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Abstract

The increasing size and diversity of corpora in
natural language processing requires highly ef-
ficient processing frameworks. Building on the
universal corpus format, Teanga, we present
Cuaċ, a format for the compact representa-
tion of corpora. We describe this methodology
based on short-string compression and indexing
techniques and show that the files created with
this methodology are similar to compressed
human-readable serializations and can be fur-
ther compressed using lossless compression.
We also show that this introduces no computa-
tional penalty on the time to process files. This
methodology aims to speed up natural language
processing pipelines and is the basis for a fast
database system for corpora.

1 Introduction

The size and scope of corpora used in natural lan-
guage processing (NLP) applications have grown
massively in the past few years and as such the
efficient storage and retrieval of large-scale lin-
guistic corpora are critical for these applications.
The growth of textual data means the traditional
storage and annotation formats can present signifi-
cant challenges to real-world applications. We re-
cently proposed the Teanga format (McCrae et al.,
2024), which provides a universal method of an-
notating corpora, principally through a metamodel
serialized in YAML and other formats. While this
model addresses key challenges in the accessibility
and interoperability of corpora, the YAML format
does not provide an efficient method for working
with corpora in this data model. In this paper, we
present Cuaċ1 (Compression of Universal Anno-
tated Corpora), a new serialization method, which
addresses these challenges by providing a compact,
high-performance representation of annotated cor-
pora.

1Cuaċ (/ku@x/, ‘cuach’ in standard orthography) means
’cuckoo’ and ’bundle’ in Irish.

Cuaċ is designed to reduce the size of corpora
as stored on disk, while still allowing full search-
ability of the corpus and to avoid increasing pro-
cessing times. It is built on top of the Teanga data
model, and integrates annotation layers using mul-
tiple compression techniques in order to minimize
the redundant representation of information. It also
incorporates lightweight text compression methods,
alongside indexed integer representations to reduce
the storage size of the data.

In this paper, we present the Cuaċ format and its
implementation within the Teanga framework. We
discuss the compression strategies and the index-
ing mechanisms. We evaluate its performance in
terms of the file size reduction as well as the time
taken to process the records. Our results show that
Cuaċ not only outperforms conventional formats
such as YAML and JSON, which are similar to
the XML and CoNLL-U formats used originally
for the corpora, but also strongly outperforms Par-
quet, a binary format that is widely used for sharing
datasets including corpora. As such Cuaċ is a prac-
tical solution for handling large-scale annotated
corpora in NLP research and applications.

2 Related Work

Effective compression and representation of large
data sets are essential for scalable storage and re-
trieval. Brotli (Alakuijala et al., 2015), a compres-
sion algorithm developed by Google, provides high
compression ratios through a static dictionary and
transformation techniques, making it ideal for web
and textual data compression. In contrast to tra-
ditional methods like Deflate, Brotli greatly en-
hances both compression density and decompres-
sion speed, positioning it as a strong candidate for
compact corpus representation.

When dealing with structured data, especially
RDF (Resource Description Framework), com-
pression strategies concentrate on removing struc-
tural redundancies. The HDT (Header-Dictionary-
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Triples) format (Fernández et al., 2013) is a com-
monly used binary serialization that streamlines
RDF data by replacing textual terms with numeric
identifiers (Hernández-Illera et al., 2020). Ad-
vanced optimizations like HDT++ build on this
by utilizing schema-based redundancies, such as
families of predicates and typed subjects, effec-
tively reducing storage needs by half compared to
standard HDT serialization (Hernandez-Illera et al.,
2015).

Another innovative method, k²-triples, enhances
RDF graph compression by dividing RDF triples
into predicate-specific binary matrices, which are
then encoded using k²-trees. This strategy im-
proves structural compression while ensuring ef-
ficient query performance. Furthermore, RDF-Tr
enhances RDF compression by reorganizing triples
to reflect recurring structural patterns, which leads
to better space efficiency and faster retrieval speeds
(Hernández-Illera et al., 2020).

Advancements in RDF data compression have
led to the development of grammar-based tech-
niques, such as gRDF, which utilizes the gRePair
algorithm to identify and compress repetitive pat-
terns within RDF datasets, achieving substantial
reductions in data size while preserving structural
integrity (Sultana and Lee, 2022). Additionally,
compressed indexing methods, including trie-based
layouts and circular suffix sorting, have been intro-
duced to compactly represent RDF triples, enabling
efficient pattern-matching operations and enhanc-
ing query execution speeds (Perego et al., 2021;
Brisaboa et al., 2023). These innovations address
the challenges posed by the increasing volume of
RDF data, facilitating more efficient storage and
retrieval processes.

Beyond grammar-based and indexing tech-
niques, researchers have explored estimation-based
optimizations for compressing RDF knowledge
bases. These methods analyze input and interme-
diate data to improve compression efficiency, re-
ducing storage overhead while preserving query
performance (Wang et al., 2024). Additionally,
machine learning-driven compression has gained
traction, with inductive autoencoders learning com-
pact representations of RDF graphs by identifying
latent structures and redundant patterns, leading
to improved storage efficiency and faster retrieval
(Sultana et al., 2024). Such techniques signal a
shift toward hybrid approaches that integrate statis-
tical learning with structural compression, paving

the way for more scalable RDF management so-
lutions. These advancements in compression and
serialization demonstrate the potential for fast and
small universal representations of corpora, balanc-
ing storage efficiency with rapid access and pro-
cessing capabilities.

3 Methodology

3.1 Teanga Data Model
Teanga (McCrae et al., 2024) is a framework to rep-
resent and share annotated linguistic corpora. By
offering a simple, flexible, and interoperable for-
mat for natural language processing (NLP) tasks,
it makes linguistic corpus FAIR (Findable, Acces-
sible, Interoperable, and Reusable; see Wilkinson
et al. (2016)). It handles common problems found
in linguistic data pipelines such as lack of stan-
dardization, verbosity of linked data models, and
destructive annotation in formats like TEI (Ide and
Sperberg-McQueen, 1995) and CoNLL-X (Buch-
holz and Marsi, 2006). Teanga is based on a lay-
ered annotation approach, with multiple types of
layers available. A base character layer for raw
text and annotation layers (span, division, element,
sequence) for linguistic information. All annota-
tions are implemented as stand-off layers and may
refer directly to the character layer by character
offsets or may refer to another annotation layer, for
example, a part-of-speech layer may reference a
token layer instead and this can be mapped onto
the character layer by means of the offsets in the
token layer. Further, to make the framework more
flexible offsets can be given in four different ways:

Span A start and (exclusive) end index are given
for each annotation, e.g., named entities.

Element Only a start index is given, the end in-
dex is assumed to be one element later, e.g.,
misspelled words.

Division Only a start index is given, the end index
is assumed to be the same as the start index
of the next annotation, e.g., sentences or para-
graphs.

Sequence No indexes are given. The annotations
must exactly follow in a one-to-one correspon-
dence with the base layer, e.g., part-of-speech
tags.

In Figure 1, we see some examples of these lay-
ers. First, we have a text layer giving the characters
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Figure 1: Example of Teanga Layer Types

and the token layer giving the tokens by character
offsets. A part of speech layer is then given as a
sequence layer based on the token layer, i.e., there
is one part-of-speech tag for each token. Then, the
text can divided into multiple layers such as para-
graphs, chapters or documents with a division layer
and finally, annotations on the document such as
authors can be given in the element layer2.

Teanga supports YAML and JSON serialization,
which can be converted to RDF for linked data inte-
gration. Teanga can be used for a wide range of an-
notations syntactic, sentence and word alignments,
multilingual corpora, and other NLP tasks. Teanga
is released as a Python library that interfaces to a
Rust code base to enable large-scale processing,
efficiently storing and querying massive corpora on
disk.

To expand Teanga’s efficiency and scalability,
we integrate compression frameworks into Teanga
to optimize the storage and processing of annotated
corpora. Ensuring that Teanga remains not only
FAIR-compliant but also highly performant, even
for massive datasets.

3.2 Text Compression

Traditional compression algorithms such as GZIP
(Deutsch, 1996b), DEFLATE (Deutsch, 1996a), or
XZ (Collin, 2010) perform poorly on very short
strings, often producing output larger than the in-
put. This inefficiency stems from the overhead of
dictionary building and metadata storage, which
becomes proportionally significant for small inputs.
To address this specific challenge, specialized com-
pression libraries for short strings have been devel-
oped, with SMAZ (Sanfilippo, 2009) and SHOCO

2Note that annotations may alternatively be given as meta-
data fields

(Schramm, 2014) being two notable examples.
SMAZ (Sanfilippo, 2009) employs a fixed-

codebook compression strategy with 254 entries
containing common character sequences derived
from English text and web content. The algorithm
iteratively scans input strings to identify the longest
possible substring present in its codebook, replac-
ing matches with corresponding single-byte codes.
Non-matching content is encoded verbatim using
designated marker bytes: 254 for individual char-
acters and 255 for character sequences.

This approach demonstrates efficacy for strings
as short as 2-3 bytes, achieving compression rates
of 40-50% for English text and structured content
such as URLs. The implementation prioritizes sim-
plicity and computational efficiency, comprising
approximately 200 lines of C code. However, the
static nature of its codebook limits SMAZ’s ef-
fectiveness when processing numerical data, non-
English text, or domain-specific content that di-
verges from its optimization target.

SHOCO (Schramm, 2014) implements a statisti-
cal compression methodology based on character
frequency distributions and bigram analysis. The
algorithm exploits the unused most significant bit
in ASCII characters (which is always zero) to dif-
ferentiate between compressed and literal encod-
ing modes. For compression, SHOCO utilizes
a character-successor model where encoding ef-
ficiency is determined by positional context and
statistical frequency. SHOCO’s statistical approach
enhances flexibility through customizable models,
enabling adaptation to diverse data types. However,
this reliance on a statistical model introduces higher
computational overhead and memory requirements
compared to SMAZ’s simpler fixed-codebook ap-
proach.
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The Cuaċ format supports both of these compres-
sion methods. SMAZ uses hard-coded values that
are optimal for English and are used as a default.
For other languages, we offer the choice of either
using the default English-optimized model or a new
trained model stored in the header of the Cuaċ file.
This model is trained on a subsection at the start
of the corpus which is at least a certain number of
bytes (default value is 106 bytes) or all the data if
the whole file does not match this limit. This mode
is called generate mode and involves serializing the
compression model within the data file, in contrast,
the standard SMAZ and SHOCO models use tables
stored in the compressor executable file.

3.3 Indexes
Apart from textual data, the rest of the data within
the Teanga model can be represented as lists of
integers. The major forms of this include:

Offsets Annotations in element, division or span
layers consist of an integer pointing to the
index in the base layer. For example, a token
layer is a span layer that gives an index to the
character layer (its base layer) by means of
character offsets. As such, the offsets consist
of one list of integers or two lists of integers
for span layers. For span layers, these values
are not interpolated, e.g., the lists of all start
indexes are stored first and then the list of all
end indexes in order.

Link The data contained in a layer may be links
to other annotations, e.g., for parse trees or
annotations. This is naturally a list of integers.

Enum The data may be a value from a fixed list
given in the metadata. In this case, this is
converted to a list by means of using the index
of the annotation in the metadata.

In all cases, these lists of integers are stored in
the following way. Firstly the first list of integers
is checked as to whether it is strictly ascending in
values. If this is the case, the list is transformed
into a delta where each value is stored as the dif-
ference to the previous value. The second list of
integers is then checked to see if all of its values
are greater than the corresponding index in the first
index. If so, the second list is transformed by tak-
ing the delta to the first list. If there is a third list
of integers, which must be link data, then this is
not altered. For example, the tokenization of “I

love Teanga a lot”, which is written in JSON as
[0,1],[2,6],[7,12],[13,14],[15,18] will be
transformed to:

[0,2,5,6,2][1,4,5,1,3]

The goal of this transformation is to ensure that
the numbers used in the list are small non-negative
integers. We then calculate the single largest value
in each list and the number of bits required to store
it. The data is then stored in variable-precision
format where a single byte first gives the precision
in bits and then each other number is stored in order.
So for the example above, both lists can be stored
in 3-bit precision so a total of 6 bytes are required,
1 byte for each precision and 2 bytes for each list
(3×5 = 15bits ≃ 2bytes), as depicted in Figure 2.
In this example, we see that the first byte is used to
give the precision (3 bits) and then the remaining 5
integers are stored each in 3-bit precision taking a
total of 15 bits. The result is fitted into bytes so a
final bit is not used. The second list is processed in
the same way but consists of values that are relative
to the start index, which is in effect the length of
the tokens.

3.4 Indexed data

Teanga supports the use of strings as a datatype,
this can include annotations like lemmatizations
or feature tags, which are often very repetitive. In
order to avoid duplication, Cuaċ supports an index-
ing strategy that stores data in an index based on
the order of occurrence. At the first occurrence
of any string it is always stored as a string com-
pressed by a method as described in Section 3.2,
the string is then added to a Least-Recently Used
(LRU) cache, with a hard-coded size of 1,000,000.
If the string is seen again and is already in the LRU
cache then it is assigned an index assigned from
zero incrementally, all future occurrences will now
be serialized using this index. In order to distin-
guish between strings and integer indexes when
deserializing a second list is created with a single
bit per index that indicates whether the next value
is a string or not. The string values give the size of
the string before the start of the string (instead of a
null-terminator). The size of string and the indexes
are stored as variable-width integers: these use the
first bit of the integer to indicate whether further
bytes are used for the representation of the number,
and as such 1 byte is used to represent numbers up
to 127 (= 27−), 2 bytes for numbers up to 16,383
(= 214− 1) up to 5 bytes to be used for numbers
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Figure 2: An example of the storage of indexes according to the Cuaċ data model

HEADER

Metadata

String Index

String Compression Tables

DOCUMENTS

LAYERS

Empty Characters Indexes + 
Data

Metadata
Value

Figure 3: The structure of a Cuaċ file. A header gives
metadata about the corpus as well as the string index
for indexed data and the tables for string compression.
Then each document is given layer by layer, where each
layer is either absent, a compressed string, indexes and
data (see Section 3.3 and 3.4) or a metadata as a key-
value pair

in 32-bit normal precision. In Figure 4, an exam-
ple of the representation of a string of values is
given. First, the total length of the list is given as a
variable-width integer, in this case, the number 200
is in the range of 2 bytes so two numbers (129,72)
are required to store it. Then, the indicator bits are
stored that indicate whether the next data element
is encoded as a string or is an index in the cache.
Then the data is given, either by compressed string
preceded by the length of the string in variable-
precision3 or a variable-width number giving the
position of the word in the index.

A summary of the structure of a Cuaċ file is
given in Figure 3.

4 Results

To evaluate the effectiveness of the Cuaċ format we
evaluate it on two main measures. Firstly, we con-
sider the file sizes and show that these are reduced

3The string length is given in preference to the null termina-
tion, so that the null character is available for text compression

by the use of this model. Secondly, we consider
the time to convert a file into and from Cuaċ. This
is important as it shows that the format does not
introduce significant runtime overheads compared
to using a more verbose format, and in fact, shows
that our more compressed model is faster to read
than the uncompressed version.

As a baseline, we consider the formats proposed
for Teanga in McCrae et al. (2024) serialized in
either YAML or JSON. As these are formats meant
for human consumption, we also compare to Par-
quet (Kestelyn, 2013) as a binary format that is
used by many projects including Hadoop, and Pan-
das. We use the Python implementation of Arrow4

to convert data into this format.
In addition, we consider the effect of further

compressing files using lossless compression algo-
rithms. We consider the following algorithms:

DEFLATE DEFLATE (Deutsch, 1996a) is a loss-
less compression algorithm that combines
LZ77 and Huffman coding, used in formats
like gzip and PNG to efficiently reduce file
sizes.

ZSTD Zstandard (Collet, 2018) is a fast, lossless
compression algorithm, introduced by Meta,
that provides high compression ratios and low
latency, making it efficient for real-time and
large-scale data compression.

BW The Burrows-Wheeler Transform (Burrows
and Wheeler, 1994, BWT) is a reversible
block-sorting compression algorithm that im-
proves redundancy for better entropy encod-
ing, forming the core of bzip2, which en-
hances compression efficiency with BWT,
Huffman coding, and run-length encoding.

We evaluate our methodology across a wide
range of corpora. Firstly, we evaluate a small sec-
tion of the Colossal Common Crawl Corpus (Raffel

4https://arrow.apache.org/docs/python/index.
html
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129 72 1 “A” 0 2 “BC”

Indicators
[T,F,T,F,T,F,T,T]

List Length
200 = 128 (indicator) + 

1 << 7 + 72

String
Length/data

Index String
Length/data

…171 …

Figure 4: An example of the storage of a data string in Cuaċ. The data is a list of 200 string values starting with
["A", "A", "BC", ...]

et al., 2019, C4) in a section identified as English
web texts. We chose the first file from this corpus
for our experiments and applied linguistic analysis
with SpaCy5 to this corpus. Secondly, we have
converted all the NLTK corpora (Bird et al., 2009)
into the Teanga format6. This collection includes
a wide range of corpora from plain-text corpora
to tagged and parsed corpora. These are primar-
ily English-language corpora but also include cor-
pora in a wide range of languages. We also con-
verted the Universal Dependencies (Zeman et al.,
2024) corpora collection in its entirety, which is
a homogeneous corpus collection in terms of its
annotations, however, it covers a wide range of lan-
guages and is useful to study the performance of
the system across languages. Lastly, we converted
the XL-WA (Martelli11 et al., 2023) and the Eu-
roparl Corpus (Koehn, 2005) to the Teanga format.
Both datasets are provided in parallel text formats.
XL-WA is a manually-curated benchmark for word
alignment, covering 14 language pairs, including
English and languages such as Arabic, Chinese,
and Russian. It includes gold-standard word align-
ment annotations. For the Europarl Corpus, which
is derived from European Parliament proceedings
and offers parallel texts across 21 European lan-
guages, we generated word alignment annotations
using fast_align (Dyer et al., 2013).

In Table 1, we present the size of the various
corpora in four different serializations and with
one of the three lossless compression algorithms.
We present the original size of the corpora as dis-
tributed by NLTK and UD in uncompressed format,
although we note that this includes documentary
content that would not be captured in the Teanga
data model. Further, the file sizes of the NLTK cor-
pora are overall smaller as distributed than Teanga,
due to the lack of explicit tokenization information,
which is required in Teanga. For the uncompressed
YAML version of the file, we present the total size

5https://spacy.io/
6https://teanga.io/corpora/

in Table 1, all other sizes are specified relative to
this file as a percentage. We see that across all cor-
pora the Cuaċ format is smaller than the YAML and
JSON and much smaller than the Parquet format.
Further, we see that these reductions are further
improved by the use of lossless compression, in
some cases7 the BW (bzip2) compression on the
YAML or JSON actually achieves smaller file sizes
than using Cuaċ, this is due to the text compres-
sion being used and it is important to note that BW
compression is substantially computationally more
expensive than the other methods considered here.

In order to measure the effect of text compres-
sion presented in Section 3.2, we compare the size
of compressed files on the UD corpora. Again we
present the absolute file size for the serialization
without compression and the relative size for other
compression methods. We see that for the English
corpus, all methods provide similar size reduction
in file sizes. For other languages using the Latin
script, we generally see that the default tables pro-
vide effective text compression for most languages,
except for some languages such as Turkish and
Vietnamese that are typologically different from
English. We also present Old Irish as an example
of a very small corpus, and see that for this small
corpus, generating a language-specific table intro-
duces more overhead than reduction in file size.
For non-Latin languages, we see that the default ta-
bles are not suitable and can substantially increase
the file size. We see that it is effective to gener-
ate a language-specific table for languages that use
a small set of letters, such as Arabic or Russian.
However, for languages with a large number of
characters, such as Chinese and Japanese, the short
text compression is not able to reduce the length of
the strings. Finally, we again see that no approach
is effective for a small corpus language, namely
Bengali, that does not use the Latin alphabet.

Finally, we consider the time to convert the re-
sources into and from the Cuaċ format. In Table 3,

7Europarl and XL-WA in Table 1
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Original YAML JSON
Corpus None DEFLATE ZSTD BW None DEFLATE ZSTD BW

C4 n/a 181.9 MB 24.18% 23.06% 15.59% 73.16% 22.50% 19.88% 14.65%
NLTK 359.0 MB (70.7%) 507.8 MB 25.39% 22.96% 16.82% 88.42% 22.40% 19.94% 15.24%
UD 2.72 GB (100.3%) 2.72 GB 16.16% 18.17% 8.49% 91.41% 14.19% 15.28% 7.74%
Europarl 1.5GB (64.1%) 2.34GB 25.82% 25.37% 13.10% 89.76% 24.34% 23.49% 12.61%
XL-WA n/a 10.3 MB 21.46% 22.29% 11.63% 92.84% 20.09% 20.85% 11.25%

Cuaċ Parquet
None DEFLATE ZSTD BW None DEFLATE ZSTD BW

C4 - 15.48% 12.13% 12.50% 11.16% 79.14% 31.14% 28.04% 25.61%
NLTK - 36.16% 14.14% 13.44% 11.16% 253.57% 52.47% 45.84% 38.39%
UD - 20.12% 9.36% 9.26% 7.42% 264.58% 57.47% 54.14% 40.18%
Europarl - 26.67% 18.19% 17.71% 14.57% 418.07% 85.78% 76.53% 56.18%
XL-WA - 28.60% 16.81% 15.21% 13.16% 540.96% 90.84% 86.37% 60.91%

Table 1: File Sizes of Test Corpora in Megabytes when Serialized with Formats. The sizes are presented relative to
the YAML version with no compression.

Corpus None Smaz Shoco
(Default)

Shoco
(Generate)

English 10.1 MB 84.96% 87.97% 84.88%

Catalan 3.9 MB 79.98% 86.48% 72.45%
Czech 34.5 MB 101.32% 102.07% 86.69%
French 4.0 MB 85.70% 89.26% 77.43%
German 50.6 MB 87.02% 88.66% 82.02%
Icelandic 20.2 MB 99.21% 101.57% 85.94%
Italian 6.3 MB 76.09% 81.73% 71.71%
Latin 18.2 MB 89.78% 88.90% 83.78%
Norwegian 9.5 MB 90.10% 92.31% 84.38%
Portuguese 11.2 MB 82.55% 87.98% 74.49%
Spanish 9.0 MB 81.61% 87.07% 74.74%
Turkish 12.9 MB 100.11% 99.57% 84.24%
Vietnamese 1.0 MB 107.12% 117.80% 91.61%

Old Irish 27.3 KB 100.63% 90.72% 126.24%

Arabic 4.1 MB 119.35% 158.54% 71.97%
Bulgarian 3.5 MB 109.28% 149.13% 80.05%
Chinese 6.1 MB 107.83% 117.39% 117.68%
Hebrew 2.4 MB 117.53% 180.62% 73.88%
Hindi 20.2 MB 109.79% 123.05% 94.63%
Japanese 49.3 MB 107.80% 130.74% 107.54%
Korean 22.3 MB 103.46% 118.98% 103.14%
Persian 11.7 MB 111.46% 145.80% 79.92%
Russian 33.9 MB 108.61% 153.17% 78.86%

Bengali 18.9 KB 107.29% 118.91% 124.92%

Average - 98.69% 112.43% 88.05%

Table 2: Comparison of Text Compression Algorithms
by File Size

Format C4 Brown Twitter UD

JSON → YAML 8.8s 2.1s 9.5s 3m48.3s
JSON → Cuaċ 6.6s 1.6s 6.7s 3m49.2s

JSON → JSON 4.6s 1.0s 6.5s 3m39.6s

YAML → JSON 13.5s 3.1s 5.7s 4m16.8s
Cuaċ → JSON 4.1s 0.4s 3.4s 4m07.8s

Table 3: Time To Convert a Document to and from
JSON

we measure the conversion of 5 corpora into and
from JSON, where JSON is used as a consistent
variable. As a baseline an idempotent translation of
JSON to JSON is used, i.e., the JSON is fully dese-
rialized and then fully serialized. We then consider
the translation to and from Cuaċ and JSON. The
results show that the conversion from Cuaċ is in
most cases similar to that of JSON and faster than
conversion to YAML, even with the extra complex-
ity of the format and, in fact, in some cases we see
that the conversion from Cuaċ is even faster than
the JSON format. We primarily attribute this due
to less IO operations due to the shorter files.

5 Discussion

The Cuaċ tooling is developed in Rust and in ad-
dition is compiled to Web Assembly (Rossberg,
2025), so it can be run on any platform or language
using a tool like Wasmer8. This allows corpora
to be used with the Teanga library, giving a data
science interface for corpora similar to how Pan-
das uses Parquet as the underlying data storage.
Further, it is used as the core of a database en-
gine for Teanga corpora which is currently under
development. The Cuaċ format is ideal for such
a format as it allows data to be accessed quickly
without overly burdening the database engine with
a large amount of data. In particular, the use of
text compression technologies is designed to still
allow full-text search over the corpus due to the
nature of the compression, in a way that would
not be possible with the other lossless compression
algorithms.

8https://wasmer.io/
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As corpora in NLP grow larger and larger more
efficient methods for handling such corpora are
required. Large-scale NLP datasets (e.g., Com-
mon Crawl, Wikipedia, or domain-specific corpora)
take up terabytes of space. A specialized com-
pression format can significantly reduce storage
requirements, making dataset management more
cost-effective. Loading large text datasets from
disk or transferring them over networks can be a
bottleneck. A compressed format optimized for fast
decompression can accelerate data loading, benefit-
ing both training and inference workflows.

6 Conclusion

In this work, we have presented Cuaċ, a format
for efficient and compact representation of large-
scale corpora. Cuaċ substantially reduces the stor-
age requirements while maintaining fast process-
ing speeds. Our evaluation demonstrated that Cuaċ
achieves superior compression better or similar to
applying lossless compression to human-readable
formats and strongly outperforming other binary
formats not designed for corpus information. In
this way, Cuaċ will enhance the computational effi-
ciency of NLP applications and improve processing
speeds across a range of NLP and machine learn-
ing applications. Future work will explore further
optimization to target a wider range of corpora
including multimodal corpora, when support for
multimodal corpora is added to the Teanga data
model.

Limitations

This work presents an analysis of the Cuaċ format
across a wide range of corpora and languages, how-
ever this is not a complete evaluation across all
possible corpora, so these results may not work in
certain situations. We also note that the Teanga
data model only supports plain text and annotated
corpora and this method is not applicable to mul-
timodal corpora. Finally, the computation times
results show some variance and so depending on
the encoding of the corpus, in some situations there
may be increases in computational time associated
with the use of the Cuaċ format.
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