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Abstract

The digital era has made millions of manuscript
images in Hebrew available to all. However, de-
spite major advancements in handwritten text
recognition over the past decade, an efficient
pipeline for large scale and accurate conver-
sion of these manuscripts into useful machine-
readable form is still sorely lacking.

We propose a pipeline that significantly im-
proves recognition models for automatic tran-
scription of Hebrew manuscripts. Transfer
learning is used to fine-tune pretrained mod-
els. For post-recognition correction, it leverages
text reuse, a common phenomenon in medieval
manuscripts, and state-of-the-art large language
models for medieval Hebrew.

The framework successfully handles noisy tran-
scriptions and consistently suggests alternate,
better readings. Initial results show that word
level accuracy increased by 10% for new read-
ings proposed by text-reuse detection. More-
over, the character level accuracy improved by
18% by fine-tuning models on the first few pages
of each manuscript.

1 Introduction

The survival rate of medieval Hebrew manuscripts
is much lower than that of Latin or Arabic texts.
Thus, the extant Hebrew manuscripts—spread out
in libraries and private collections worldwide—are
a precious asset of historical, cultural and intellec-
tual heritage.

The digital era has brought a renaissance to
the study of ancient and medieval manuscripts,
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heretofore available for examination only to lim-
ited scholarly circles working at circumscribed
locations. Recent advancements in digitization
have made images of most of the surviving He-
brew manuscripts accessible now from every com-
puter, notably through the Ktiv project of the Na-
tional Library of Israel (National Library of Is-
rael, 2021). On the order of one hundred thousand
manuscripts—comprising more than ten million
images—are expected with the completion of the
Ktiv project.

Unfortunately, despite major progress in optical
character recognition (OCR), an efficient frame-
work for large-scale and accurate conversion of
these manuscripts into a machine-readable form
remains lacking. The complexity of the materials
and the poor quality of many of the items consti-
tute a major hindrance on the way to full textual
accessibility.

With the rising prominence of artificial neural
networks (ANN) and their application to handwrit-
ten text recognition (HTR), the accuracy of the au-
tomatic processes is continuously improving (AlK-
endi et al., 2024). The Tikkun Sofrim project (Ku-
flik et al., 2019; Wecker et al., 2022) designed
and tested an ANN based, automatic transcription
pipeline for Hebrew manuscripts. The project lever-
aged the open-source tool kraken (Kiessling, 2019),
off-the-shelf methods for automatic page segmen-
tation, layout analysis, and line segmentation and
developed a tailored crowdsourcing platform to vali-
date and correct automatic transcriptions (Kiessling,
2019). This led to the development of eScripto-
rium (Kiessling et al., 2019), a virtual research
environment, enabling scholars to create a full-
fledged transcription. However, kraken is designed
to train a specific LSTM neural network model for
each manuscript. This requires large efforts prepar-
ing labeled data for training the model for each
manuscript. To dramatically reduce the quantity of
manual annotation effort needed to create training
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sets for handwritten Hebrew text recognition, we
employ a bank of pretrained models as an ensem-
ble of models in parallel, combining their results.
Moreover, when minimal labeling of manuscripts
is available, we can use transfer learning to refine
the accuracy of the pretrained models.

The crowdsourcing efforts needed for transcrip-
tion validation and correction are labor intensive.
We aim to increase the pipeline efficiency by dra-
matically reducing transcription error rate using
post-recognition correction algorithms. The most
effective method at our disposal for automatically
improving transcriptions is the use of sequence
alignment methods to line up the imperfectly de-
ciphered texts with the same or with other com-
positions in existing corpora or previously tran-
scribed manuscripts of similar texts (Miller et al.,
2025). This approach was suggested in (Zhichare-
vich, 2011; Villegas et al., 2016) and by others. An
early work on aligning OCR text with ground-truth
(GT) transcriptions is (Rice et al., 1994). High-
performance sequence alignment algorithms have
long been used. Existing text alignment tools,
however, generally assume accurate transcriptions,
rather than error-riddled post-OCR texts. We pro-
pose a text-reuse detection framework designed for
medieval Hebrew language, which utilizes fuzzy
search on the inverted index, followed by an approx-
imate alignment algorithm to handle noisy OCR.
We combine this with the use of various state-of-
the-art Hebrew language models to propose new
and better readings.

2 Background and Related Work

2.1 Handwritten Text Recognition

We use off-the-shelf methods for automatic page
segmentation, layout analysis, and line segmenta-
tion. Machine-learning based systems have seen
wide use recently for these tasks, the majority us-
ing combinations of CNNs and LSTMs. State-of-
the-art methods have been implemented in kraken
and eScriptorium for mixed models in various
scripts, including Hebrew, and for a wide range
of manuscript types.

The best transcription results for such
manuscripts are achieved by combinations
of CNNs and BLSTMs (Dutta et al., 2018; Kahle
et al., 2017; Kiessling, 2019). HTR efforts for
medieval Hebrew manuscripts include (Kiessling
et al., 2019; Kuflik et al., 2019; Kurar Barakat et al.,
2019). The Sofer Mahir project digitized twenty

large manuscripts of early rabbinic compositions.!

In the Tikkoun Sofrim project (Kuflik et al.,
2019; Wecker et al., 2022), crowdsourcing and
machine learning were used to correct errors
of the automatic transcriptions of several large
manuscripts of medieval exegetical literature.
Character error rates (CER) of 2-3% were typically
attained for manuscripts with homogeneous layout
and script but only around 9% in the presence of
complications.

Today, given an undeciphered manuscript, we
can achieve the best possible reading by use of the
latest available bank of recognition models and al-
gorithms. Aggregation and selection algorithms
need to learn how to select the best automatic tran-
scription model or combination of models for each
specific manuscript (Kiessling, 2019; Reul et al.,
2019). Letting OCR engines vote on readings has
been done since at least the early 1990s (Handley
and Hickey, 1991). Varying parameters of the input
images (resolution, size, contrast) for each page can
also have an impact, and image enhancement prior
to OCR is commonplace. An attempt to apply this
for Arabic was reported in (Kissos and Dershowitz,
2017); automatically choosing the most successful
among a variety of image enhancements was found
to yield twice the improvement of lexical post-OCR
correction.

2.2 Transfer Learning

Manuscript handwriting styles being highly de-
pendent on time, place, and individual scribes’
predilections, improving over state-of-the-art mod-
els by leveraging transfer learning is an obvious
choice. Models pretrained over a large corpus are
fine-tuned on the first few annotated pages of a
manuscript so as to help decipher the rest of the
manuscript. In this way, the representation learned
over a source dataset can be refined to solve the
target task, namely transcribing documents of a
smaller, disjoint dataset (Goodfellow et al., 2016).
Recent research (Aradillas et al., 2021; Jaramillo
et al., 2018) shows that the optimal method to im-
prove accuracy is to fine-tune the parameters of
the whole recognition model, while the first layer
can be frozen without any meaningful performance
degradation. In (Granet et al., 2018), the authors
successfully apply transfer learning to historical
handwritten Italian titles of plays.

"https://sofermahir.hypotheses.org.
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2.3 NLP-Based Correction

Post-recognition error correction based on NLP
techniques is a well-researched field. Pretrained
language models of various kinds have been used
to correct and refine OCR and HTR (Kukich, 1992;
Zenkel et al., 2017), as well as optimized dedicated
neural networks (Ghosh and Kristensson, 2017; Su-
issa et al., 2020). This approach can be further
improved by adding a classifier and a weighted
confusion matrix (Kissos and Dershowitz, 2016).
In (Mahpod and Keller, 2018), an end-to-end jointly
trained neural network for transcription and correc-
tion is proposed. In (Hannun, 2017), the author
surveys the different HTR/OCR decoding strate-
gies, and suggests incorporating a language model
scoring by multiplying the OCR model’s log-odds
score matrix at decoding with corresponding condi-
tional probabilities (or analog scores) derived from
a language model (LM).

State-of-the-art pretrained transformer-based
contextual language models such as BERT (De-
vlin et al., 2019) have been successfully used to de-
tect and correct OCR errors (Nguyen et al., 2020)
in English. Modern subword-level transformers-
based language models are attractive to tackle post-
recognition correction in morphologically rich lan-
guages such as Rabbinic Hebrew. Their advantage
over character-level LMs has been demonstrated
to be significant for semantic tasks (Keren et al.,
2022). Similarly, classical word or phrase-based
LMs have been shown to have lower accuracy when
dealing with MRL (Amram et al., 2018; Seker et al.,
2022).

BERT-like language models can be used to com-
pute pseudo-perplexity, which has been shown to
be an effective metric for scoring sentences for lin-
guistic acceptability (Salazar et al., 2020; Lau et al.,
2020), and thus for scoring and ranking candidate
transcriptions. This measure is sensitive to the num-
ber of tokens, and in effect is biased towards longer
sequences. Several normalizations have been pro-
posed in (Lau et al., 2020), and following prelimi-
nary experiments we adopt their averaging normal-
ization method, MeanLP. However, we normalize
by the number of LM tokens, not by the number of
words, as the averaging dimension is the token axis.

2.4 Text Reuse-Based Correction

Text-reuse detection algorithms are used to locate
the content of a manuscript within a library of refer-
ence texts (Biichler et al., 2014), followed by align-

ment of the text against the most similar known
text (Altschul et al., 1990; Hakala et al., 2019). De-
tected reused texts can be used to tackle potential
failures of the automatic transcription (Zhichare-
vich, 2011).

Text-reuse detection. Manuscripts comprise hu-
man knowledge to be transmitted to others. The
written transmission of information relied on var-
ious forms of intertextuality, whereby texts were
either copied entirely (verbatim or in paraphrase)
or were borrowed partially to inspire new ideas.
This leads to the phenomenon of many witnesses
available for a single segment of text. Thus, the like-
lihood that several witnesses have already been con-
verted into a machine-readable form increases. For
example, a manuscript segment could be matched
with fragments quoted in later works, or appearing
in dialog with other authors (Klein et al., 2014; Och
and Ney, 2003; Smith et al., 2013), or made use of
in the context of spreading and amplifying ideas
and opinions (Smith et al., 2013; Wilkerson et al.,
2015).

Text reuse engages the attention of humanities
scholars when considering ancient manuscripts for
a wide variety of languages, such as Greek (Lee,
2007). Most of the studies so far have focused on
exploring the potential of information technology to
automate text-reuse detection in a specific domain.
Syntactic text-reuse detection frameworks rely on
sequence alignment, which in turn requires align-
ing noisy OCR outputs, such as aligning dissimilar
words or aligning multiple words in one to a single
word in another. For our purposes, we propose a
framework that handles noisy HTR, thanks to which
even a gibberish-looking transcribed sentence can
be accurately matched to reuses in other corpora
(cf. Zhicharevich, 2011). See (Miller et al., 2025)
for details.

Text alignment. Many alignment tools (e.g.
Clough et al., 2002; Smith et al., 2015) assume
accurate transcriptions. Brill et al. (2020) designed
an alignment tool that aligns semantically similar
words using word embeddings, but it cannot han-
dle word boundary errors typical of OCR outputs.
BLAST, designed for biological sequence match-
ing, works well even when OCR errors exceed 50%
(Vesanto et al., 2017). Miller et al. (2025) proposed
an alignment tool—used here—for Hebrew capa-
ble of addressing word boundary errors, spelling
mistakes, and aligning acronyms and synonyms.
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2.5 Language of Corpus

Practical text-reuse detection and alignment chal-
lenges stem from the language of our interest. He-
brew is an orthographically and morphological com-
plex language (Itai and Wintner, 2008). The number
of valid inflected forms in Hebrew is 70 times larger
than in English (HaCohen-Kerner et al.,2011). And
there is no orthographic standard in Hebrew. More
specifically matres lectionis are optional; a word
may include it in one manuscript while it will be ab-
sent in another. We cannot know if a discrepancy is
due to poor recognition or to an actual textual vari-
ant. Morphological analysis has been implemented
in the text-reuse detection framework (Siegal and
Shmidman, 2018) to convert the tokens into base
form. Acronyms are ubiquitous in written Hebrew.
There are 17,000 different abbreviations in rabbinic
literature, 35% of which are ambiguous (HaCohen-
Kerner et al., 2004), which challenges the align-
ment process. Furthermore, a Hebrew sentence can
be written in multiple permutations while preserv-
ing meaning; therefore reuses may take on differ-
ent forms, which may be scored by a framework
like (Brill et al., 2020; Smith et al., 2014; Colavizza
et al., 2014).

A few “encoder-only” modern Hebrew LMs
have been proposed: HeBERT (Chriqui and Ya-
hav, 2022), AlephBert (Seker et al., 2022), and
AlephBertGimmel (Gueta et al., 2022). However,
the Wikipedia-based dataset used to train them
differs significantly in orthography and grammar
from the old Hebrew used in manuscripts. One
encoder-only LM for Rabbinic Hebrew is avail-
able, viz. BEREL (Shmidman et al., 2022), trained
on 220 million words of this chronolect. Cour-
tesy of the developers, we were provided three pre-
publication variants, dubbed versions 1.0, 1.5 and
2.0. BEREL v1.0 is the model outlined in (Shmid-
man et al., 2022). BEREL v2.0 includes a num-
ber of improvements, including better tokenization
of input samples, a larger source corpus, and sup-
ports sequences of up to 512 tokens. Whereas these
two models have been trained on full sentences,
BEREL v1.5 has been trained on partial sentences.
More recently, the same authors introduced a large-
scale generative causal (autoregressive) language
model tailored for Rabbinic Hebrew called Dic-
taLM (Shmidman et al., 2023), based on a decoder-
only transformer architecture. This decoder-only
transformer model is trained on a balanced corpus
consisting of both Modern and Rabbinic Hebrew

texts.

2.6 Combined Systems

The KITAB (Savant, 2016) and Open Islamicate
Texts Initiative projects (OpenITI) (Allen et al.,
2022), for Arabic and other manuscripts, have sim-
ilar goals. Similar techniques are therefore appro-
priate.

3 Methodology

We designed a transcription pipeline that extends
the one in (Kuflik et al., 2019), comprising the fol-
lowing steps:

1. First, manuscript images are needed. We rely on
Ktiv, which is the midst of the process of digitizing
the entire extant Hebrew manuscript corpus.

2. The next step is transcription of the text in the
manuscript. We use the trained models of kraken to
first segment and then transcribe the text appearing
in the images.

3. Both text-reuse detection and large language
models are then applied to propose corrections to
several pages of the specific manuscript.

4. Based on that, experts correct any remaining
transcription errors in those pages. The advanced
user interface of (Kiessling et al., 2019) is used for
this.

5. The recognition model is fine-tuned based on
that ground truth.

6. The refined model is applied to the complete
manuscript.

7. Experts or crowd-sourcing may be employed to
correct any remaining errors.

8. The text-reuse detection framework kicks in
again to map all interconnections between the
manuscript and other documents in the corpus.

9. Finally, the outputs are delivered to humanities
researchers.

4 Automatic Transcription

4.1 Handwritten Text Recognition

The automatic generation of transcribed text is
achieved by the combination and integration of a
variety of state-of-the-art algorithms. Core HTR
is performed by the segmentation and recognition
models trained on crowdsourced datasets in the
Sofer Mabhir effort (Stokl Ben Ezra et al., 2021).
Accuracy is boosted by automatically selecting the
most appropriate model, either via a semi-automatic
recommendation system or by unsupervised anal-
ysis of graphical features. By manually labeling
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the first pages of the manuscript and fine-tuning
the models’ parameters, one can further improve
performance of the recognition models on specific
manuscripts.”

4.2 Text Reuse-Based Corrections

We leverage text reuse and run the HTR data
through a text-reuse detection framework which
finds repetition pairs in the corpus and then align
them based on a sequence alignment algorithm
and propose a new and better reading for the HTR.
Frameworks for short reuse detection first split
large texts into small parts and try to detect reuses
for each, commonly, n-gram over a sliding win-
dow (Foltynek et al., 2019). However, kraken
automatically segments the manuscript into rows.
Therefore, we utilized rows as our (varying-size,
non-overlapping) sliding windows.

In the remainder of this section, we describe the
text-reuse detection framework. It is tailored to
Hebrew, on the one hand; on the other hand, it
handles the expected noisy recognition inputs.

Preprocessing. We used the Sefaria digital cor-
pus (Sefaria, Inc., 2021) as reference library. The
digital texts are preprocessed, removing special
characters from the data as in (Klein et al., 2014).
Next we generate a positional inverted index (con-
cordance) for fast candidate retrieval. In addition,
a lexicon is created with an entry for each word in
the corpus, holding the inflected word as it appears
in the corpus as well as its base form extracted by a
morphological analyzer (More et al., 2019). Each
entry is enriched with the frequency of its appear-
ance in the corpus.

Candidate retrieval. For each manuscript line,
we execute a fuzzy search against the inverted index.
For each token in the input line, we seek orthograph-
ically close tokens to allow for transcription errors
as well as Hebrew’s orthographic variability. We
end up with a list of candidates suspected to have a
text-reuse relation with the tested row.

Scoring candidates. The next step is to score the
similarity between the tested line and each of the
candidates. First we need to extract from each candi-
date a maximal segment pair, the most similar piece
of text from the candidate with identical length to
the tested line (Altschul et al., 1990). Then the
similarity score between the two and the input line

The original models are available on kraken’s Zenodo
archive, https://zenodo.org/communities/ocr_models/records.

is measured by edit distance (Levenshtein, 1966).
At this stage, we also measure the similarity be-
tween the candidate and the previous and following
rows of the manuscript. We boost the candidate’s
score relative to the similarity with the neighboring
rows. The intuition here is that the longer a pas-
sage is shared between documents the higher the
probability of a text reuse relation between them.
We employ predefined similarity thresholds for the
decision to move the candidate forward to the align-
ment stage, an approach used by most text-reuse
detection frameworks (Foltynek et al., 2019).

Fuzzy alignment. This stage aims to align all can-
didates against the tested row. Tokens with different
orthography, abbreviations, and even synonyms are
also detected and aligned. A score is assigned for
each token’s alignment measuring the framework’s
confidence in the match.

Alignment stage starts with a “traditional” se-
quence alignment, which aligns tokens that share
the same orthography (Altschul et al., 1990). Their
alignment score is set to 1. Tokens differing in or-
thography take the edit distance ratio between them
as the score. Next we try to detect missing spaces.
Word separation varies widely in manuscripts. That
in turn occasionally causes recognition to merge
two words into a single one (missing the space in
between) or to wrongly detect a space and split one
word into two. The framework will split or merge to-
kens according to the missing spaces and reduce the
score relatively. Lastly, we try to align non-identical
tokens and assign a score accordingly. Aligned syn-
onyms, acronyms, or abbreviations share the confi-
dence level of their surrounding tokens. If a token
is not in the lexicon, the score is boosted.

Proposing readings. The final step is to choose
the best reading for each token. Here we use ma-
jority vote between all available readings for each
token. In this step only alignments that exceed a pre-
defined threshold are included in the voting process.
Preliminary results shows that our framework re-
duced the word error rate (WER) by 10%. The texts
generated by the automatic transcription reached
81% of word level accuracy, while the new reading
proposed by our text reuse framework boosted the
accuracy to 91%.

4.3 NLP-Based Correction

We consider three approaches to language-based
correction: (1) spellcheck, (2) pseudo-ensemble,
and (3) shallow fusion.
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Spellcheck. Given an input text potentially con-
taining errors due to OCR inaccuracies, the algo-
rithm attempts to correct the text by utilizing the
predictive capabilities of a masked language model,
namely BEREL.?

The algorithm is parameterized by:
* k, representing the number of top candidates to
consider during the mask-filling process.
* O and O,p, relative and absolute Levenshtein
distance (LD) thresholds, respectively, used to filter
out implausible corrections.
* Opprr, an initial score threshold, for accepting or
rejecting a correction based on the model’s predic-
tion score.
* A switch, whether to use regular LD or weighted
LD (meaning that frequent recognition confusions,
caused by graphical similarity, are assigned a lower
weight), thus facilitating their correction by the al-
gorithm.

The algorithm follows the following steps:

1. Preprocessing: The input text undergoes pre-
processing to replace certain special characters and
manage line breaks.

2. Word Masking: At each word position ¢ in the
input text, the word is masked using the tokenizer’s
mask token (usually “[MASK]”).

3. Model Prediction:

(a) The masked text is passed through the language
model.

(b) The algorithm retrieves the top k predictions
for the masked token based on the logits from the
“model”.

4. Correction Decision:

(a) If the original word (prior to masking) is within
the top k predictions, it is retained.

(b) Otherwise, a decision is made based on the LD
between the original word w and each candidate
c: fLD(c, w) < Oups and LDgps(¢) /|w| < 6rel, the
candidate is deemed plausible.

(c) Among the plausible candidates, if the top can-
didate’s score exceeds Oggrr, it replaces the origi-
nal word. If not, the original word is left intact, but
alternatives are noted for potential review.

5. Threshold Update:

(a) The score associated with accepted predictions
is stored.

(b) Oggrr is updated based on the mean of these
accepted scores, allowing the algorithm to dynami-
cally adapt its confidence threshold.

The corrected text is returned. Additionally, for

3https://huggingface.co/dicta-il/BEREL_2.0.

each line in the input, potential alternatives are pro-
vided by the system for manual review.

Pseudo-ensemble. Given an OCR model that
generates output sequences, our objective is to gen-
erate alternative readings and to rank them to yield
an enhanced prediction.

We generate many alternative readings using
connectionist temporal classification (CTC) beam
search, and select the best output using LM scoring.
(This general method bears some similarity with
test time augmentation. However, typically test-
time augmentation is applied to the input, whereas
we apply the transformations on the model’s out-
put.) This design choice was influenced by compute
and latency constraints.

We evaluate two scoring algorithms, both based
on perplexity, with or without normalization. We
compare three versions of BEREL: v1, v1.5, and
v2. Overall, this results in six scoring methods
based on BEREL.

In the course of CTC decoding one can use beam
search—that is, accumulate iteratively at each de-
coding step multiple highest-scoring possible out-
puts. After creating candidates at each step (the
previous possible outputs, concatenated with any
new token), only the b most probable outputs are
kept. We can leverage this technique to generate
multiple recognition candidates of a line. These b
candidates, called the “beam width”, can be con-
sidered the “best guesses” of the model. We then
score every candidate using an LM, and return the
candidate with the highest score.

Overall, the parameters of this algorithm are
quite limited:

1. The number of candidates to generate, which we
fix to be equal to the beam width. (In theory, the
number of candidates can be any number. How-
ever, choosing a number smaller than the beam
width means generating candidates but not evaluat-
ing them; choosing a higher number means adding
candidates which differ only in the last token.)

2. The specific scoring model, of which, as men-
tioned, there are six.

Shallow fusion. In this third technique, we com-
bine LM scores into the CTC decoding at inference.
In practice, when decoding through the logit ma-
trix, if the new character is a space we add to the
logit the score given by a LM. This approach is also
called in the literature “prefix beam search decoding
with language model”, and is similar to (Hannun
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Table 1: Spellcheck—character accuracy change on
Geneve 146 holdout test set.

etal., 2014). It can be applied to the beam search
decoding algorithm.

The algorithm is parameterized by:
* The language model, which may be BEREL v1,
v1.5, or v2.
* The scoring method.
* The weight of the score to be added.

We consider the same scoring methods as in the
previous case.

5 Experimental Setup

We perform first-pass HTR using both base and
fine-tuned HTR models, in order to examine how
the proposed methods can improve the standard
measures, word accuracy rate (WAR) and charac-
ter accuracy rate (CAR). Our main metrics are the
changes in the accuracy rates, which means that we
seek to have the highest possible positive change in
WAR and CAR.

5.1 Model Choice and Fine-Tuning

Our experiments indicate that character accuracy
can be boosted by around 18% by fine-tuning the
recognition models over three labeled pages (see
Figure 1). The particular choice of the source model
does not seem to impact performance, nor adding
more labeled data. We note that the same technique
can be applied to segmentation models.

5.2 Post-correction Results

We performed tests on the manuscript Geneve
Comites Latentes 146 (or “Geneve 146) (Bib-
liotheque de Geneve), which contains a rab-
binic homiletic work from late antiquity, Midrash
Tanhuma, in an Oriental Hebrew script of the 14th
century. We determined the optimal parameters for
spellcheck and pseudo-ensemble using exhaustive
grid search, and for shallow fusion using random
search. The parameter search was performed on a
validation set. The results over a held-out test set
are given in Tables 1-4. An example of a spacing
correction and of a correct letter replacement are
given in Figures 5; a misguided word split (albeit
minor) is shown in Figure 6.

HTR Levenshtein Scoring Original | Improved | Change HTR Levenshtein Scoring Original | Improved | Change
model thresholds method CAR CAR CAR model thresholds method WAR WAR WAR
Base 83.2 83.7 0.5 Base . BEREL v1.5 52.8 554 2.6
Fine-tuned | 000 | BERELV2Z 1o 9.1 0.0 Fine-wned | % | BERELv2 | 883 | 883 0.0

Table 2: Spellcheck—word accuracy change on Geneve
146 holdout test set.

HTR Number of Scoring Original Improved Change

model candidates method CAR|WAR | CAR|WAR | CAR|WAR
Base 50 BEREL v1.5 | 83.2|52.8 | 83.6]|54.6 0318
Fine-tuned BERELv3 | 96.1[88.3 | 96.1]89.3 | <0.1]1.0

Table 3: Pseudo-ensemble—character and word accu-
racy changes on Geneéve 146 holdout test set.

HTR Parameters Scoring Original | Affected | Change
model « ; size method CAR CAR CAR
Base 85.1 83.4 —-1.7
Fine-tuned | > 10| BERELVZ I o55 91.9 | -3.6

Table 4: Shallow fusion—character accuracy change on
Geneve 146 holdout test set.

GT | orzmm 503 pww 723 e ont no:% o pam
HTR | ovm3vm 552 pww 923 ont noass nx pam
PE | o121 503 psw M2 7 oxy nis ok pam

GT | 727 1112 by jonb oo 2 pawa 52 by o
HTR | 7737 7m0 12 Dy jon5 oo 221 pown 52w 5
PE | 7927 v 12 5w 1005 08 *323 79N 50 5y 51

Table 5: Examples of correct modifications using
pseudo-ensemble on Geneve 146.

In all cases, it is more challenging to improve on
the fine-tuned recognition model’s output. A possi-
ble interpretation would be that since the recogni-
tion model learns some linguistic features, its output
has the appearance of acceptability, which fools the
various logics. In the case of pseudo-ensemble,
we note that the word accuracy changes by a much
higher proportion than character accuracy. This
indicates that the corrections effected by the LM
have a light touch, mostly correcting words with
few erroneous letters. Changing only such critical
characters may weakly impact character accuracy
but will strongly improve WAR.

An interesting case is that of Figure 2. The
manuscript originally contained a spelling error,
together with an interlinear correction. Recogni-
tion captures the original incorrect reading, missing
the correction. The pseudo-ensemble correction re-
places a letter in the word with the one between
the lines, which gives the correct semantics, but
not the correct reading. Actual spelling mistakes in
medieval manuscripts are not uncommon, and are
often left uncorrected in the text.

Shallow fusion demonstrated efficacy exclusively
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Figure 1: Character accuracy achieved by transfer learning, as a function of additional labeled lines used for fine-

tuning. Models courtesy (Stokl Ben Ezra et al., 2021).
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Table 6: Example of incorrect modifications using
pseudo-ensemble on Geneve 146.

" 1
by 1N

Figure 2: HTR read x'»r5, ignoring the interlinear m;
pseudo-ensemble changed it to ®*r, which has the same
meaning as the correct x°ommb.

on the training dataset for a particular configuration
of parameters, as indicated by a slight enhancement
in CAR. However, this methodology lacked suffi-
cient robustness and failed to generalize effectively
to the holdout test dataset. This experiment may,
accordingly, be deemed unsuccessful, and we hy-
pothesize that the failure can be attributed to the uti-
lization of a bidirectional critical model for scoring
outputs. In contrast, we posit that the appropriate
approach necessitates the use of conditional scores
generated by a conditional generative model, such
as DictalLM for Rabbinic Hebrew (Shmidman et al.,
2023, 2024). Moreover, the limited context (parts
of lines) available to the model at the rescoring
stage may have impaired its capabilities.

5.3 Expert Proofreading

Following automatic transcription, a semi-
automatic component allows experts to proof-read
uncertain results. As detailed above, suspect
results and possible corrections are suggested by
the automatic components. This integration of a

machine-aided person-in-the-loop allows for the

Method Original | Improved | Change
model WAR WAR WAR
Text reuse 74.7 4.3
Spellcheck 704 72.8 2.4
SC then TR ’ 75.3 4.9
TR then SC 75.2 4.8

Table 7: Word accuracy changes on Vatican 44. Text
reuse compared with spellcheck, and text reuse com-
bined with language model corrections.

efficient allocation of human expertise and effort.

5.4 Combining Methods

Our assessment of the text reuse algorithm was con-
ducted on Vatican 44 (Biblioteca Apostolica Vat-
icana), a 14th-century Midrash compilation. The
first two rows of Table 7 present the enhancements
in word accuracy rate achieved through text reuse,
in contrast to the spellcheck method applied to the
identical dataset. The baseline for comparison is
established by the base BibliA HTR model, which
was not fine-tuned. The last two rows consider the
permutations of the two approaches, specifically
evaluating the sequence of implementation for text
reuse (TR) and spellcheck (SC). Overall, leverag-
ing text reuse resulted in more corrections that did
language modeling alone. Combining the two gave
the best of both worlds.*

6 Conclusions

The pipeline proposed here aims to improve the
accessibility of historical manuscripts in a machine

*Our methods, models, and results are archived at https://
gitlab.com/millerhadar/textreusefortranscription, https://gitlab.
com/millerhadar/soferllmcorrection, and https://github.com/
anutkk/sofer-stam.
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readable form. Text-reuse detection, as a post-
processing component, substantially improves the
overall transcription, though it can easily introduce
errors. The immediate gains are twofold: (1) The
method minimizes the expert manual labor required
to validate and correct the transcription, which in
turn is utilized to fine-tune the models and improve
accuracy. (2) The accuracy level reached automat-
ically might be acceptable for use as is, without a
manual pass. Given the flexibility of contemporary
search engines, we expect that even imperfect text
will significantly improve the accessibility of texts
and images, a boon to both scholars and the wider
public.

The efficiency of the pipeline we designed de-
pends on the type of the text. (a) Manuscripts of
familiar works only demand identification of the
work and alignment of the entire work with the
manuscript text, expected to be produced. Work
on aligning text with images includes (Cohen et al.,
2015; Ben-Shalom et al., 2017). (b) Manuscripts
of an anthological nature demand further scrutiny,
identifying the most probable source of each para-
graph. (c) Compilations will benefit less from the
search for textual parallels. It may be expected that
with additional fine-tuning of the reference library
and with better text-reuse thresholds and language
models, the accuracy of the post-processing could
be increased further.

The work described herein is continuing within
the framework of the large-scale MiDRASH ERC
Synergy project (Vasyutinsky-Shapira et al., 2024),
led by Daniel Stokl Ben Ezra, Judith Olszowy-
Schlanger, Nachum Dershowitz, and Avi Shmid-
man, in cooperation with Moshe Lavee and the Na-
tional Library of Israel. Using the Ktiv manuscripts
as its starting point, it aims to make the contents
of preprint Hebrew-character (Hebrew, Aramaic,
Judeo-Arabic, etc.) manuscripts accessible, with
a primary focus on biblical, exegetical, and liturgi-
cal manuscripts. Model selection, post-OCR cor-
rection, and model refinement will be automated.
Linguistic and paleographic analyses will also be
performed.
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