
Ligt: Towards an Ecosystem for Managing Interlinear Glossed Texts
with Linguistic Linked Data

Maxim Ionov
University of Zaragoza, Spain

mionov@unizar.es

Abstract

Ligt is an RDF vocabulary developed for rep-
resenting Interlinear Glossed Text, a common
representation of language material used in
particular in field linguistics and linguistic ty-
pology. In this paper, we look at its current sta-
tus and different aspects of its adoption. More
specifically, we explore the questions of data
conversion, storage, and exploitation.

We present ligttools, a set of newly devel-
oped converters, report on a series of exper-
iments regarding querying Ligt datasets, and
analyse the performance with various infras-
tructure configurations.

1 Background
Interlinear glossed text (IGT) is a notation com-
monly used to represent language examples in de-
scriptive and typological linguistics. It is designed
to provide an intuitive way of showing language
material so that it could be understood without
needing to know that language. IGT data may con-
sist of any number of layers added under the origi-
nal text (hence interlinear): word-by-word transla-
tion, grammatical meaning of morphemes, translit-
eration, free translation, etc. Some layers have
morpheme-by-morpheme alignment between each
other, e.g. morpheme segmentation and grammat-
ical meaning of morphemes. Consider the follow-
ing example from the Adyghe language:1

(1) adəgjejə-m
Adyghea-OBL

jə-qwəŝhe-xe-r,
POSS-mountain-PL-ABS

jə-psəχwe-čer-xe-r
POSS-river-tumultuous-PL-ABS

daxe-x
beautiful-PL

‘The mountains of Adyghea, its tumultuous
rivers are beautiful.’

This example consists of three layers: mor-
phological segmentation, glosses aligned with the

1Source data and attribution: https://imtvault.org/
b/336/ex/langsci336-38caad062e.htm.

transcription layer, and free translation. Often,
baseline (i.e. unsegmented source text) and its tran-
scription are included as well. Leipzig Gloss-
ing Rules (Comrie et al., 2008) provide the set
of guidelines and recommended glosses for com-
mon grammatical categories (e.g. PL), however it
is a short list and it covers only a small subset of
the grammatical categories. Generally, datasets
and published works provide a list of abbreviations
used for glossing.

The variability of this representation grants a
level of flexibility that makes it applicable across
disciplines and theoretical frameworks. This, how-
ever, also hinders its interoperability given that two
different authors might use different ways to en-
code the same grammatical category.2 Another,
more technical hurdle is the large amount of dif-
ferent formats in which IGT can be represented,
ranging from non-unicode plain text and XML to
relational databases. All these factors make it more
difficult to redistribute and reuse the data, or com-
bine and compare several data sources. A solution
to this would be to use an interoperable representa-
tion to which all the data sources can be converted
in a lossless way. An obvious contender for such a
representation is RDF.

In our previous research, we introduced Ligt,
an RDF-native vocabulary for representing IGT
data (Chiarcos and Ionov, 2019), a generalisation
over commonly used formats at the time, namely
ToolBox, FLEx and Xigt.3 Later, we showed
the applicability of this vocabulary on a dataset
with 76 pidgin and creole languages (Ionov, 2021).
Additionally, Nordhoff (2020) and Nordhoff and
Krämer (2022) successfully applied it to sev-

2A common but relatively harmless example is
the variation is the encoding of past tense: PST and
PAST, which sometimes happens even in the same
example: https://imtvault.org/b/323/ex/
langsci323-af787e1cef.htm.

3Description of these formats and their limitations can be
found in the paper.

100

https://imtvault.org/b/336/ex/langsci336-38caad062e.htm
https://imtvault.org/b/336/ex/langsci336-38caad062e.htm
https://imtvault.org/b/323/ex/langsci323-af787e1cef.htm
https://imtvault.org/b/323/ex/langsci323-af787e1cef.htm


eral hundred languages from endangered language
archives and linguistic literature.

In this paper, we take a step forward and focus on
the next steps that ensure the vocabulary usability
and potential for adoption now that its applicabil-
ity has been proven. For this, we need to generalise
over how LD resources are created. According to a
commonly used methodology for publishing mul-
tilingual Linked Data (Vila-Suero et al., 2014), the
process consists of the following steps:

1. Specification: Analyzing and describing data
(data sources and RDF data) characteristics;

2. Modelling: Creating/selecting vocabularies
to describe the RDF resources;

3. Generation: Transforming the data sources to
RDF;

4. Linking: Connecting the RDF dataset;

5. Publication: Making the dataset available and
discoverable on the Web.

To understand which steps should be taken on
the way from a vocabulary to a usable ecosystem,
we need to put ourselves in the shoes of linguists,
archivists and other users who might want to use
Ligt and analyse how they could approach each of
these steps. Since we know the nature of the data
and the modelling, we consider the first two steps
solved. This means that the focus of this paper is
on the remaining three steps: generation (or con-
version), linking and publication.

The linking step has also received some atten-
tion in the previous research (Ionov, 2021; Nord-
hoff and Krämer, 2022), so instead of exploring
linking per se, we are going to focus on how to
employ these links, i.e. the infrastructure and per-
formance for federated queries across several data
sources.

The rest of the paper is organised as follows: in
Section 2 we give a brief overview of the current
data model and present newly developed convert-
ers, Section 3 describes a series of case studies on
querying different volumes of Ligt data linked to
external vocabularies with different infrastructure
configurations. Finally, in Section 4 we provide a
summary and outline future directions.

2 Ligt: Data model and converters

2.1 Ligt Data Model
Before going further, we first outline the main parts
of the Ligt model (Fig. 1).4

The central element in any Ligt dataset is
ligt:Document, a subclass of dc:Dataset.
Depending on the source material, it can either
consist of sets of utterances, i.e. examples from
different chapters of a typological database like
GramBank5 (ligt:InterlinearCollection)
or texts (ligt:Text). Both consist of one or more
ligt:Utterance, which roughly correspond to a
sentence or an elicitation.

ligt:Document
(sub dc:Dataset)

ligt:InterlinearText
(sub dc:Text)

ligt:hasText

ligt:Utterance

ligt:Tier

ligt:hasTier 

ligt:WordTier

ligt:hasMorphs

ligt:Word

ligt:item

ligt:Item

ligt:Morph

ligt:item
ligt:next

ligt:MorphTier

ligt:InterlinearCollec�on
(sub dc:Text)

ligt:hasUtterances

Figure 1: A simplified Ligt data model

Class ligt:Tier and its two subclasses
ligt:WordTier and ligt:MorphTier represent
annotation layers, i.e. sequences of words and sub-
word elements, respectively. Each tier consists of
ligt:Items that are connected to each other with
the property ligt:next (Fig. 2).

The current model has several changes com-
pared to the one described previously in Ionov
(2021): Most importantly, the model is decou-
pled from the NIF vocabulary (Hellmann et al.,
2013). The original motivation behind using it was
to reuse nif:String and nif:subString to rep-
resent an annotation tier and a single annotations

4Full description can be found in the documentation:
https://ligt-dev.github.io/ligt.

5https://grambank.clld.org/.

101

https://ligt-dev.github.io/ligt
https://grambank.clld.org/


Figure 2: Structure of an utterance

in it, respectively which created a degree of in-
teroperability with NIF-based corpus annotations.
However, in practice this proved to be problem-
atic, since it is common in IGT data to have lay-
ers with alternative orthographies which cannot be
split into substrings equal to the ones presented on
other layers, as shown in (2).

(2) haste
hast=du
have=2ps

nich
nicht
NEG

gesehen
ge-seh-en
PTCP-see-PTCP

Instead, a new property, ligt:utterance is
introduced, which can link either a text or a set of
examples to individual utterances. In the future,
this part will likely be integrated with the consol-
idated linguistic annotation vocabulary currently
developed by LD4LT.6

The second important change is introduced to
add versatility: in addition to the elements in a
tier being connected with the ligt:next property,
ligt:Tier is now a subclass or rdfs:Seq, which
allows data providers to explicitly set the order or
elements to make it easier to query and control the
order of the elements. Finally, to help keep the data
error-prone, the alignment between elements can
be set using DCMI properties dct:hasPart and
dct:isPartOf. Both this and the element order-
ing are introduced solely for convenience and do
not provide additional information. For compat-
ibility, this data can be added to existing datasets
with a SPARQL UPDATE or a similar mechanism.

2.2 Converters
Now that we gave an overview of the model, we
present a new set of converters, a part of a suite
ligttools, a CLI tool with a Python API.7 When
introducing Ligt for the first time (Chiarcos and
Ionov, 2019), we had already provided a proto-
type converter for some of these formats. While
functional, these converters relied on intermediate
shallow representations and were not packaged in

6https://github.com/ld4lt/
linguistic-annotation.

7https://github.com/ligt-dev/ligttools.

a user-friendly way. Since the vocabulary devel-
oped over time, we decided to create new convert-
ers from scratch and make them as easy to use as
possible. As a result, the list of supported formats
changed according to their usage over time. Most
importantly, instead of Xigt, which is no longer un-
der active development, we added CLDF, a format
used in the majority of typological databases cre-
ated in the past decade.

2.2.1 CLDF
CLDF, Cross-Linguistic Data Formats is a set of
guidelines and tools aimed at distributing linguis-
tic data in a sustainable and standardised way based
on tabular data format (Forkel et al., 2018). In
the past years the user base of this standard has
grown significantly, and more and more resources:
dictionaries, wordlists, typological databases and
more has become available for use and download.
Thanks to its flexibility and simplicity, and the
level of tooling and infrastructure it became a de
facto standard for releasing linguistic data.

Given its prominence, it is extremely important
to have a reliable converter from CLDF data to Ligt
and back. Thankfully, due to the tabular nature of
the data and the underlying Web-friendly technol-
ogy, CSV on the Web,8 accessing and analysing
the data is a straightforward process. However,
CLDF is designed to be flexible and even though
there is a default machine-readable description of
an example table,9 data providers might change the
structure of the data, omitting some of the fields.
Our converter takes a CLDF metadata file as input
and checks if all the necessary data is referenced
and can be found.

Another issue with the conversion from CLDF
is the fact that text and gloss layers are represented
as single strings without any strict internal repre-
sentation which may lead to data inconsistencies
and parsing errors. In cases like this, our converter
skips the sentence altogether.

These two issues do not arise when converting
back from Ligt to CLDF, however, CLDF limits
the number of layers to 4 columns. This is enough
in most cases but can be insufficient when convert-
ing data with two different orthographies, for ex-
ample. In these cases we still preserve the data in
a separate column, but this column is ignored by
most CLDF tools.

8https://github.com/w3c/csvw.
9https://github.com/cldf/cldf/blob/master/

components/examples/ExampleTable-metadata.json

102

https://github.com/ld4lt/linguistic-annotation
https://github.com/ld4lt/linguistic-annotation
https://github.com/ligt-dev/ligttools
https://github.com/w3c/csvw
https://github.com/cldf/cldf/blob/master/components/examples/ExampleTable-metadata.json
https://github.com/cldf/cldf/blob/master/components/examples/ExampleTable-metadata.json


2.2.2 Toolbox
SIL Toolbox is one of the most widely known ap-
plications developed specifically for creating IGT
data.10 Despite co-existing with FLEx, its succes-
sor (see below) for many years, it is still widely
used by researchers. Toolbox internal file format
is Standard Format Marker (SFM), which consists
of lines of annotation prepended with one of the
markers, e.g. \tx haste nich gesehen

One of the reasons why Toolbox is still actively
used is that it supports user-defined markers (lay-
ers), while its successor does not.11

The conversion to and from Toolbox SFM for-
mat is straightforward as long as there is a map-
ping between the Ligt tiers and Toolbox markers.
In our previous research we implemented conver-
sion via an intermediate format, however it proved
to be cumbersome, so now the conversion is im-
plemented directly.

2.2.3 FLEx
SIL Fieldworks or FLEx is a spiritual successor
to Toolbox.12 It is probably the most widely used
software for language documentation. Internally,
FLEx stores all the project data as a series of XML
files with a list of records interconnected via their
GUID. It is a tricky format requiring quite a lot
of overhead to read and even more to write the
data. Another way of accessing FLEx data is via
flextext files which contain exported texts. Unlike
the database-like structure of the main XML for-
mat, the format for exporting is hierarchical, and
its semantics is more clear. This is a much more
common way to extract information from FLEx
projects, even though it requires more work from
users.

Currently, our converter works with the FLEx
exports, which limits it to a one-directional con-
version — from FLEx to Ligt, not vice versa.

3 Infrastructure
3.1 Traditional RDF infrastructure
Having converters from various commonly used
formats in an easy to use package is a necessary
step towards using the vocabulary. However, the
next part could also be challenging.

One of the main obstacles for the adoption of
RDF-based technologies is an amount of resources

10http://www-01.sil.org/computing/catalog/
show_software.asp?id=79.

11Newer versions of FLEx support this to a certain extent.
12http://fieldworks.sil.org/flex.

and technical skills required to set up the infras-
tructure (Chiarcos, 2021; Gromann et al., in press,
p. 27). The conventional pipeline for using RDF
data from the infrastructural point of view is the
following:

1. Converting the data

2. Setting up a SPARQL endpoint

3. Uploading the data and keeping it up-to-date

4. Querying the data

These steps put a lot of technical and compu-
tational burden on someone who might just want
to extract all instances of some grammatical phe-
nomenon from several datasets. Many proposals
on how to solve this argue for large infrastructure
projects, e.g. Databus13 or TriplyDB.14 While this
might help in some cases, this definitively is not a
panacea, since it creates its own problems: data
security, trust, reliance on external services that
might unexpectedly cease to exist, among others.

In this section, we look at two steps towards sim-
plifying this process and try to evaluate the trade-
offs involved.

3.2 Client-side computation
Possibly the biggest obstacle of the traditional RDF
infrastructure is the need to set up and maintain a
SPARQL endpoint. Not only it requires technical
skills, but also access to a decently powerful server.
SPARQL endpoints like Apache Jena Fuseki15 and
Virtuoso16 use quite a lot of resources in order to
execute queries and maintain availability. Empiri-
acal studies suggest that they correctly execute only
a fraction of all queries to large datasets (Saleem
et al., 2015). In addition, this setup requires from a
user to keep track of the data in an additional place,
making sure the version uploaded to the endpoint
is up-to-date with the local version.

An alternative to this is to use data dumps (Tur-
tle or any other RDF serialization) and a SPARQL
engine, like Apache Jena ARQ17 or Comunica.18

This eliminates the need for maintaining a server
and managing the data, but increases the overhead

13https://databus.dbpedia.org/
14https://triply.cc/
15https://jena.apache.org/documentation/

fuseki2/.
16https://vos.openlinksw.com/owiki/wiki/VOS.
17https://jena.apache.org/documentation/

query/index.html.
18https://comunica.dev/.

103

http://www-01.sil.org/computing/catalog/show_software.asp?id=79
http://www-01.sil.org/computing/catalog/show_software.asp?id=79
http://fieldworks.sil.org/flex
https://databus.dbpedia.org/
https://triply.cc/
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/fuseki2/
https://vos.openlinksw.com/owiki/wiki/VOS
https://jena.apache.org/documentation/query/index.html
https://jena.apache.org/documentation/query/index.html
https://comunica.dev/


required to load the data in memory and execute
queries without indices.

To compare these two approaches, we prepared
3 linguistically motivated queries of different com-
plexity:

Q1: Search for all surface forms with a gloss
“woman”.

Q2: Search for all examples with a causative mor-
pheme and a past tense marker.

Q3: List all case markers used in a language.

Each query was tested on a low-to-medium-
sized dataset (15k sentences, 1M triples) in 2 dif-
ferent scenarios:

• on an Apache Jena Fuseki SPARQL endpoint,
and

• locally, using Comunica SPARQL engine.

The execution times queries are given in Ta-
ble 1.19

Endpoint Locally
Q1 1.1 3.4
Q2 1.2 5.4
Q3 2.7 4.6

Table 1: Execution time (sec) in Fuseki vs. Comunica.

While generally Comunica executes the queries
much slower than the remote endpoint, it performs
very differently from Fuseki in Q3, which involves
linking a small external dataset. While this takes
Fuseki more that twice the time it need to process
Q2, Comunica actually executes Q3 faster than Q2.
This probably stems from the fact that Comunica
is optimised for federated queries and combining
data sources. On the other hand, when the query
requires to go through a single dataset (or several
unconnected ones) and filter it, Fuseki works bet-
ter since it does not need to load the data in mem-
ory for every query and it can benefit from pre-
constructed indices.

Based on these results, it seems that local ex-
ecution without an endpoint makes sense when
data is distributed across many small independent
sources.

19The details about the environments, queries and a more
thorough evaluation can be found at https://github.com/
ligt-dev/ldk-2025/blob/main/experiments.md

3.3 On-the-fly conversion
An even more radical step to reduce the entry cost
is to convert the data on demand. The advantage
of this approach is that it completely eliminates
the danger of data desynchronisation: the source
data is the single source of truth. Additionally,
this is helpful for when the data source is dynamic
or needs to be scraped. Finally, this can be use-
ful when the user does not have rights to save and
modify the data — in this case they still can pro-
cess the data on-the-fly and use it alongside static
data.

The comparison in execution time for using con-
verted datasets with Comunica vs. converting data
on-the-fly and feeding it data streams is given in
Table 2.

Premade On-the-fly
Q1 3.4 23.9
Q2 5.4 25.8
Q3 4.6 25.3

Table 2: Execution time (sec) for premade vs. con-
verted on-the-fly.

The execution on-the-fly is predictably much
slower than on the pre-made dataset and should not
be used often. However, this can be useful in some
situations, especially when dealing with trivially
small datasets that change often or when the query
only needs to be executed once.

4 Summary and Outlook
In this paper, we looked at the current state of
Ligt, an RDF vocabulary for representing interlin-
ear glossed text. Looking through the lens of pub-
lication of LD resources, we reflected on its cur-
rent position and the current state of an ecosystem
around it.

We presented ligttools, a suite of tools for Ligt,
including a set of converters for common IGT for-
mats: CLDF, Toolbox and FLEx.

Additionally, we explored two ways to simplify
the usual infrastructure required to work with RDF
resources: first by removing a SPARQL endpoint
and moving the computation to the client, and sec-
ond by removing static RDF data altogether, re-
placing it with an on-the-fly conversion. We con-
clude that while client-side computation provide
competitive results while removing most challeng-
ing requirements, on-the-fly conversion is war-
ranted only with very small datasets and infrequent

104

https://github.com/ligt-dev/ldk-2025/blob/main/experiments.md
https://github.com/ligt-dev/ldk-2025/blob/main/experiments.md


queries. Still, there might be a case for it, espe-
cially when the source data is subject to change or
cannot be easily saved as a whole.

The next step towards the Ligt ecosystem — de-
veloping Ligt Workbench, a prospective standalone
tool for management and searching in local and
remote IGT collections. Developing it testing on
real-world linguistic problems is the direction of
future research.

References
Christian Chiarcos. 2021. Get! Mimetypes! Right! In

3rd Conference on Language, Data and Knowledge
(LDK 2021), volume 93 of Open Access Series in In-
formatics (OASIcs), pages 5:1–5:4, Dagstuhl, Ger-
many. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik.

Christian Chiarcos and Maxim Ionov. 2019. Ligt: An
LLOD-Native Vocabulary for Representing Interlin-
ear Glossed Text as RDF. In 2nd Conference on
Language, Data and Knowledge (LDK 2019), vol-
ume 70 of Open Access Series in Informatics (OA-
SIcs), pages 3:1–3:15, Dagstuhl, Germany. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

Bernard Comrie, Martin Haspelmath, and Balthasar
Bickel. 2008. The Leipzig Glossing Rules: Con-
ventions for interlinear morpheme-by-morpheme
glosses. https://www.eva.mpg.de/lingua/
pdf/Glossing-Rules.pdf.

Robert Forkel, Johann-Mattis List, Simon J. Green-
hill, Christoph Rzymski, Sebastian Bank, Michael
Cysouw, Harald Hammarström, Martin Haspelmath,
Gereon A. Kaiping, and Russell David Gray. 2018.
Cross-linguistic data formats, advancing data shar-
ing and re-use in comparative linguistics. Scientific
Data, 5.

Dagmar Gromann, Elena-Simona Apostol, Christian
Chiarcos, Marco Cremaschi, Jorge Gracia, Katerina
Gkirtzou, Chaya Liebeskind, Verginica Mititelu, Li-
udmila Mockiene, Michael Rosner, and 1 others. in
press. Multilinguality and LLOD: A Survey Across
Linguistic Description Levels. Semantic Web Jour-
nal.

Sebastian Hellmann, Jens Lehmann, Sören Auer, and
Martin Brümmer. 2013. Integrating NLP using
linked data. In The Semantic Web - ISWC 2013 -
12th International Semantic Web Conference, Syd-
ney, NSW, Australia, October 21-25, 2013, Proceed-
ings, Part II, volume 8219 of Lecture Notes in Com-
puter Science, pages 98–113. Springer.

Maxim Ionov. 2021. APiCS-Ligt: Towards Semantic
Enrichment of Interlinear Glossed Text. In 3rd Con-
ference on Language, Data and Knowledge (LDK
2021), volume 93 of Open Access Series in Informat-
ics (OASIcs), pages 27:1–27:8, Dagstuhl, Germany.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Sebastian Nordhoff. 2020. Modelling and annotating
interlinear glossed text from 280 different endan-
gered languages as linked data with LIGT. In Pro-
ceedings of the 14th Linguistic Annotation Work-
shop, pages 93–104, Barcelona, Spain. Association
for Computational Linguistics.

Sebastian Nordhoff and Thomas Krämer. 2022. IMT-
Vault: Extracting and enriching low-resource lan-
guage interlinear glossed text from grammatical de-
scriptions and typological survey articles. In Pro-
ceedings of the 8th Workshop on Linked Data in
Linguistics within the 13th Language Resources
and Evaluation Conference, pages 17–25, Marseille,
France. European Language Resources Association.

Muhammad Saleem, Muhammad Intizar Ali, Aidan
Hogan, Qaiser Mehmood, and Axel-Cyrille Ngonga
Ngomo. 2015. Lsq: The linked sparql queries
dataset. In The Semantic Web - ISWC 2015, pages
261–269, Cham. Springer International Publishing.

Daniel Vila-Suero, Asunción Gómez-Pérez, Elena
Montiel-Ponsoda, Jorge Gracia, and Guadalupe
Aguado-de Cea. 2014. Publishing linked data on
the web: The multilingual dimension. In Towards
the Multilingual Semantic Web: Principles, Methods
and Applications, pages 101–117. Springer.

105

https://doi.org/10.4230/OASIcs.LDK.2021.5
https://doi.org/10.4230/OASIcs.LDK.2019.3
https://doi.org/10.4230/OASIcs.LDK.2019.3
https://doi.org/10.4230/OASIcs.LDK.2019.3
https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf
https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf
https://api.semanticscholar.org/CorpusID:53093216
https://api.semanticscholar.org/CorpusID:53093216
https://www.semantic-web-journal.net/system/files/swj3591.pdf
https://www.semantic-web-journal.net/system/files/swj3591.pdf
https://doi.org/10.1007/978-3-642-41338-4_7
https://doi.org/10.1007/978-3-642-41338-4_7
https://doi.org/10.4230/OASIcs.LDK.2021.27
https://doi.org/10.4230/OASIcs.LDK.2021.27
https://aclanthology.org/2020.law-1.9/
https://aclanthology.org/2020.law-1.9/
https://aclanthology.org/2020.law-1.9/
https://aclanthology.org/2022.ldl-1.3/
https://aclanthology.org/2022.ldl-1.3/
https://aclanthology.org/2022.ldl-1.3/
https://aclanthology.org/2022.ldl-1.3/

