-
tation to the target language, as it becomes entan-
gled with representations of other languages in the
encoder.

Guided by our findings, we propose two meth-
ods for the encoder and decoder, respectively, to
improve multilingual representations: Low-Rank
Language-specific Embedding (LOLE) is applied
to bias the representations in the subspaces of target
languages at the encoder; and Language-specific
Contrastive Learning of Representations (LCLR)
is applied at the decoder to isolate representational
space across languages. We evaluated the proposed
methods on three benchmarks, Europarl-15 (Koehn
et al., 2005), TED-19 (Ye et al., 2018), and OPUS-
100 (Zhang et al., 2020a; Yang et al., 2021), for
two automatic metrics, SacreBLEU (Post, 2018)
and BERTScore (Zhang et al., 2020b). The experi-
mental results show that our methods outperform
strong baselines in training from scratch because
of improved representational transferability. Our
methods also perform effectively in fine-tuning,
even though pre-trained models are trained by dif-
ferent strategies of language tags, which proves
that target language information on the encoder
side consistently benefits MNMT.

2 Background

2.1 Multilingual Neural Machine Translation

Johnson et al. (2017); Wu et al. (2021) demon-
strated that the training strategy of adding a lan-
guage tag at the beginning of the input sentence
on the encoder side boosts the zero-shot trans-
lation capacity of the MNMT model. Given a
multilingual corpus C that covers a set of ¢ lan-
guages, a set of their corresponding language tags
exists: L = {l1,ly,...,0;}. For a source-target
sentence pair (x,y), i.e., ¢ = x1, %2, ..., T, and
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Y = Y1,Y2, - - -, Ym, the training data consists of a
pair in form of (x,[,y), where [ is the language
tag of y that instructs translation from « into lan-
guage [. The model is trained over all pairs in C to
optimize the following cross-entropy loss:

Lee=— Y logp(yll,x;0),
x,l,yeC

)

where p(y|l, x; 0) is the probability distribution of
y and 6 represents the model parameters.

2.2 The Discrepancy in Prior Works

Pan et al. (2021); Gao et al. (2023); Bu et al. (2024)
state that, for an encoder-decoder MNMT model,
an ideal encoder is regarded as transferring the
source sentence into a language-agnostic state, pre-
serving only semantic information.! As evidence,
the t-distributed stochastic neighbor embedding (t-
SNE) (van der Maaten and Hinton, 2008), which
can convert similarities between vectors into joint
probabilities, has been used to show that represen-
tations of sentences from different languages are
aligned at the output of the encoder when sharing
the same semantics. However, this result contrasts
with the findings of Kudugunta et al. (2019); Stap
et al. (2023); Tan and Monz (2023). Specifically,
using the singular value canonical correlation anal-
ysis (SVCCA) (Raghu et al., 2017) to compare the
similarity between two vectors, i.e., the sentence
representations of two translations, reveals that the
encoder tends to transfer the representation into a
state with target language features.

We argue that this discrepancy stems from the
lack of a base measure. Namely, those works al-
ways compare the representations of real trans-
lation pairs in which different analysis methods
lead to different results. For instance, the transla-
tion from English to German, denoted by en—de,
cannot be accurately measured by comparing it
with another translation from a different language
x—de, because en—de is expected to be measured
by the language representation of either de or en.
Thus, proposing a base measure is necessary to
draw the same conclusion from different analysis
methods, e.g., t-SNE or SVCCAZ.

! Although Pan et al. (2021) proposed that the ideal output of
the encoder is language-agnostic by adding a source language
tag at the beginning of the encoder, the follow-up works (Gao
etal., 2023; Bu et al., 2024) practiced this concept with adding
a target language tag, which is the main strategy investigated
in this work.

>We follow Liu et al. (2021) to measure SVCCA scores at the
sentence level, which is introduced in Appendix A.
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3 Investigating Representation Transfer
in MNMT

We conduct preliminary experiments to investi-
gate representations by introducing identity pairs
as base measures using two different datasets,
Europarl-15 (Koehn et al., 2005) and TED-19 (Ye
et al., 2018), which are introduced in Appendix B
in detail. Then, following Kudugunta et al. (2019),
our investigation is based on Transformer models
with 6 encoder and decoder layers. We also in-
vestigate scenarios with 8 and 10 encoder layers.
Appendix C introduces the detailed model settings.

3.1 Identity Pairs

An identity pair refers to a sentence pair translat-
ing from one sentence into itself to represent the
optimal state of processing language features, i.e.,
the semantics and syntax of the source sentence by
the model. Notably, our models are only trained
by translating from one language to another. In
this setup, the identity pair is a zero-shot transla-
tion, which does not simply copy the input to the
output.’ On the encoder side, we derive the repre-
sentation from a language translating to itself, i.e.,
(z,l',x), where I’ is the language tag of x, with

3This claim is supported by Qu and Watanabe (2022), which
demonstrate another zero-shot scenario: removing the lan-
guage tag during inference results in any source sentence
being translated into English. Thus, the identity pair indeed
presents a translation process by adding a language tag.

&3

the aim of recovering the source sentence from the
hidden representations without inference on the de-
coder side. We also derive the representation in the
decoder from the gold translation of (x,!’, x).

We use SacreBLEU (Papineni et al., 2002; Post,
2018) to evaluate the translation quality of 6 iden-
tity pairs, which are generated by inference. The
scores of en—en, de—de, and pt—pt in Europarl-
15 are 73.49, 61.04, and 71.97, which significantly
outperform 44.04 of de—en, 36.63 of en—de, and
46.24 of en—pt, respectively. Similarly, en—en,
tr—tr, and vi—vi in TED-19 obtain scores of
72.52, 36.58 and 59.26, which are higher than
34.92 of de—en, 14.81 of en—tr, and 29.78 of
en—vi, respectively. Such high scores in the iden-
tity pair are caused by that short sentences are re-
covered from hidden representations perfectly, and
long sentences only have a few changes in word se-
lection. Such evidence suggests that identity pairs
can serve as base measures for comparing represen-
tations because the identity pair is a proxy for the
optimal representation of a language, specifically,
x—en are expected to be close to en—en in the
representational space.

3.2 Language Transfer Within the Encoder

Given two languages @ and @, we follow Pan et al.
(2021); Liu et al. (2021) to obtain sentence-level
representations for « in @ and y in @ by applying
mean pooling over token representations. We then
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phrases, where the overall variance is 0.09. Appendix G
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organize the comparisons into three cases to ana-
lyze the variation in encoder representations: (i)
comparing (z,1%, x) and (y,!®, x) to show how
target language features are encoded; (ii) compar-
ing (x,1®, ) and (x,1®,y) to show how source
language features are encoded; (iii) comparing two
different identities, (x,[®, x) and (y, 1%, y)*.

The two models trained by Europarl-15 and
TED-19 show the same tendency in Figure 2, i.e.,
the language features for @ of (i) consistently in-
crease in both cases involving the central language,
i.e., English, in Figures 2a and 2c, and non-central
languages in Figures 2b and 2d. The target lan-
guage feature of @ emerges as the primary factor
that affects representations at the fifth and sixth lay-
ers when the cases of (i), (ii), and (iii) are compared.
Therefore, we can conclude that the language fea-
tures of the representations are transferred to the
target side within the encoder. Meanwhile, we ob-
serve that the scores of (iii) are close to or even
exceed those of (ii) at some layers both in Figure 2.
This proves that the feature of the source language
is not the primary factor for encoding representa-
tions because representations are transferred to the
subspaces of target languages. Thus, the compar-
ison between (ii) and (iii) supports that language
transfer is completed within the encoder.

To validate the generality of this conclusion, we

4(:(:, °, x) indicates the identity of @, ie., @—®, and
(y, 1%, x) indicates a sentence of @ translating to the sentence
of @ instructed by the language tag of @, i.e., @—.
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Figure 5: Visualizations for the encoder’s output by
t-SNE and BiKDE. 5a, 5b and 5c are measured in
Europarl-15. 5d, Se and 5f are measured in TED-19.

extend our analysis to models with 8 and 10 en-
coder layers (Figure 3). The same trends hold: (i)
continues to show increasing similarity scores, with
the final values even higher than in the 6-layer set-
ting, suggesting stronger target language alignment.
Again, the relationship between (ii) and (iii) re-
mains consistent, further confirming that the source
language is not the dominant factor in shaping en-
coder representations. These results demonstrate
that language transfer within the encoder is robust
across different architectural depths.

On the other hand, identity pairs also allow the
measurement of the alignment of different lan-
guages in the target language space through t-SNE.
Compared with the sentence-level measurement of
Pan et al. (2021); Gao et al. (2023), we measure the
alignment of representations at the token level. As
shown in Figure 4, semantic similarity causes the
representations to cluster together. Moreover, as
shown in Appendix G, these representations are not
clustered before being processed by the encoder,
and the case with different target languages has a
higher overall variance. Combined with the find-
ing that the encoder transfers the representation
of the source language to the target language, the
evidence further suggests that there is no general
and cross-lingual state for directly sharing semantic
information within the encoder, and the alignment
shown in Figure 1b occurs in the representational
subspace of the target language.

3.3 Entanglements Hindering the Transfer

Although the investigation in Section 3.2 shows
that the representations gradually transfer to the tar-
get language in a translation pair, the representation
spaces of multiple languages may potentially entan-
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Figure 6: Visualizations of layer-wise SVCCA scores
for the decoder. (®, @) shows the involved languages.

gle with each other, resulting in the failure of the
zero-shot translation (Qu and Watanabe, 2022). To
further illustrate the relationship between different
languages, we use t-SNE and BiKDE to visualize
the representations at the output of the encoder
for the several identity pairs in Europarl-15 and
TED-19. Figures 5a and 5d show that different
identity pairs are uniformly distributed in the rep-
resentational space. This distribution proves again
that the encoder is language-specific because each
language has an isolated representational subspace.

Compared with identity pairs that represent the
ideal capability of the model in processing lan-
guages, the distributions plotted in Figures 5b and
Se reflect the actual capacity for the supervised
translation of en—x. Figures 5b and 5e show the
distribution of representations in the pairs trans-
lating from en, which are similar to that of iden-
tity pairs. The difference between identity pairs
and supervised language pairs can be attributed to
the influence of the source language information,
which hinders the full use of the target language
information learned by the encoder.

Moreover, the language-specific subspaces can-
not be clearly separated for zero-shot translations,
as shown in Figures 5c and 5f. Specifically, all rep-
resentations are entangled around the supervised
language pair of x—en, which hinders these rep-
resentations from transferring into the ideal sub-
spaces of the target language. This aligns with Qu
and Watanabe (2022) and Stap et al. (2023) that
multilingual representations are entangled, which
explains the weakness of zero-shot translation com-
pared with supervised translation, suggesting that
improving the transferability of representations is
attributed to the extent of language transfer within
the encoder.

3.4 Language Features in the Decoder

We further investigate the importance of target lan-
guage features versus semantics in the decoder.
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Given two sentences x of language @ and y of lan-
guage @, the decoder representation of (z, 1%, y)
is considered as the base measure. We group two
cases: (iv) For each sentence in a test set, we iden-
tify the pair (2/,1%, y') with the lowest SVCCA
score in the encoder representation to derive a ’
that is distant from &. Then, we compare it with the
base measure to show the importance of target lan-
guage features; (v) We compare the base measure
and (y, 1%, y) to show the importance of semantics.
The two scenarios shown in Figure 6 present the
same trend, which is that (iv) maintains high scores
despite their semantics being entirely different. At
the top layers of the decoder, the gradually increas-
ing difference between (iv) and (v) confirms that
the decoder tends to learn the target language speci-
ficity (Sen et al., 2019). However, Figure 6 shows
that, for (iv), a wider interquartile range exists at
the bottom layers of the decoder, and its scores are
close to those of (v), which implies the weakness in
distinguishing languages for zero-shot translations.

4 Encouraging Representation Transfer

To validate the findings in Section 3, we propose
two methods on the encoder and decoder sides, re-
spectively, to improve transferability. Based on
the findings in Sections 3.2 and 3.3, improving
the extent of language transfer in the encoder can
overcome the hindered representations of zero-shot
language pairs. We introduce a learnable embed-
ding referred to as Low-rank Language-specific
Embedding (LOLE). It serves as biases to force
representations to transfer into the target language
with negligible cost. Based on the findings in Sec-
tion 3.4, the capacity for multilingual features is
insufficient at the lower layers of the decoder. We
introduce Language-specific Contrastive Learning
of Representations (LCLR) as an training extra
task to regularize the representations to specify the
representational boundary for each language.

4.1 Low-Rank Embedding for the Encoder

LetE = {e!,e?,..., e}, e/ € R? be aset of em-
beddings that correspond one-to-one with the lan-
guages in L. For a translation (x, [, y), the embed-
ding in [E corresponding to [ is denoted by e'. The
hidden representation H?* {hi,h3, ... hg},
where H* € R%%?_is extracted before the feed-
forward network (FFN) (Khandelwal et al., 2021;
Xu et al., 2023; Deguchi et al., 2023) at the z-
th encoder layer. Then, we broadcast €' to El,
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E! € R7%? and we bias H? to H>:

h; = hi +el, 2
where HZ is the input for the FFN of the z-th en-
coder layer (Figure 7a). We execute this biasing at
the second-top encoder layer to ensure sufficient
capacity for fusing representations and language
information, while implicitly allowing lower layers
to focus on surface-level information.

The simple language categorization by embed-
ding may lead to a risk of dimensional collapse
in the latent space (Jing et al., 2022). Thus, we
reduce the dimension of [E to d° to allow biasing in
a low rank, and add it to the head of h; to simul-
taneously encourage language transfer and mini-
mize the influence on representations (Hu et al.,
2021). Figure 7b is a spectrum used to illustrate
dimensional collapse using a comparison of differ-
ent d° in Europarl-15. The spectrum shows that
larger dimensions are primarily composed of noise,
whereas a dimension that is too small adversely
affects the learning of key features.

4.2 Contrastive Learning for the Decoder

Given a training batch, we extract hidden repre-
sentations from the output of each decoder layer
and apply averaged pooling to obtain a fixed-
dimensional representation for each sentence. To
avoid dimensional collapse (Tian, 2022; Jing et al.,
2022), we also use the head of the representation
for contrastive learning, i.e., the vectors in the batch
B = {El,ﬁg, .. },El S Rdh, dh <d.

To prevent a potential invalid training objective
in sampling caused by the skewed distribution in
a batch, we first define B C B by omitting in-
stances that do not share their target language with
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any other instance in B. For a given instance of
h®* ¢ B/, which is the anchor in contrastive learn-
ing, we let B™ denote the subset of B’, including
instances with the same target language as h*"°,
where |BT| > 1. Likewise, we define a subset for
negative instance B~ = B’ \ B™. For contrastive
learning, we randomly sample the positive instance
hP° from B+ and sample k negative instances h"®
from B~. Additionally, if & > |B~|, we dynam-
ically clip & to |B~|. Formally, the objective of
LCLR is formulated as
st

Ectr = - I ‘ 2 —

paep €5 4D i et

5T = sim(h*, hP*), hP*® ¢ BT,

= sim(h*, h}®), R}t € B,

(2

log

3
s;

where sim(-) calculates the similarity of representa-
tions using the cosine similarity. The final training
objective is the sum of Equations 1 and 2, i.e.,

L= £ce + Ectr- (4)

5 Experiments

5.1 Setup

Datasets Our experiments comprise three popu-
lar English-centric datasets, i.e., the training and
validation sets only involving translation pairs
translating to en or from en, including Europarl-15
(Koehn et al., 2005; Dabre and Kurohashi, 2019),
TED-19 (Ye et al., 2018) and OPUS-100 (Zhang
et al., 2020a; Yang et al., 2021). The details of
those datasets can be found in Appendix B.

Evaluation We evaluate the performance of mod-
els on the test sets of those three datasets and set
the beam size to 4 in inference. We employ Sacre-
BLEU (Papineni et al., 2002; Post, 2018) to evalu-
ate the quality of inferences at the word level and
report BERTScore (Zhang et al., 2020b) of infer-
ences at the representation level. We measure the
off-target ratio on zero-shot translations as a sup-
plement. We also conduct statistical significance
testing (Koehn, 2004). We describe our motiva-
tion in selecting evaluation metrics, the evaluation
details, and the implementation of statistical signif-
icance testing in Appendix H.

Models When training from scratch, we imple-
ment a Transformer model with 6 encoder and de-
coder layers. Given that those three datasets have
different sizes, we set different hyper-parameters in



Europarl-15 TED-19 OPUS-100

BLEU B.S. BLEU B.S. BLEU B.S.
MCIhOd en— —en Zero. en— —en Zero. en— —en Zero. en— —en Zero. en— —en Zero. Zero.
VANILLA 3749 4339 2465 8850 9571 8427 2453 29.67 1198 83.77 93.54 7774 2337 2830 504  69.98
DisPos  37.15 4337 2589 8839 9572 8469 2408 2943 12.80 83.62 9349 7836 2272 2824 558 7074
TLP 3741 4328 2496 8847 9571 8440 2444 2962 1274 8373 9353 7824 2341 2830 4.60  69.40
SEMALI 3727 43.06 2525 8842 9569 8443 2355 2867 1345' 8343 9336 78911 2235 2829 642  72.00
LOLE 37.62 4350 26091 88.51 9572 8481 2439 2972 1320 8374 9354 78.65 23.15 2828 7.921 73.32f
LCLR 3744 4343 2571 8846 9572 8466 2446 2966 1212 8376 9354 77.87 2334 2837 511  70.04
BOTH 37.67 4351 26200 8850 9572 84.851 2449 2979 13317 8376 93.56 78.761 2340 2827 797" 73.10f

Table 1: Averaged scores for experiments of training from scratch. BOTH means using LOLE and LCLR
together; en— and —en abbreviates en—x and x—en; zero. means zero-shot language pairs; and B.S. abbreviates
BERTScore. We only report zero-shot language pairs of OPUS-100 because BERTScore does not support some
pairs in supervised translations, but zero-shot translation pairs of OPUS-100 are involved only with 6 languages,
which are supported. The bold number indicates the best result and the numbers with t are significantly better than
VANILLA according to the significance test with p < 0.05. The off-target ratios are reported in Appendix I.

training. Then, three open-source models are uti-
lized in fine-tuning experiments, including M2M-
418M, M2M-1.2B (Fan et al., 2020) and mBARTS50
(Tang et al., 2020). The hyper-parameter settings
can be found in Appendix C. Additionally, hyper-
parameters are selected based on the ablation stud-
ies conducted on the validation sets, which is re-
ported in Appendix E.

Baselines Vanilla Transformer (Vaswani et al.,
2017; Johnson et al., 2017) is one of the baselines,
denoted by VANILLA in the experiments of training
from scratch. Then, the baseline in fine-tuning ex-
periments is the full-parameter fine-tuning, denoted
by F.T.. Moreover, three representative methods
are reproduced in our experiments of training from
scratch, the standard of baseline selection is as fol-
lows:

¢ SEMALI: Pan et al. (2021) think the encoder
output is language-agnostic, so they align
the semantic information across different lan-
guages at the output of the encoder. How-
ever, our analysis shows that this viewpoint is
inaccurate because the semantic information
is aligned by the subspace of the target lan-
guage instead of the real language-agnostic.
When there are not any additional parame-
ters introduced, SEMALI still is the de-facto
SOTA based on regularizing representations
in MNMT.

DisPos: Liu et al. (2021) have the same ob-
jective as LoLE, however, they suggest reduc-
ing the constraint on the encoder (Gu et al.,
Note that, those models are trained by adding a source lan-

guage tag at the encoder and a target language tag at the
decoder. In fine-tuning, we keep the original strategy.
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2019) by removing the residual connection,
which is a different style that corresponds to
the idea of biasing we used in LoLE.

TLP: Yang et al. (2021) aim to add a loss
to predict the language id at the top layer of
the decoder, which is contrary to LCLR and
our analysis in Section 3.4 where we argue
that the bottom layers of the decoder are more
sensitive to the language features.

5.2 Results

First of all, Gu et al. (2019); Liu et al. (2021)
pointed out that the vanilla Transformer is superior
in supervised translation directions, i.e., en<->X,
because the model excessively focuses on English,
which is the language dominating the training set,
to lose its generalization on non-English languages,
i.e., the zero-shot translation. Moreover, Huang
et al. (2023); Chen et al. (2023b) showed that im-
proving the zero-shot may come at the expense of
supervised performance. In this work, our meth-
ods significantly improve the zero-shot translation
without degrading the supervised performance in
both training from scratch and fine-tuning.

Table 1 shows the experimental results of train-
ing from scratch. In supervised translations of
Europarl-15/TED-19/0PUS-100, LOLE shows di-
vergent results of 0.13/-0.04/-0.22 on en—x and
0.11/0.05/-0.02 on x—en. Similarly, LCLR shows
diverse results of -0.05/-0.01/-0.03 and 0.04/-
0.01/0.07, respectively. Then, BOTH achieves the
results of 0.18/-0.02/0.03 on en—x and 0.12/0.12/-
0.03 on x—en. In zero-shot translations, BOTH
outperforms VANILLA 1.55/1.33/2.93 for BLEU
and 0.58/1.02/3.12 for BERTScore. Our models
perform best in zero-shot translations of Europarl-



BLEU BERTScore
Method en— —en zero.* en— —en zero*
M2M-418M  21.88 2643 1451 8252 9325 79.26
E.T. 26.68 3295 1746 8447 9430 80.79
LOLE 26.81 3316 17.52 8451 9431 80.84
LCLR 26.81  33.677 17.65 8447 9440 80.88
BOTH 26.83  33.631 17.68 8449 9438  80.90
M2M-1.2B 2432 2894 1595 83.17 9372 79.75
E.T. 2771 3497 1848 8471 9453 8l.14
LOLE 28297 3412  18.67 84917 9448  81.26'
LCLR 28267 3454  18.64 84907 9450 81.22
BOTH 28377 3459  18.69 84.92f 9451 81.23
mBART50 2528 3350 692  83.93 9443 7291
F.T. 27.17 3396 558  84.64 9436 72.96
LOLE 27.19 3393 728" 8460 9437 73.86
LCLR 27.07 3402  9.697 8459 9438 75311
BOTH 2736 34.04 9557  84.66 9436 75.55F

Table 2: Averaged scores for experiments of fine-tuning.
F.T. means fine-tuning without any trick. * is added
to zero. to show it is not a real zero-shot scenario for
M2M. The bold number indicates the best result, and
the numbers with T are significantly better than F.T..
The off-target ratios are reported in Appendix L.

15 and OPUS-100, and the improvements in zero-
shot translations are always statistically significant.
Note that, although SEMALI achieves the best zero-
shot translation performance in TED-19, the super-
vised performance of SEMALI is significantly de-
graded compared to VANILLA, which is a common
and unresolved problem (Gu et al., 2019; Zhang
et al., 2020a; Liu et al., 2021). On the contrary,
our methods not only perform competitively with
SEMALI in zero-shot translations but also bene-
fit the supervised translation capacity. Moreover,
these two proposed methods are orthogonal, which
can be proved by assessing LOLE, LCLR and
BoOTH individually: (1) LOLE achieves gains of
1.53/1.22/2.85 for BLEU and 0.54/0.91/3.34 for
BERTScore; (2) LCLR improves 1.06/0.14/0.09
and 0.39/0.13/0.06 scores; (3) The gains of BOTH
are always higher than LOLE and LCLR. In ad-
dition, we can observe that the improvement of
LCLR is limited in TED-19 and OPUS-100, which
can be attributed to the diverse languages involving
in these two datasets and being easily distinguished
by the vanilla decoder. This result also supports
that the main challenge of MNMT is the transfer
within the encoder. Thus, we can conclude that our
methods substantially benefit the zero-shot transla-
tion capacity of MNMT models.

Table 2 shows the experimental results of fine-
tuning. For M2M-418M, compared with F.T., our
methods obtain up to 0.15/0.72/0.22 for BLEU
scores and 0.04/0.10/0.11 for BERTScore in en—X,

88

0.10

H -0.01 | 0.18

% 019

(b) SVCCA

(a) BLEU

Figure 8: Differences between our model and VANILLA.
X-axis is the target language family where en is consid-
ered solely. Hence, we plot the color ladder by column
where the darker the color, the bigger the difference.

x—en and zero-shot translations, respectively; For
M2M-1.2B, the gain is up to 0.66/-0.38/0.21 for
BLEU scores and 0.21/-0.02/0.12 for BERTScore;
For mBARTS50, the gain is up to 0.19/0.08/4.11 for
BLEU scores and 0.02/0.02/1.69 for BERTScore.
Those scores show that the improvement on M2M
is marginal compared with training from scratch.
This derives M2M is trained by interconnected
translation pairs instead of an English-centric
dataset, which results in the robust transferabil-
ity of multilingual representations. However, the
degeneration on F.T. of mBARTS50 shows that fine-
tuning drastically influences the zero-shot transla-
tion capacity. For instance, the BLUE scores of
fr—vi decrease to 11.84 from 20.57 and fr—zh
increase to 13.52 from 1.90, but our model obtains
18.47 and 17.19, respectively. Such results and the
significant testing indicate again the advantage of
our proposed methods in improving multilingual
representations for zero-shot translation capacity.

6 Discussion

6.1 Correlation between Representational
Disentanglements and Improvements

Table 1 shows the overall results by taking averages
across all language pairs, which may overlook pair-
specific tendencies. Therefore, we group Europarl-
15 by the language families and report the average
scores of translating from one language family to
another. Figure 8a shows the difference in BLEU
scores between our models and VANILLA. As
shown in Figure 8b, we also compute the SVCCA
scores between the identity of the non-central lan-
guage and the identity of the central language at
the encoder’s output and group them in the same
manner. Given the similar distribution in Figure



1 =

_"l

-
AT

B
8 g~ 8 S
I = - -
S = l l g .—-*:———‘I l
o7 Sos
s.. I I | g I I |
S S
0.6 0.6 W
G N\ {0
D os (i) pt>pt&hu >pt N\ 05 (i) ar>ar&zh >ar i
(ii)  pt->pt &ipt->hy I I N\ (ii)e 8-> ar Jar->2h I I \
04 (iii): pt->pt & hu->hu -\ 041 mmm (jii): ar>ar & zh->zh \
%

L1 L2 L3 L4 L5 L6
Representations Per Encoder Layer

2 3 L 5
Representations Per Encoder Layer

(a) Compare to Fig. 2b.

-

| |
- =

-

T
-40

(b) Compare to Fig. 2d.

> 8
q '_m

vi->ar
= vi->en

 nl->pt
nl->bg
mmm nl->en

T T T T T T T
-60 -40 -20 0 20 40 60

(d) Compare to Fig. 5f.

it

24 3 (iv): he->ja & he->ja (reordered) *
+{ mEm (v): he->ja & he->he

T T T T T
-20 0 20 40 60

(c) Compare to Fig. 5c.

hiT

SVCCA Scores
SVCCA Scores

21 3 (iv): es->fi & es->fi (reordered)
1 B (v): es->fi & es->es

b 5 O s b
Outputs Per Decoder Layer

(f) Compare to Fig. 6b

5 O o 5 s
Outputs Per Decoder Layer

(e) Compare to Fig. 6a.

Figure 9: Visualizations for the encoder that incorpo-
rates LOLE and LCLR, showing improvements com-
pared with VANILLA. Additionally, the model plotted
in 9e only incorporates LCLR.

8, we conduct Pearson correlation analysis (Pear-
son, 1896) of all language pairs instead of language
families in Europarl-15, and we compute the coeffi-
cients and p-values of Pearson correlation by target
languages to maintain fairness. We observe two
key points: 1) The coefficient and p-value of en
are -0.087 and 0.76, respectively. This result sug-
gests that there is no statistical correlation, which
is predictable because x—en is not affected by rep-
resentational entanglements. 2) The coefficient and
p-value of non-central languages are in the ranges
of 0.585 to 0.855 and 4e-5 to 0.021, respectively.
In more detail, the mean values are 0.770 and 0.002
and the variances are 0.04 and 3e-5, respectively.
This analysis proves that the degree of representa-
tional disentanglement positively correlates with
the improvement of zero-shot translations.

6.2 Analysis of Improved Representation

We measure representation transfer in the model
incorporating our proposed methods to verify our
findings further. As shown in Figures 9a and 9b,
both scenarios exhibit improvements on (i). Mean-
while, Figures 9c and 9d indicate that the entan-
glement of representations among languages at the
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encoder is resolved. The evidence suggests that
LOLE effectively enhances representation transfer
in the encoder. Additionally, (ii) and (iii) in Figures
9a and 9b also achieve higher scores at lower layers
of the encoder, which suggests that LOLE indeed
makes lower layers of the encoder focus on surface-
level information. By contrast, as shown in Figures
9¢ and 9f, the more stable trend of (iv) in both
scenarios suggests that LCLR can improve the ca-
pacity of lower layers of the decoder to distinguish
languages to improve zero-shot translations. In ad-
dition, Appendix F provides the representational
analysis for fine-tuning models, which proves that
target language features are consistently beneficial
in the encoder.

7 Related Works

Prior studies on analyzing multilingual representa-
tion in Section 2.2 led to several effective methods
in MNMT. Some works focused on updating and
constraining the encoder to improve multilingual
representations, and the findings in discrepancy
mentioned in Section 2.2 led to two distinct ap-
proaches. First, Pan et al. (2021); Gu and Feng
(2022); Gao et al. (2023); Bu et al. (2024) sug-
gested regularizing the encoder for aligning seman-
tic information across different source languages
by introducing additional training objectives. Sim-
ilarly, Pham et al. (2019); Zhu et al. (2020) ex-
plicitly modified the output form of the encoder
to transfer the representation of the source sen-
tence toward a language-agnostic state. Second,
Gu et al. (2019); Liu et al. (2021); Sun et al. (2024)
introduced specialized modeling constraints to im-
prove the encoder to transfer source sentence rep-
resentations to the target language without adding
extra parameters, and Zhang et al. (2021); Pires
et al. (2023) enhanced the representation of target
language information by simply adding language-
specific modules. Additionally, Yang et al. (2021);
Qu and Watanabe (2022); Bu et al. (2024) focused
on improving the target language representation on
the decoder side or adding modules specified to the
target language to the decoder. Given that the above
works can all be encompassed within our analyses,
we argue that this work offers insights for future
improvements in MNMT. Specifically, enhancing
the encoder to transfer source language represen-
tations into the target language subspace and align
semantic information within those subspaces is the
key to improving MNMT.



In addition, a critical factor of this work is the in-
troduction of the identity pair as an analytical tool.
Specifically, while identity pairs have been heuristi-
cally used in prior works (Tiedemann and Scherrer,
2019; Thompson and Post, 2020; Bu et al., 2024),
as an assumed indicator of language-specific rep-
resentation states, they have not been subject to
systematic or quantitative analysis. In contrast, we
explicitly define, validate, and utilize identity pairs
to probe representational properties in a controlled
and measurable way. This not only strengthens the
empirical basis of our conclusions but also consti-
tutes an important methodological contribution of
this work.

8 Conclusion

We systematically investigated the representational
issue of zero-shot translation deficiency in multi-
lingual neural machine translation models. Our
analyses show that the encoder transfers translation
representations from the source language to the
target language, and aligns semantics across dif-
ferent source languages at the target language sub-
space. We applied engineering practices to verify
our findings by proposing two orthogonal methods,
which substantially improve the zero-shot transla-
tion capacity. Thus, our findings are significant for
guiding the improvement of the transferability of
multilingual representations.

9 Limitations
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Figure 10: Illustration of the comparison between the
bidirectional and the unidirectional scenarios. 10a has
the same model settings with Figure 2, but analyzes the
same pairs with 10b.

This work has two limitations. First, the identity
pair is a proxy of language representations based
on bi-directional training, i.e., each non-central
language appears in the encoder and decoder to-
gether. Therefore, we designed an additional study
to investigate the impact by retraining a model by
eliminating n1—en and en—it so that it and nl
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appear only in the encoder and decoder, respec-
tively, based on the analysis in Section 3.2. Then,
we conducted a comparison by taking de as the
middle language to perform the role of identity
pairs in analysis. As shown in Figure 10, the target
language features keep the same trend as shown
in Section 3.2 to support our conclusion again, but
the influence of source language features increases
relatively.

The second limitation is our investigation is
based on adding a language tag specified to the
target language at the beginning of the source sen-
tence for the encoder. Although this is the de facto
MNMT training strategy (Johnson et al., 2017; Aha-
roni et al., 2019; Arivazhagan et al., 2019a; Gu
et al., 2019; Pham et al., 2019; Wu et al., 2021;
Yang et al., 2021; Pan et al., 2021; Qu and Watan-
abe, 2022; Chen et al., 2023a; Gu and Feng, 2022;
Gao et al., 2023), the current open-source models
(Fan et al., 2020; Tang et al., 2020; Team et al.,
2022) are based on another strategy, i.e., adding a
source language tag at the encoder side and adding
a target language tag at the decoder side. Although,
in Section 5, we have shown our proposed methods
also benefit models with this strategy, this effec-
tiveness is proved by empirical experiments. Thus,
our future work is to investigate the representation
transfer of this strategy to guide further improve-
ments.

10 Further Considerations

Ethical Consideration All datasets used in this
work are public data, which are proven harmless.
Moreover, this work is foundational research and
is not tied to particular applications. Thus, there is
no ethical risk existed in this work.

Sustainability statement As noted in Appendix
C, the GPU used in training individual models
is A6000, which has an estimated carbon diox-
ide emission of approximately 0.13 kg per hour.
Specifically, models trained on Europarl-15 and
TED-19 required approximately 48 GPU hours,
while models trained on OPUS-100 necessitated
around 192 GPU hours.
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A Sentence-level SVCCA Score

We use SVCCA (Raghu et al., 2017) to measure
representation similarity in MNMT (Kudugunta
et al., 2019). We follow the approach of Liu et al.
(2021) so that similarity is measured at the sen-
tence level to ensure that each score is computed on
equivalent features without the influence of other
sentences in the set.

Based on the definition of Section 2.1, we de-
note hidden representations of a sentence by H =
{h1,hs...hy}, where H € R?*? ¢ equals to the
length n or m from either the encoder or decoder,
and d is the model dimension. Additionally, the
practical length is n + 1 when H is fed into the
encoder because the encoder receives the input
concatenated by [ and «’. Then, we derive the
sentence-level representation h using average pool-
ing h = # , which mainly represents the
language features and semantics of the source sen-
tence rather than syntactic information because po-
sitional information is reduced.

Given H® and H? derived from two sentences,
SVCCA first performs singular value decompo-
sition on their averaged representations to obtain
subspace representations h” € R4 and R e R,
where noise is reduced (Saphra and Lopez, 2019).
Then we perform canonical correlation analysis
(Hardoon et al., 2004) to determine W € R%*"
and Wb € R&xd", Formally, we compute correla-

tion p between B and i as
Y (WR" WPR")
- —a b,
[Weh™|[[Weh|

&)

where (-, -) indicates the inner product. We use
p to represent the similarity of two sentences. Fi-
nally, we compute the set-level score by taking the
average scores of all sentences over the set.

B Detailed Information of Datasets

This work involves three datasets, i.e., Europarl-
15, TED-19, and OPUS-100, where Europarl-15
and TED-19 are used in preliminary experiments.
The training sets of those three datasets have dif-
ferent sizes, but the validation and test sets of a
pair generally contain 2,000 translation instances.

71 plays the role of translation instruction instead of a token
belonging to the target language with semantics, thus, this
concatenation would not influence the measurement by mixing
target language information into the sentence representation
within the encoder.
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In preliminary experiments, we measure SVCCA
scores in the test sets because those instances are
unseen in the training.

Europarl-15 is collected from MMCR4NLP,
which has high-quality translation instances and
each instance in a language is one-to-one corre-
sponding to other languages, i.e., all language-
specific sets have parallel semantics (Koehn et al.,
2005; Dabre and Kurohashi, 2019), including 15
European languages from 4 language families.
Specifically, Germanic includes en, de, nl, da, Ro-
mance includes es, pt, it, ro, Slavic includes s1,
bg, pl, cs, and Uralic includes fi, et, hu. The
training and validation sets cover 28 supervised
translation pairs where English is the central lan-
guage used to bridge the non-central languages.
The test set consists of all language pairs, includ-
ing 182 zero-shot translation pairs in addition to
supervised translation pairs. Finally, each pair in
the training set comprises 189,310 instances.

In contrast to Europarl-15, which is the seman-
tically aligned dataset, TED-19 consists of 19 lan-
guages, including en, ar, he, ru, ko, it, ja, zh,
es, nl, vi, tr, fr, pl, ro, fa, hr, cs, de, which
belong to various language families without par-
allel semantics, from TED Talks (Ye et al., 2018).
Each translation pair contains 103,093 to 214,111
instances in training, and the training set comprises
6,551,456 instances in total. Because of the un-
parallel semantics of TED-19, we align ar, he, zh,
hr, vi, ja to obtain 967 translation instances for
measuring SVCCA scores. In addition, the rea-
son why the number of languages is 19 is that,
first, TED Talks have 20 high-resource languages,
which are supported in M2M (Fan et al., 2020)
and mBARTS50 (Tang et al., 2020). However, the
tokenization of th is problematic, resulting in dep-
recating th.

OPUS-100 consists of 95 languages, 188 pairs,
and 109.2 million instances in total (Zhang et al.,
2020a; Yang et al., 2021), where 90 pairs comprise
1 million instances and 56 pairs have more than 0.1
million instances. Different from Yang et al. (2021),
we do not include the zero-shot translation pairs in
the validation set to avoid biases when assessing
the transferability of multilingual representations.

C Detailed Settings of Models

We implement the Transformer (Vaswani et al.,
2017) as the backbone model via Fairseq (Ott et al.,
2019). For the configuration of models trained on



Europarl-15 and TED-19, we follow Kudugunta
et al. (2019) to set 6 encoder and decoder layers.
Based on the ablation study conducted in the val-
idation set in Europarl-15 and TED-19 shown in
Appendix E, we apply LOLE in the fifth encoder
layer, set d° to 128, and set d* and k of LCLR
to 64 and 30, respectively. When we solely apply
LCLR, we set the position to the bottom decoder
layer based on the findings in Section 3.4. When
we integrate both LOLE and LCLR into a model,
we relocate LCLR to the second-bottom decoder
layer because of the improved language features
of the encoder representations. We adopt a shared
vocabulary trained by SentencePiece (Kudo and
Richardson, 2018) with 50,000 tokens for both the
encoder and decoder. The model consists of 4 at-
tention heads, embedding size of 512, inner size of
1024, dropout rate of 0.2, maximum learning rate
of 0.0005 with the inverse square root schedule and
4,000 warmup steps, and label smoothing rate of
0.1. We set the batch size to 8,000 tokens per GPU,
apply Adam (Kingma and Ba, 2017) as the opti-
mizer, and set temperature sampling with 7' = 5
(Arivazhagan et al., 2019b). We train the model
with 60 epochs for Europarl-15 and 30 epochs for
TED-15, and finally average the top 5 checkpoints
using the loss on the validation set. Compared
with the basic configuration, the models trained on
OPUS-100 have 8 attention heads, embedding size
of 512, inner size of 2048, dropout rate of 0.1, and
shared vocabulary size of 64,000. We enlarge d° to
256 and d” to 128 for models trained on OPUS-100
and three pre-trained models because they involve
more languages. We train the model of OPUS-100
for 400,000 update steps with a batch size of 8,000
tokens per GPU for OPUS-100 and directly use
the best checkpoint selected using the loss on the
validation set. Furthermore, models with Europarl-
15 and TED-19 are trained on 8 NVIDIA V100
GPUs, and models with OPUS-100 are trained on
4 NVIDIA A6000 GPUs by setting —update-freq to
2 in Fairseq to simulate 8 GPUs.

Three open-source models are utilized in fine-
tuning experiments. The first is M2M-418M (Fan
et al., 2020), trained on standard multilingual trans-
lation tasks and supporting translation across 100
languages. It is based on Transformer architecture,
configured with 12 encoder and decoder layers,
embedding size of 1024, inner size of 4096, and
vocabulary size of 128,112, which results in a to-
tal of 418 million parameters. The second model,
M2M-1.2B (Fan et al., 2020), enlarges the num-
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Figure 11: Affinities for en—x at each encoder layer.
Language families of Europarl-15 are distinguished by
colors: Germanic by red, Romance by yellow, Slavic by
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Figure 12: Visualizations by t-SNE and BiKDE of

aligning representations between en—en and x—en of
Europarl-15 at the output of the encoder.

ber of layers to 24 and the inner size to 8192 on
M2M-418M, and culminates in 1.2 billion param-
eters. The last model is mBARTS50 (Tang et al.,
2020), trained on monolingual corpora across 50
languages following Lewis et al. (2019); Liu et al.
(2020) and preliminarily fine-tuned for MNMT. It
shares the same parameter setup as M2M-418M
with a vocabulary size of 250,053, which consists
of 611 million parameters. We conduct experi-
ments on TED-19 because all covered languages
are supported by these models.

D Detailed Introductions of Figure 1

In fact, Figure la corresponds to the last sub-
figure of Figure 11 to show the linguistic affin-
ity between translations from English to other
languages, denoted by en—x. Specifically, Fig-



ure 11 shows the layer-wise states of the en-
coder, and Figure la (Figure 11f) demonstrates
the state at the output of the encoder. We em-
ploy sklearn.manifold.SpectralEmbedding, refer-
ring to https://scikit-learn.org, to visualize
the similarities computed by SVCCA (Appendix
A) for every layer in the encoder. Then, we can find
that representations at all encoder layers have cer-
tain clusters influenced by the families of the target
languages, and the clusters become more distinct
as the depth of the encoder layers increases. This
suggests that the transfer of representations to the
target language begins as early as the first layer of
the encoder, with gradual strengthening through fur-
ther layers. Meanwhile, this finding, i.e., even the
initial encoder layers capture target language fea-
tures, complements prior works (Kudugunta et al.,
2019; Pires et al., 2023).

On the other hand, we follow Pan et al. (2021)
and Gao et al. (2023) to measure the alignment of
encoder representations between the identity of en
and source languages from different families to En-
glish using t-distributed stochastic neighbor embed-
ding (t-SNE) (van der Maaten and Hinton, 2008)
and bivariate kernel density estimation (BiKDE)
(Wand and Jones, 1993). As shown in Figure 12,
representations from the four language families are
all highly aligned with the identity pair of en—en,
where the common feature of those translations is
the parallel semantics. Thus, this proves that the
encoder semantically aligns different translations.
However, the deep discussion should be referred to
Section 3.2.

E Selecting Hyper-Parameters

We conduct ablation studies on the validation set of
Europarl-15 to select hyper-parameters for LOLE
and LCLR, which are used in Section 5.1. Fig-
ure 13a shows that LOLE performs optimally with
the dimension of 128, which corroborates our hy-
pothesis in Section 4.1. Figure 13b indicates that
LOLE performs the best at the fifth layer and de-
grades significantly at lower layers, which aligns
with our assertion in Section 3.2 that lower layers
of the encoder are more correlated with the source
language, and enhances the language transfer ben-
efits of transferability (Section 4.1). Figure 13c
is consistent with the theory of contrastive learn-
ing in which full dimensions lead to collapse (Jing
et al., 2022). Figure 13d demonstrates that, as
the position constructed by LCLR increases, the
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Figure 13: Illustrations for the ablation study. A means
the difference between the scores of our methods and the
scores of VANILLA. 13a and 13b present variations of
LoLE in dimensions and layers, respectively; and 13c,
13d, and 13e present variations of LCLR in dimensions,
layers, and k, respectively.

scores decrease, which lends support to our anal-
ysis in Sections 3.4 that the instability of decoder
representations primarily manifests at lower layers,
which also explains the weakness of TLP because
improving the capacity of distinguishing languages
is redundant for the decoder’s top layer. We also
conduct an ablation study for hyperparameter % for
LCLR with a dimension of 64 at the bottom de-
coder layer. The results are shown in Figure 13e,
with an empirically optimal k£ = 30.

F Analysis of Improved Representation
for Fine-tuning Pre-trained Models

Section 6.2 is the representational analysis for mod-
els, which are trained from scratch with proposed
LOLE and LCLR. We also show the representa-
tional analysis for fine-tuning pre-trained models.
Given the positive correlation shown in Section
6.1, we compute SVCCA scores in the same way
as done in Section 3.2 and show the results in Ta-
ble 3. Unlike Section 3.2, we equally consider the
encoder and decoder because the encoder is only
related to the source language and does not transfer
representations to the target language in the training


https://scikit-learn.org

Pairs  Model Method ()  Gi) (i)
vom  FT. 7966 1000 79.66
@ofzh ] LOLE 79.52 9875 7776
@ of ar ET 6397 1000 6397
Encoder ___"U'NU LOLE_ 6352 97.90 6166
Side vov BT 81507 10007 8150
@ofhe 1 LOLE 80.54 98.27 79.88
@ of vi ET 6917 1000 6917
mBART | OLE 7046 9761 67.04
vom FT 9980 9201 9265
Decoder @ofja 1 LOLE 9973 89.81 90.66
Side  ®ofhe ET. ~ 79833 9076 8962
mBART | OLE  98.64 9007 8849

Table 3: SVCCA scores. Each score times 100 for a
clear illustration. (i) compares the identity of @ and
®—®, (ii) compares the identity of @ and @—®, and
(iii) compares identities of @ and ®. Encoder Side
means computing the output of the encoder, and De-
coder Side means computing the output of the 1st layer
of the decoder.

strategy of M2M (Fan et al., 2020) and mBART50
(Tang et al., 2020). Additionally, the different train-
ing strategy is the primary reason that F.T. shows
the same scores in (i) and (iii) and keeps 100.0 in
(ii). Alternatively, although the scores of (i), which
reflect target language features, decrease in our
methods, the scores of (ii) and (iii) also decrease.
As a result, the differences between the scores of
(1), (ii), and (iii) increase, that is, the relative impor-
tance of target language features increases. This
result proves our statements in Sections 3.3 and
6.1 again that target language features are consis-
tently beneficial in the encoder. On the other hand,
the decoder side shows the same tendency as the
encoder side. This fits our motivation in Section
4.2 to further improve the discriminating ability
of lower layers of the decoder, although the train-
ing strategy of M2M and mBARTS50 has already
provided a high capacity in discrimination for the
decoder.

G Token-level Alignments in Other Cases

First of all, the English sentence for semantic anal-
ysis in Figures 4 and 14 is: By the end of this year,
there will be nearly a billion people on this planet
that actively use social networking sites. Compared
with the discussion in Section 3.2, token-level rep-
resentations are not aligned at the embedding layer,
and are relatively aligned in the case of using the
identity pairs, where the degree of divergence is
substantially higher than the case of Figure 4.
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Figure 14: Illustration of the token-level alignment cor-
responding to Figure 1b. Representations shown in 14a
are collected at the embedding layer, whose overall vari-
ance is 1.45. Representations shown in 14b are collected
from identities, whose overall variance is 0.13.

H Evaluation Metrics Selection

In this work, we select two main automatic eval-
uation metrics and a secondary statistic measure-
ment. The first one is SacreBLEU (Post, 2018)
which is an implementation of BLEU (Papineni
et al., 2002). This is the most popular and common
metric used in evaluating the alignment between
inferences and references at the word level. In
order to counter the insufficiency of SacreBLEU,
we also select BERTScore (Zhang et al., 2020b),
which is a representational metric to evaluate the
semantic similarity between inferences and refer-
ences. Furthermore, to show whether the improve-
ments brought by proposed methods are signifi-
cant, we also conduct the statistical significance
testing (Koehn, 2004) using paired bootstrap re-
sampling with 1,000 iterations and 0.5 resampling
ratios, consequently, the case of p < 0.05 means
that the difference is significant.

Additionally, we follow prior works (Yang et al.,



Europarl-15 TED-19 OPUS-100
Method zero.(T) off.(}) zero.(T) off.(}) zero.(T) off.(})
VANILLA  24.65 1.34 11.98 4.08 5.04 70.41
DisPos 25.89 0.84 12.80 3.82 5.58 61.65
TLP 24.96 1.22 12.74 371 4.60 83.29
SEMALI 25.25 0.99 13.45 3.62 6.42 58.25
LOLE 26.09 0.71 13.20 3.69 7.92 50.05
LCLR 25.71 0.79 12.12 3.86 5.11 68.53
BOTH 26.20 0.74 13.31 3.69 7.97 55.06

Table 4: Off-target ratio corresponding to experimental
results in Table 1. zero. indicates the BLEU scores of
zero-shot translations. off. indicates the off-target ratio
counted by all zero-shot translation pairs.

Model Metric PRE. FET. LOLE LCLR BOTH
M2M-41EM Z(ffrfo(ﬁ) 1;6561 137.;:6 137..3522 137.2? 137.5638
N
v ) SR %

Table 5: Off-target ratio corresponding to experimental
results in Table 2. Abbreviations follow Table 2 and
PRE. refers to the model without any fine-tuning. In
addition, compared to Table 4, we switched the horizon-
tal and vertical axes, because there is only one dataset,
TED-19, used in fine-tuning experiments.

2021; Chen et al., 2023a) to report the off-target
ratio, which is measured by fasttext-langdetect®.
The off-target translation refers to a sentence trans-
lated to an incorrect target language rather than
the target language we expected. However, the
off-target ratio is not reliable, because the popular
tools used in measuring off-target ratios are based
on word level and lack support in low-resource lan-
guages. Furthermore, the score of SacreBLEU can
directly show the problem of off-target, because the
evaluation process of SacreBLEU tends to give a
great penalty on an inference, which has a different
writing script from the expected target language.
Therefore, we only report it as a secondary metric
in Appendix L.

I Off-Target Ratio of Results

Tables 4 and 5 show the measurement of the off-
target ratio, which are the supplement of Tables
1 and 2. We can observe that the off-target ratio
is always inversely proportional to BLEU scores,
aligning with our discussion in Appendix H. Addi-
tionally, there are two points worth noting: (1) In
Table 4, the off-target ratio in OPUS-100 is gener-

Shttps://pypi.org/project/fasttext-langdetect
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ally higher. This is not an outlier because result-
ing in a strong zero-shot translation capability in
OPUS-100 is particularly challenging due to the
large number of languages involved and the lim-
ited corpus for individual languages (Zhang et al.,
2020a; Yang et al., 2021). (2) In Table 5, the off-
target ratio counted from mBARTS50 is higher than
other cases. This abnormal value has been dis-
cussed in Section 5.2, that is, the zero-shot ability
of mBARTS50 is weaker than M2M models, and
then, the fine-tuning dramatically changes the be-
havior of the model.
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Abstract

This study explores Machine Translationese
(MTese) — the linguistic peculiarities of ma-
chine translation outputs — focusing on the
under-researched English-to-Chinese language
pair in news texts. We construct a large dataset
consisting of 4 sub-corpora and employ a com-
prehensive five-layer feature set. Then, a chi-
square ranking algorithm is applied for feature
selection in both classification and clustering
tasks. Our findings confirm the presence of
MTese in both Neural Machine Translation
systems (NMTs) and Large Language Mod-
els (LLMs). Original Chinese texts are nearly
perfectly distinguishable from both LLM and
NMT outputs. Notable linguistic patterns in
MT outputs are shorter sentence lengths and in-
creased use of adversative conjunctions. Com-
paring LLMs and NMTs, we achieve approxi-
mately 70% classification accuracy, with LLMs
exhibiting greater lexical diversity and NMTs
using more brackets. Additionally, translation-
specific LLMs show lower lexical diversity but
higher usage of causal conjunctions compared
to generic LLMs. Lastly, we find no signifi-
cant differences between LLMs developed by
Chinese firms and their foreign counterparts.

1

A recent, striking report — with an arguably sen-
sational title — proclaims a groundbreaking mile-
stone for LLMs in the field of machine translation
(MT): “Machine Translation is Almost a Solved
Problem”". Although the article’s perspective is
primarily forward-looking, with a clear acknowl-
edgment on the enduring value of human transla-
tion, its message to the public, as the title suggests,
is rather obvious: With the help of LLMs, MT

Introduction

© 2025 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

"https://www.economist.com/
science-and-technology/2024/12/11/
machine-translation-is-almost-a-solved-problem
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currently appears to be nearing perfection. But is
it?

Multiple studies showed that LLMs have revolu-
tionized the way we approach language translation,
reaching to an unprecedented level of accuracy,
contextual understanding, and fluency (Jiao et al.,
2023; Peng et al., 2023; Wang et al., 2023; Enis
and Hopkins, 2024). It even outperformed some
specialized NMT systems under a fine-grained
evaluation setting (Manakhimova et al., 2023).
Further compelling evidence of the benefits of
LLMs is reflected in the WMT24 finding sum-
mary (Kocmi et al., 2024), which clearly demon-
strate their dominance in the competition. Most of
the top-performing systems were LLM-based, with
standout models, like Claude-3.5-sonnet, achieving
leading positions across multiple language pairs.

Despite their advantages, several limitations per-
sist. Notably, LLMs often face challenges with
low-resource languages (Enis and Hopkins, 2024),
in explaining, practicing and translating sophisti-
cated concepts (Qian and Kong, 2024), and ad-
dressing gender bias issues associated with vo-
cabulary options (Stafanovics et al., 2020). An
area that remains largely underexplored is the in-
fluence of machine translationese. While MTese
has been demonstrated in NMT output (Vanmassen-
hove et al., 2019, 2021), it has not yet been fully
investigated in the context of LLMs.

MTese can subtly influence the readability, natu-
ralness, and even credibility of news articles, poten-
tially shaping public perceptions. Studying MTese
is critical from several perspectives. In education,
MT has been widely utilized in second language ac-
quisition, with MT output sometimes even regarded
by students as “expert” (Rowe, 2022). However,
MTese may potentially impact the authenticity of
learning materials, raising concerns about its in-
fluence on learners’ lack of exposure to genuine
linguistic patterns. In language evolution, it pro-
vides insights into how machine-mediated commu-
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nication might drive changes in linguistic norms,
and whether MTese would also plays a part in
the course, such as influencing language complex-
ity (Cristea and Nisioi, 2024). In literary trans-
lation, MTese poses a potential hindrance to the
creativity and linguistic richness of literary trans-
lation, continuously challenging the long-debated
concept of “human parity” (Poibeau, 2022) from a
stylistic perspective.

Against this background, we have chosen MTese
as the focus of this study, specifically exploring
its manifestations and differences in NMTs and
LLMs for the linguistically distant language pair
of English to Chinese (E2C).

2 Related work

First introduced by Gellerstam (1986), the concept
of translationese describes the systematic influence
of a source language on the target language dur-
ing translation. When applied to MT, Daems et al.
(2017) emphasize the pivotal role of MTese in shap-
ing the characteristics of post-edited texts, analyz-
ing 55 linguistic features ranging from POS tags to
dependency parsing.

Expanding on this, Toral et al. (2018) explore lex-
ical density and diversity, revealing that post-edited
literary MTs tend to be more simplified, normal-
ized, and influenced by the source text compared
to human translations (HTs), where MT outputs ex-
hibit lower lexical density than HTs, with the neu-
ral system showing even lower density than those
from the statistical system. However, Castilho et al.
(2019) report contrasting findings from a different
genre. For news texts, MTs show slightly higher
lexical density and richness than HTs, whereas for
literary texts, MTs demonstrate slightly lower lexi-
cal density but comparable lexical richness to HTs.

In a similar vein, Loock (2020) investigate
MTese by analyzing linguistic deviations in
English-to-French MT texts compared to original,
untranslated texts, providing a broader perspective
on the systematic over-representation of linguistic
features and their implications for translator train-
ing and post-editing practices. De Clercq et al.
(2021), working on the same language pair, used
22 linguistic features to distinguish between the
original and MTed French. They showed that av-
erage sentence length and four features related to
formulaicity could discriminate between original
and MTed French.

However, for linguistically distant language
pairs like E2C, research on MTese remains rel-

atively sparse. Jiang and Niu (2022) examine a
corpus of English translations of modern Chinese
literary texts, including texts translated by NMT
and humans. They confirm the presence of trans-
lationese in both human and machine translations
compared to original texts in some coherence met-
rics. A recent study by Niu and Jiang (2024) re-
vealed that simplification is a notable characteristic
of NMT texts across genres in the E2C direction,
such as a loss of lexical complexity.

A general conclusion drawn from the works
above is that translations produced by MT engines
consistently exhibit a loss of lexical and syntac-
tic richness (Vanmassenhove et al., 2019; Castilho
and Resende, 2022). Studies tend to apply fine-
grained linguistic features to reveal consistent dis-
tributional patterns. Similar phenomena are also
observed across various language pairs.

Despite these findings, it remains unclear
whether LLMs exhibit distinct features of MTese or
whether their outputs can be reliably differentiated
from those of NMT engines, particularly in general
text types as news discourse. Therefore, our study
addresses this gap by focusing on the distant lan-
guage pair of E2C, emphasizing general news texts,
and constructing a larger and more comprehensive
dataset and feature set for analysis. We adopt the
study design of Loock (2020) and De Clercq et al.
(2021), and compare MT 2 outputs generated by
different systems with original texts.

We address the following research questions:

* RQ1: Does MTese exist in E2C MTed news
texts (NMTs and LLMs)? If so, which linguis-
tic features contribute most to this distinction?

* RQ2: How do LLMs differ from NMTs in
their manifestation of MTese across linguistic
features?

* RQ3: Do translation-specific and generic
LLMs differ from each other? Additionally,
how do LLMs developed by Chinese compa-
nies compare with those developed by foreign
companies in this regard?

3 Methodology
3.1 Dataset

The dataset used in this study encompasses four
corpora (detailed information is shown in Table
1), representing original Chinese texts and E2C
MTed news texts. The original Chinese news cor-

’In this paper, the term MT is used as a superordinate term for
both NMT and LLM translation, while NMT and LLM could
also be treated as distinct categories.
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pus is sourced from two authoritative outlets, Peo-
ple’s Daily’ (NIR H #R) and Xinhua News*(GHr
#£ M), while the original English news corpus in-
cludes articles from reputable platforms like The
Economist® and The Guardian®. The selected cor-
pora consist exclusively of news texts published af-
ter 2022 to avoid the potential influence of outdated
news that may have been incorporated into the train-
ing data of LLMs. The sample length within each
original corpus is maintained around 900 words in
average for both Chinese and English.

All texts underwent careful preprocessing, in-
cluding cleaning, denoising, part-of-speech (PoS)
tagging, and dependency (Dep) tagging. Chinese is
a language without explicit word boundaries, which
requires word segmentation in advance. To achieve
state-of-the-art performance, we utilized the Lan-
guage Technology Platform (LTP)’, a comprehen-
sive natural language processing toolkit (Che et al.,
2021). We used LTP’s advanced deep learning mod-
els (Base2) to perform word segmentation, PoS
tagging, and syntactic analysis. Its reported per-
formances reach 99.18%, 98.69%, and 90.19% for
segmentation, PoS tagging, and Dependency pars-
ing, respectively.®

The MT data are generated by translating OEN
articles into Chinese using each engine on a one-by-
one basis, processing each text individually with
each engine, thereby minimizing potential interfer-
ence from varying text topics. As a result, each
MT engine produces approximately 200 transla-
tions’. The dataset includes five NMT engines,
comprising three international systems (Google
Translate, DeepL, and Microsoft Translator) and
two Chinese-developed systems (Baidu Translate
and Youdao Translate). Additionally, six LLMs are
incorporated, including models developed by Chi-
nese firms (Kimi and ChatGLM), one tailored for
MT-specific applications (TowerlInstruct), and lead-
ing models such as ChatGPT, Claude, and Gemini.
All these systems represent SOTA engines on the

3http://www.people.com.cn/
4http://www.xinhuanet.com/
5http://www.economist.com
https://www.theguardian.com
"https://github.com/HIT-SCIR/1tp
8https://github.com/HIT—SCIR/ltp/blob/main/
README . md

°It should be noted that several LLMs did not translate all
200 English news (as in Table 1). Some news articles re-
main untranslated due to “unsafe content” warnings, primarily
involving topics related to war or politics. Even though we
stated clearly in our prompt that they do not contain any unsafe
content. (See Appendix A)
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LLM arena'? at the time of the experiment (Octo-
ber to December 2024).

The MT process for LLMs involves prompt en-
gineering, with prompt design following Andrew
Ng’s course guidelines!! and the CRISPE frame-
work!2. This approach resulted in a standardized
and structured user instruction, which was consis-
tently applied across all engines during the trans-
lation process. The full prompt is provided in Ap-
pendix A for reference.

To address the potential issue of the OCN corpus
having insufficient coverage and variability when
limited to the same sample size (200) as other sub-
corpora, we adopted the corpus structure outlined
in De Clercq et al. (2021) and increased the size of
the OCN by incorporating more original Chinese
news to 2,000 texts in total. This expansion en-
sures a comparable dataset size between OCN and
MTs. Also, we did not impose strict limitations on
specific topics within the news genre. Constrain-
ing the dataset to a particular domain could lead to
data scarcity, as certain topics may not be consis-
tently available over the given period. To maintain
balance and comparability, we ensured that all se-
lected news articles were consistent in terms of
lexical length and time period.

3.2 Feature set

This section outlines the feature set used in this
study. The primary aim of this study is to quantita-
tively compare different linguistic features across
original and MT texts.

Based on the principles of constructing feature
sets for translationese studies(Volansky et al., 2013)
and referring to previous research (See Huang and
Liu, 2009; Lynch and Vogel, 2018; Toral, 2019;
De Clercq et al., 2021), the following section
presents the feature set used in this study. A brief
feature summary can be viewed in Table 4 (in Ap-
pendix B). All together, we have employed 236
features in this study. It should be noted that all fea-
tures are represented as ratios or weighted measures
to mitigate the influence of sample size differences
and ensure comparability across texts.

Lexical features General lexical features in-
volves common lexical characteristics such as Type-
Token Ratio (TTR). The purpose of these features is

10https://lmarena.ai/
llhttps://learn.deeplearning.ai/courses/
chatgpt-prompt-eng
12https://github.com/mattnigh/
ChatGPT3-Free-Prompt-List
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Corpus  Type Abbr. Engine Acquisition  Texts Token Type
Original Orig. Chi. News OCN - WebCrawl 2,000 1,685,526 67,082
g Orig. Eng. News OEN - WebCrawl 200 190,572 20,459
GoogleTranslate NGT - API 200 171,448 15,288

DeepL NDL - API 200 177,866 15,104

NMTs MicrosoftTranslator NMS - API 200 172,026 14,586
BaiduTranslate™ NBD - API 200 174,962 14,323
YoudaoTranslate™ NYD - API 200 174,504 16,515

ChatGPT LCG GPT-40 Web 200 159,015 14,947

Claude LCL 3.5-sonnet Web 200 170,236 15,123

LLMs Gemini LGM  1.5-flash API 189 166,631 14,777
Kimi* LKM  moonshot API 185 145,976 13,225

ChatGLM* LGL GLM-4-plus API 178 145,700 14,907
Towerlnstruct’ LTO 7B-v0.2 OpenSource 200 175,681 15,398

MTs In total MTs NMTs + LLMs - 2,152 1,834,045 31,863

Table 1: Overview of the datasets used in this study. Engines marked with an asterisk (*) are primarily trained and
tested in mainland China, while the engine in the LLMs marked with a dagger () represents an translation-specific

model.

to provide an overview of lexical usage in terms of
diversity, complexity, and richness. PosTag-based
features are derived from the annotation tag set of
the LTP platform!3. For instance, the proportions
of nouns or verbs.

Syntactical features General syntactical features
focus on capturing broad syntactic patterns and
sentence structures in the text, such as average
words per sentence. DepTag-based features are
built upon the dependency tag set of the LTP plat-
form!'*#, which identifies the dependency role of
each word in a sentence, such as the ratio of verb-
object (VOB) and attributive modifiers (ATT).

Readability features Nine readability features
proposed by Lei et al. (2024)"3 are included, eval-
uating lexical, syntactic, and semantic variability
to assess the text’s difficulty and comprehensibility
for the target audience. Complementing these are
4 concreteness features measuring lexical concrete-
ness based on Xu and Li (2020).

Translatibility features The translatability fea-
tures evaluate linguistic coherence and translation
quality between English and Chinese texts through
five features: completeness, foreignness, code-
switching, abbreviation, and untranslated. Core
features such as completeness check for untrans-
lated English sentences longer than three words.
Foreignness calculates the ratio of English to Chi-

Bhttps://1tp.ai/docs/appendix. html#id2
14https: //1tp.ai/docs/appendix.html#id5
Bhttps://github.com/leileibama/
AlphaReadabilityChinese

nese characters.

N-POS-gram features To ensure that the feature
set remained content-independent and focused on
grammatical patterns rather than topical content,
we employed N-PoS-grams (with N ranging from 1
to 3) instead of lexical n-grams. These features cap-
ture sequences of part-of-speech tags to highlight
grammatical collocations across texts. To refine
the selection and reduce the influence of highly fre-
quent but less informative elements (e.g., function
words), we used the The Lancaster Corpus of Man-
darin Chinese (LCMC!'©) as a reference corpus for
comparison. For consistency, the LCMC corpus
was re-tagged using the same LTP tools to ensure
an aligned PoS tag set.

3.3 Algorithms

3.3.1 Feature selection

To reduce complexity, minimize feature noise,
and improve experimental efficiency, a chi-square
(x?) ranking-based feature selection method is em-
ployed in both classification and clustering experi-
ments. Features are ranked based on 2 values, and
the top-k features are selected, where £ = 30. If
the total number of features in a specific category is
less than 30, all available features are retained. This
feature selection process mainly reduces the lexical
features, N-POS-gram features, and the combined
“all features” set in classifying and clustering.

16https://www.lancaster.ac.uk/fass/projects/
corpus/LCMC/
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3.3.2 C(lassification experiment

The classification experiment is structured based
on the hierarchical levels of feature sets. First,
classification is conducted using individual feature
level, followed by classification using all feature
levels. The experiments are organized into the
following comparison groups: (1) OCN vs. MTs,
where MTs include both NMTs and LLMs sub-
groups; (2) OCN vs. NMTs and OCN vs. LLMs;
(3) LLMs vs. NMTs; and (4) intra-group classifica-
tions within the NMTs and LLMs.

Five classifiers, Naive Bayes, Logistic Regres-
sion, Support Vector Machine (SVM), Decision
Tree, and Random Forest, are employed, and the
average classification performance is calculated
across these classifiers to provide a balanced result.
SVM uses a linear kernel, while the other classi-
fiers follow default settings. Referring to Rahman
et al. (2024), the performance of the ensemble clas-
sifier is evaluated using Accuracy (ACC) and F1
scores, computed as follows:

1 & 1 &
ACCayy = > ACC;, Flag = v > FL
=1 i=1

Where ACC; and F'1; are the Accuracy and F1
scores for the i-th classifier, and [V is the total num-
ber of classifiers. All classification tasks, except
intra-group classifications within the NMTs and
LLMs groups, are binary classification tasks.

3.3.3 Clustering experiment

The clustering experiment employs the k-means
algorithm to cluster the data into three categories:
OCN, LLMs, and NMTs. The number of clusters
(k) is set to 3, and the Euclidean distance is used
to measure the similarity between data points. The
top-k significant features selected in prior analysis,
are utilized as the feature set for clustering.

To evaluate the clustering performance, the Ad-
justed Rand Index (ARI) is used as the primary
metric. ARI measures the similarity between the
clustering results and the ground truth labels, ad-
justed for chance, providing an objective assess-
ment of clustering quality (Warrens and van der
Hoef, 2022). Additionally, Python’s Plotly library
is employed to generate interactive clustering plots.
This approach complements the classification meth-
ods, offering an intuitive visualization of the rela-
tionships between categories.

4 Results

4.1 Classification

Table 2 presents the results across feature levels
and groups. We observe two tendencies:

(1) OCN versus other groups consistently
achieves the highest accuracy (around 99% in all
feature categories), regardless of whether MT is
combined into one group or separated into NMT's
and LLMs. Then the performance declines for
LLMs-NMTs comparisons (around 70% ACC).
The lowest accuracy is observed in intra-group
comparisons for both LLMs and NMTs, dropping
to below 50%, lower than random distribution base-
line.

(2) As for feature categories, lexical, syntactical
and N-POS-gram features make the most signifi-
cant contributions to the classification performance.
Take OCN-MTs as an example, the three sets of fea-
tures all reach to more than 97%. In contrast, read-
ability and translatability features show limited con-
tributions, with accuracies of 86.87% and 70.66%
respectively. Combined all features yields the high-
est overall accuracy (98.92%), which demonstrates
the complementary effects of integrating multiple
feature categories.
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Figure 1: Pair-wise comparison of different MT engines
based on 5 averaged classifiers and top 30 salient fea-
tures

Figure 1 presents a pairwise classification ac-
curacy heatmap to provide a visualized plot and
a fine-grained classifying result, using the top-
30 salient features from all feature levels. The
classification performance is averaged across the
five above-mentioned classifiers. For each pair of
classes, ACC values are computed and aggregated
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Feature  jetrics OCN-MTs OCN-NMTs OCN-LLMs LLMs-NMTs . NMLS LLMs
Level (Intra-group) (Intra-group)

ACC  97.66% 97.77% 97.33% 61.91% 30.04% 30.26%

Lexical Fl1 0.9766 0.9751 0.9714 0.6144 0.2893 0.2966
C/T  4054/4152 2932/3000 3067/3152  1332/2152 300/1000 348/1152

ACC  98.46% 98.23% 98.23% 60.53% 36.72% 31.89%

Syntactical Fl 0.9846 0.9801 0.9809 0.5736 0.3574 0.3022
C/T  4087/4152 2946/3000 3096/3152  1302/2152 367/1000 367/1152

ACC 86.87% 87.61% 85.41% 55.31% 19.44% 25.49%

Readibility F1 0.8683 0.8603 0.8426 0.5452 0.1896 0.2437
C/T  3607/4152 2628/3000 2691/3152  1190/2152 194/1000 293/1152

ACC  70.66% 78.73% 78.32% 58.26% 26.36% 20.73%

Translatibility — FI1 0.6265 0.6543 0.6618 0.4985 0.2146 0.1515
C/T  2933/4152 2362/3000 2468/3152  1253/2152 263/1000 238/1152

ACC  97.27% 96.51% 96.73% 62.49% 24.26% 24.32%

N-POS-gram  FI 0.9603 0.9469 0.9500 0.5287 0.2031 0.1301
C/T  3987/4152 2865/3000 3008/3152  1322/2152 232/1000 212/1152

ACC  98.92% 98.84% 98.69% 69.38% 42.10% 35.59%

All Features Fl1 0.9891 0.9870 0.9859 0.6902 0.4136 0.3475
C/T  4106/4152 2965/3000 3110/3152  1492/2152 421/1000 409/1152

Table 2: Performance metrics across feature levels and groups. ACC refers to Accuracy, F1 is a balanced score of
precision and recall, while C/T stands for Correctly classified sample / Total samples.

to produce the final heatmap. It reveals three main
results:

(1) The deep red along the OCN compar-
isons highlights its distinctiveness, achieving near-
perfect classification accuracy (avg. ACC is close
to 0.98) against both LLMs and NMTs.

(2) A similar trend is found in both LLMs and
NMTs intra-groups, reflected in the predominantly
blue and light orange colours, which stand for 0.6
- 0.8 ACC according to the heatmap legend. For
LLMs, ACC ranges from 0.65 to 0.83 (avg. 0.73).
Similarly, NMTs exhibit ACC ranging from 0.63
to 0.83 (avg. 0.75)"7.

(3) ACC between LLMs and NMTs is slightly
higher (avg. 0.77), indicating more distinct differ-
ences between these two groups. The lowest ACC
is found between NGT and LGM (avg. 0.57), per-
haps due to similar training data since they are both
developed by Google'®. And the highest is found

Compared with Table. 2, the higher scores in pairwise
models are due to binary classification tasks, which reduces
task complexity and better captures discriminative features,
whereas multi-class task involves increased feature overlap
and requires generalization across all categories.

3There exist a possibility of incorporating LLM technology
into commercial NMTs, but the specific technical details re-
main unknown when the company does not disclose further
information. So we only select NMT engines as “pure” as
possible in our study. For example, the API we use for NGT

between NMS and LGL (0.90). Notably, NMS
stands out with a slightly higher classification ACC
against other LLMs (around 0.84).

4.2 Clustering

Figure 2 portraits the clustering results, with an
ARI value of 0.64, showing a clear separation of
the OCN group (green cluster) on the right, while
the left side contains partially overlapping red and
blue clusters, primarily NMTs and LLMs samples.
This indicates that, if divided into only two clus-
ters, the distinction between OCN and MTs (NMTs
and LLMs combined) is more evident. However,
within the MT group, there is significant overlap
between NMTs and LLMs. The clustering result
echoes with the findings in the previous classifica-
tion experiments.

5 Discussion

5.1 Original Chinese vs. MTs

To answer RQ1, the analysis of Figure 1 and Ta-
ble 2 reveals significant differences between OCN
and MTs (including both NMTs and LL.Ms) under
a sample size of approximately 2000 texts. This in-
dicates that, despite prompt engineering, the trans-
is v2 (See https://cloud.google.com/translate/docs/

editions), which is an NMT engine, rather than v3, which
includes LLM.
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Figure 2: K-means clustering using the top-47 shared features, obtained after deduplication of the top-30 salient
features across OCN, NMTs, and LLMs pair-wise comparisons. ARI score: 0.6355.

lations produced by LLMs still exhibit substantial
differences from original texts.

Furthermore, the classification results for OCN-
NMTs and OCN-LLMs both achieved around 99%
ACC. Consequently, there is insufficient evidence
to argue that LLMs outperform NMTs in terms of
MTese reduction (if they do, then ACC score of
OCN-LLMs should be smaller than OCN-NMTs).
In the E2C news translation task, while LLMs are
often praised for their human-like language abili-
ties in translation (He et al., 2024), their outputs
still diverge from authentic Chinese texts. The fol-
lowing analysis explore two prominent features in
more detail.

As can be seen in Table 5 of Appendix C, in
the OCN-MT group, all top 3 features are related
to sentence length, either measured as characters,
words or nodes. Therefore, we select the first fea-
ture for further elaboration. As shown in Figure 3,
there is a significant difference'® in number of char-
acters per sentence between OCN and MTs, with a
Kruskal-Wallis F score reaching to more than 1255.
Overall, OCN texts contain more characters per
sentence, with a median of 50, compared to less
than 40 in MT texts. This echoes with Jiang and
Niu (2022) in indicating a preference for shorter

To determine significant differences, we first conduct a nor-
mality test on the data. If the data met the normality assump-
tion, we apply ANOVA; otherwise, we use the non-parametric
Kruskal-Wallis test.

OCN vs MTs
(Feature: Characters per sentence)

OCN vs MTs
(Feature: ratio_advrstvConj)

Kruskal-Wallis F-statistic: 1255.59
p-value: 5.06e-275

Kruskal-Wallis F-statistic: 2289..
p-value: 0.00e+00

j (value)

ratio_advrstvCon

Characters per sentence (value)

‘é\%

Figure 3: Linguistic differences between OCN and MTs.
The left panel compares characters per sentence, while
the right panel examines adversative conjunction ratio.

sentences in MT outputs. Additionally, the stan-
dardized deviation in OCN spans a wider range
(approximately 37 to 63), while MT texts have a
narrower range (around 30 to 45), thus there is a
greater sentence length variability in original Chi-
nese, yet a more constrained pattern in MTs.
Another interesting finding is that adversative
conjunctions are used significantly more frequently
in MT texts compared to OCN. In this study, ad-
versative conjunctions are defined as linguistic el-
ements that convey contrastive meanings, such as
“{E5&> (but), “{B” (yet), “IATM" (however), “FJ
4&” (nevertheless), and they could be used inter-
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changeably. As the right side of Figure 3 shows,
MTs employ adversative conjunctions more than
twice as often as OCN. This phenomenon may be
attributed to two factors. First, the difference likely
reflects source language interference. OCN articles
tend to use fewer adversative conjunctions, while
OEN articles, which serve as the source for MTs,
employ them more frequently. Second, in handling
adversative conjunctions, OCN relies on syntactic
transformations or rhetorical devices to reduce their
usage. In contrast, both NMTs and LLMs typically
employ literal translations of these conjunctions,
lacking the ability to restructure sentences to bal-
ance their occurrence.

5.2 LLMs vs. NMTs

In terms of RQ2, we address this question in the
following two aspects.

Translations generated by LLMs and NMTs
share certain linguistics characteristics as classi-
fication accuracy is only about 70%. Clustering
experiments also reveal that the two systems over-
lap. This could be attributed to three reasons. (1)
Both systems translate from the same OEN arti-
cles, meaning that their content and style are in-
herently influenced by the original text. Thus the
differences are largely constrained by the limita-
tions of the source text. (2) Although LLMs utilize
extraordinarily large pre-trained data and updated
algorithms (Brown et al., 2020), their underlying
architecture is based on the Transformer model (De-
vlin et al., 2019), which was originally applied in
NMT systems. (3) It is possible that LLMs utilize
training data from NMT systems developed by the
same company (e.g. NGT and LGM). Alternatively,
NMT systems may have already integrated certain
technologies and algorithms from LLMs. All these
factors further blur the lines between the two.

Translations generated by LLMs and NMTs are
also to a certain extent different. Figure 4 shows
two salient features that could be used to separate
NMTs and LLMs apart. MTLD (Measure of Tex-
tual Lexical Diversity) is a metric used to evaluate
the range and variety of vocabulary in a text (Mc-
Carthy and Jarvis, 2010), with higher values indi-
cating greater lexical richness. As shown in the
chart, LLMs have higher MTLD scores compared
to NMTs, which means that LLMs produce out-
puts with greater lexical diversity. This statistically
significant difference (Kruskal-Wallis F-statistic:
97.01, p: 6.88e-23) can be attributed to the broader
and more diverse training data used for LLMs, as

well as their design for a wide range of linguistic
tasks, which encourages nuanced and varied word
choices (Chen et al., 2024). NMT systems are
trained on much smaller (domain-specific) parallel
corpora and prioritize accuracy and fidelity to the
source text, often resulting in limited vocabulary
diversity.

Another interesting feature that divides NMTs
from LLMs is the ratio of brackets (“()”” in both Chi-
nese and English), which also shows a statistically
significant difference (Kruskal-Wallis F-statistic:
418.29, p: 5.75e-93). Features such as punctua-
tions are often neglected in classification experi-
ments. Few studies, even in E2C language pair,
have discussed this issue on bracket ratio. In this
study, the feature of bracket usage on the right of
Fig. 4 reveals that NMT systems use brackets more
frequently (average ratio around 0.04) compared to
LLMs (around 0.02), as shown by the downward
trend in the chart.

LLM vs NMT
(Feature: MTLD)

LLM vs NMT
(Feature: ratio_bracket)

Kruskal-Wallis F-statistic: 97.01 T [ Kruskal-Wallis F-statistic: 418.29

p-value: 6.88e-23
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Figure 4: Linguistic differences between NMTs and
LLMs. The left panel compares MTLD, while the right
panel examines ratio of brackets.

To take a closer look at this feature, Table 3
shows the bracketing ratio of the top 10 files with
the highest bracketing ratio for NMTs and LLMs.
In general, NMT systems show significantly higher
bracket ratios, with the top-ranked file (NDL37)
reaching a ratio of 0.1654, much higher than any
file in the LLLM category. Notably, NDL (DeepL)
dominates the NMT list with 7 top instances. It
could be that the system implements additional
rules or heuristics to handle brackets. Compared to
NMTs, LLM systems exhibit consistently lower
ratios, with the highest-ranked file (LTO93) at
0.0993, even lower than the lowest-ranked NMT
file (NDL92 at 0.1250). Unlike DeepL, the LL.Ms
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group does not possess a dominating LLM engine
with higher bracket ratio.

File Ratio File Ratio
NDL37 0.1654  LTO93 0.0993
NDLI1 0.1615 LGL93 0.0979
NDL41 0.1604 LCGI197 0.0935
NDL93 0.1553 LKMI197 0.0909
NYD93 0.1420 LCG175 0.0903
NMS6 0.1329 LGL197 0.0894
NDL103 0.1298 LKM49 0.0882
NDL97 0.1259 LKM93 0.0872
NMS93 0.1259 LGLSI1 0.0828
NDL92 0.1250 LGM93 0.0822

Table 3: Bracket ratio for the top 10 ranked files in
only NMTs (left) and bracket ratio for the top 10 in
only LLMs (right). Ratio is calculated as the number
of brackets divided by the total number of punctuation
marks in the file.

Further evidence can be found in Appendix D. In
Table 6, we list three representative files that high-
light a clear distinction between NMTs and LLMs
at a more fine-grained level. Compared to the orig-
inal English text (OEN), NMT systems (excluding
NGT for Google Translate) tend to use more brack-
ets in addition to the original English usage. In con-
trast, LLMs generally maintain a similar number
of brackets as the OEN. Examples reveal that, for
NMTs, English names are often transformed into
Chinese names with the original English names ap-
pended in brackets. This approach can sometimes
lead to nested brackets error, as observed in sys-
tems like NDL or NYD. On the other hand, LLMs
typically translate English names directly into Chi-
nese without attaching additional information. This
difference in handling proper nouns, such as names
and technical terms, may contribute significantly
to the observed disparity in bracket usage between
NMTs and LLMs.

5.3 Translation-specific vs. generic and
Chinese vs. foreign

To answer RQ3, we conducted separate experi-
ments to examine whether a translation-specific
LLM (LTO for Towerlnstruct) can be distinguished
from generic LLMs. LTO stands for Unbabel
Towerlnstruct-7B-v0.2, and is designed to “handle
several translation-related tasks, such as general
machine translation”?°.

Through Figure 1, also combined with the pair-
wise classification experiment data, we found that

20https://huggingface.co/Unbabel/
TowerInstruct-7B-v@.2

compared to other generic LLMs, LTO achieved
an average ACC of 0.7556, with the highest 0.83
compared to LCL and the lowest 0.65 compared
to LKM. Overall, LTO is generally distinguishable
from other models. Additionally, as shown in Ta-
ble 5, LTO exhibits differences in features such as
MTLD. Appendix E further reveals that among
the six LLM engines analyzed, LTO has a lower
MTLD value than LCG, LCL, LGL, and LKM,
so these LLM-generated translations demonstrate
higher lexical diversity than LTO. However, LTO is
similar to LGM in this feature, with no significant
differences found between the two. In terms of
the proportion of causal conjunctions, such as “[X|
777 (because), “FH T (due to), “FTLL” (therefore),
“BEI L (thus), LTO has higher frequency of causal
conjunctions than other LLM engines.

Eventually, as a more detailed subcategory com-
parison, we hypothesized that LLMs pre-trained
and utilized in China may exhibit differences com-
pared to those developed in foreign countries. The
classification task comparing Chinese and foreign
LLMs using the top 30 selected features (as listed
in Table 5) and averaging the results of 5 classi-
fiers show moderate performance, with an accuracy
of 66.63%, a precision of 0.562, a recall of 0.548,
and an Fl-score of 0.519. These results indicate
that the classifiers perform only slightly better than
random guessing (50%) and struggle to reliably
distinguish between the two groups. The relatively
low precision, recall, and F1-score suggest lim-
ited separation between Chinese and foreign LLMs
based on the selected features. This implies that the
two sub-groups do not exhibit clear or significant
differences.

6 Conclusion

This study applies classification, clustering and fea-
ture selection methods in machine learning exper-
iments, with the aim to identify MTese of LLMs
and NMTs systems in an E2C news settings.

Our findings suggest that MTese is still present
in LLMs (RQ1). MTese is evident in both NMT
and LLM systems, with averaged ACC reaching
almost 99%. OCN-NMTs and OCN-LLMs yield
similar results, suggesting that LLM translations
with prompt engineering still differ significantly
from original Chinese writing styles. Key fea-
tures include fewer characters per sentence in MTs
and higher frequencies of adversative conjunctions
compared to original Chinese.

For RQ2, a comparison between LLMs and
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NMTs showed classification accuracy of around
70%. The similarities are most likely due to the
fact that both systems translate the same source
text, have a similar transformer architecture and
have overlapping training data. The differences are
reflected in LLMs exhibiting higher MTLD (for
lexical diversity) than NMTs, meaning greater lex-
ical variation and stylistic flexibility. And NMTs
use brackets more frequently than LLMs, possibly
due to additional rules embedded in NMT engines
for specific proper noun translations.

For RQ3, which examined subcategories of
LLMs, a comparison between translation-specific
and generic systems shows that the specific LTO
engine exhibits a lower MTLD than certain generic
LLMs, but demonstrates a higher proportion of
causal conjunctions. We did not find evidence to
support the distinction between Chinese LLMs and
foreign ones.

As a final remark, while LLMs have made some
distinctions from NMTs, they remain far from
matching the so-called “human-parity” (Poibeau,
2022) with stylistic and aesthetic qualities of orig-
inal Chinese writing. Future advancements in
LLMs should prioritize minimizing “machine trans-
lationese” to better align with native language char-
acteristics and avoid potential contamination to-
wards everyday communication.

Limitations and future work

This study aims to use stylometric methods to inves-
tigate MTese in E2C news translations generated
by both NMTs and LLLMs. However,it has three
major limitations. In terms of dataset selection,
this study primarily focuses on mainstream news
reports. However, this choice does not encompass
user-generated news discourse, nor conduct sub-
genre topic control on the news texts selected. Ex-
panding the database in future research could help
capture a broader spectrum of language features
across different types of news texts. Additionally,
to avoid increasing experimental complexity, we
have not included human translations (HTSs) in this
study. Future research could incorporate HT to
further explore the linguistic differences between
MTs and HTs.

Secondly, this study employs quantitative analy-
sis to conduct a “distant reading” of the translated
texts. However, certain linguistic features remain
to be thoroughly investigated. In addition, a qual-
itative exploration remains underdeveloped. For
instance, the underlying reasons behind certain dis-

tinctive features of NMTs and LLMs are yet to be
explored, as is the question of whether some nega-
tive features in MTese could be mitigated through
technological improvements.

Finally, the experimental features in this study
are confined to the general and pre-tagged level,
mainly on lexical and syntactical aspects, without
fully addressing more complex aspects of seman-
tics and discourse. Still, overlaps between features
have been observed. We plan to incorporate feature
correlation analysis and PCA to construct feature
networks in future researches.

Supplementary material

Supplementary material is available at https://
github.com/DanielKong1996/MTese_MTsummit
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A LLM prompt

The engineered prompt is originally drafted in Chi-
nese, as follows2':

IREVA ERE— 2R WRIFER, RIETHEX
AR AR« 3R LU S SCOUARE Y A
3, RAFEEE RS HELLITER:

1- ZERLERTA, B 0RIE S R BLiE -

2 - REFIORISEEANE . AR SN A
7, WAEREFESINE . SURNZ R B

3 - WA SEMEREA R 2NE, &
R FIRTSRENE -

English Translation:

You are a professional translator specializing
in translating news texts. Translate the following
English text into Chinese, adopting a news-style
tone. Ensure the following requirements are met:

1 - Remove Europeanized expressions, ensuring
the language is concise and natural.

2 - Maintain the integrity of the text, without
adding any extra content or omitting any part of the
original text.

3 - The text does not contain any sensitive or
unsafe content. Please translate according to the
instructions above.

B Feature set in summary

A summary list of features used in the study is in
Tab. 4.

C Selected features used in experiments

A summary list of significant features used in dif-
ferent experiments is in Tab. 5.

2'Though we pointed out specifically that ‘please do not add
any extra content’, yet some meta phrases still exists. We
checked manually through Regular Expressions, deleting cer-
tain phrases such as: “Sure, here is... ”. We admit that we
cannot guarantee 100% denoise for LLM output, but we would
put more effort and report the error rate in the future research.
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Feature level Sub level Total Feature instances

Lexical General lexical 14 TTR, STTR, AvgWordLength(char.), MTLD ...
PosTag-based 58 noun, verb, adverb, preposition, adjectives ...

Syntactical General syntactical 10 WordsPerSent, CharsPerSent, QuestionRatio ...
DepTag-based 17 NSUBJ, OBJ, OBL, FOB, DBL, AMOD ...

Readability Readability score 9 lexical_richness, syntactic_richness ...
Concreteness score 4 average_concreteness, concrete_std, high_ratio ...

Translatibility Translatibility score 5 completeness, foreignness, code_switching . ..
N-Pos-gram (N=1) 10 wp_lp,nz_1p, ns_1p,nd_1p,nl_1p,nh_Ip...

N-POS-gram N-Pos-gram (N=2) 49 nh_nh_2p, nl_nd_2p, nl_nh_2p, nz_nd_2p ...

N-Pos-gram (N=3) 60

wp_nl_nd_3p, wp_wp_ws_3p, nd_nl_wp_3p...

Table 4: Summary list of features used in the study. Due to space constraints, only representative feature instances

are provided here, with “...”

indicating that additional items are included in the full feature list, which is available

in the supplementary table online.

Characters per sentence; Words per sentence; Average Number of Children per Node; seman-
tic_noise_n; MTLD; ratio_advrstvConj; ratio_paraConj; ratio_3rdPron_singular; ratio_period;

MTLD; semantic_noise_n; ratio_bracket; semantic_accuracy_v; Average Number of Chil-
dren per Node; semantic_accuracy_n_v; semantic_accuracy_c; pos_3gram_wp nh wp; seman-

MTLD; Average Number of Children per Node; Words per sentence; semantic_accuracy_v;
semantic_accuracy_n_v; ratio_causalConj; semantic_accuracy_n; ratio_sequnConj; seman-

Characters per sentence; MTLD; Words per sentence; Average Number of Children per

Group 1 Group 2 Significant Features
OCN MTs
ratio_spmark
LLMs NMTs
tic_accuracy_n; Average Word Frequency
LLM LLMs
(translation- (generic)
specific) tic_accuracy_c
LLMs LLMs
(China) (Foreign)

Node; semantic_noise_n; ratio_3rdPron_plural; ratio_quote; Mean Dependency Distance; ra-
tio_sequnConyj; ratio_thisPron_singular

Table 5: Summary of significant features used in different experiments. Top-10 significant features are selected for
brevity, and they are separated by semicolons for readability.

D Examples on ratio of brackets

The example shown here is chosen from OEN text .

B EH/RT (Andrzej Goulding) HI1E) .
LCG ﬁﬁ%j{%uwﬁ%ﬁﬁ?ﬁiiﬁ% (”“’”
FERRRITE AT « ZARFH /R T RIS

no. 93, with a topic on Starlight Express review.

This instances are all made parallel compared with
the original. For brevity, similar translations are
omitted: such as NMS and NGT with the name
remain English; NBD, LKM, LGL and LTO are to
LCG with the name translated into Chinese.

OEN: There are big stadium optics (lighting by
Howard Hudson, video by Andrzej Goulding)...

NGT: X EHREEEG L% E (KTEH
Howard Hudson %11, #5H Andrzej Goulding
wit) ...

NDL: &l Efjﬁj(’_ﬂ%??% AR BT RCR (KT
FHEE R G A% (Howard Hudson) %11, 1
M Z R E /R T (Andrzej Goulding) fH1E

.. [For brevity, omitted] )

NYD: Eké‘]%ﬁ%;‘%% (KT HERE

%% (Howard Hudson) HREH, i EE 1(

mﬂ‘) .

LCL: §E RBEFEG MM HRCR (BEfEmRS
TERRRIKDE, ARG E/RT RIS ..

LGM: fEI KEE@E%T REEEHHAT
W (B s E5%1t) ["video by Andrzej
Goulding" is neglected and mlssmg]. ..

Moreover, a table illustrating frequency of brack-
ets is in Tab. 6

E Suppliment figures in Section 5.3

Fig. 5 shows the linguistic differences among LTO
and other LLMs.
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120 1 ANOVA [Tstatistic: 33.40 Kruskal-Wallis F-statistic: 35.15 T
p-value: 6{76e-32 0.12 1 p-value: 1.41e-06
uo{ T -
T 0.10 -
_ g _ T
g 100 % 0.08
| 0.6 1
S ] s
g
=
= 0.04
80 1 -
- 1 0.02
70 1 4 1 1
4 - 0.00 o
VCo \9\, \/Qw \,@\ VCo \)O’ \,C’V 6?\
Category Category

Figure 5: Linguistic differences among LTO and other LLMs. The left panel compares MTLD, while the right panel
examines the ratio of causual conjunctions.

Engines File37 File91 File93

OEN 0 0 13
NGT 0 0 13
NDL 22 21 25
NMS 8 1 18
NBD 5 1 14
NYD 9 4 23
LCG 0 0 10
LCL 2 0 13
LGM 0 2 12
LKM 0 0 13
LGL 0 0 14
LTO 4 7 16

Table 6: Frequency of brackets used in different MT
engines for three files
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Abstract

We introduce OJ4OCRMT, an Optical Char-
acter Recognition (OCR) dataset for Machine
Translation (MT). The dataset supports re-
search on automatic extraction, recognition,
and translation of text from document images.
The Official Journal of the European Union
(OJEU), is the official gazette for the EU. Tens
of thousands of pages of legislative acts and
regulatory notices are published annually, and
parallel translations are available in each of
the official languages. Due to its large size,
high degree of multilinguality, and carefully
produced human translations, the OJEU is a
singular resource for language processing re-
search. We have assembled a large collection of
parallel pages from the OJEU and have created
a dataset to support translation of document
images. In this work we introduce the dataset,
describe the design decisions which we under-
took, and report baseline performance figures
for the translation task. It is our hope that this
dataset will significantly add to the compar-
atively few resources presently available for
evaluating OCR-MT systems.

1 Introduction

Relatively few datasets exist for studying the trans-
lation of document images. The manual labor as-
sociated with obtaining suitable digital images and
producing high-quality transcriptions of the source
image and translations in the target language(s) is
an impediment. We survey some of the available
datasets in Table 1. Common limitations include be-
ing small in size, narrow in image types, restricted
to a few languages, and reliance on automatic gen-
eration of images or translations.

The Official Journal of the European Union
(OJEU) is available in digital form in the official
languages of the EU and it contains content going
© 2025 The authors. This article is licensed under a Creative

Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

back decades. The OJEU is in the public domain,
and its quantity of data, high quality translations,
and large number of supported languages covering
three writing systems, make it an attractive source
for developing a open source dataset to support
translation of document images. The OJEU and re-
lated EU publications have previously been used as
corpora in the development and evaluation of lan-
guage technologies. For example, Koehn produced
parallel texts from transcripts of the European Par-
aliament (2005). Similarly, Steinberger and col-
leagues at the JRC have released parallel texts such
as JRC-Acquis (Steinberger et al., 2006) and DGT-
Acquis (Steinberger et al., 2012), and they even
foresaw the use of these collections for support-
ing OCR research (Steinberger et al., 2014).! Our
present focus is in the development of corpora to
support the evaluation of document image transla-
tion, which can be accomplished through pipelines
of OCR and MT systems, or through use of newly
available vision language models such as Claude
(Kim et al., 2025) or Pali Gemma (Steiner et al.,
2024).

In Section 2 we survey datasets for this task.
Section 3 describes the creation of OJ4OCRMT,
including the design choices we undertook and key
characteristics of the dataset. In Section 4 we de-
scribe our experimental setup. Finally, we present
and discuss our baseline results in Section 5.

2 Related Work

Datasets for OCR-MT can be classified by the type
of images used (see Table 1). First, several pio-
neering efforts rendered images from bilingual text
(bitext) corpora commonly used in text-based MT
research. For example, (Mansimov et al., 2020) cre-
ated images from German to English bitext in the
WMT dataset; (Ignat et al., 2022) created images

'To our knowledge, no OCR-specific resources have been
produced from these sources.
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[ Dataset | Image Type & Domain Translation Language & Script
MADCAT (Song et al., 2012) Handwritten documents Professional {ar, zh}—en
(Mansimov et al., 2020) Rendered from bitext: WMT Professional de—en
OCRAMT (Ignat et al., 2022) Rendered from bitext: Flores Professional 60 languages
IIMT (Tian et al., 2023) Rendered from bitext: WMT Professional de—en
OCRMT30K (Lan et al., 2023) | Natural Image, street signs Professional zh—en
Vistra (Salesky et al., 2024) Natural Image, street signs Professional en—{de, es, ru, zh}
MIT-10M (Li et al., 2025) Natural Image from web MT 14 languages, 8 scripts
CAMIO (Arrigo et al., 2022) Natural documents from web | - 35 languages, 24 scripts
DITrans (Zhang et al., 2023) Natural PDF: newspaper, ad Professional en—zh
DoTA (Liang et al., 2024) Natural PDF: scientific doc MT:train Pro:test | en—zh
OJ40OCRMT (this work) Natural PDF: government doc | Professional 23 languages multi-way, 3 scripts

Table 1: Comparison of OCR-MT or Multilingual OCR datasets

with the text from 60 languages in the FLORES
dataset.” The advantage of rendering approaches is
that any quantity of images can be synthesized. For
example, Tian et al. (2023) rendered a 4 million
pair image-translation training set based on WMT
bitext. A notable disadvantage is that great effort is
required if we want to match the variety of image
layouts found in the real world.

A second approach to OCR-MT datasets is based
on collecting natural images from the wild. For ex-
ample, (Liang et al., 2024) take existing Chinese
street sign OCR datasets like (Sun et al., 2019)
and translate the text portion into English using
professional human translators. In a similar vein,
(Salesky et al., 2024) collected 770 natural pho-
tographs consisting of English in-scene text from
the web and hired professional translators for trans-
lation into German, Spanish, Russian, and Chinese.
The dataset of (Li et al., 2025) significantly in-
creased the scale (10 million collected images) but
relied on a machine translation API to generate the
translated text; it covers 14 languages and 8 scripts.

A third approach focuses on collecting natural
documents from the web. The distinction with
the second approach is not clear-cut, but the focus
here is on collecting machine-printed documents
that are text-rich and sentence-like, as opposed to
photographs like street signs where in-scene text
may consist of short phrases. For example, (Arrigo
et al., 2022) collected and annotated 70k images
for bounding boxes from the web, covering 35 lan-
guages and including both scanned and machine-
printed documents like newspapers, books, jour-
nals, and web pages. A subset of ~15k images
covering 13 languages were transcribed: note this
is a multilingual collection where images contain
different languages and scripts; it must be trans-

’They also include some natural PDFs from the Universal
Declaration of Human Rights database.

lated to create an OCR-MT dataset.

Most relevant to our work are DITrans (Zhang
et al., 2023) and DoTA (Liang et al., 2024), which
like our work, focus on natural PDFs that are text-
rich documents containing a diversity of layouts.
DITrans consists of political reports, newspapers,
and advertisements; DoTA consists of scientific
papers from arXiv. The test sets of both of these
have been professionally translated from English to
Chinese. Additionally, they have provided French
and German translations performed by MT. Our
dataset is different in that we have a larger set of
languages (23 in total) with translations profes-
sionally produced by the data provider and aligned
in a multi-way parallel fashion. In general, these
kinds of document PDFs, when converted to im-
ages, are challenging from the OCR perspective
due to diverse layouts and reading orders; they are
also challenging from the MT perspective due to
the richer vocabulary and syntax.

Last but not least, there is work on translation of
handwritten text, c.f. (Song et al., 2012). This is
a substantially different problem than scanned or
born-digital machine-print documents.

3 Dataset

An ideal dataset for OCR-MT evaluation consists
of three components: (a) document images; (b)
ground truth transcripts in the source languages;
and, (c) human-produced translations in the tar-
get languages. We downloaded PDF files for each
OJEU document in the available languages and ex-
tracted images and text for each individual page.
Files were obtained by crawling the EUR-Lex on-
line portal®, the official repository for the OJEU.
We decided to focus on content from recent years
because previous datasets such as DGT-Acquis have
released translation memories that include some

Shttps://eur-lex.europa.eu/oj/direct-access.html
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OJEU content, and machine translation systems are
often trained using these data, which are available
in the popular OPUS portal (Tiedemann, 2012).

As a general rule, OJEU pages in different lan-
guages contain equivalent content for a given pub-
lished page. In other words, the ¢th page of docu-
ment D in language L1, matches the content of the
ith page of document D in language Lo.* We thus
have page-wise alignments, and not sentence-wise
alignments which are more commonly used for
machine translation. We elected to work directly
with page-level alignments and not perform auto-
mated alignment of text fragments. This avoids the
considerable expense required in manual determi-
nation of reading order and sentence selection and
alignment.

The ground truth text for each page was obtained
using pdftotext. The extracted text contains blank
lines and many broken up lines or text fragments.
The order of the extracted content can vary by lan-
guage, but usually only slightly. We used multiple
newline characters as hard breaks between sections
of text (i.e., paragraphs, list items), but conjoined
other text fragments and then ran automated sen-
tence boundary detection using the multilingual
sentence splitter, ersarz (Wicks and Post, 2021).

Lossless images in PNG format were produced
in three resolutions: 72, 150, and 300 dpi. This cor-
responds to the historical default resolution for web
images, an intermediate value for experimentation,
and the current standard high-quality resolution.

Due to the fact that a number of the articles were
not available in the Irish language, we made the
decision to exclude it from the set of languages in
the dataset. Every page in the dev and test sets is
available in the other 23 EU languages.’

A sample image and its extracted and reconsti-
tuted text are shown in Figure 1.

3.1 Partitions

Our goal was to produce dev and test partitions
consisting of at least 1,000 images (i.e., pages). We
used content from 2022 for a dev partition, and
content from the first nine months of 2023 for a fest
partition. In total there are 1,656 pages in dev and
1,119 pages in test, each of which was manually

“This rule is sometimes broken, when there are mid-sentence
breaks at page boundaries, or in transcripts of Parliamentary
discourse that are intentionally left untranslated.

3 Bulgarian, Croatian, Czech, Danish, Dutch, English, Esto-
nian, Finnish, French, German, Greek, Hungarian, Italian,
Latvian, Lithuanian, Maltese, Polish, Portuguese, Romanian,
Slovak, Slovene, Spanish, and Swedish

dev: 1,656 pages test: 1,119 pages
lang | #tokens #types | #tokens #types
bg 888,760 79,247 | 590,287 59,967
cs 793,944 87,327 | 520,563 66,126
da 793,933 84,881 | 525,390 62,744
de 822,715 85,955 | 542,173 64,159
el 916,722 80,393 | 609,965 60,627
en 856,815 62,476 | 571,423 47,068
es 989,472 67,917 | 662,827 51,756
et 651,124 108,658 | 428,058 80,893
fi 641,669 118,029 | 423,119 87,639
fr 964,872 69,780 | 644,016 52,587
hr 785,715 85,765 | 522,407 64,992
hu 770,588 105,837 | 504,316 78,924
it 903,328 72,291 | 599,804 54,569
It 735,764 91,347 | 485,585 69,448
v 716,048 91,169 | 476,038 69,336
mt 739,617 92,775 | 492,477 70,396
nl 887,333 76,750 | 589,037 57,248
pl 806,494 95,316 | 531,906 72,305
pt 928,921 69,558 | 621,720 52,568
o 901,817 75,588 | 597,887 57,616
sk 784,675 91,566 | 519,818 69,277
sl 781,993 87,441 | 515,796 66,653
sV 783,356 83,188 | 517,883 62,072

Table 2: Data statistics: number of tokens and types

pages regular tables figures
dev | 1,656 | 1,412 (85%) | 193 (12%) | 51 (3%)
test | 1,119 979 (87%) 98 (9%) | 42 (4%)

Table 3: Data statistics: partition size and numbers of
pages with tables or figures.

vetted. These were selected from 944 documents
(82,589 pages), and 661 documents (67323 pages),
respectively. Statistics are given in Tables 2 and 3.

3.2 Diversity of Content

The greater part of the dataset consists of text in
narrative format (e.g., letters or memoranda), or
outline or enumerated list format. However, we
did observe a variety of visual and textual features,
including: tables of contents, tabular data, forms,
scientific charts, drawings, figures, logos, signa-
tures, and equations. A sample of pages is shown
in Figure 2. Pages were tagged as table if they
contained at least one form or table, whether in por-
trait or landscape orientation. Pages were tagged as
figure if they contained a graph, logo, seal, photo-
graph, or drawing. The remaining pages, which are
the majority, are deemed regular. Table 3 reports
the relative prevalence of tables and figures.

3.3 Quality Control

To ensure the quality of the data that we selected,
we performed both automated filtering and human
review. We automatically rejected pages if: (a) they
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61.

Consider promoting well-being in digital education as part of the annual Digital
Education Hackathon; 62.

Raise awareness among all relevant stakeholders, e.g. designers of digital tools and
services, such as the education technology sector (EdTech) and those focused on
cybersecurity, on integrating user-friendly approaches and solutions which would
support learners’ and educators’ well-being in digital education.

Raise awareness among all relevant stakeholders who develop digital education
content on integrating the aspect of well-being not only in the content itself but also
in teaching and learning processes. 63.

Support the use of EU programmes, such as Erasmus+, the European Social Fund Plus,
the European Solidarity Corps, Horizon Europe and the Digital Europe Programme
for promoting learners’ and educators’ well-being in digital learning environments
and the use of advanced digital technologies, e.g. for learners with disabilities and/or
special educational needs, as well as the development, testing and deployment of
gamification, educational solutions based on Al, and extended reality technologies
such as augmented/virtual reality for pedagogical purposes; 64.

Reflect the need for a holistic, integrated and sustainable digital education ecosystem
in the Member States that promotes quality and inclusion and fosters well-being
in digital education in the ongoing implementation of the Digital Education Action
Plan (2021-2027) and the upcoming proposals for a Council Recommendation on the
enabling factors for digital education and a Council Recommendation on improving

the provision of digital skills in education and training.

Figure 1: The page image for OJ:C:2022:469:FULL.en.p-28 is shown at left. The original document can be viewed

at https://eur-lex.europa.eu/legal-content/EN

/TXT/PDF/?uri=0J:C:2022:469:FULL#page=28. On the

right is the extracted text from pdftotext which was then run through sentence boundary detection.

were blank or contained fewer than 80 alphabetic
characters; (b) parallel content did not match the ex-
pected language, according to automated language
ID; or, (¢) content was not available in one of the 23
languages (possibly due to errors in downloading).
Human review consisted of avoiding less desirable
pages, such as pages with mid-sentence breaks at
the top or bottom of the page, pages largely con-
sisting of tables of numbers, and atypical language,
such as long lists of names or product codes.

3.4 Limitations

In addition to the OJ4OCRMT'’s desirable proper-
ties, it also has a couple of limitations. There are
no ground-truth annotations for reading order or
sentence segmentation. And because the data is
obtained from a single source, there is some homo-
geneity in both the visual properties (e.g., layouts
and fonts) and the textual characteristics (e.g., trans-
lators may use consistent terminology and style).

4 Experimental Setup
4.1 OCR Engines

In our benchmark experiments we used two open-
source OCR engines as part of OCR-MT cascades,
and one commercial end-to-end OCR-MT model.

EasyOCR is an open-source, python-based multi-
lingual OCR engine.® We used version 1.7.1 which
is released under the Apache 2.0 license. The tool
does not support the Finnish or Greek languages,
but we did run Latin-based decodes for those lan-
guages anyway; we obtained reasonable results for
Finnish, and meaningless results for Greek (as one
would expect).

Another open source tool used was Tesseract
(version 5.5.0), which was applied to the images
from the dataset at each of the three resolutions.
For each language’s portion of the data, the corre-
sponding LSTM-based pretrained Tesseract model
was applied. (Smith et al., 2009). Tesseract was
run using the Unix parallel utility for increased
CPU throughput (Tange, 2024).

For the end-to-end OCR-MT commercial sys-
tem evaluation, we used the API service hosted
by Anthropic. All results used the model identi-
fier claude-3-5-sonnet-20241022. We used the
following prompt structure:

system: “You are a highly skilled
translator and interpreter with
expertise in many languages. Your

SAvailable  from:
EasyOCR.
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Figure 2: Examples of the visual diversity in the collection, including embedded images, scientific charts, figures
such as flowcharts, multicolumn text, outline format with tables, and images such as maps.
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task is to accurately translate

the document I provide into
English while preserving the
structure and meaning of the

original text as literally as
possible.”

user: <image>

user: “Translate all of the text
in this document into English,
including the text of any headers,
body text, figures, tables,
and footnotes. Non-linguistic
text like proper names, numbers,
identifiers, and punctuation
should be preserved as much as
possible but transliterated into
Latin characters if necessary.
Output only the text of the
document exactly as it appears,
but translated so that a person
who only knows English can
understand it.”

This prompt was created using guidance from
the Anthropic documentation with manual adjust-
ment based on observed initial failure cases (such
as omitting header and footer text).” There is con-
siderable room for continued prompt tuning in fu-
ture work. In particular, we note that the prompt
does not specify the source language even though
this information was available for each document,
and we did not perform a rigorous search or evalua-
tion of many prompt alternatives, which can greatly
affect the performance of LLMs.

In order to keep the images within the size limits
supported by the service, we used the pre-computed
300dpi renderings but resized the longest edge to
1280 pixels before uploading, for an effective reso-
lution of approximately 110dpi.

We limited all decodings to a maximum of 2048
tokens. All examples from the test set fit within this
limit. Furthermore, we set the decoding tempera-
ture to 0.2 following existing machine translation
examples from Anthropic.

4.2 MT Systems

In our benchmark studies we relied on NLLB-
200, a multilingual translation system from Meta

"Despite our best efforts, the API refused to decode one page
in the test partition for 6 of the 23 languages. As this amounts
to less than 1/1000th of the data we considered this inconse-
quential.

(NLLB Team et al., 2022). Specifically, we em-
ployed the NLLB-200 3.3 billion parameter model
that is quantized to 8int for fast inference with
ctranslate2®. We chose NLLB because it is sup-
ports the languages in the dataset: a single model
simplifies the implementation, but we note that it
may be possible to further improve the MT system
by doing language-specific fine-tuning (Tang et al.,
2021) or domain adaptation (Verma et al., 2022).

4.3 Metrics

Conventional MT evaluation metrics such as BLEU
(Papineni et al., 2002) are not directly applicable
to our dataset because the atomic unit of operation
is an entire page, not a sentence. Specifically, for a
given page, the ground-truth reference extracted by
pdftotext may contain n lines, whereas the output
of an OCR-MT system may be m lines. Different
OCR-MT systems may obtain different numbers
of lines. It is non-trivial to automatically re-stitch
lines in OCR-MT output into linguistically-valid
sentences and align to the n reference lines.

Therefore, we propose to use Page-Level BLEU,
where all lines from each page are concatenated and
treated as a single long “sentence” for the purpose
of alignment between reference and hypothesis. If
there are k pages in a dataset (k = 1119 for our
testset), then we first re-organize the n lines of ref-
erence and m lines of hypothesis both into k long
lines. Then we run the standard BLEU metric using
SacreBLEU (Post, 2018), treating each page as if it
were a sentence. Pseudocode for this processing is
shown in Algorithm 1.

This kind of page-level scoring is also employed
in other OCR tasks like reading order detection
(Wang et al., 2021). Some researchers® use the term
“Document-level BLEU” to refer to what we call
“Page-Level BLEU.” We think they are interchange-
able terms but we prefer “page” to emphasize the
fact that single pages rather than full-length multi-
page documents are being scored. Other page-level
translation metrics based on COMET or TER are
also conceivable, but they would require substantial
computation to calculate due to the long lines.

While Page-Level BLEU is our primary metric
for evaluating OCR-MT systems, we propose to
use Page-Level Character F-score (chrF) to eval-

$Model: https://huggingface.co/OpenNMT/nllb-200-3.
3B-ct2-int8, Example: https://forum.opennmt.net/t/
nllb-200-with-ctranslate2/5090

9See: ICDAR25 Competition on End-to-End Document Image
MT: https://cip-documentai.github.io
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Algorithm 1 Page-Level BLEU

Require: Reference_File > n lines from our dataset
Require: Hypothesis_File > m lines from OCR-MT system

: procedure CONCATLINES(File)
L={}
for all line in File do
i = GetPageld(line) > which page the line belongs
L[i] = StringConcat(L[i], line)
end for
ids = sort(L.keys())
return list([L[i] for i in ids])
end procedure

> initialize dictionary

> Get sorted list of page ids
> k lines, k =len(ids)

R A e

10: Ref_Lines = ConcatLines(Reference_File)
11: Hyp_Lines = ConcatLines(Hypothesis_File)
12: return SacreBLEU(Ref_Lines, Hyp_Lines)

uate the accuracy of the OCR component. The
computation is similar to Page-Level BLEU, ex-
cept that BLEU is swapped with chrF (Popovi¢,
2015) which focuses more on character matching.
Other metrics like page-level character error rate
also conceivable. chrF is defined as:

chrP - chrR
B2chrP + chrR

chrF = (1+ %) (1)
where chr P is percentage of character n-grams in
the hypothesis which match reference and chr R is
the percentage of character n-grams in the hypothe-

sis which are also in the hypothesis. We set n = 6
and g = 2.10

S Experimental Results

To demonstrate the utility of OJ4OCRMT and
to document the performance attainable by con-
temporary OCR-MT systems we report several
experimental results. We studied: (a) transla-
tion into English (Section 5.1); (b) OCR-MT per-
formance using images of differing quality (Sec-
tion 5.2); and, (c) multilingual translation between
any source/target language pair (Section 5.3).

5.1 Primary Benchmark: xx—en

We encourage researchers to focus on translation
into English (xx—en) as the main benchmark for
this dataset. This is for two reasons:

1. With fewer resources for training OCR models
in non-English documents, this task is more
challenging and deserves more research.

%We use the SacreBLEU toolkit, with signatures:
BLEU=nrefs:1|case:1c|eff:yes|tok:13a|smooth:exp|version:2.4.0

chrF=nrefs:1|case:1lc|eff:yes|nc:6|nw:0|space:no|version:2.4.0

2. Translation into the same English side in this
multi-parallel dataset facilitates comparison
across test sets. For example, we can compare
the Page-Level BLEU scores of the fr—en
testset with that of the de—en testset because
they are based on the same reference.

Table 4 shows the Page-Level BLEU scores of
various OCR-MT systems. We compare 4 systems:

(a) Reference transcription translated by NLLB
(b) Cascade: Tesseract OCR + NLLB MT

(c) Cascade: EasyOCR + NLLB MT

(d) End-to-End: Direct translation by Claude

For example, in the bg—en task, translating the
ground truth Bulgarian reference using NLLB gives
49.5 Page-Level BLEU, whereas using the same
translation model on Tesseract OCR outputs in a
cascaded fashion gives 38.8 Page-Level BLEU; the
EasyOCR+NLLB cascade gives 22.5 Page-Level
BLEU and the degradation can be attributed to
OCR performance differences. The end-to-end
Claude system gives very strong 49.3 Page-Level
BLEU.

For all language pairs, we observe a perfor-
mance degradation when using automatic OCR
in cascades, suggesting that this is an interesting
dataset for understanding the impact of OCR er-
rors on MT.!! Generally, Tesseract cascades ap-
pear to perform better than EasyOCR cascades, but
there is still a sizeable gap when compared with the
OCR reference translation. The end-to-end system
achieves very competitive scores and sometimes
even outperforms reference translation (e.g., 49.6
vs. 44.6 for cs—en). There are two hypotheses:
(a) Claude has strong OCR, MT, or OCR-MT per-
formance in this domain, or (b) Claude may have
been exposed to similar kinds of governmental doc-
uments during training.

5.2 Different Image Quality

We are also interested in understanding how degra-
dation in image quality impacts OCR-MT. As pre-
viously mentioned, we converted the PDFs into
images at 300, 150, and 72dpi. For each resolution
we ran the two cascades: systems (b) and (c) de-
scribed above. We then measure the performance

""We note the Iv—en results are low across the board. This
appears to be an issue in the translation model (rather than the
OCR component), which severely hallucinates on lv input.
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bg cs da de el es e fi fr hr hu it 1t lv mt nl pl pt ro sk sl sv

(a)
(b)
(©)
)

49.5 44.6 47.4 454 47.4 549 4577 449 52.4 40.0 44.2 51.0 44.0 12.7 57.9 49.8 44.6 53.1 50.2 46.8 47.4 51.9
38.8 39.7 40.6 37.4 37.5 47.6 37.0 35.8 43.2 29.5 37.3 42.5 35.8 2.4 50.1 41.0 40.3 44.2 43.8 40.7 40.1 44.9
22.5 356 354 325 - 41.0 327 - 36.8 27.7 33.7 36.5 31.6 1.4 42.8 36.5 34.0 40.3 39.5 36.5 36.1 39.0
49.3 49.6 48.8 49.5 49.5 53.7 35.7 39.8 52.1 50.6 43.9 53.4 38.1 38.6 46.3 52.3 48.8 53.9 52.8 50.3 48.5 47.0

Table 4: Page-level BLEU results for the main benchmark: Translate into English, 300dpi setting. System (a) is the
result of translating reference transcripts in the source language with the NLLB model. System (b) is a cascade of
Tesseract and NLLB. System (c) is a cascade of EasyOCR and NLLB. System (d) is a VLM, Claude, run in an
end-to-end fashion to directly translate into English from images.

bg cs da de el en e e fi fr hr hu it It Iv mt nl pl pt ro sk sl sv

bg
cs
da
de
el
en
es
et
fi
fr
hr
hu
it
It
v
mt
nl
pl
pt
ro
sk
sl
sV

— 344 36.2 31.6 38.7 49.5 39.1 26.7 25.8 34.2 21.2 23.1 38.3 30.3 3.1 28.4 34.1 31.5 40.6 40.2 33.6 34.1 32.8
35,6 — 32.8 28.1 35.2 44.6 34.7 23.6 23.6 30.6 19.5 21.0 34.3 27.2 2.7 25.5 30.8 27.4 35.4 34.8 35.0 32.3 27.9
36.0 324 — 28.8 36.3 47.4 36.4 24.4 24.7 32.2 21.3 21.5 35.3 27.7 3.5 26.6 33.5 28.1 34.7 36.2 30.3 30.2 31.5
357323 33.1 - 33.6 45.4 349 24.8 24.0 30.9 20.5 22.5 34.7 27.3 3.4 25.4 32.8 27.3 34.8 34.0 30.7 30.8 29.8
37.1 32.2 34.1 29.0 - 47.4 36.8 24.0 23.8 32.6 19.6 20.9 36.8 27.6 2.9 28.0 32.7 28.0 37.3 37.0 31.9 31.0 29.1
54.2 48.9 52.7 46.8 523 — 57.0 38.8 36.6 47.4 37.9 42.7 53.4 41.2 2.7 49.1 51.5 47.3 56.7 56.7 51.0 48.8 49.6
40.8 35.1 37.3 32.3 40.7 549 — 26.8 26.0 38.4 21.8 25.1 43.4 30.4 3.7 31.8 37.1 30.8 45.0 43.1 34.7 35.2 34.5
36.3 32.0 35.3 30.2 35.8 45.7 36.1 — 26.5 31.6 21.2 24.0 35.0 29.6 3.3 27.1 33.3 28.9 36.3 35.2 32.1 32.0 314
34.7 31.1 33.3 29.3 34.6 449 35.1 264 — 31.5 20.4 23.7 34.1 27.7 3.5 26.2 32.1 27.6 34.7 33.9 30.5 31.0 31.0
40.3 35.4 38.1 33.6 39.4 52.4 45.1 27.9 26.6 — 25.7 26.8 43.0 30.9 4.7 30.3 38.0 32.5 43.6 43.8 34.6 35.5 34.2
27.6 21.2 24.0 18.3 27.0 40.0 24.6 16.2 17.5 22.6 - 10.3 26.2 18.8 1.7 18.5 20.2 16.5 25.2 24.6 20.0 23.3 18.4
34.2 30.4 32.5 28.5 34.3 44.2 33.7 24.1 23.8 295 17.8 — 32.8 26.4 3.0 25.3 30.7 26.3 34.3 33.1 28.8 30.4 29.1
38.5 33.7 353 30.2 39.4 51.0 41.5 25.5 25.0 37.7 22.4 22.6 - 28.7 4.1 29.3 35.7 30.6 40.9 42.0 3.9 33.0 314
35.6 31.3 32.2 27.6 34.1 44.0 34.7 24.7 24.0 30.5 20.2 22.3 342 — 3.3 25.5 31.0 27.6 34.8 34.2 30.8 29.9 28.3
0.8 06 07 0.7 08 127 1.2 05 222 26.8 255239 09 26.1 - 21.0 27.5 25.8 29.6 28.6 26.0 25.7 25.3
40.4 34.2 38.2 31.3 40.5 57.9 41.6 25.4 25.2 36.8 19.0 22.5 40.9 28.6 4.1 — 34.4 30.2 42.0 42.4 34.7 35.4 33.4
38.1 33.5 35.1 31.2 36.9 49.8 38.8 25.7 25.3 34.4 22.5 23.4 38.6 28.9 3.5 28.7 — 29.8 37.7 39.5 32.1 32.3 335
36.3 33.0 32.8 28.9 35.4 44.6 35.3 24.3 23.5 30.9 21.0 21.8 35.4 28.0 2.9 25.7 31.3 — 35.0 35.2 31.4 32.1 284
40.8 34.6 37.5 32.7 40.2 53.1 46.4 26.6 26.4 38.0 19.8 23.9 43.6 29.6 3.3 31.8 36.1 30.9 - 429 342 352 33.9
38.9 32.4 35.3 28.7 39.0 50.2 39.5 24.1 23.8 35.3 18.6 19.5 39.6 27.8 2.7 30.1 32.3 28.4 40.2 - 32.1 31.6 29.8
37.2 37.6 34.2 28.2 35.9 46.8 35.5 24.0 23.6 31.5 20.8 21.4 34.5 27.9 2.9 26.6 31.4 28.6 35.3 36.1 — 32.5285
37.2 33.7 35.0 30.3 36.8 47.4 36.1 25.1 24.8 32.5 23.8 21.5 36.9 28.9 3.5 27.4 32.7 29.9 36.2 369 33.7 - 305
38.7 33.6 39.0 31.9 38.2 51.9 39.3 24.2 26.5 35.1 20.7 23.6 38.2 28.5 3.2 29.3 35.1 28.0 38.0 37.8 32.7 33.8 -

Table 5: Page-level BLEU results for all language pairs using System (a): Reference transcript with NLLB
translation. Rows are source languages and columns are target languages. 300dpi setting.

bg cs da de el en e e fi fr hr hu it It Iv mt nl pl pt ro sk sl sv

bg
cs
da
de
el

en
es

— 27.230.5 24.8 28.9 38.8 35.2 22.2 19.9 27.5 19.8 18.7 30.4 24.6 1.5 21.5 28.5 25.4 32.9 32.5 28.5 29.8 27.7
333 — 32.027.6 30.3 39.7 35.7 23.5 21.9 28.3 20.0 19.4 31.7 26.0 2.6 22.5 30.6 27.1 34.5 33.3 35.0 32.2 29.2
329303 - 27.9 30.1 40.6 36.3 24.7 23.7 28.5 21.6 20.1 33.0 26.7 3.2 24.0 31.9 27.0 35.2 34.0 30.6 30.7 32.7
31.7 295 324 — 29.0 37.4 34.3 23.8 22.6 26.8 19.9 19.9 31.1 25.1 3.2 22.0 30.8 25.8 33.4 32.0 29.3 30.5 29.4
30.6 26.5 27.4 23.6 - 37.533.3 18.2 18.6 27.3 19.6 16.6 30.0 21.9 1.1 21.2 27.1 22.9 30.9 31.3 25.6 25.8 24.1
45.5 41.6 459 38.0 42.7 — 51.8 31.0 31.0 40.5 29.2 32.2 46.0 34.9 2.7 40.5 43.5 37.8 49.6 48.2 43.9 43.1 42.6
37.8 33.3 36.4 31.0 36.1 47.6 — 25.0 26.6 35.2 21.9 23.8 40.8 28.6 3.6 30.3 35.6 30.8 43.1 40.8 33.5 34.1 33.7
30.0 27.6 31.4 25.6 28.1 37.0 32.8 — 23.0 25.7 19.9 22.2 29.8 26.5 3.4 21.0 28.9 25.5 31.5 29.9 28.6 29.6 28.2
29.3 27.0 30.6 25.1 27.3 35.8 32.2 239 - 26.0 20.1 21.6 29.1 24.8 3.4 21.0 27.9 24.7 30.9 29.2 27.5 28.9 28.4
34.3 31.0 34.8 29.2 32.3 43.2 41.6 26.3 242 — 25.0 24.1 37.9 27.7 4.8 27.4 33.7 29.7 40.2 37.9 32.2 33.3 31.7
26.6 20.2 22.5 17.8 24.0 29.5 24.8 16.0 17.0 204 - 8.7 24.2 18.4 1.6 16.7 19.8 15.3 25.1 23.6 18.6 22.2 18.3
30.6 27.8 30.6 25.5 28.4 37.3 32.5 23.9 22.2 2577 17.6 — 29.9 25.1 3.0 21.7 28.2 24.8 32.2 30.5 27.3 28.8 27.0
342 31.2 34.3 28.5 32.2 42.5 40.1 25.4 239 32.1 242 22.1 - 27.3 4.5 26.2 33.2 28.5 38.8 37.2 32.2 33.5 31.5
28.7 25.6 28.4 23.1 25.6 35.8 31.8 22.0 19.9 25.0 19.2 19.7 27.5 - 2.4 204 26.7 23.5 30.9 28.2 26.3 27.2 25.2
1.1 08 1.0 1.0 1.0 24 18 06 06 16 09 08 1.1 07 - 07 13 08 14 1.1 08 09 09
34.3 29.5 34.2 27.2 33.2 50.1 39.7 23.4 22.0 30.9 17.5 19.2 35.3 26.0 2.3 - 30.8 26.9 38.0 36.5 31.1 32.7 30.8
32.4 294 33.8 28.5 29.7 41.0 36.6 24.2 23.1 29.3 21.8 22.0 33.0 25.9 3.1 23.7 — 27.1 34.8 33.7 30.3 31.4 30.9
31.7 27.9 28.2 27.5 30.5 40.3 34.6 20.4 20.9 29.3 19.3 17.9 29.8 23.3 3.2 22.0 27.9 - 32.2 30.4 26.2 26.4 259
34.9 30.2 34.8 28.6 32.9 442 41.9 25.1 22.9 32.9 22.2 22.7 37.8 27.2 3.2 26.6 31.9 28.2 - 37.3 32.3 33.1 31.0
35.3 30.7 34.4 28.1 32.7 43.8 39.8 24.2 22.5 32.0 19.7 19.7 36.6 26.8 2.7 26.4 31.8 27.4 39.0 - 32.2 33.0 30.9
33.1 34.0 32.8 27.0 30.3 40.7 36.0 23.7 21.2 28.1 21.2 20.2 31.7 25.7 2.5 22.5 29.9 27.2 347 33.0 - 329 28.8
33.2 30.4 31.7 27.7 30.4 40.1 35.0 23.4 22.6 27.3 23.3 20.1 31.3 26.5 3.2 22.6 30.1 26.8 34.5 32.7 31.8 — 29.6
35.0 31.9 39.0 30.1 33.1 44.9 38.7 24.3 25.5 31.8 22.0 22.4 35.6 27.9 3.1 26.1 34.0 28.4 37.2 35.6 32.4 339 -

Table 6: Page-level BLEU results for all language pairs using System (b): Tesseract OCR with NLLB translation.
Rows are source languages and columns are target languages. 300dpi setting.
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Figure 3: Scatterplot of Cascade systems under different
image inputs (300dpi, 150dpi, and 72dpi). The x-axis is
the chrF of the OCR engine, and the y-axis is the BLEU
score representing final OCR-MT performance.

of the OCR component using Page-Level chrF and
the final OCR-MT performance using Page-Level
BLEU. A scatterplot is shown in Figure 3.

As can be seen, there is a strong correlation be-
tween the OCR chrF and OCR-MT BLEU scores.
For example, TesseractNLLB for cs—en gives 97.6
chrF and 39.7 BLEU at 300dpi, drops to 97.3 chrF
and 39.0 BLEU at 150dpi, and then further de-
creases to 69.1 chrF and 23.5 BLEU at 72dpi. We
believe that releasing images with different resolu-
tions will foster additional OCR-MT research.

Note there are also several failure cases in the
72dpi setting, which appear to be difficult for both
Tesseract and EasyOCR. For those systems with
OCR chrF under 50, the OCR transcripts are basi-
cally unreadable and the MT component halluci-
nates. This explains the Page-Level BLEUs under
10 in Figure 3.

5.3 Multilingual Evaluation

Since our dataset is multi-way parallel, a massively
multilingual evaluation for all pairs of 23 x 22 =
506 language directions is feasible. We report Page-
level BLEU results for System (a) in Table 5 and
for System (b) in Table 6.'> We hope this will
encourage research that is not English-centric.

5.4 Error Analysis

We present examples in Table 7 to illustrate the suc-
cesses and failures of one of the cascade systems.
The English reference for the three examples can

2We did not run the Claude model for all these pairs due to
the computational expense.

be seen in Figure 2. Due to space limitations, we
only show an excerpt of the Tesseract OCR output
and NLLB MT output for each page.

In Example 1, we observe some critical OCR
errors in the lower dpi case: “Stammt aus” was mis-
transcribed as “53mm us” and “Landwirtschaftssys-
tem” was mistaken as “Landwirtschaftssyster”, and
the error propagation resulted in an incomprehen-
sible translation. In contrast, in Example 2, there
are also critical mistakes in OCR, but interestingly
the translation still contained some of the gist. Mis-
transcription of “Drittlandern” into “Drinlédnder”
changed the translation from “third countries” to
“non-member countries.” In terms of BLEU n-gram
calculation, the main noun ‘“countries" was trans-
lated correctly.

Example 3 is the page with the flowchart in Fig-
ure 2. It contains some complications due to lay-
out analysis and reading order. For both 72 and
300 dpi examples, we observe that the header (“L
14/438 Amtsblatt der Europidischen Union...”) has
not been sentence-split from the following caption
of the flowchart (“Ablaufdiagramm fiir das ...” /
“Flowchart on the ...”). These kinds of sentence
splitting issues can impact MT significantly, espe-
cially if it expects well-formed sentences. Inter-
estingly, the header is entirely ignored by NLLB
in the 300dpi case. Additionally, the 72dpi ver-
sion does not output lines in the same order as the
300dpi version, in particular jumping to generate
the box containing the word “Berechnung” soon
after the “Start” box of the flowchart. This resulted
in significantly different translations between the
two image resolutions.

We can also analyze translation quality accord-
ing to page type, since the dataset contains anno-
tations indicating which pages contain figures or
tables. These more complex layouts may present
additional challenges to an OCR-MT system. Ta-
ble 8 shows the Page-Level BLEU of the Tesseract-
NLLB cascade broken down by different subsets.
For example, in bg—en, we observe that the per-
formance on pages with tables (24.8) is 14.0 points
lower than the performance on the full testset; sim-
ilarly, performance on pages with figures degrades
14.6 points. Generally, across all language pairs,
we observe that pages with tables or figures tend to
be substantially more challenging.
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[DPI|Tesseract output (transcript or translation)

Example 1: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=0J:L:2023:188:FULL#page=36

72 |OCR: Das Lamunfleisch 53mm us einem extensiven traditionellen Landwirtschaftssyster.
MT: The meat 53mm us an extensive traditional agricultural sister.
300 |OCR: Das Lammfleisch Stammt aus einem extensiven traditionellen Landwirtschaftssystem.

MT: Lamb comes from an extensive traditional farming system.

Example 2: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=0J:L:2023:147:FULL#page=14

72 | OCR: Einfiihren aus anderen Drinldnder als Im Die Einfuhren der iiberpriiften Ware aus anderen Drinlindern stammten
hauptsichlich aus China, Mexiko und Russland
MT: Imports from non-member countries of the three countries The imports of the product under review from non-
member countries of the three countries were mainly from China, Mexico and Russia

300 |OCR: Einfuhren aus anderen Drittlindern als Indien (54) Die Einfuhren der iiberpriiften Ware aus anderen Drittlindern

stammten hauptsédchlich aus China, Mexiko und Russland.
MT: Imports from third countries other than India (54) Imports of the product under review from other third countries
were mainly from China, Mexico and Russia.

Example 3: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=0J:L:2023:014:FULL#page=440

72 |OCR: Lies Amwbia der Europiischen Union 16.2023 Ablaufdiagramm fiir das Betriebsakkumulationsprogramm Start
Berechnung Nrs Abfolge (Anlage 4 + aktive...
MT: 16.1.2023 European Union Amw blue Example of a farm accumulation programme with chemical, lubricant
consumption and engine speed and cabinet regeneration data Example of a farm ...

300 |OCR: L 14/438 Amtsblatt der Europdischen Union 16.1.2023 Anhang 13 - Anlage 9 Ablaufdiagramm fiir das Be-

triebsakkumulationsprogramm Start ; Aufbau einer Alterungsabfolge (thermische Alterung + Schmiermittelverbrauch-
salterung) ...

MT: Annex 13 - Appendix 9 - Schedule of the operational accumulation programme Start; construction of an ageing
sequence (thermal ageing + lubricant consumption ageing) ...

Table 7: Example outputs from OCR component and OCR-MT cascade for de—en. The English version of the
images are in Figure 2. The original German PDF can be accessed online with the provided URL. Interesting errors
are highlighted in red and discussed in Section 5.4.

6 Conclusions

We have created a new dataset, OJ4OCRMT, which

all [table A |figure A . .
bz [38.8/248 (14.0)| 242 (14.6) adds to the set of resources aYallable for assessing
cs [39.7]25.1 (-14.6)| 30.5 (-9.2) the performance of document image translation sys-
da 140.6/33.0 (-7.5) | 37.8 (-2.7) tems. The dataset is large, supports 23 languages
de (37.4(27.3 (-10.1)| 30.5 (-6.9) d3 ... d . . )
el [37.51289 (8.6) | 223 (152) an writing systems, and contains interesting
es [47.6/41.3 (-6.3) | 33.9 (-13.7) visual layouts of natural documents in the govern-
et |37.0132.8 (-4.2) 269 (-10.1) ment domain. We reported benchmark experiments
fi [35.8(28.0 (-7.8) | 25.6 (-10.1) . . .
fr [432[295 (-13.7)| 307 (-12.5) on this translation task using two cascaded systems
hr [29.5127.2 (2.3) | 242 (-5.3) and one VLM-based end-to-end system. Some of
ﬁu izg gg"g (('_1703‘;) gzg E}gg; our findings include: (a) the VLM system (Claude)
It [358(22.1 (-13.6)| 234 (-12.4) generally outperformed the cascaded systems; (b)
Iv [24]46 (+22)| 1.2 (1.1 Tesseract generally outperformed EasyOCR; (c)
mt [50.1[29.1 (-21.0)| 41.2 (-8.9) Dl
al |410]255 (15.5) 325 (8.4) the OCR models performed poorly on 72dpi im
pl [40.3[35.7 (-4.5)| 282 (-12.1) ages; and, (d) the presence of tables or figures in
pt |442126.7 (-17.5)| 34.0 (-10.2) images led to poorer translation quality.
ro 14381261 (-17.6)) 346 (-92) The dataset can be obtained from https://
sk 140.7|25.2 (-15.5)| 33.2 (-7.6) ) pS:
sl 40.1|31.7 (-8.4) | 29.5 (-10.6) huggingface.co/hltcoe.
sv |44.9|24.3 (-20.5)| 33.0 (-11.9)
avg.(38.6(27.7 (-10.9)| 289 (-9.7)

Table 8: Page-level BLEU breakdown by page type
(pages with tables or figures), for the Tesseract-NLLB
cascade. xx—en, 300dpi setting. A shows difference in
Page-Level BLEU when compared to the all pages in
the testset.
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Sustainability statement

As the focus of this paper is on developing a dataset
and demonstrating its utility for evaluating docu-
ment image translation, it was not necessary to train
models. Consequently, our electrical consumption
was fairly small for the work described in this pa-
per. By compiling and releasing a reusable dataset
we hope to save other researchers effort.

We will nevertheless attempt to estimate carbon
footprint associated with this project. For the end-
to-end translation experiments using Anthropic’s
Claude model, we note that the Claude 3 Model
Card claims that Anthropic purchases sufficient
carbon credits to offset their consumption each year
(Anthropic, 2024).

For the cascade systems, our NLLB inference on
V100 GPU’s takes approximately 0.5 hours on each
test set. We estimate 1200 test decodes, so that is
600 GPU-hours in total. The EasyOCR decodes
cost around 300 GPU-hours. If we use 250 watts
as the rating for a V100, then given a total 900
GPU-hours that is 0.23 MWh of electricity usage.
If we assume a COze emission of 432 kg/MWh
and data center power usage effectiveness (PUE)
of 1.5, then the COse emission is guesstimated to
be: 1.5 x %23 11\/[Wh X ﬁ%&l,(}% = 150 kg. In addition,
our CPU usage for ersatz sentence splitting and
Tesseract OCR 1is estimated to be at 200 hours,
corresponding to 39kg COxe in total.
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Abstract

Large language models (LLMs) are increas-
ingly strong contenders in machine transla-
tion. In this work, we focus on document-level
translation, where some words cannot be trans-
lated without context from outside the sentence.
Specifically, we investigate the ability of promi-
nent LLMs to utilize the document context dur-
ing translation through a perturbation analysis
(analyzing models’ robustness to perturbed and
randomized document context) and an attribu-
tion analysis (examining the contribution of
relevant context to the translation). We conduct
an extensive evaluation across nine LLMs from
diverse model families and training paradigms,
including translation-specialized LLMs, along-
side two encoder-decoder transformer base-
lines. We find that LLMs’ improved document-
translation performance compared to encoder-
decoder models is not reflected in pronoun
translation performance. Our analysis highlight
the need for context-aware finetuning of LLMs
with a focus on relevant parts of the context
to improve their reliability for document-level
translation.

1 Introduction

Language normally consists of collocated, struc-
tured, coherent groups of sentences referred to as a
discourse (Jurafsky and Martin, 2009, chapter 21).
Discourse properties that go beyond an individ-
ual sentence include the frequency and distribution
of words within a document, topical, functional
and discourse coherence patterns, and the use of
reduced expressions. These properties have stimu-
lated a good deal of machine translation research in
the 1990s, aimed at endowing machine—translated
target texts with the same properties as their source
texts (Nash-Webber et al., 2013). Since then, there

© 2025 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

has been a growing interest in document-level trans-
lation, mainly focused on document-level influ-
ences on lexical choice, and developing methods,
annotated resources and assessment metrics for
discourse-level machine translation (Popescu-Belis
et al., 2019).

Large language models (LLMs) show promise
on multiple language technologies, with recent
models specially finetuned for machine translation
(Alves et al., 2024; Xu et al., 2023). Wang et al.
(2023) suggest that translation LLMs have potential
to be the new paradigm for document-level transla-
tion. While such work focuses only on assessing
translation quality using metrics such as BLEU or
COMET, our work investigates how models uti-
lize context in translation. Inspired by Mohammed
and Niculae (2024), we follow an interpretable ap-
proach towards context utilization evaluation. In
particular, we focus on answering two main ques-
tions: how sensitive LLMs are to the correct con-
text, and how well they utilize the relevant parts of
context.

For context sensitivity assessment, we com-
pare the general and discourse-phenomena-specific
(Miiller et al., 2018) translation performance of
LLMs under the gold context setup to a perturbed
context setup. For relevant-context utilization as-
sessment, we perform a finer-grained evaluation.
We look at models’ internals using attribution meth-
ods (Ferrando et al., 2023) to quantify the contribu-
tion of relevant context to the translation. Context
utilization in machine translation has been explored
in encoder-decoder models, such as by Sarti et al.
(2023), who developed an end-to-end interpretabil-
ity framework to assess context-aware translation.
To the best of our knowledge, we are the first to
explore context utilization in translation LLMs via
perturbation and attribution methods.

Our main findings can be summarized in the
following:
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* Translation-finetuned LLMs outperform
encoder-decoder models at overall translation,
but perform worse on discourse phenomena.

* Despite being smaller and not specifically fine-
tuned for translation tasks, the EuroLLM-9B-
Inst multilingual model outperforms the Tow-
erInstruct 13B model at translation.

* All evaluated models show robustness to ran-
domized context. We attribute this to lack of
proper context utilization and highlight the
need for explicit context-aware finetuning of
LLMs to ensure their reliability for document-
level translation.

* Our analysis of model internals reveals low
relevant-context attribution scores, further
highlighting the necessity for explicit context-
aware finetuning.

The structure of our paper is as follows: §2
provides an overview of the analyses conducted,
while §3 outlines the experimental setup. In §4, we
present and discuss the results of our experiments.
A review of additional related work is included in
§5, and we present our conclusions and sugges-
tions for future work in §6. Finally, §7 addresses
the limitations of our research and our ethical con-
siderations are detailed in §8.

2 Analysis overview

This section presents an overview of the analyses
we conducted. Like Mohammed and Niculae
(2024), we perform a perturbation analysis on
translation quality and pronoun resolution accuracy.
Moreover, we examine model mechanics through
an attribution analysis via interpretability methods.

2.1 Perturbation Analysis

Translation quality. To assess model’s sensitivity
to gold context, we compare models’ translation
behavior in different context setups: a gold, per-
turbed, and random context setup on IWSLT2017
data (Cettolo et al.,, 2012). The gold context
(Figure 1a) is the previous source-target pairs. For
the perturbed context (Figure 1b), we randomly
sample sentences from a different document,
matching the size of the gold context. We sample
sentences from a different document instead of the
same document to ensure a robust analysis of mod-
els’ reliance on relevant contextual information

and to avoid introducing unintended biases due to
implicit thematic or lexical similarities. Random
context (Figure 1c¢) is uniformly-sampled random
tokens from the model’s vocabulary, with the same
size as the gold context.

Pronoun resolution. We perform a phenomenon-
specific assessment of models’ sensitivity to gold
context by comparing pronoun resolution perfor-
mance in different context setups on ContraPro
data (Miiller et al., 2018; Lopes et al., 2020). We
focus on pronoun resolution as a measurable
phenomenon where perturbation experiments
can be defined due to the availability of datasets
with supporting context annotations. The gold
and random contexts (Figures 2a and 2c) are the
same as for IWSLT2017 data. Here, instead of
the perturbed context replacing the gold context
with sentences from different documents, we only
replace antecedent tokens in the gold context with
different-gender tokens (Figure 2b). This allows
for a finer-grained context-utilization analysis. We
create a database of antecedent words, clustered
by POS (Part Of Speech) tag and gender. Each
antecedent is replaced with a random word of the
same POS tag but different gender. For antecedents
with rare POS tags (0.2% of cases), no such
alternative can be found, so we sample a random
different-gender word with any tag.

2.2 Attribution Analysis

For a finer-grained evaluation, we analyze how
much LLMs utilize relevant context when trans-
lating ambiguous pronouns. We use two existing
attribution methods: ALTI-Logit (Ferrando et al.,
2023) and input-erasure (Li et al., 2016), as Krishna
et al. (2022) point out that state-of-the-art explana-
tion methods often disagree. ALTI-Logit tracks the
logit (pre-activation of the softmax) contributions
back to the input by aggregating across layers and
considering the mixing of information in intermedi-
ate layers using ALTT (Ferrando et al., 2022). Input-
erasure measures the change in model’s prediction
when removing parts of the input. Attribution meth-
ods provide for every token in the model input X,
a non-negative attribution score {a; : t € X}, cor-
responding to the amount that token contributes to
the next token prediction. For our aim, we mea-
sure how much of the overall attribution goes to
a subset of the input S C X. This motivates the
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attribution percentage:
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3 Experimental Details

This section includes details about models, datasets,
prompt formats, and evaluation metrics used in our
experiments. The sustainability statement for our
experiments is presented in Appendix A.

3.1 Models

We experiment on three model categories to cap-
ture the effects of large scale training, multilingual
pretraining, and translation-specific finetuning.

Translation-finetuned LL.Ms. From the Tower
family (Alves et al., 2024) we consider TowerBase,
built on top of Llama-2 by continuing pretraining
on multilingual data, and TowerInstruct which
further finetunes TowerBase for translation-related
tasks. We also analyze ALMA (Xu et al., 2023),
which follows a two-step finetuning approach also
on top of Llama-2, with multilingual and parallel
data. As the foundation of the models above, we
also include Llama-2 (Touvron et al., 2023), in
order to capture the effects of translation-specific
finetuning on context use. We consider the 7B and
13B versions of all models wherever feasible.

Multilingual LLMs. We experiment on EuroLLM-
9B-Inst (Martins et al., 2024), a model trained
on 35 languages, encompassing all European
Union languages and additional relevant ones.
Specifically, we use the instruction-tuned version
of EuroLLM-9B-Inst to evaluate the impact of
(multilingual pretraining + instruction tuning)
compared to the (monolingual pretraining + contin-
ued multilingual pretraining + translation-specific
fine-tuning) of Tower models.

Encoder-decoder baselines. We analyze NLLB-
3.3B (Costa-jussa et al., 2022) as one of the state-
of-the-art encoder-decoder translation models. As
NLLB is trained at the sentence-level and not
intended for document-level translation, we in-
clude only its sentence-level scores. As a context-
aware encoder-decoder baseline, we also include
a transformer-small model trained on the training
subset of IWSLT2017 TED data (Cettolo et al.,
2012). In specific, we train a small encoder-
decoder transformer model (Vaswani et al., 2017)

(hidden size of 512, feedforward size of 1024, 6
layers, 8 attention heads). We use the Adam op-
timizer with 5; = 0.9 and 52 = 0.98 and use an
inverse square root learning rate scheduler with an
initial value of 5 x 10~* and with a linear warm-up
in the first 4000 steps. We train the model with
early stopping on the validation perplexity. The
model is trained using a dynamic context size of
0-5 previous source and target sentences to en-
sure robustness against varying context size, as
recommended by Sun et al. (2022). The training is
performed on top of Fairseq (Ott et al., 2019).

3.2 Datasets

General translation assessment data. We
evaluate on IWSLT2017 TED data (Cettolo
et al., 2012), in English to German (EN—DE) and
English to French (EN—FR). For EN—DE, we
combine tst2016-2017 for a test set of 2,271
sentences across 23 documents. For EN—FR, we
use tst2015, containing 1,210 sentences in 12
documents. Following Mohammed and Niculae
(2024), we use a context size of 5 previous source-
target pairs. Future work could investigate the
impact of context size on translation performance.

Pronoun resolution experiments data. We use
ContraPro, a subset of OpenSubtitles (Miiller et al.,
2018; Lopes et al., 2020), consisting of examples
with ambiguous pronouns, their gold translations,
and automatic annotation of antecedents (relevant
context) needed for resolution. For EN—DE, the
dataset considers the translation of the English
pronoun “it” to the three German pronouns “er”,
“sie” or “es”. For EN—FR, the dataset concerns
the translation of the English pronouns “it”, “they”
to their French correspondents “il”, “elle”, “ils”,
and “elles”. The dataset is balanced and consists
is 12K instances for EN—DE and 14K instances
for EN—FR. Our experiment is controlled: we
experiment on instances where the antecedent
distance is in the interval [1,5] in sentences and use
5 source-target pairs as context at inference time.

Attribution analysis data. Using ContraPro, we
force-decode up to the pronoun, and measure the
attribution percentage of the entire context and the
relevant context (antecedents). Due to computa-
tional constraints, we analyze only the 7B version
of LLMs in addition to EuroLLM-9B-Inst, ran-
domly sample a balanced 2k subset of ContraPro
and use a context size of 2.
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English: So freedom came with responsibility.
German: Freiheit war also mit Verantwortung verbunden.

English: When I was a kid, my parents would tell me, "You can make a mess, but you have to clean up after yourself.”
German: Als Kind sagten mir meine Eltern immer: "Du kannst Unordnung machen, solange du hinterher aufrdumst."”

Given the provided parallel sentence pairs, translate the following English sentence to German:
English: But my imagination would take me to all these wonderful places, where everything was possible.
German: Aber meine Fantasie erdffnete mir viele wunderbaren Orte, an denen alles mdglich war.

(a) Gold-context prompt

English: Before becoming a writer, Nora was a financial planner.
German: Bevor sie Autorin wurde, war Nora Finanzplanerin.

— editors.

< Pitches fiir Redakteure.

English: She had to learn the finer mechanics of sales when she was starting her practice, and this skill now helps her write compelling pitches to
German: Sie befasste sich detailliert mit Verkaufsmechanismen, als sie ihre Praxis erdffnete. Diese Fertigkeit hilft ihr nun beim Entwickeln von
Given the provided parallel sentence pairs, translate the following English sentence to German:

English: But my imagination would take me to all these wonderful places, where everything was possible.
German: Aber meine Fantasie erdffnete mir viele wunderbaren Orte, an denen alles méglich war.

(b) Perturbed-context prompt

— ". nuc

< stoneitosweh epe limits translate
English: ctoo Ski| anth https Baby Platform
German: HERannel/*medialabelignonliteretzt media Mittturown

English: ro practicevalue downloadingcorezDescription Hence tierra Pur SeleAP hrefpick bore Engel delegate We WCF broad quattro bird stru corsategor

German: Itemactivityrightarrow friher spend Universit&dt Bull “Password cantonmys@”, largvarphikoamiltonounrenceoking fiavctor NickFoot Colors

Given the provided parallel sentence pairs, translate the following English sentence to German:
English: But my imagination would take me to all these wonderful places, where everything was possible.
German: Aber meine Fantasie erdffnete mir viele wunderbaren Orte, an denen alles mdglich war.

(c) Random-context prompt

Figure 1: The figure shows example prompts used in the perturbation experiments for translation quality analysis,
the reference translation (the last line of each example) is shown in green. The examples shown employ the explicit

prompt format.

English: One of the Chinese worked in an amusement park.
German: Ein Chinese arbeitete in einem Vergniigungspark.
English: It was closed for the season.

German: Er war gerade geschlossen.

(a) Gold-context prompt

English: One of the Chinese worked in an house.
German: Ein Chinese arbeitete in einem Haus.
English: It was closed for the season.

German: Er war gerade geschlossen.

(b) Perturbed-context prompt

German: Itemactivityrightarrow friher spend Universitdt Bull *Password.
English: It was closed for the season.
German: Er war gerade geschlossen.

English: ro practicevalue downloadingcorezDescription Hence tierra Pur SeleAP hrefpick bore.

(c) Random-context prompt

Figure 2: The figure shows example prompts used in the perturbation experiments for pronoun resolution analysis,
the reference translation (the last line of each example) is shown in green. The pronoun of interest and its antecedents
are highlighted in underlined blue. The examples shown employ the generic prompt format.

3.3 Evaluation

We evaluate translations using BLEU (Papineni
et al., 2002), CHRF (Popovi¢, 2015), and COMET
(Rei et al., 2022). We also measure and pronoun
translation accuracy in a contrastive force-decoded
setting (CPRO; Miiller et al., 2018) and a gen-
erative one (GPRO; Post and Junczys-Dowmunt,
2023). The contrastive pronoun resolution metric
(CPRO) evaluates the models’ accuracy in assigning
a higher score to a sentence containing the correct
pronoun compared to sentences with incorrect pro-
nouns. The generative pronoun resolution metric
(GPRO) assesses models’ accuracy in generating the
correct pronoun during inference. As Post (2018)
points out the importance of providing SacreBLEU
signatures for reproducibility, the details of our
metrics are in Table 1.

metric signature

BLEU nrefs: llcase:mixedleff:yesltok: 13alsmooth:explversion:2.4.0
CHRF nrefs: 1lcase:mixedleff:yesinc:6lnw:Olspace:nolversion:2.4.0
COMET https://huggingface.co/Unbabel/wmt22-comet-da

Table 1: Evaluation-metrics signatures

3.4 Prompt Format

Wu et al. (2024) noted that prompt formats sig-
nificantly impact LLMs’ performance, with well-
structured prompts boosting models’ performance.
We use 3 formats from their work as in Fig. 3.!

4 Results and Discussion

This section presents and discusses the experimen-
tal results, covering the performance under the gold
"For Towerlnstruct, we add an instruction-following pre-

fix as per its documentation:<lim_startl>user {prompt}
<lim_start/>assistant.
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https://huggingface.co/Unbabel/wmt22-comet-da

Sentence Generic prompt Explicit prompt
baseline random perturbed gold random perturbed gold
COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU

EN—DE
Concat Enc-Dec 754 234 679 202 753 234 754 236 - - - - - -
NLLB 3.3B 84.4 28.2 - - - - - - - - - - - -
" EuroLLM-9B-Inst =~ 85.8 28.6 852 279 857 288 86.3+30.8 854 283 85.7 28.8 =864 30.3
" Llama-27B 7 79.0 20.8 426 015 79.8 21.3 812 220 779 20.1 798 216 812 228
Llama-2 13B 76.0 02.1 568 06.0 81.6 232 82.8 255 784 225 67.0 022 764 01.7
TowerBase 7B 82.8 258 82.1 257 837 259 838 256 83.0 263 825 264 820 26.3
TowerBase 13B 827 27.1 835 273 842 27.8 850 289 834 272 749 239 782 258
ALMA 7B 829 248 77.1 157 823 230 834 253 824 234 827 227 837 245
ALMA 13B 83.8 262 737 173 832 249 843 27.1 737 256 83.6 256 834 27.1
Towerlnstruct 7B 84.8 273 844 266 848 270 852 275 844 264 847 27.0 850 27.1
Towerlnstruct 13B 85.1 284 84.8 272 852 280 856 29.1 849 275 85.1 27.8 854 286
EN—FR
Concat Enc-Dec 77.8 358 682 289 773 354 775 36.0 - - - - - -
NLLB 3.3B 84.8 38.5 - - - - - - - - - - - -
" EuroLLM-9B-Inst =~ 86.4 40.8 859 403 '86.5 41.3 =86.8=43.4 86.2 40.5 86.3 41.4 86.7 42.8
" Llama-27B =~ ¢ 81.6 332 295 012 81.8 29.6 826 347 809 31.6 820 315 825 309
Llama-2 13B 77.0 17.1 547 042 83.8 355 845 384 81.1 342 819 20.7 834 06.3
TowerBase 7B 847 399 83.8 37.1 79.0 10.8 787 362 844 400 79.1 13.6 765 354
TowerBase 13B 794 395 849 41.0 85.1 40.7 859 419 85.1 40.7 854 40.6 69.3 31.7
ALMA 7B 80.8 28.7 522 07.1 804 257 81.1 279 80.3 289 805 274 813 30.5
ALMA 13B 83.0 33.7 60.0 10.0 82.8 327 834 331 829 339 829 339 837 35.1
Towerlnstruct 7B 85.8 38.1 855 354 834 330 860 39.6 854 36.1 84.1 369 859 39.1

Towerlnstruct 13B 86.2 40.0 86.0 393 86.0 403 864 409 86.0 395 86.0 402 86.2 40.8

Table 2: Translation performance (COMET and BLEU) on IWSLT2017, with random, structurally perturbed and
gold context, for the prompts considered. The best value per column is marked in Bold blue numbers while red
marks the second best value; (++) marks best overall. Enc-Dec is short for the encoder-decoder transformer model.

sentence random perturbed gold
COMET GPRO CPRO  COMET GPRO CPRO  COMET GPRO CPRO COMET GPRO CPRO

EN—DE
Concat Enc-Dec 66.2 41.7 464 61.5 32.6 453 66.9 53.5 «60.4 67.0 #+56.2 =60.4
NLLB 3.3B 723 41.6 32.0 - - - - - - - - -

" EuroLLM-9B-Inst ~ 61.5 29.7 547 — 509 245 51.0 =~ 41.6 21.8 477 437 296 514

" Llama27B 350 09.7 452 276 023 463 393 221 469 416 261 499
Llama-2 13B 342 07.6 45.1 28.0 03.0 459 40.1 255 49.6 427 31.1 56.7
TowerBase 7B 39.6 14.1 46.7 35,0 11.2 457 44.0 251 479 459 289 50.8
TowerBase 13B 56.6 30.8 46.6 31.8 06.6 46.4 51.6 27.3 499 502 322 538
ALMA 7B 524 221 464 30.7 06.8 45.8 46.5 256 472 49.0 30.6 499
ALMA 13B 553 246 469 30.3 05.7 47.5 46.3 29.7 522 486 355 585
Towerlnstruct 7B 57.0 299 498 40.7 145 58.0 539 27.1 485 552 30.7 519
Towerlnstruct 13B 56.6 30.8 54.5 53.8 21.8 59.2 51.6 27.8 55.0 60.9 322 599
EN—FR
Concat Enc-Dec 66.5 51.7 176.5 62.7 51.6 76.2 66.8 57.7 80.5 67.0 =+65.0 86.0
NLLB 3.3B +76.3 64.0 36.9 - - - - - - - - -

" EuroLLM-9B-Inst ~ 58.5 342 067 288 007 17.0 ~ 432 254 116 469 367 132

" Llama-27B 38.0 129 90.0 ~ 287 015 646 419 248 645 461 340 682
Llama-2 13B 341 63 894 29.1 022 49.0 425 256 592 47.1 351 63.6
TowerBase 7B 41.5 147 =94.5 38.5 09.8 70.2 457 267 85.9 50.2 363 88.1
TowerBase 13B 38.0 10.1 783 337 05.7 743 47.6 284 80.1 525 383 821
ALMA 7B 426 147 11.2 20.1 024 054 417 227 09.0 454 29.7 10.6
ALMA 13B 450 165 094 30.1 03.0 05.3 444 267 08.3 486 344 09.8
Towerlnstruct 7B 56.6 359 55.1 349 04.0 23.8 503 293 526 55.1 395 56.5
Towerlnstruct 13B 57.0 351 11.1 479 14.1 047 53.1 303 124 58.1 404 13.8

Table 3: This table presents the translation performance measured using COMET, the generative (GPRO) and the
contrastive (CPRO) pronoun-resolution accuracies on ContraPro dataset, with random, structurally perturbed and
gold context, and generic prompt. Random guessing accuracy: 33.3% EN—DE, 50% EN—FR. The best value per
column is marked in Bold blue numbers while red marks the second best value; (+) marks best overall. Enc-Dec is
short for the encoder-decoder transformer model.
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Translate the following <src_lang> source text to <tgt_lang>: (a)
<src_lang>: <src_sentence> <tgt_lang>:

<src_lang>: <src context 1> <tgt_lang>: <tgt context 1> (b)
<src_lang>: <src context 2> <tgt_lang>: <tgt context 2>

<src_lang>: <src sentence> <tgt_lang>:

<src_lang>: <src context 1> <tgt_lang>: <tgt context 1> (c)
<src_lang>: <src context 2> <tgt_lang>: <tgt context 2>

Given the provided parallel sentence pairs, translate the following
< <src_lang> sentence to <tgt_lang>:

<src_lang>: <src sentence> <tgt_lang>:

Figure 3: a) sentence-level, b) generic, and c) explicit
prompt formats. tgt context refers to gold translations.

context setup, the perturbation analysis (perfor-
mance under the perturbed and random context
setups), and the attribution analysis looking at the
models’ internals.

4.1 Performance With the Gold Context

Overall translation performance. Table 2 shows
the translation performance (BLEU, COMET) on
IWSLT2017 in the sentence-level baseline setup,
the generic prompt setup, and the explicit prompt
setups. CHRF results are in a separate table (Ta-
ble 4) for better readability. We analyze the results
of different model categories and summarize the
observations and their intuitions in the following
paragraphs.

We notice that document-level generic prompt-
ing improves translation performance of all models
over the sentence-level baseline. This is expected
since document-level prompting gives the model ac-
cess to inter-sentential context. Moreover, explicit
prompting improves instruction-finetuned models’
performance, while strong base-models (such as
TowerBase 13B) degrade in performance. This is
also aligned with expectations of the sensitivity
of models to the prompt format (Wu et al., 2024),
and it highlights the importance of aligning train-
ing and inference prompts. However, as the gains
with explicit prompting are not substantial even for
instruction-tuned models, we opt for the generic
prompt format for the pronoun resolution experi-
ments.

For models under consideration in this work,
decoder-only LLMs outperform encoder-decoder
models at overall translation. This aligns with pre-
vious research findings of the potential of LLMs
as a new paradigm for document-level translation
(Wang et al., 2023). Interestingly, for both language
pairs, EuroLL.M-9B-Inst outperforms all models in
both prompting formats. In the explicit prompting
format, TowerInstruct 13B achieves the second-

highest performance, while in the generic format,
TowerBase 13B comes in second (for EN—FR).
EuroLLM-9B-Inst’s recipe of multilingual pretrain-
ing and instruction tuning seems to have better
effects on improving the translation performance
compared to the continued multilingual pretrain-
ing and translation-specific fine-tuning of Tower
models. ALMA models lag behind Tower models
despite both employing a two-step fine-tuning strat-
egy on multilingual and parallel data. This raises
the need for a deeper investigation into how various
design choices (such as the selection and number
of finetuning languages, the choice of datasets, and
the configuration of hyper-parameters) influence
downstream performance.

Further analyzing Table 2, we observe that
Llama-2 13B model has a noticeably low perfor-
mance with explicit gold context for both language
pairs. While surprising at first sight, we argue that
as the model is pretrained mainly on English data,
it might not be sufficient for this task. We look at
the translations produced by the model and find
that they are mostly repeated words or outputs in
the source language instead of the target language.

Pronoun resolution performance. Table 3 shows
the generative and contrastive pronoun accuracy
and translation performance (COMET) on Con-
traPro dataset.

Similar to the overall translation performance,
We notice that document-level prompting outper-
forms sentence-level prompting in pronoun resolu-
tion performance. A key finding from this analysis
is the contrasting ranking compared to the over-
all translation performance: both encoder-decoder
baselines outperform all LLMs in terms of GPRO
and COMET scores. Even with gold context, LLMs’
performance remains notably poor, with accuracy
at or below the random guessing accuracy (33.3%
for EN—DE, and 50% for EN—FR). This suggests
that there is room to improve LLMs’ translation
finetuning to better handle context-dependent dis-
course phenomena.

However, it is important to note that except for
the encoder-decoder transformer model that we
trained from scratch, we don’t have access to other
models’ training data, therefore, we cannot guar-
antee that ContraPro is unseen and thus that the
evaluation is fair. In particular, NLLB’s perfor-
mance far above chance at the sentence level may
be due to such contamination, as sentence-level
evaluation forces it to guess the pronoun gender
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Sent Genric Explicit

base. rand. pert. gold rand. pert. gold
EN—DE
Concat Enc-Dec 53.0 50.7 53.0 53.1 - - -
NLLB 3.3B 59.7 - - - - - -

" EuroLLM-9B-Inst ~ 59.4 588 59.1 604 592 59.5 «60.7
" Llama-27B 5120 121 513 522 510 520 533
Llama-2 13B 35.1 179 535 548 522 325 335
TowerBase 7B 569 56.7 57.0 564 57.1 56.8 56.5
TowerBase 13B 578 579 583 59.1 579 517 54.8
ALMA 7B 548 466 53.0 548 545 542 554
ALMA 13B 56.6 435 552 56.8 562 562 57.4

Towerlnstruct 7B 57.9 57.4
Towerlnstruct 13B 589 582

EN—FR
Concat Enc-Dec 60.9 56.4
NLLB 3.3B 65.9 -
" EuroLLM-9B-Inst ~ 65.6 652 6
" Llama-27B ~ ~ 59.1 065 5
Llama-2 13B 556 15.1
TowerBase 7B 65.5 64.6
TowerBase 13B 644  66.2
ALMA 7B 56.6 204
ALMA 13B 599 253

Towerlnstruct 7B 642  63.0
Towerlnstruct 13B 65.2 64.9

654 659 649 655 656

Table 4: CHRF scores on IWSLT2017 test data for the sentence-level baseline and the random, structurally perturbed
and gold context, for the prompts considered. The best value per column is marked in Bold blue numbers while red
marks the second best value; () marks best overall. Enc-Dec is short for the encoder-decoder transformer model.

without antecedent information.

Contrastive evaluation measures the classifica-
tion accuracy of models which does not neces-
sarily correlate with the generative training objec-
tive. As suggested by Post and Junczys-Dowmunt
(2023), generative scores are better at discrimi-
nating document-level systems compared to con-
trastive scores, which is what we notice in CPRO
results where we see surprising trends, with Tower-
Base 7B leading in EN—FR and TowerInstruct 13B
performing comparably to the Concat Enc-Dec
model in EN—DE which doesn’t align with their
GPRO and COMET performance on the data.

4.2 Perturbation Analysis

Structurally perturbed context. From Table 2,
we see that structurally perturbing the context has a
minimal impact on overall translation performance.
All models exhibit only a slight degradation in
BLEU, COMET, and CHRF scores when provided
with a perturbed context. However, a closer
look at the impact of context perturbation on
pronoun resolution performance (Table 3) reveals
more pronounced effects. Specifically, there is a
notable decrease in GPRO performance, ranging
from —5 to —10 points, under perturbed context
conditions. Nevertheless, the similar level of

performance reduction across models suggests
that no model stands out in its ability to leverage
context effectively. This can be attributed to the
fact that none of the models are explicitly trained
for context utilization.

Random context. Looking at models’ perfor-
mance with total random tokens, we find that on
IWSLT data, EuroLLM-9B-Inst and Tower mod-
els (the best at translation) are robust to random
context and only degrade slightly in performance,
aligning with previous observations of the mini-
mal effect of context perturbation on translation
performance. Additionally, those models (except
EuroLLM-9B-Inst for EN—FR) show the least dif-
ference in GPRO performance between gold and
random context setups among all LLMs. Ro-
bustness to total random context can be linked
to lack of proper context utilization. Although
the TowerBlocks dataset used to finetune TowerIn-
struct models includes context-aware data (as per
the dataset card?), we hypothesize that general
fine-tuning alone may not be sufficient for improv-
ing discourse phenomena performance. Explicit,
context-aware fine-tuning might be required to ad-

2https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2
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dress these challenges effectively.

Further analyzing Table 2, it’s noteworthy that
the TowerBase 7B model performs better with ran-
dom context as compared to gold context, even
though the latter resembles a few-shot learning sce-
nario (Reinauer et al., 2023). That said, we point
out that its translation performance is suboptimal,
as it is an intermediate model between the base
model Llama-2 7B and the instruction-tuned model
Towerlnstruct 7B designed specifically for transla-
tion.

4.3 Attribution Analysis

We analyze models’ internals to see how much
the relevant context contributes to the outputs. Fig-
ures 4a and 4b present attribution percentages of an-
tecedent tokens (relevant context) as well as of the
whole context using ALTI-Logit and input-erasure
methods, respectively.

Looking at both attribution methods, we see that
for EuroLLM-9B-Inst and TowerInstruct 7B (the
best two models at translation among the 5 models
tested) antecedent tokens have the lowest attribu-
tion percentage to the output. Even though for
the TowerInstruct 7B model, overall context to-
kens have the highest attribution percentage. This
suggests that there is a need to explicitly finetune
translation LLMs to focus on relevant context at
inference time.

However, unlike the larger differences in rele-
vant context and overall context attributions ob-
served for encoder-decoder models by Mohammed
and Niculae (2024), we find no striking differ-
ences or clear patterns between the contributions
for LLMs. This might be due to the fact that the
models have similar backbone structures.

5 Related Work

Context utilization assessment. Works on
assessing context utilization in machine translation
include the work of Sarti et al. (2023), who
build an end-to-end interpretability framework
to quantify the plausibility of context-aware
encoder-decoder machine translation models. They
leverage model internals to contrastively identify
context-sensitive target tokens in generated texts
and link them to contextual cues justifying their
prediction. Using their approach, they were able
to consistently detect context-sensitive tokens
and their disambiguating rationales across several
datasets, models and discourse phenomena.

Inspired by this line of research, we evaluate
context utilization of LLMs as a possible new
paradigm for context-aware translation.

Perturbation and attribution analysis. There
are several works that used attribution and
perturbation techniques to understand the inner
workings of translation LLMs, mostly focusing
on the in-context learning (ICL) paradigm —a
setup where LLMs “learn” to perform new tasks
during inference by being provided with few
task demonstrations in the input prompt. Zaranis
et al. (2024) use input attribution methods (ALTI)
to examine context contributions in translation
LLMs within the ICL paradigm. Their findings
indicate that the source segments of few-shot
examples contribute more significantly than their
corresponding target segments, parallel-data
fine-tuning alters contribution patterns, and context
contributions exhibit a positional bias. Raunak
et al. (2023) perturb in-domain translations to
better understand their role in ICL. They perform
asymmetric perturbation of source-target mappings
and find that target perturbations has more negative
effect on the translation performance compared to
source perturbations. Zhu et al. (2024) also perturb
the in-context examples by providing unrelated
task (summarization) examples and find that
LLMs are not sensitive to the perturbation. Our
work combines both interpretability techniques
(perturbation and attribution methods) and focuses
on context-aware translation task.

LLMs for document-level machine translation.
The line of research on adapting LLMs for
document-level translation using techniques like
LLMs fusion with translation models (Petrick et al.,
2023), finetuning LL.Ms on parallel document-level
data (Wu et al., 2024), or a mix of sentence-level
and document-level data (Li et al., 2024), generally
evaluates on translation metrics and discourse
phenomenon accuracy. We complement such
evaluations with a finer grained strategy that
focuses on the role of context.

Gender bias. Although gender bias does not di-
rectly impact our analysis of pronoun resolution —,
given that the referents in the ContraPro data are
common nouns with clear grammatical gender and,
in most cases (the entire German dataset and at least
half of the French dataset), are non-human—we
recognize that gender bias remains a significant
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Figure 4: Attribution percentages assigned to antecedent tokens (relevant context) and the entire context tokens
when force-decoding the correct pronoun in ContraPro data. (a) shows results from ALTI-Logit and (b) displays

results from input-erasure attribution methods.

concern for machine translation models and LLMs,
as widely explored in research (Rudinger et al.,
2018; Zhao et al., 2018; Currey et al., 2022; Rar-
rick et al., 2023)

6 Conclusion

We use interpretability tools (perturbation and at-
tribution techniques) to analyze LLMs’ context-
utilization in document-level translation. Our ex-
periments suggest that multilingual pretraining and
translation-specific finetuning of LLMs pushes
state-of-the-art translation performance beyond
encoder-decoder models. However, we highlight
that looking at discourse phenomena performance,
LLMs show room for improvement. We argue
that more care is needed before adopting LLMs
as the new standard for document-level transla-
tion, and more focused evaluation must be consid-
ered. Future research directions include enhancing
context-aware translation capabilities of LLMs, po-
tentially through explicit finetuning, and creating
datasets with supporting-context annotations for
other discourse phenomena to enable extending
context-utilization analysis to those phenomena.

7 Limitations

Even though some API-only LLMs (GPT-3.5
and GPT-4) show significant translation improve-
ment compared to encoder-decoder document-level
transformers and commercial translation systems
(Wang et al., 2023), our analysis approach relies
on access to model internals in order to be able
to compute attributions of input tokens. Thus, we

only used open-source LLMs in our study.

Based on the availability of datasets with context-
dependent linguistic phenomena that include sup-
porting context annotations (ContraPro), we exper-
imented only on EN—DE and EN—FR. These two
languages belong to the same language family; we
leave it to future work to experiment on general
translation on other language families.

We chose well-established evaluation metrics in
the literature to assess pronoun resolution accu-
racy. However, we acknowledge the limitations of
those metrics. The contrastive metric (CPRO) is not
aligned with the generative training objective of
models and the generative metric (GPRO) misses
cases where the model generates the correct pro-
noun in a different location in the sentence than the
target location.

Due to computational constraints, we were only
able to perform the attribution analysis on a small
set of models. We hope our work inspires more
research into understanding the inner-workings of
translation models in context utilization.

For all models except the transformer encoder-
decoder model trained from scratch, we do not
have details about their training data. This trend
of releasing and building on models with secret
training data is concerning because it makes fair
evaluation impossible.

In our work, we focused on a fine-grained eval-
uation of context use on a specific phenomenon.
Nonetheless, pretrained context-aware metrics
could offer more accurate insights into overall mod-
els’ performance on context use.

134



8 Ethics Statement

Nowadays, machine translation is a widely adopted
technology, sometimes in sensitive, high-risk set-
tings. Even though we propose a fine-grained ap-
proach to assessing context utilization, and high-
light its importance as we see that improvements
in translation performance does not necessarily re-
flect in discourse phenomena performance, we still
rely on automatic evaluation which is imperfect.
For systems deployed in critical scenarios, we be-
lieve a nuanced case-by-case evaluation is always
necessary.
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