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Abstract

Knowledge base construction (KBC) is one
of the great challenges in Natural Language
Processing (NLP) and of fundamental impor-
tance to the growth of the Semantic Web.
Large Language Models (LLMs) may be use-
ful for extracting structured knowledge, includ-
ing subject-predicate-object triples. We tackle
the LM-KBC 2023 Challenge by leveraging
LLMs for KBC, utilizing its dataset and bench-
marking our results against challenge partici-
pants. Prompt engineering and ensemble strate-
gies are tested for object prediction with pre-
trained LLMs in the 0.5-2B parameter range,
which is between the limits of tracks 1 and 2
of the challenge. Selected models are assessed
in zero-shot and few-shot learning approaches
when predicting the objects of 21 relations. Re-
sults demonstrate that instruction-tuned LLMs
outperform generative baselines by up to four
times, with relation-adapted prompts playing a
crucial role in performance. The ensemble ap-
proach further enhances triple extraction, with a
relation-based selection strategy achieving the
highest F1 score. These findings highlight the
potential of medium-sized LLMs and prompt
engineering methods for efficient KBC.

1 Introduction

The creation of high-quality, machine-readable
Knowledge Bases (KBs) is critical to advancements
in Natural Language Processing (NLP) and Seman-
tic Web Technologies (Weikum et al., 2021). These
technologies enable us to structure information
in formats that enhance accessibility and interop-
erability for both humans and machines. Large
Language Models (LLMs) have recently emerged
as powerful tools for a range of tasks, including
the automation of knowledge extraction, partic-
ularly generating subject-predicate-object triples,

that are fundamental components of knowledge
graphs (AlKhamissi et al., 2022; Petroni et al.,
2019). By contributing to the construction of struc-
tured KBs, LLMs play a crucial role in enabling
semantic reasoning, querying, and web-based ap-
plications.

In this work, we investigate the potential of
LLMs to automate Knowledge Base Construction
(KBC) by exploring the Knowledge Bases from
Pre-trained Language Models (LM-KBC) 2023
Challenge (Kalo et al., 2023). Although the study
does not involve direct participation in the chal-
lenge, it was selected due to its ongoing relevance
and potential for further research.

The dataset provided by the 2023 challenge in-
cludes 21 well-balanced relations, covering differ-
ent topics such as geography, entertainment, or
chemistry. These relations involve various cate-
gories, ensuring a wide range of diverse entities
across different domains. The task is to predict an
object given a subject-relation pair. For example,
the subject “Andorra” and the relation StateBor-
dersState should yield the set of objects “Spain,
France”. These subject-relation pairs are given to
the LLMs to predict the corresponding set of ob-
jects.

Authors that participated in the LM-KBC 2023
Challenge had to pick one of two different tracks.
Track 1 required the participants to use models
with less than 1 billion parameters, whereas track
2 was open to models of any size, resulting in a
choice of very powerful models, such as GPT-4
and LLaMA 2 with 70B parameters (Achiam et al.,
2023; Touvron et al., 2023). As a result, there was
a gap in the exploration of models with sizes close
to the threshold (i.e., medium-sized), which this
study aims to address, offering a valuable balance

221



between computational efficiency and predictive
power.

The 2023 challenge was chosen over the 2024
edition (Kalo et al., 2024) for several reasons.
When we started this work, the proceedings of the
2024 edition had not been published yet, limiting
the ability to draw insights from both the task and
approaches. Furthermore, the dataset in the 2024
version comprises only 5 relations, which restricts
the scope of experimentation.

Our main research goal is to explore how LLMs
can enhance the automation of KBC, particularly
by accurately predicting objects, ultimately form-
ing subject-predicate-object triples. To achieve this,
we define a set of subgoals.

We evaluate the performance of instruction-
tuned LLMs in the prediction task, including
Llama3.2-1B (Dubey et al., 2024), Gemma2-2B
(Team et al., 2024), and Qwen2.5 (Bai et al.,
2023), with 0.5B and 1.5B parameters. Addition-
ally, we extended our analysis beyond instruction-
tuned models to include DeepSeek-R1-Distill-
Qwen-1.5B, as the DeepSeek family is revolutioniz-
ing the Al industry (Guo et al., 2025). This model
falls within the same size range as our selected
LLMs, making it a relevant addition for exploring
its potential in the task. By analyzing these models,
we aim to understand how medium-sized LLMs
perform relative to both the smaller models from
track 1 and the much larger models from track 2
used in the LM-KBC 2023 Challenge, offering in-
sights into the trade-offs between model size and
accuracy. Choosing not to rely on larger models
offers advantages such as requiring fewer compu-
tational resources, enabling faster inference times,
and potentially being run locally without the need
for extensive infrastructure.

To refine knowledge extraction, we explore the
impact of different prompt engineering strategies.
Specifically, we investigate the impact of zero-shot
and few-shot learning paradigms, designing tai-
lored prompts for each relation type to optimize
prediction accuracy. By structuring our prompts
to align with the nature of each relation, we aim
to improve object prediction while minimizing the
need for computationally expensive fine-tuning.

In addition, we assess the effectiveness of en-
semble methods in improving triple generation
accuracy. We compare two ensemble strategies:
relation-based model selection, which assigns the
best-performing model for each relation, and ma-
jority voting, which selects the most frequently

predicted object across models. By leveraging the
complementary strengths of different LLMs, we
aim to determine whether ensemble techniques pro-
vide a significant advantage over individual model
predictions.

The main contributions of this work are summa-
rized as follows:

* We investigate medium-sized models for
KBC, offering a balance between computa-
tional efficiency and performance.

* We explore the integration of prompt engi-
neering techniques, including relation-specific
prompts and contextual enrichment, leverag-
ing the strengths of instruction-tuned LLMs
in enhancing task adaptability.

* We explore the synergistic potential of model
ensembles combining the strengths of differ-
ent models to improve overall performance.

This paper is structured as follows: In Section
2, we review findings in the field of KB construc-
tion using LLMs, focusing on the contributions
from the 2023 LM-KBC Challenge. Section 3
outlines our methodology, including model selec-
tion, prompting techniques, and ensemble meth-
ods. In Section 4, we present our results, followed
by a discussion in Section 5, where we discuss
our findings, comparing them to prior work and
highlighting key trends and limitations. Finally,
Section 6 concludes the paper, summarizing the
contributions and suggesting directions for future
research. The code and experimental results of
the study are available at https://github.com/
TomasCCPinto/1dk25-medium-11ms-kbc.

2 Related Work

In recent years, the construction of high-quality,
machine-readable KBs has increasingly leveraged
LLMs (Petroni et al., 2019), marking a paradigm
shift from traditional dependence on structured data
sources like Wikidata! (Vrandecié¢ and Krotzsch,
2014) to models such as GPT-4 (Achiam et al.,
2023), BERT (Devlin et al., 2019), and Llama 3
(Dubey et al., 2024). This shift has spurred sig-
nificant progress in automating KBC, particularly
in extracting structured subject-predicate-object
triples directly from unstructured text. These ef-
forts are exemplified by benchmarks like the LM-
KBC Challenges, which have provided a compre-

"https://www.wikidata.org/
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hensive framework for evaluating these capabili-
ties.

2.1 LM-KBC Challenges and Their Evolution

The LM-KBC Challenges, introduced by Singhania
et al. (2022), provide a framework for evaluating
the ability of LLMs to generate accurate knowledge
triples directly from their parameters by predicting
the object(s) given a subject and a relation. For
example, typical task instances might involve pre-
dicting “Nobel Prize in Physics” as the object given
the subject “Albert Einstein” and the relation Per-
sonHasNoblePrize or predicting “Spain” given the
subject “Portugal” and the relation CountryBor-
dersCountry. They emphasize extracting unique
Wikidata entity identifiers, handling variable cardi-
nalities, and resolving ambiguities, such as distin-
guishing between entities like “Paris, France” and
“Paris, Texas.”

The 2023 iteration refined this framework
by dividing the task into two tracks based on
model size, below and above 1 billion parameters,
and incorporating complex relations (Kalo et al.,
2023). Smaller models achieved respectable re-
sults through advanced prompt engineering and
retrieval-based enrichment, while larger models
consistently outperformed due to their capacity for
richer contextual representations. Despite these ad-
vances, both tracks highlighted ongoing challenges,
including difficulties with disambiguation, reliance
on domain-specific training, and the necessity of
extensive post-processing.

2.2 Commonalities and Innovations in Recent
Approaches

The LM-KBC 2023 Challenge catalyzed a wide
array of methodologies aimed at addressing the
nuances of KBC.

Prompt Engineering and Context Enrichment
were widely employed to align LLM outputs with
the task objectives. High-performing approaches,
such as LLMKE (Zhang et al., 2023), the winners
of track 2, adopted multi-stage prompting strate-
gies, including question-based prompts, triple com-
pletion, and context-enriched inputs incorporating
entity information. Similarly, Li et al. (2023) uti-
lized prompts enriched with Wikidata information
related to the given relation. A strong emphasis was
placed on crafting detailed task instructions, with
some works incorporating task demonstrations (Bi-
ester et al., 2023), while others deliberately avoided

demonstrations to test the limits of instruction-only
setups (Ghosh, 2023).

Fine-tuning further boosted the performance of
the models. For instance, the winners of the first
track enriched their approach by fine-tuning BERT
on the challenge’s training set, in addition to pre-
training it on a task-specific Wikipedia corpus
(Yang et al., 2023). Additionally, Biswas et al.
(2023) fine-tuned BERT’s representations to align
with a Wikipedia-derived entity embedding space,
enabling the handling of multi-token entities and
Wikidata ID linking.

Post-processing and Cleaning pipelines, such
as entity validation and output reformatting, played
a crucial role in improving object extraction, as
LLM-generated responses often deviate from the
expected output format. For example, the system
by Li et al. (2023) implemented de-duplication
and a Wikidata-based disambiguation process, im-
proving precision and recall for challenging rela-
tions such as PersonHasAutobiography. Similarly,
Ghosh (2023) employed manually designed clean-
ing steps, including linking extracted terms to Wiki-
data entities, disambiguating ambiguous objects,
and applying relation-specific adjustments to en-
sure output conformity. While these techniques
increase system complexity and require manual
intervention, they proved highly effective.

2.3 Gaps in Existing Approaches

Despite impressive progress, existing approaches
to KBC exhibit notable limitations. Most efforts
have focused on either small models (under 1 bil-
lion parameters) or really large models (exceeding
70 billion parameters), leaving a gap in exploring
models with intermediate parameter sizes. These
models could offer a balance between computa-
tional efficiency and predictive performance, yet
their potential remains under-investigated.

Apart from that, few methods explore the syner-
gistic potential of model ensembles. Most focus on
optimizing individual models, leaving untapped op-
portunities for leveraging diverse model strengths.

Finally, few studies systematically compare the
performance of the same model across different
parameter sizes. By using Qwen2.5 with 0.5B and
1.5B parameters, we aim to address this gap, pro-
viding insights into how scaling parameters impact
a model’s ability to handle diverse relations.

These gaps motivate the need for methodologies
that balance computational efficiency with robust
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performance across diverse settings.

Our approach aims to address these gaps by in-
tegrating instruction-tuned LLMs with prompt en-
gineering and ensemble strategies. By leveraging
relation-specific prompts and lightweight contex-
tual enrichment, we optimize the adaptability of
medium-sized models. Furthermore, our use of
relation-based and majority-voting ensembles al-
lows us to harness the complementary strengths of
different models.

3 Methodology

In this section, we present a comprehensive
overview of the methodology employed to address
our study. This includes a detailed description of
each phase of the work, from the selection and
preparation of the LLMs to the extraction of knowl-
edge.

3.1 Dataset

The dataset used was provided as part of the LM-
KBC 2023 Challenge and follows the object pre-
diction format described in Section 2.1, serving as
the primary foundation for evaluation. This dataset
was specifically designed to assess object predic-
tion accuracy and contained 21 distinct relations,
offering a diverse set of subjects and their associ-
ated ground-truth objects. For example, the dataset
encompasses relations such as CountryHasStates,
PersonPlaysinstrument, and SeriesHasNumberO-
fEpisodes, capturing a wide range of knowledge
domains. Each relation includes a maximum of 100
unique subject entities across all data splits, with
17 of the relations achieving this maximum, while
the remaining 4 relations feature approximately 60
subject entities each.

The object entities in the dataset cover a broad
range of categories, including individuals (e.g., peo-
ple), organizations, countries, counts, and in some
cases, the placeholder “none” to signify the absence
of a valid object.

A key feature of the dataset is its reliance on
ground-truth identifiers from Wikidata, ensuring
accurate disambiguation of object entities. These
identifiers serve as precise references for evaluating
model predictions, reducing the ambiguity inherent
in natural language.

3.2 Model Selection

We selected four instruction-tuned LLMs:
Llama3.2> (1B parameters), Gemma2® (2B),
and Qwen2.5*>(0.5B and 1.5B). These models
balanced advanced capabilities with computational
feasibility, optimizing performance within the
constraints of available hardware.

Initially, we planned to use the non-instruction-
tuned versions of these models but found them
limited in generating concise, accurate predictions
or following prompt instructions, even with ad-
vanced techniques like zero-shot prompting and
few-shot learning. Instruction tuning significantly
enhances their ability to handle complex, task-
specific queries, making them, in our view, well-
suited for the tasks in the LM-KBC 2023 Chal-
lenge.

Despite the aforementioned concerns regarding
performance inconsistencies, we further decided
to consider DeepSeek-R 1-Distill-Qwen-1.5B° in
experimentation as well. This model is a distilled
version based on a mathematical Qwen2.5 model,
fine-tuned using outputs generated by DeepSeek-
R1 and incorporating slight changes to the model
configuration and tokenizer. Even though it is not
an instruction-tuned focused model like the others,
it falls within the model size range being explored
and is part of a rapidly evolving model family that
is gaining prominence in the Al landscape. This
made it an interesting candidate to explore and
compare for investigation purposes.

3.2.1 Setup adaptation

Our implementation is built upon the baseline setup
provided by the LM-KBC 2023 Challenge organiz-
ers, which utilizes the Transformers library from
Hugging Face’. While effective, this setup re-
quired several modifications to suit the autoregres-
sive models and optimize performance.

We adjusted the generation process to ensure
proper handling of the models and refined the post-
processing pipeline for cleaner, more accurate re-

sults, addressing limitations in the baseline’s ap-

2https://huggingface.co/meta—llama/Llama—B.
2-1B-Instruct
3https://huggingface.co/google/gemma—Z—Zb—it
4https://huggingface.co/Qwen/QwenZ.5—0.
5B-Instruct
Shttps://huggingface.co/Qwen/Qwen2.5-1.
5B-Instruct
®https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-1.5B
"https://huggingface.co/
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proach. Additionally, we optimized GPU utiliza-
tion, reducing runtime and improving efficiency for
these large models.

The baseline’s evaluation script was retained, as
it demonstrated reliability in calculating metrics
such as precision, recall, and F1 score.

The experiments were executed either on Google
Colab using the freely available NVIDIA T4 GPU,
or performed on a local machine that is equipped
with an Apple M2 chip with integrated 10-core
GPU and 16 GB RAM. This setup ensured suffi-
cient computational resources for running inference
efficiently.

3.2.2 Response Cleaning

Response cleaning was essential for the models to
meet evaluation requirements focused on predicted
objects. These models often included input frag-
ments or extra text, requiring automatic removal
to isolate object entities. For example, removing
strings like “answer:” ensured cleaner outputs.

For specific relations, such as PersonHasNum-
berOfChildren, numerical responses were con-
verted to strings to match ground-truth formats.
For multi-object relations like CountryHasStates,
strings were split into individual entities for accu-
rate evaluation.

These steps ensured proper formatting and pre-
served the accuracy of extracted triples, making the
model outputs suitable for evaluation.

3.3 Prompt Engineering

Prompt engineering was the central approach used
to adapt the selected LLMs to the specific task
of object prediction. Rather than fine-tuning the
models, we focused on crafting and optimizing the
prompts to guide the models in generating accu-
rate and relevant responses. Our approach is simi-
lar to that of Ghosh (2023), who also emphasized
prompt engineering to align LLM outputs with task-
specific objectives, demonstrating its potential as a
lightweight alternative to more resource-intensive
strategies.

3.3.1 Relation Adapted Prompts

Similar to the work by Nayak and Timmapathini
(2023), in zero-shot learning settings, we designed
a distinct prompt for each relation, tailoring the
instructions to align with the specific requirements
of the relation. While the baseline setup provided
a basic question template for each relation, our
approach went further by appending instruction

information to increase the likelihood of correctly
formatted results. Figure 1 demonstrates how an
example input is composed of these two parts for
the relation BandHasMember.

Question Part: Who are the members of {sub-
Ject_entity}?

Instruction Part: List only the members, separated
by ", " with no extra text.

Example Input: Who are the members of The Beat-
les? List only the members, separated by ", " with no
extra text.

Example Output: John Lennon, Paul McCartney,

George Harrison, Ringo Starr

Figure 1: Example of a Relation-Specific Zero-Shot
Prompt for Relation BandHasMember. The first box
shows the template while the second box demonstrates
the instantiation.

With our additional instruction information, we
can handle special characteristics for each relation.
For instance, some relations, such as SeriesHas-
NumberOfEpisodes, require numerical responses
as objects, while others like PersonHasSpouse typ-
ically expect a single answer. Additionally, cer-
tain relations involve multiple possible answers
(e.g., CountryHasStates), or may even allow for the
possibility of no answer at all (e.g., PersonCause-
OfDeath if the individual has not passed away).
Table 5 in Appendix A.3 shows all of our zero-shot
question prompts.

3.3.2 Few-shot Prompting

In addition to relation-specific zero-shot prompts,
we designed few-shot question and triple prompts
to further explore LLM performance. Few-shot
prompts were composed of a task explanation, n
randomly selected examples from the training set
(formatted either as questions or triples), and the
target task. Figure 2 shows an example of our few-
shot prompting technique using the triple template
for the relation PersonPlaysInstrument.

The examples provided for a given instance be-
long to the same relation as that instance. Moreover,
three examples were always used, thus following a
three-shot prompting approach. Our triple prompt
template followed a structured format that explic-
itly included the subject entity and relation, fol-
lowed by the expected object. The question prompt
template used the questions presented in table 5 in
Appendix A.3. This approach aimed to leverage
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Task Explanation: “Please answer the question
with your knowledge. Beforehand there are a few
examples. The output format should be a list of
possible answers prefaced by "Answer: ", also if
there is no answer write Answer: ["]”

Demonstrations:

“Bo Burnham, PersonPlaysInstrument: piano”
“Marko Topchii, PersonPlaysInstrument: guitar”
“Leo Pellegrino, PersonPlaysInstrument: saxophone”

Question:
“Kevin Pabst, PersonPlaysInstrument: trumpet”

Figure 2: Few-Shot Prompting. The prompt consists of
a task explanation, three demonstrations, and the target
task formulated as a triple.

LLMs’ ability to generalize from provided exam-
ples while maintaining consistency across formats.

3.3.3 Subject Context

To address potential ambiguities in subject enti-
ties, we enhanced the zero-shot prompts by includ-
ing contextual information about the subject en-
tity. Specifically, we append the first paragraph
from the Wikipedia® page associated with the en-
tity’s identifier in the prompt. The information is
introduced using a “Context:” prefix and placed
before the question part of the prompt shown in
the format previously illustrated, in Figure 1. This
additional context aims to clarify which specific
subject the model should consider when generating
predictions.

For example, if the subject in question is Leonid
Volkov, ambiguity arises as there are multiple no-
table individuals with that name: a politician, an
ice hockey player, and a skydiver. By including the
introductory paragraph from the Wikipedia page,
the model can better differentiate between these
individuals and generate more accurate object pre-
dictions.

3.4 Model Ensemble

A key aspect of our project was developing a model
ensemble approach to combine the strengths of the
selected LLMs. Each model demonstrated vary-
ing performance across different types of relations,
making an ensemble strategy a promising way to
enhance overall accuracy.

We combined three models, Gemma2, Qwen2.5-
1.5B, and Llama3.2, selected based on their F1

8https://www.wikipedia.org/

scores on the training dataset, which followed the
same format as the evaluation set. This allowed us
to assess the models’ performance in a compara-
ble setting and identify the top-performing models
for inclusion in the ensemble. Tables 2 and 3 in
Appendix A.1 present the detailed results on the
training dataset following zero-shot settings.

We implemented two ensemble strategies:
Relation-Based Ensemble and Majority Voting En-
semble. The first selected the best-performing
model for each relation based on F1 scores from the
training set. For instance, if Llama3.2 excelled at
predicting PersonHasProfession but Gemma?2 per-
formed better on PersonPlaysInstrument, the out-
puts from the respective best-performing models
were combined in the final results. This dynamic
selection process allowed the ensemble to adapt to
different relation types effectively.

In the Majority Voting Ensemble, the models’
outputs were compared, and the most frequently
predicted object(s) were chosen as the final answer.
If no majority agreement was reached, the fallback
response came from the model with the highest F1
score for the specific relation on the training set,
increasing the likelihood of selecting the correct
output.

This ensemble approach leveraged the comple-
mentary strengths of the models, improving both
precision and recall across diverse relation types.

4 Results

Our experiments demonstrate notable progress in
using instruction-tuned LLMs for KBC, achieving
results far exceeding those of generative baselines
like GPT-3. Specifically, our best setting delivered
up to four times better performance, highlighting
the effectiveness of prompt engineering and con-
textual enhancements. Table 1 summarizes the F1
scores for all of our approaches, the baselines, and
the best approaches in track 1 and 2 of the chal-
lenge.

Based on these results, we make several obser-
vations. Regarding the performance of individual
models:

* Gemma?2 showed the best performance across
most configurations, especially in the 0-shot
+ paragraph context configuration, where it
achieved an F1 score of 0.377.

* Llama3.2 exhibited significantly lower perfor-
mance across configurations, with its highest
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Model Method P R F1
BERT Baseline 0.368 0.161 0.142
GPT-3 Baseline 0.126 0.060 0.061
VE-BERT Winner of track 1 (Yang et al., 2023) 0.395 0.393 0.323
LLMKE Winner of track 2 (Zhang et al., 2023) 0.715 0.726 0.701
Llama3.2 1B 0-shot 0.184 0.314 0.193
0-shot + paragraph context 0.258 0.401 0.271
3-shot question 0.185 0.237 0.153
3-shot triple 0.295 0.329 0.268
Gemma?2 2B 0-shot 0.279 0.336 0.259
0-shot + paragraph context 0.394 0.443 0.377
3-shot question 0.319 0.288 0.223
3-shot triple 0.263 0.280 0.260
Qwen2.5 0.5B 0-shot 0.116 0.174 0.115
0-shot + paragraph context 0.170 0.264 0.175
3-shot question 0.119 0.208 0.106
3-shot triple 0.214 0.264 0.188
Qwen2.5 1.5B 0-shot 0.187 0.257 0.188
0-shot + paragraph context 0.286 0.350 0.281
3-shot question 0.219 0.214 0.166
3-shot triple 0.206 0.192 0.189
DeepSeek-R1 1.5B  0-shot 0.056 0.107 0.057
0-shot + paragraph context 0.057 0.107 0.057
3-shot question 0.100 0.170 0.068
3-shot triple 0.091 0.197 0.093
Ensemble 0-shot + relation-based 0.348 0.412 0.334
0-shot + majority voting 0.344 0.408 0.331
0-shot + relation-based + paragraph context  0.395 0.453 0.384
0-shot + majority voting + paragraph context 0.392 0.451 0.381

Table 1: Average Precision (P), Recall (R), and F1 Score (F1) for Each Model and Method.

F1 score being 0.271, achieved in the 0-shot +
paragraph context configuration, closely fol-
lowed by the 3-shot triple configuration.

Qwen2.5 models displayed generally diver-
gent performance, with the 1.5B model also
achieving its best performance of F1 = 0.281
in the 0-shot + paragraph context configura-
tion. The 0.5B model consistently performed
worse, with its highest F1 score of 0.188.

DeepSeek-R1 showed the weakest perfor-
mance, with an best F1 score of just 0.093,
far below the other models and close to the
GPT-3 baseline on most configurations, indi-
cating significant limitations in this task.

Specifically on the ensemble methods:

* There were slight improvements over individ-
ual models, but the ensembles did not largely
surpass the best individual model (Gemma2).
The highest ensemble F1 score was 0.384,
achieved by 0-shot + paragraph context +
relation-based prompting.

* The relation-based ensemble outperformed
majority voting by less than 0.01 points.

Finally, on the performance of different types of

prompts:

* O-shot + paragraph context consistently out-
performed other configurations for most mod-
els, particularly for Gemma2, which exhibited
the highest F1 scores of all individual models.

* 3-shot question prompts were the least effec-
tive across models, exhibiting a notable de-
cline in performance relative to other configu-
rations.

Relation-specific performance varied widely, as

shown in Appendix A.2 Table 4, which reports
precision, recall, and F1 score for each relation
under our best-performing configuration: ensem-
ble 0-shot + relation-based + paragraph context.
High-performing relations included CountryBor-
dersCountry and RiverBasinsCountry. These re-
lations likely benefit from their structured repre-
sentations and prominence in KBs. Conversely,
PersonHasAutobiography, StateBordersState, and
others consistently exhibited lower F1 scores, re-
flecting challenges like data sparsity and ambiguity
in text representations.
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5 Discussion

The results of this study provide valuable insights
into the performance of various language mod-
els and prompting strategies for knowledge-based
tasks. This section aims to provide a detailed inter-
pretation of the findings, highlighting connections
to existing research and discussing potential areas
for improvement.

5.1 Model Performance and Comparisons

The experimental results reveal significant differ-
ences in performance among the tested models.
Our largest model, Gemma2 2B, consistently out-
performed all other models, achieving its highest
F1 score of 0.377. This performance highlights the
model’s ability to leverage structured input effec-
tively, aligning with previous studies emphasizing
the role of context in improving task performance
for large models.

In contrast, Qwen2.5 0.5B performed poorly,
with its best F1 score being only 0.188, highlight-
ing that structured triple-based prompting was rela-
tively more effective for this smaller model, com-
pared to standard question-based prompts. Its un-
derwhelming results suggest limitations in its ca-
pacity to process and utilize contextual informa-
tion as effectively as larger models like Gemma?2.
These findings support observations in the literature
that smaller models struggle with tasks requiring
fine-grained reasoning and complex information
extraction.

Despite the large size of the Qwen2.5 1.5B and
Llama3.2, they achieved F1 scores of 0.281 and
0.271, respectively, failing to match Gemma2. This
underscores that model size alone is not sufficient
to guarantee high performance. Architectural dif-
ferences, training data quality, and task-specific op-
timizations likely contributed to the performance
gap.

DeepSeek-R1 performed notably worse than the
other models, achieving an F1 score of only 0.093.
This poor performance was expected, given that
it is not instruction-tuned, making it significantly
less capable of following structured prompts and
generating predictions in the required format. The
model struggled to adhere to our task instructions,
often producing incoherent or incorrectly formatted
outputs. Its behavior supports our initial idea of not
using the base versions of the other models tested,
opting for instruct versions. Given that DeepSeek
is part of a rapidly evolving model family, larger-

scale or future instruction-tuned versions are likely
to yield more competitive results.

5.2 Effectiveness of Ensemble Approaches

The most successful ensemble configuration, 0-
shot + paragraph context + relation-based prompt-
ing, achieved an F1 score of 0.384. While this
achieved the highest total F1 score, it resulted
in only a modest performance increase of 0.007
points compared to the individual performance of
Gemma2. The similarity in results between the
two ensemble methods indicates that both strate-
gies were effective in leveraging model diversity.
However, when model predictions diverge signifi-
cantly, majority voting often defaults to the fallback
strategy, selecting the best-performing model per
relation, thereby approximating the behavior of the
relation-based ensemble.

An important observation is that the effective-
ness of an ensemble depends significantly on the
relative performance of its constituent models.
When one model, such as Gemma2, substantially
outperforms the others, the ensemble tends to rely
predominantly on that model’s outputs across all re-
lations. As a result, the ensemble offers limited im-
provements, as it essentially mirrors the strongest
individual model.

Conversely, when models have more comparable
performances (as observed in ensembles without
paragraph context), the ensemble is better able to
leverage the strengths of each model, with a per-
formance increase of approximately 0.075 points
of the best individual model. In such cases, the
ensemble captures complementary knowledge and
yields a more significant performance boost from
the individuals by integrating the “good predictions’
from all models.

This finding aligns with prior research suggest-
ing that ensemble methods, while generally robust,
require careful calibration to achieve significant
performance gains (Biester et al., 2023). The mod-
est improvements seen here highlight the need for
further exploration into ensemble techniques, such
as dynamic weighting or neural blending, to better
harness the complementary strengths of individual
models.

i

5.3 Insights from Prompting Strategies

The comparative analysis of prompting strategies
revealed unexpected yet insightful patterns. Specif-
ically, the 3-shot question prompts configuration
exhibited the weakest performance across most of
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the models. For instance, Llama3.2 recorded an F1
score of only 0.153 in this configuration, a signif-
icant performance drop compared to the 0-shot +
paragraph context or the 3-shot triple prompts.

At first glance, this result seems counterintu-
itive, as one might expect the inclusion of exam-
ples in the prompts would enhance the model’s
performance by demonstrating the task more con-
cretely. However, the discrepancy is attributable to
the design of the prompts. The zero-shot prompts
were carefully crafted with task instructions tai-
lored specifically to each individual relation, ensur-
ing the model was provided with precise, context-
relevant guidance.

In contrast, the three-shot prompts relied heavily
on the demonstrations to fulfill the task. Since an-
swers for instances of the same relation can slightly
vary, as for example, in terms of the number of
answers or even the absence of an answer, per-
formance may be affected without additional in-
structions. While the 3-shot triple configuration
could also be affected by similar variations, it was
able to provide better results possibly because the
triple format inherently offered a clearer and more
straightforward way to present the relationship be-
tween entities. This structure likely minimized
ambiguity, allowing the model to better understand
the task and produce more accurate responses. This
reinforces the importance of prompt structure in
reducing confusion and enhancing model perfor-
mance, especially in few-shot settings.

For zero-shot, we are aware that including the
paragraph from Wikipedia may occasionally pro-
vide hints toward the correct answer in some in-
stances. However, we do not see it as a threat
to the experimentation goals, as the disambigua-
tion benefits can be significant. Furthermore, the
results suggest that the contextual grounding pro-
vided by paragraph-enhanced prompts significantly
mitigated the need for examples, yielding the best
results. This reinforces findings in the litera-
ture, where carefully designed zero-shot instruc-
tions have been shown to outperform few-shot ap-
proaches, particularly when the latter lacks align-
ment with the task’s domain (Kojima et al., 2022).

5.4 Comparison with Participants in
LM-KBC 2023

We compare our results with the performance of
the participants in both tracks 1 (small model) and
2 (no limit) of the LM-KBC 2023 Challenge. This
decision stems from the fact that the models we

selected, although formally eligible for track 2, are
still near the 1B parameter threshold.

We note that we could outperform the best re-
sult of track 1, showcasing the effectiveness of
our methodology and the benefits of using slightly
larger models. Another source of improvement
may stem from the use of more recent models
that were not available in 2023. Given the rapid
progress in language model development, advances
in pretraining and other techniques could also con-
tribute to better model performance.

When comparing our results to those in track 2,
the superior performance of larger models like GPT-
3.5 Turbo and GPT-4 is unsurprising, given their
substantial parameter count advantage. Also, some
track 2 participants (Zhang et al., 2023; Nayak
and Timmapathini, 2023) boosted performance by
injecting vast Wikipedia knowledge directly into
prompts. While effective, this raises concerns
about whether the approaches are truly assessing
the models’ ability to extract knowledge on their
own. Infoboxes and Wikidata triples, as used by
the winners, already contain structured answers to
many subject-relation pairs. However, since LLMs
are already pre-trained on similar data, these con-
cerns might be somewhat alleviated.

Our results demonstrate a strong balance be-
tween efficiency and effectiveness, achieving com-
petitive performance. This reinforces the idea that
strategic adaptations and well-tuned approaches
can deliver meaningful outcomes even with limited
computational resources.

6 Conclusion

This study explored the use of LLMs for KBC,
focusing on their ability to predict object entities
within the context of the LM-KBC 2023 Challenge.
Through a systematic evaluation of multiple mod-
els, mostly instruction-tuned, and leveraging tech-
niques such as prompt engineering and ensemble
methods, we derived several key insights.

Our best F1 score, which stems from our en-
semble configuration, is higher than that of the
winner of track 1, proving the effectiveness of our
approach.

Furthermore, we observe a strong correlation
between parameter size and model performance,
also within the Qwen2.5 model itself. We also
see performance differences based on the prompt-
ing method used: Zero-shot prompting, tailored to
each relation, achieved superior results compared
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to few-shot approaches. Triple prompts consis-
tently outperformed our question prompts. In addi-
tion, contextual enhancements, particularly through
paragraph-level information, proved critical in im-
proving F1 scores across all models, demonstrating
the value of incorporating external knowledge.

Ensemble techniques, when one model is clearly
dominant, marginally improved performance. The
limited gains suggest further refinement is needed
to enhance effectiveness.

Our work contributes to the growing body of
research on Natural Language Processing and Se-
mantic Web Technologies, demonstrating the via-
bility of medium-sized LLM:s for efficient KBC. By
achieving results proportionally competitive with
those of larger models under resource constraints,
we underscore the value of methodological inno-
vation over raw computational scale. However, de-
spite our methods showing promising results, they
still fall short of the standards required for robust
KBC. This underscores that LLMs, in their current
state, are not yet capable of replacing structured
KBs, but rather complement them.

To build on our work, future research could focus
on incorporating contextual knowledge into 3-shot
prompts and exploring their use within ensemble
models. Additionally, investigating advanced en-
semble techniques, such as dynamic weighting or
neural blending, as well as leveraging larger, more
diverse datasets, could significantly enhance LLM
performance in KBC.
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A Appendix

A.1 Results on the Training Dataset

To leverage our ensemble method, we selected the
top three models based on their performance on the
training dataset. Table 2 presents results without
contextual knowledge, while Table 3 includes
prompts enriched by Wikipedia paragraphs.
Llama3.2 1B, Gemma2 2B, and Qwen2.5 1B were
chosen for our ensemble.

Model p R F1

Llama3.2 1B 0.176  0.313  0.188
Gemma2 2B 0.299 0371 0.290
Qwen2.5 0.5B 0.116  0.179 0.116
Qwen2.5 1.5B 0.185 0.247 0.182
DeepSeek-R1 1.5B  0.060 0.108  0.060

Table 2: Scores for the zero-shot question setting on the
training dataset.

Model P R F1

Llama3.2 1B 0.255 0411 0.270
Gemma2 2B 0.399 0.445 0.383
Qwen2.5 0.5B 0.169 0.256 0.173
Qwen2.5 1.5B 0.298 0.358 0.291

DeepSeek-R11.5B  0.062  0.109  0.060

Table 3: Scores for the zero-shot question plus para-
graph context setting on the training dataset.

A.2 Relation-specific performance

Table 4 presents the precision, recall, and F1 score
for each relation using our best-performing method,
the relation-based ensemble with 0-shot + para-
graph context. The results show significant vari-
ability in performance across different relations.

Relation P R F1

BandHasMember 0.407 0.367 0.370
CityLocatedAtRiver 0.345 0.366 0.343
CompanyHasParentOrganisation 0.280 0.715 0.277
CompoundHasParts 0.402 0.416 0.404
CountryBordersCountry 0.727 0.786 0.739
CountryHasOfficialLanguage 0.615 0.704 0.615
CountryHasStates 0.303 0.149 0.185
FootballerPlaysPosition 0.280 0.648 0.358
PersonCauseOfDeath 0.680 0.680 0.680
PersonHasAutobiography 0.112 0.120 0.114
PersonHasEmployer 0.202 0.256 0.206
PersonHasNoblePrize 0.130 0.510 0.130
PersonHasNumberOfChildren ~ 0.270 0.210 0.210
PersonHasPlaceOfDeath 0.495 0.495 0.495
PersonHasProfession 0.303 0.274 0.261
PersonHasSpouse 0.320 0.320 0.320
PersonPlaysInstrument 0.440 0.473 0.433
PersonSpeaksLanguage 0.602 0.768 0.646
RiverBasinsCountry 0.899 0.746 0.789
SeriesHasNumberOfEpisodes 0.305 0.310 0.307
StateBordersState 0.173 0.199 0.175
Average 0.395 0.453 0.384

Table 4: Precision (P), Recall (R), and F1 score per
relation for the best result.

A.3 Prompt Templates

We crafted input prompts for zero-shot and few-
shot prompting settings. Few-shot used either
triples, as shown in Figure 2, or the question parts
presented in Table 5. Zero-shot prompts used both
the question and instruction parts.
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Relation Name

Question Part

Instruction Part

Band Has Member

Who are the members of {subject_entity}?

List only the members, separated by °,
> with no extra text.

City Located At River

Which river is {subject_entity} located at?

List only the river(s), separated by ’,’
with no extra text.

Company Has Parent Or-
ganisation

What is the parent organization of {subject_entity}?

Answer with the parent organization
only or respond with ” if none, with no
extra text.

Country Borders Country

Which countries border {subject_entity }?

List only the countrie(s), separated by
’,” with no extra text.

Country Has Official Lan-
guage

What is the official language of {subject_entity}?

List only the language(s), separated by
>, with no extra text.

Country Has States

Which states are part of {subject_entity}?

List only the states / provinces, sepa-
rated by ’, * with no extra text.

Footballer Plays Position

What position does {subject_entity} play in foot-
ball?

Provide the position(s), separated by ’,
> with no extra text.

Person Cause Of Death

What caused the death of {subject_entity}?

Provide only the cause, or respond
with ” if unknown, with no extra text.

Person Has Autobiogra-
phy

What is the title of {subject_entity}’s autobiogra-
phy?

Answer with the title, with no extra
text.

Person Has Employer

Who is {subject_entity }’s employer?

List only the employer(s), separated by
’,” with no extra text.

Person Has NoblePrize

In which field did {subject_entity} receive the No-
bel Prize?

Answer with the field only, or ” if none,
with no extra text.

Person Has Number Of
Children

How many children does {subject_entity} have?

Answer with the number only.

Person Has Place Of

Death

Where did {subject_entity} die?

Provide only the place, or respond with
” if unknown, with no extra text.

Person Has Profession

What is {subject_entity}’s profession?

Answer with the profession(s), sepa-
rated by ’, * with no extra text.

Person Has Spouse

Who is {subject_entity } married to?

List only the spouse name, with no ex-
tra text.

Person Plays Instrument

What instrument does {subject_entity} play?

List the instrument(s), separated by ’,’
with no extra text.

Person Speaks Language

What languages does {subject_entity} speak?

List the language(s), separated by ’,’
with no extra text.

River Basins Country

In which country can you find the {subject_entity }
river basin?

Answer with the country name, or ” if
none, with no extra text.

Series Has Number Of
Episodes

How many episodes does the series {subject_entity }
have?

Answer with the number only.

State Borders State

Which states border the state of {subject_entity}?

List only the state(s), separated by ’,’
with no extra text.

Compound Has Parts

What are the components of {subject_entity}?

List the components, separated by ’,’
with no extra text.

Table 5: Relation-specific Zero-Shot Question Prompts. For the question part, the question prompt template,
as provided by the authors of the LM-KBC 2023 Challenge, is looked up for each relation individually and the
instruction part is appended to increase the chance of correctly formatted results when querying the LLM.
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