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Abstract

Knowledge graphs offer an excellent solution
for representing the lexical-semantic structures
of lexicographic data. However, working with
the SPARQL query language represents a con-
siderable hurdle for many non-expert users
who could benefit from the advantages of this
technology. This paper addresses the chal-
lenge of creating natural language interfaces
for lexicographic data retrieval on knowledge
graphs such as Wikidata. We develop a multi-
dimensional taxonomy capturing the complex-
ity of Wikidata’s lexicographic data ontology
module through four dimensions and create a
template-based dataset with over 1.2 million
mappings from natural language utterances to
SPARQL queries. Our experiments with GPT-
2 (124M), Phi-1.5 (1.3B), and GPT-3.5-Turbo
reveal significant differences in model capa-
bilities. While all models perform well on
familiar patterns, only GPT-3.5-Turbo demon-
strates meaningful generalization capabilities,
suggesting that model size and diverse pre-
training are crucial for adaptability in this do-
main. However, significant challenges remain
in achieving robust generalization, handling di-
verse linguistic data, and developing scalable
solutions that can accommodate the full com-
plexity of lexicographic knowledge representa-
tion.

Dataset | Models ( Phi-1.5 | GPT-2)

1 Introduction

Knowledge Graphs (KGs) have emerged as scal-
able and interoperable resources for organizing
and accessing the vast volumes of data produced
in our digital age. Particularly for lexicographic
data, as found in dictionaries, KGs offer an ideal
structure for capturing the complex relationships
between words, meanings, and linguistic patterns
due to the highly interrelated nature of this informa-
tion (Ahmadi, 2022, p. 14). The preservation and
accessibility of lexicographic data is crucial for
standardizing language understanding, supporting
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(Query in Natural Language:
K“What is the gender of Apfel in German?”

|

(Generated SPARQL Query:

SELECT 7lexeme ?qitem 7lemma ?7qitemLabel
WHERE
{
VALUES ?lemma {'Apfel'@de} .
7?lexeme wikibase:lemma 7lemma ;
wdt :P5185 ?qitem.
SERVICE wikibase:label {
bd:serviceParam wikibase:language 'en'
}
}

. J

Figure 1: Conversational lexicography: enabling nat-
ural language queries to KGs by automatically gener-
ating SPARQL code, eliminating the need for manual
query writing

linguistic research, documenting cultural diversity
(Gregson et al., 2015), and crucially, increasing
interoperability in language technology. Recent
advancements in Large Language Models (LLMs)
have opened new pathways for creating natural lan-
guage interfaces to KGs, potentially democratiz-
ing access to this structured linguistic knowledge
(Avila et al., 2024).

Despite their advantages, KGs remain largely in-
accessible to non-technical users due to the spe-
cialized knowledge required to query them effec-
tively. Currently, accessing information in KGs
requires proficiency in a query language, notably
SPARQL, which presents a significant barrier to
entry. Users must not only master this technical
query language but also understand the specific on-
tologies and data models that structure each KG
(Ngonga Ngomo et al., 2013). Wikidata', a promi-
nent open-source KG, employs a collaboratively
developed semantic structure that requires detailed
knowledge to navigate effectively. This techni-
cal complexity limits the broader utility of KGs,

"https://www.wikidata.org
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particularly for audiences such as language learn-
ers, teachers, and other non-technical stakeholders
who could benefit from lexicographic data access
(Warren and Mulholland, 2020).

This paper addresses the significant research
gap in creating effective natural language inter-
faces for lexicographic data retrieval on KGs such
as Wikidata. To that end, we develop a multidi-
mensional taxonomy that captures the complexity
of Wikidata’s lexicographic data ontology module,
systematically categorizing the diverse informa-
tion requests that may be queried on the KG. Ad-
ditionally, we create a template-based dataset that
maps natural language utterances to corresponding
SPARQL queries, designed to reflect the variety
of possible information requests identified in our
taxonomy. Finally, we conduct preliminary exper-
iments using transformer-based language models
of modest parameter sizes to generate SPARQL
queries from natural language inputs, as exempli-
fied in Figure 1, evaluating their performance on
both seen and unseen utterances to assess the im-
pact of model parameter size and training method.

2 Related Work

The translation of natural language queries into
SPARQL has received significant attention in re-
cent years, particularly with the advent of LLMs
and the increasing importance of KGs. This sec-
tion provides a brief description of datasets, gener-
ation techniques and evaluation methods.

Datasets The development of specialized
datasets has accelerated progress in natural
language interfaces to KGs.  The Question
Answering over Linked Data (QALD) series
represents a foundational contribution, with
QALD-10 offering the most recent iteration
supporting both DBpedia and Wikidata queries
(Usbeck et al., 2023). Building on this foundation,
the Large-Scale Complex Question Answering
Dataset (LC-QuAD 2.0) expands the scope with
30,000 natural language utterances paired with
corresponding SPARQL queries (Dubey et al.,
2019). The DBpedia Natural Language Question
Answering (DBNQA) dataset stands as one of the
most comprehensive resources, containing nearly
900,000 data tuples for training and evaluation
(Hartmann et al., 2018). Addressing the critical
need for cross-domain generalization, Kosten
et al. (2023) introduce Spider4SPARQL with over
10,000 manually crafted SPARQL queries. Exper-

imental evaluations using LLMs demonstrate that
Spider4SPARQL presents substantial challenges
in achieving high accuracy.

Generation Approaches to generating SPARQL
queries from natural language have evolved from
traditional machine learning to increasingly so-
phisticated neural architectures. Early work by
Soru et al. (2018, 2017) establish the foundational
Neural SPARQL Machine paradigm, comprising a
template-based generator, a sequence-to-sequence
learner, and an interpreter that translates user in-
puts into SPARQL. Alternative approaches lever-
age structural properties of KGs to extract potential
RDF triples (Hu et al., 2018; Lin and Lu, 2022),
while subsequent advances explore diverse neu-
ral architectures, including pre-trained models like
BART and T5 (Banerjee et al., 2022). A persis-
tent challenge is handling incomplete vocabulary,
particularly entity identifiers in KGs, e.g., Wiki-
data’s Q811486 for ‘tree’, that may not appear
during training; researchers have addressed this
through Named Entity Disambiguators (Xu et al.,
2023) and entity masking techniques. For special-
ized domains, Zou et al. (2021) develope a text-to-
SPARQL model utilizing a pointer network-based
encoder with relation-aware attention mechanisms,
while Qi et al. (2024) introduce Triplet Struc-
ture Enhanced TS5, which undergoes a specialized
pre-training phase to better handle complex query
structures. The emergence of LLMs has further
transformed this landscape (Perevalov and Both,
2024). D’Abramo et al. (2025) apply in-context
learning using Mixtral (8x7B), Llama-3 (70B), and
CodeLlama (70B) to achieve state-of-the-art re-
sults, while other approaches demonstrate success
through fine-tuning (Brei et al., 2024) and one-shot
learning (Pliukhin et al., 2023). Rony et al. (2022)
propose SGPT, employing transformer encoders
with GPT-2 as the decoder and entity placeholders
for post-processing.

Evaluation The evaluation of natural language
to SPARQL systems has traditionally relied on
metrics such as accuracy, BLEU (Papineni et al.,
2002), F1-score, or a combination of those (Rony
et al., 2022). However, these metrics have limi-
tations, as syntactically different queries can pro-
duce identical results. (Cohen and Kim, 2013) pro-
pose evaluation frameworks that combine syntac-
tic metrics with semantic correctness assessments
to capture the practical utility of generated queries.
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Taxonomy Template Creation

SELECT DISTINCT ?lexeme ?qitemPos ?pos ?
lemma ?word

‘WHERE

ﬁ)l: Lexical Properties

{

VALUES ?lang {'V_WORD'@en }.

?qitemLang rdfs:label ?lang .

VALUES ?pos { 'V_POS'@en }.

?2qitemPos rdfs:label ?pos .

?lexeme a ontolex:LexicalEntry ;
det:language ?qitemLang ;
wikibase:lexicalCategory ?qitemPos ;
wikibase:lemma ?lemma ;
ontolex:lexicalForm [

ontolex:representation ?word | .

FILTER (regex(?word, 'n$")) .

}

ﬁ)Z: Single/Multi Lexeme

&33: Mono/Multilingual

l
=
)
J

E)4: Simple/Complex Queries

—>

Dataset Population Fine-tuning / Training
SELECT DISTINCT ?lexeme ?qitemPos ?pos ?
lemma ?word
WHERE
i
VALUES ?lang { 'Danish'@en }.
?qitemLang rdfs:label ?lang .
VALUES ?pos { 'noun'@en }.
?qitemPos rdfs:label ?pos .
?lexeme a ontolex:LexicalEntry ;
dct:language ?gitemLang ;
wikibase:lexicalCategory ?qitemPos ;
wikibase:lemma ?lemma ;
ontolex:lexicalForm [
ontolex:representation ?word | .
FILTER (regex(?word, 'n$")) .
} Query in natural language

look up nouns in Danish ending with 'n’

Figure 2: Our approach to creating SPARQL templates based on a four-dimension taxonomy followed by dataset
population and model implementation. The ultimate goal is to infer the models by querying in natural language.

Recent work suggests moving beyond simple com-
parison with gold standards toward functional cor-
rectness testing (Chen et al., 2021), similar to gen-
eral code generation evaluation approaches.

As such, several research gaps persist in this do-
main. First, existing datasets predominantly fo-
cus on factual knowledge, leaving lexicographi-
cal queries underexplored. Second, the optimal
approach to handling incomplete vocabulary and
generalization remains an open question. Finally,
while LLMs show promise for SPARQL genera-
tion, their potential specifically for lexicographic
data queries remains uncertain.

3 Methodology

We develop a systematic methodology to map natu-
ral language queries to SPARQL for lexicographic
data in Wikidata, illustrated in Figure 2. This re-
lies on a taxonomy to generate query templates
which are then populated with data instances to cre-
ate a comprehensive dataset. The dataset is subse-
quently used to train and fine-tune LLMs for the
SPARQL generation task. We provide background
information about Wikidata in Appendix B.

3.1 Taxonomy for the Lexicographic Data

To systematically approach template creation for
lexicographic data, we develop a taxonomy that
defines the relevant aspects of translating natural
language to SPARQL queries in Wikidata’s lexico-
graphic domain. Our taxonomy is based on three
criteria:

Criterion 1: It should encompass the full
range of SPARQL syntax constructs and op-
erators

Criterion 2: It should cover the variety of use
cases for lexicographic data

Criterion 3: It should be particularly detailed
in frequently queried areas

These criteria guided the identification of four
feature dimensions (D) that capture the heterogene-
ity of lexicographic queries:

D1: Lexical Properties This dimension ad-
dresses Criterion 2 by covering the range of lexi-
cographic properties in Wikidata. These properties
serve as fundamental building blocks for SPARQL
queries using the lexicographic data ontology mod-
ule. We classify these properties into the following
seven categories, summarized in Table C.1 in the
appendix:

* Linguistic Properties: Grammatical and mor-
phological features, e.g., grammatical gender,
conjugation class

* Historical References: Temporal aspects of
lexemes, e.g., first attestation

 Syntactic Functions: Roles of lexemes within
sentences, e.g., auxiliary verb, examples

» Semantic Relations: Meaning relationships
between lexemes, e.g., synonyms, antonyms

» Orthographic and Phonetic Features: Writ-
ten and spoken forms, e.g., IPA transcription

 Translation and Lexical Variety: Cross-
linguistic information and variants, e.g., bor-
rowed forms, regional variants

» Swylistic Attributes: Context-dependent char-
acteristics, e.g., language register, tone

D2: Single vs. Multi Lexeme Output This di-
mension focuses on whether the natural language
query targets a single lexeme or multiple lexemes.
This classification is based on the semantics of the
utterance rather than the actual number of lexemes
in the output. For example, the question “What
is the grammatical gender of the French word
‘livre’?” is classified as Single-Lexeme Output de-
spite potentially returning multiple homograph lex-
emes (masculine ‘/ivre’ meaning ‘book’ and fem-
inine ‘/ivre’ meaning ‘pound’ as unit of weight).
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This dimension is particularly important for ad-
dressing Criterion 1, as certain SPARQL keywords
and structures are associated with either Single-
or Multi-Lexeme queries. Conversely, some ut-
terances inherently imply a Multi-Lexeme Output.
An example is the utterance “Create a French-
German-Basque lexicon”.

D3: Mono- vs. Multilinguality This dimension
distinguishes between queries that involve one lan-
guage versus those that involve multiple languages.
Classification is based on the languages of all lex-
emes that would appear in the output if all variables
were included. For instance, the query “What is
the French word for ‘fish’? ", is classified as multi-
lingual because lexemes from multiple languages
appear in the result. This dimension addresses Cri-
terion 3.

D4: Simple vs. Complex Queries This dimen-
sion analyzes query complexity based on the num-
ber of lexical properties involved. While “com-
plex” in literature often refers to queries requir-
ing multiple reasoning steps (Wang et al., 2024),
we define simple queries as those containing only
one lexical property, e.g., “From what word is
the French word ‘cigare’ derived?”, and com-
plex queries as those containing multiple proper-
ties. This definition better suits lexicographic data,
where users target properties of a single lemma
rather than performing multi-step reasoning.

3.2 Implementation

We implement two distinct approaches to fine-tune
and train models for natural language to SPARQL.:

* First, we fine-tune a pre-trained Phi-1.5
model (Li et al., 2023) using the Low-Rank
Adaptation (LoRA) framework. Phi-1.5 is a
small language model with 1.3B parameters
that demonstrates strong capabilities in both
natural language and code generation. For
fine-tuning, we use the following hyperpa-
rameters: learning rate of 0.0002, train batch
size of 4, Adam optimizer, cosine learning
rate scheduler, and mixed precision training.
Following Schimanski et al. (2024), we lim-
ited training to a single epoch to avoid overfit-
ting. The LoRA approach allowed us to fine-
tune 0.44% of the model’s parameters.

» Second, we train a GPT-2 architecture with
124M parameters (Radford et al., 2019) from

scratch using the Hugging Face library. For
this model, we use a learning rate of 5e-05,
train batch size of 16, Adam optimizer, linear
learning rate scheduler, and trained for three
epochs.

Both models are trained on data formatted by
concatenating natural language utterances prefixed
with “question:”, and corresponding SPARQL
queries prefixed with “answer: <code>” and
“suffixed with "</code>"”. This format sim-
plifies the parsing of SPARQL code from the
output. The training utilized Phi-1.5’s tokenizer,
which extends GPT-2’s BPE vocabulary with spe-
cial tokens for code representation. We employ
two NVIDIA GeForce RTX 3090 GPUs with
CUDA 12.4 for training.

3.3 Evaluation

Inspired by Cohen and Kim (2013), we deploy an
evaluation framework structured around the fol-
lowing four key principles:

A. Automatic evaluation of the text-to-SPARQL
model rather than manual;

B. Functionality prioritizing functional cor-
rectness over exact match, i.e., character-
by-character comparison of the generated
SPARQL query with a gold standard reference
query. In our evaluation setup, we use Chen
et al. (2021)’s pass@k metric which gener-
ates k responses for a given prompt containing
few-shot examples. Each of the generated
responses is then run against the KG.2 If
the triples retrieved by the generated query
match or include the expected answer triples
from the gold standard query, the generated
response is deemed correct. The pass@k
metric is then calculated as the ratio of all the
correctly generated responses (Kcorrect) Within
the k trials and all generated responses:

pass@k: _ kcorkrect (1)

C. Granularity employing unit test-like checks
to evaluate specific aspects of the generated
SPARQL queries, including syntax correct-
ness and appropriate variable usage rather than
just overall correctness. As such, we define
a granularity ratio to assess the fine-grained
quality of generated queries as follows:

C
pass
Rgranularity = (2)
Call

*Wikidata Query Service: https://query.wikidata.org
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where cp,55 15 the number of passed checks and
ca11 18 the total number of checks performed. A
list of the tests is provided in Appendix C.

D. Generalization assessing the model’s ability
to generalize by altering input questions to
trigger different query types. To do so, we
transform a training question like “What is the
gender of ‘Apfel’ in German?” (requiring a
SELECT query) into a test question like “Is
the gender of ‘Apfel’ in German feminine?”
(requiring an ASK query), testing whether the
model can adapt to this structural change.

Finally, for string-based matching, we report
performance using BLEU as implemented in

SacreBLEU (Post, 2018).3

4 Dataset

To develop a comprehensive dataset mapping nat-
ural language utterances to SPARQL queries tar-
geting lexicographic data in Wikidata, we adopt
a template-based approach similar to Soru et al.
(2017) based on the taxonomies defined in Section
3.1. Each data point in our templates consists of
three elements:

1. utterance: natural language input reflecting
a user’s question;

2. template_name: identifier for the template
in SPARQL containing tags that are later pop-
ulated with actual words;

3. query: the populated SPARQL template
aligned with the utterance.

All utterances are in English, though they may
reference terms in other languages, e.g., “What
is the grammatical gender of ‘livre’ in French?”.
The following is an instance in our populated
dataset:

utterance: where does the word color come from?
template_name: q20
query:
SELECT 7etonymLexeme 7qitemLanguage0fOrigin
7etonym ?qitemLanguageOfOriginLabel
WHERE {
VALUES 7lemma {'color'@en} .
7?lexeme wikibase:lemma 7lemma ;
wdt:P5191 7etonymLexeme.
7etonymLexeme dct:language 7qitemOrigin;
wikibase:lemma ?7etonym .
SERVICE wikibase:label {
bd:serviceParam wikibase:language 'en'
}
}

3
nrefs:1|case:mixed|eff:noltok:13a|smooth:exp|version:2.4.2

To address the limited diversity inherent in
template-based approaches, we decouple seman-
tics from syntax by generating multiple variations
of utterance templates while preserving their mean-
ing. This is accomplished by using GPT-4 to gen-
erate alternative phrasings with random selection
during template population with an example pro-
vided in Appendix A.

4.1 Template Sources

Our dataset comprises five specialized modules
following different paradigms:

Google Templates Following Hazoom et al.
(2021), who advocate deriving data from natural-
istic environments, we extract questions related to
lexicographic data from Google’s Natural Ques-
tions dataset. We identify relevant lexicographic
terms and extract 3,296 user questions contain-
ing these terms. To do so, we cluster questions
using k-means and FlagEmbeddings embedding
model (Chen et al., 2024)*. We then manually re-
view clusters to identify 639 genuinely relevant
questions. The selected questions yield 21 unique
SPARQL templates that closely align with typical
user questions (see Appendix C.2 for sample clus-
ter). Analysis of the Natural Questions dataset
showed 35% multilingual vs. 65% monolingual
and 52% complex vs. 48% simple queries, inform-
ing our template distribution to meet Criterion 3.

Property Templates To enable efficient Wiki-
data usage through natural language interfaces, we
also create templates covering properties specific
to the WikibaseLexemes extension. We manu-
ally select 36 relevant properties from lexicograph-
ical properties, categorizing them based on their
domain (lexeme, sense, or form) and range data
type (string, Q-item, etc.). This dual classification
resulted in nine archetypal SPARQL templates,
which are further adapted to handle multi-lexeme
outputs and ASK statements.

Multi-Property Templates These templates ad-
dress queries requiring multiple pieces of informa-
tion for a given lexeme. All multi-property queries
derive from a single adjustable base template mod-
ified to handle both single-result and multiple-
result queries. The templates use the OPTIONAL
keyword to handle cases where properties are un-
available for certain lexemes. Properties are ran-
domly selected from a pool of 211 options (not

“BAAI's BGE-Large variant
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Count of Templates
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Figure 3: Distribution of the number of populated data
tuples per template

restricted to WikibaseLexemes) to prevent overfit-
ting. Two versions of utterance templates were
used: single-lexeme and multi-lexeme.

Language-Independent Templates These tem-
plates function without specifying the lexeme’s
language, enabling cross-language lookups. They
use string matching (FILTER(STR(?lemma) =
"word")) rather than language-specific VALUES
clauses, trading computational efficiency for flex-
ibility.  Since these queries can return numer-
ous lexemes, we introduced templates restricting
output based on lexical category and grammat-
ical features. This resulted in eight templates
covering both language-dependent and language-
independent queries.

Rule-Based Templates This paradigm incorpo-
rates existing work in lexicographic data query-
ing. We adapted seven templates from SPAR-
QLify>, a simple form-based query generator.
These templates cover advanced use cases employ-
ing multiple properties and SPARQL functions as
in regex()) not represented in other paradigms,
such as “Find at most 50 longest words in {lan-
guage!” and “List at most 50 onomatopoeia in

{language}”.
4.2 Dataset Population

We populate templates by replacing tags with ac-
tual lemmas from Wikidata, ensuring that lex-
emes had relevant properties whenever possible.
The data used represents a snapshot from April-
May 2024, constrained by Wikidata’s query limits
(30,000 data points maximum, one-minute compu-
tation time). A custom Python program replaced
template tags with corresponding population data.

Shttps://sinaahmadi.github.io/SPARQLify

4.3 Dataset Statistics

Our dataset contains 1,270,113 data tuples derived
from 189 templates with an average of 6,191 in-
stances per template. Templates populated be-
tween 1 (for limit 19 P2859 and order t9 P2859)
and 29,922 (for ask t9 P7243 and t9 P7243) data
tuples each. Approximately half of the templates
populated over 1,000 data tuples. The distribution
of the number of populated tuples per template is il-
lustrated in Figure 3. Following Soru et al. (2017),
we define the train-test split such that the evalua-
tion dataset contains at most 10% of data points
per template, with a maximum of 20 data points.
This ensures a balanced evaluation set while main-
taining a substantial training set. From our dataset,
we include at least one instance of each template
in the test set to ensure comprehensive evaluation.

5 Experiments and Results

In order to evaluate the effectiveness of various
language models in generating SPARQL queries
for lexicographic data on Wikidata, we conduct ex-
periments with three strategically selected models:
GPT-3.5-Turbo as a baseline, and our fine-tuned
Phi-1.5 and trained GPT-2 models. When eval-
uated in a zero-shot setting without fine-tuning or
training, both Phi-1.5 and GPT-2 failed completely,
scoring O across all metrics, demonstrating that
task-specific adaptation is essential for SPARQL
generation with these models.

Our selection of models prioritizes those with
modest parameter counts (1.3B for Phi-1.5 and
124M for GPT-2) to demonstrate if effective
SPARQL generation can be achieved without re-
quiring computationally expensive models, mak-
ing deployment more accessible for resource-
constrained environments. Additionally, these
models represent different training approaches—
GPT-3.5-Turbo as a commercial API-based model,
Phi-1.5 as a recent code-capable model amenable
to parameter-efficient fine-tuning, and GPT-2 as a
fully trainable smaller model-providing a diverse
evaluation spectrum. For each model, we assess
performance using the evaluation framework de-
scribed in Section 3.3. The results are summarized
in Table 1.

5.1 GPT-3.5-Turbo

We evaluate GPT-3.5-Turbo to establish a baseline
against which our custom-trained models can be
compared. Despite its extensive parameter count,
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Non-Generalization Generalization
Model Parameter
pass @k T RgranularityT BLEUT pass @k T RgranularityT BLEUT
Phi 1.5 k=1 0.86 0.84 92.1 0 0.7 54.4
GPT-2 k=1 0.90 0.84 94.4 0 0.41 0.3
k=1 0.87 0.94 99.2 0.41 0.81 72.7
GPT-3.5Turbo 5 0.89 0.95 99.6 0.57 0.84 67.0

Table 1: Performance of few-shot fine-tuned GPT-3.5 Turbo in comparison to our trained and fine-tuned models
using pass@k [0, 1] for functionality, Rgranutarity [0, 1] for granularity and BLEU [0, 100]. Although GPT-3.5 Turbo
as the baseline performs better than our models, our trained GPT-2 model achieves a higher pass@k despite having
significantly less parameters. Due to computational costs, k¥ = 3 could not be included for Phi 1.5 and GPT-2.

this model performs poorly when directly asked
to generate lexicographic SPARQL queries. We
leverage GPT-3.5-Turbo’s strong few-shot learn-
ing capabilities by employing prompt engineering,
sampling two random utterances and correspond-
ing SPARQL queries from the training dataset for
each template to create the prompt, with an exam-
ple in Appendix A.

In the evaluation without generalization, GPT-
3.5-Turbo achieves a pass@1 score of 0.87 and
Rgranularity 0f 0.94. When allowed to generate mul-
tiple responses (kK = 3), performance improves to
0.89 and 0.95 respectively. For the evaluation with
generalization, performance drops to a pass@1
score of 0.41 and Rgranutarity of 0.81, improving to
0.57 and 0.84 with £ = 3, highlighting the chal-
lenge of adapting to novel query structures. The
same pattern is seen in BLEU scores, except in
generalization where the BLEU score with & = 3
(67.0) is lower than £ = 1 (72.7). This counter-
intuitive result can be explained by the model’s
tendency to explore more diverse, but potentially
less syntactically aligned, query structures when
generating multiple responses. While this diver-
sity improves functional correctness (as measured
by pass@k), it reduces strict textual similarity to
reference queries.

5.2 Phils

We evaluate Phi-1.5 fine-tuned on our dataset with
k = 1 only, a decision driven by significant com-
putational demands—the evaluation without gen-
eralization alone requires 23 hours to complete.
The model achieves a pass@]1 score of 0.86 and
Rgranularity of 0.84 in non-generalization scenario.
Our analysis indicates that Phi-1.5 does not
attempt to generalize beyond specific SPARQL
structures from fine-tuning. While information

from utterances is correctly mapped to appropri-
ate positions in the code, the query structure re-
mains closely aligned with training examples. In
the generalization scenario, the model struggles
significantly with a Rgpanylariey of 0.7, indicating
that many generated queries fail to meet basic cor-
rectness criteria.

53 GPT-2

We evaluate GPT-2 trained from scratch on our
dataset, representing a model unexposed to any
data except our training examples. Similar to Phi-
1.5, we compute results with & = 1 only due
to computational constraints. In the evaluation
without generalization, GPT-2 achieves the high-
est pass@]1 score among all models at 0.90, with
a Rgranularity 0f 0.84. In the generalization sce-
nario, however, GPT-2’s performance deteriorates
substantially, with a Rgranularity of only 0.41 and
BLEU score of 0.3, the lowest among all models.
This suggests a high degree of memorization rather
than a deeper understanding of the relationship be-
tween natural language and SPARQL. The model’s
strong performance in familiar scenarios coupled
with poor generalization indicates effective pattern
learning but limited transfer capability.

5.4 Qualitative Analysis

Our qualitative analysis reveals distinct patterns
across models. Phi-1.5 demonstrates limited se-
mantic understanding, surprising knowledge of
less-resourced language tags, and accurate syn-
tactic mapping, but struggles with generalization,
often generating syntactically correct but seman-
tically nonsensical SPARQL code. GPT-2 ex-
hibits similar semantic limitations (interpreting
“lengthy words” as words with specific prefixes)
and contextual failures, but handles special char-
acters well; in generalization, it produces random
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word sequences and incomplete syntax. GPT-3.5-
Turbo occasionally uses incorrect language tags
and struggles with special characters, but shows
better understanding of complex utterances and de-
velops creative adaptation strategies like nesting
SELECT statements within ASK blocks. Overall,
few-shot GPT-3.5-Turbo achieves superior perfor-
mance across most metrics, though trained GPT-2
excels in pass@]1 for familiar queries despite hav-
ing significantly fewer parameters. These findings
suggest that while smaller models can be effec-
tively trained for domain-specific SPARQL gen-
eration within familiar patterns, robust generaliza-
tion to novel query structures may require larger
models with diverse pre-training or more sophisti-
cated fine-tuning approaches.

6 Conclusion and Discussion

This paper addresses the challenge of creating
natural language interfaces for lexicographic data
in KGs. We develop a multidimensional taxon-
omy capturing the complexity of Wikidata’s lexi-
cographic data representation based on which we
create a template-based dataset with over 1.2 mil-
lion mappings from natural language utterances to
SPARQL queries. Our experiments with GPT-2,
Phi-1.5, and GPT-3.5-Turbo reveal significant dif-
ferences in model capabilities. While all models
perform well on familiar query patterns (pass@1
scores ranging from 0.86 to 0.90), only GPT-3.5-
Turbo demonstrates meaningful generalization ca-
pabilities (pass@3 of 0.57 in the generalization
scenario). This suggests that model size and di-
verse pre-training are crucial for adaptability in
this domain. This work is timely and important as
KGs continue to grow in complexity, creating an
urgent need for accessible interfaces.

Limitations and Future Work While our exper-
iments demonstrate promising results with mod-
els of modest size, future work should explore
more recent reasoning-focused models such as
DeepSeck, QwQ, and Llama-3, which may offer
improved performance for complex SPARQL gen-
eration tasks. Additionally, scaling experiments
with larger model variants could help establish
the relationship between model size and SPARQL
generation capabilities, potentially identifying op-
timal efficiency-performance tradeoffs for this spe-
cific task. As such, future work should focus on
improving model generalization through more di-
verse training data, expanding this approach to

other KGs, particularly Dbnary (Sérasset, 2012),
and conducting user studies to evaluate practical
utility for different stakeholder groups in lexicog-
raphy and linguistics.
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A Prompts

Input: Rewrite the following sentence 10 times in a
way someone may ask it on Google. Keep it short:
Look up {word} in any language in {form_word}
form

Output:

» Translate {word} to any
{form_word}?

* How tosay {word} in {form_word} across lan-
guages?

* Find {word} in any language’s {form_word}?

* Discover {word} in different languages,
{form_word}?

* Search for {word} in {form_word} form in all
languages?

* Get {word} translations in {form_word} in
any language?

* Lookup {word} in
{form_word}?

* How to express {word} in {form_word} across
languages?

* Find {word} equivalents in {form word}
across languages?

* Translate {word} into {form word} in any lan-
guage?

language in

various languages,

Utterance 1:
Apfel gender in German
SPARQL 1:
SELECT 7lexeme 7qitem 7lemma ?qitemLabel
WHERE
{
VALUES ?7lemma {'Apfel'@de} .
7?lexeme wikibase:lemma 7lemma ;
wdt:P5185 7qgitem.
SERVICE wikibase:label {
bd:serviceParam wikibase:language 'en'
3
}

Utterance 2:

medailon gender Czech

SPARQL 2:

SELECT 7lexeme 7qitem 7lemma 7qitemLabel

WHERE

{
VALUES ?7lemma {'medailon'@cs} .
7?lexeme wikibase:lemma 7lemma ;

wdt:P5185 7qgitem.
SERVICE wikibase:label {
bd:serviceParam wikibase:language 'en'

}

}

Utterance:
What is Probekérpers gender in German?
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B Lexicographical Data on Wikidata

This section provides essential background on lex-
icographic data and its representation on Wikidata.

B.1 Lexicographic Data

Lexicography is the field concerned with dictionar-
ies and reference works. Lexicographic data en-
compasses all information contained within dictio-
naries or reference works, which may range from
traditional print dictionaries to digital databases
and KGs. The ontology for lexicographic data
on the Semantic Web is primarily supported by
OntoLex-Lemon (McCrae et al., 2017), which
is based on the Lexicon Model for Ontologies
(lemon). This model relies on LexInfo (Cimiano
et al., 2011), LMF (Francopoulo et al., 2006), and
LIR (Montiel-Ponsoda et al., 2008). The OntoLex
lexicography module, known as /exicog (Bosque-
Gil et al., 2017), provides key concepts like Lexi-
calEntry and LexicalSense that were influential in
Wikidata’s development. Wikidata has expanded
beyond representing concepts to include structured
descriptions of words through lexemes, forms, and
senses. The lexicographic data module follows the
Wikibase data model, extended with the Wikibase-
Lexemes ontology module that introduces the data
types Lexemes, Forms, and Senses.

Lexemes A lexeme is a fundamental vocabulary
unit that can take various forms including simple
words, complex words, phrasal words, and multi-
word expressions. In Wikidata, lexemes have:
» Unique IDs starting with ‘L’, e.g., L870817
for ‘Steilkurve’ in German
* Lemmas providing human-readable represen-
tations, e.g., ‘book’
* Language specification using Q-items, e.g.,
Q1860 for English
* Lexical category indicated by Q-items, e.g.,
Q34698 for adjective
+ Statements describing properties not specific
to forms or senses
* Forms for each combination of grammatical
features
* Senses describing different meanings

Lemmas A lemma serves as a location
pointer for information within a reference
work. In Wikidata, lemmas are implemented as
MultilingualTextValues® to accommodate

https://www.mediawiki.org/wiki/Wikibase/
DataModel#MultilingualTextValues

languages with active diagraphia such as Serbian
which uses both Cyrillic and Latin alphabets.
The canonical form of the lexeme, typically the
infinitive form of verbs, is used as the lemma.
For example, the lemma for the English noun
‘color’ would include both ‘colour’ for British
English and ‘color’ for American English. Fur-
ther, lemmas are not unique, and the combination
of lemma, language, and lexical category is not
unique either. For instance, there are two German
nouns with the lemma ‘See’ that differ only in
gender, with ‘der See’ meaning ‘the lake’ and
‘die See’ meaning ‘the sea’. These two meanings
cannot be understood as a single lexeme, as
they have different forms based on their gender.
In RDF, Wikidata lexemes are represented as
ontolex:LexicalEntry, connected to their
senses with the ontolex:sense property and
to their forms with the ontolex:lexicalForm
property. Each lexeme has an associated
lemma (wikibase:lemma) and language
(dct:language).

Senses A sense represents one of the multiple
meanings a word can have, arising from polysemy
or homonymy. In Wikidata, senses are attributed
to lexemes and identified by unique IDs (lexeme
ID + -8 + decimal number as in L16168-S1 for
the act of booking in the “book” lexeme L16168).
Each sense typically includes a gloss providing
a natural language definition and may have state-
ments describing relationships with other senses
and items (synonyms, antonyms, etc.).

Forms A form refers to the specific manifesta-
tion of a lexeme in a grammatical context. In Wiki-
data, forms have unique identifiers (lexeme ID +
-F + decimal number as in L16168-F1 for the sim-
ple past of ‘book’) and are characterized by gram-
matical features and statements providing informa-
tion about usage, pronunciation, etc.

Properties Properties model relationships be-
tween subjects and objects in KGs. In Wikidata,
properties describe the data value of a statement
and have labels, descriptions, and aliases in mul-
tiple languages. Each property has a specific data
type and a unique identifier with a P prefix. Lexico-
graphic properties are a subset used with the Wik-
ibaseLexeme data model.
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C Evaluation

Category Property

- grammatical gender (P5185)
- conjugation class (P5186)

- word stem (P5187)

- derived from lexeme (P5191)
- combines lexemes (P5238)

- homograph lexeme (P5402)

- valency (P5526)

- requires grammatical feature (P5713)
- paradigm class (P5911)

- grammatical aspect (P7486)
- predicate for (P9970)

- attested in (P5323)
- first attested from (P6684)

- auxiliary verb (P5401)

- classifier (P5978)

- location of sense usage (P6084)
- usage example (P5831)

- creates lexeme type (P5923)

- false friend (P5976)

- synonym (P5973)

- antonym (P5974)

- troponym of (P5975)

- said to be the same as lexeme
(P11577)

- pertainym of (P8471)

Linguistic
Properties

Historical
References

Syntactic
Functions

Semantic
Relations

- Han character in this lexeme (P5425)
- IPA transcription (P898)

- X-SAMPA code (P2859)

- Slavistic Phonetic (P5276)

- pronunciation (P7243)

- translation (P5972)
- variety of lexeme, form or sense
(P7481)

Orthographic /
Phonetic
Features

Translation

Stylistic and
Phonological
Attributes

- language style (P6191)
- collective noun for animals (P6571)
- tone or pitch accent class (P5426)

Table C.1: A taxonomic classification of Wikidata Lex-
icographic Properties organized by categories

For the granularity test, the following checks are
performed:

* The response must start with either SELECT or
ASK

« If it starts with SELECT, there must be at least
one variable starting with ? before the WHERE
clause

 If it starts with ASK, there must be a WHERE
clause following directly after

» Every { must have a corresponding }

* The response must not contain the keyword
VALUES

* The response must contain at least one of
the following variables: ?lexeme, ?lemma,
2form, ?sense, ?qitem, ?qitemlabel

* The response must not contain any Q-items
that are not in the known Q-items

Index Utterance

1 what is the definition of low birth weight

2 what does the prefix re mean in medical terminology
3 what does e/m stand for in medical terms

4 what does ncd stand for in medical terms

5 what does acs stand for in medical terms

6 in military terms what does gi stand for

7 what does pvc stand for in medical terms

8 what does mi stand for in medical terms

9 what is a pa ¢ in medical terms

10 what does la stand for in medical terms

11 what does ts stand for in medical terms

12 how do you write twice a day in medical terms
13 what does dc stand for in medical terms

14 what does ta stand for in medical terms

15 what does ibm stand for in medical terms

16 what is the definition of an asthma attack

17 what is the full meaning of cpr in first aid

18 what is the meaning of rx in medical line

19 meaning of od and bd in medical term

20 medical term meaning condition of stones in the ureters

Table C.2: Utterances potentially targeting lexico-
graphic information in one of the clusters of the Google
Templates. This cluster is dominated by utterances
about medical abbreviations. However, the presence of
an utterance discussing military abbreviations (index 6),
suggests that the clustering considers not only the topic
of the utterance, but also its lexicographical category.
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