
Automated Concept Map Extraction from Text

Martina Galletti1,2,*, Inès Blin1,3,*, Eleni Ilkou4

1 Sony Computer Science Laboratories - Paris, 6 Rue Amyot, 75005, Paris, France,
2 Sapienza University of Rome, Italy

3 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,
4 L3S Research Center, Leibniz University Hannover, Germany

Correspondence: {martina.galletti, ines.blin}@sony.com

Abstract

Concept Maps are semantic graph summary
representations of relations between concepts
in text. They are particularly beneficial for stu-
dents with difficulty in reading comprehension,
such as those with special educational needs
and disabilities (Galletti et al., 2022; Dexter and
Hughes, 2011). Currently, the field of concept
map extraction from text is outdated, relying
on old baselines, limited datasets, and limited
performances with F1 scores below 20%. We
propose a novel neuro-symbolic pipeline and a
GPT3.5-based method for automated concept
map extraction from text evaluated over the
WIKI dataset. The pipeline is a robust, modu-
larized, and open-source architecture, the first
to use semantic and neural techniques for au-
tomatic concept map extraction while also us-
ing a preliminary summarization component to
reduce processing time and optimize computa-
tional resources. Furthermore, we investigate
the large language model in zero-shot, one-shot,
and decomposed prompting for concept map
generation. Our approaches achieve state-of-
the-art results in METEOR metrics, with F1
scores of 25.7 and 28.5, respectively, and in
ROUGE-2 recall, with respective scores of 24.3
and 24.3. This contribution advances the task
of automated concept map extraction from text,
opening doors to wider applications such as
education and speech-language therapy. The
code is openly available1.

1 Introduction
Concept Maps 3.0 (Jensen and Johnsen, 2016)
leverage semantic web (SW) technologies to create
dynamic concept maps (CMs). These summaries of
visual graphs represent the semantic relationships
between concepts extracted from text, as shown in
the concept map extracted in Table 1 and visualised
in Figure 1. CMs are widely used in education
and speech and language therapy (Villalon, 2012).

*These authors contributed equally.
1https://github.com/SonyCSLParis/concept_map

Table 1: Example of a concepts map extraction from
folder 320 of WIKI (Falke, 2019).

Reference Concept Map

(constitutional crisis, emerged in, british empire)
(constitutional crisis, arose ,wallis simpson)
(duke of windsor, lived a peripatetic existence after, abdication)
(edward viii, announces, abdication)
(edward viii, abdicated, british monarch)
(edward viii, triggering, constitutional crisis)
(edward viii, was intent on marrying, wallis simpson)
(george, became, edward viii)
(george vi, presided over the dismantling of, british empire)
(wallis simpson, was not recognized by, church of england)

emerged in

arose

constitutional
crisis

british empire

was not recognized by

wallis simpson

lived a peripatetic existence after

duke of windsor

abdication

announces

abdicated

edward viii

british monarch

triggering

was intent on marrying

george

became

george vi

presided over the dismantling of

church of england

Figure 1: The visualisation of Concept Map of Table 1.

They facilitate the integration of new information
with old knowledge (Canas et al., 2001), promote
active processing of information (Novak, 1990),
improve long-term memory retention, and foster
better understanding and critical thinking (Novak
and Gowin, 1984).

SW technologies have proven highly effective
when integrated with CMs in various applications.
For example, ontology-based approaches provide a
structured approach to knowledge representation,
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allowing the generation of CMs (Verhodubs and
Grundspenkis, 2013). These technologies have
also been used to automate the CM scoring (Park
and Calvo, 2008), optimizing the evaluation pro-
cess. In addition, tools such as Semantic Medi-
aWiki (Krötzsch et al., 2006) have been incorpo-
rated into CMs to support collaborative ontology
maintenance (Hedayati et al., 2017). In educational
contexts, the synergy between CMs and SW tech-
nologies has been instrumental in the development
of ontologies that support adaptive learning sys-
tems (Chu et al., 2011; Icoz et al., 2014). This com-
bination provides a powerful tool for representing
and organizing knowledge, enabling the creation
of shareable educational resources and improving
the interoperability and accessibility of educational
resources (Jiang et al., 2008).

CMs are powerful tools that can improve com-
prehension and learning, as they provide users with
a structured way to organize and visually represent
knowledge, making complex content more acces-
sible (Ausubel et al., 1968; Nesbit and Adesope,
2006; Dexter and Hughes, 2011). More specifi-
cally, grasping the meaning of entire texts can be
frustrating and exhausting for students with special
educational needs and disabilities, such as those
diagnosed with reading comprehension disorders.
Furthermore, CM applications extend beyond learn-
ing and rehabilitation, as shown by studies in infor-
mation retrieval and knowledge representation (Vil-
lalon, 2012; Cañas and Novak, 2006).

The manual creation of CMs from text is chal-
lenging and impractical due to the time-consuming
nature of the task. As a result, attention has been
paid to the automatic extraction of CMs from
text (de Aguiar et al., 2016; Falke, 2019). How-
ever, existing methods are outdated, with Falke
et al. (2017) being the latest state-of-the-art (SOTA)
method with F1 performance of 19.18 and 12.91
for METEOR and ROUGE-2, respectively. These
methods rely solely on symbolic or machine learn-
ing approaches, excluding neural methods. They
typically consist of pipelines that integrate compo-
nents such as entity and relation extraction. More-
over, they have shortcomings such as limited ef-
ficiency in processing large datasets, reliance on
annotated datasets for supervised models, and lack
of open access to the underlying code.

In this paper, we contribute the following:

• We propose a novel open-access2 neuro-
2https://github.com/SonyCSLParis/concept_map

symbolic pipeline for automatic CM extrac-
tion from single and multiple documents. Our
approach incorporates a new summarization
component that enhances efficiency by a 3-4x
speed-up. Moreover, it includes a fine-tuned
REBEL model (Huguet Cabot and Navigli,
2021) for this task. When tested for multiple
documents, it outperforms previous pipelines
on METEOR F1 (24.0%) score;

• We investigate the robustness of the proposed
pipeline by removing different semantic mod-
ules, and observe the competitive performance
of F1 scores for METEOR above 20% across
all different methods;

• We investigate the ability of GPT3.5 to be
used in end-to-end methods for automated
CM extraction. The best performance is
achieved with decomposed prompting, with
SOTA performance in METEOR Precision
(38.4%) and F1 (28.5%), and ROUGE-2 Re-
call (24.3%).

2 Related Work

Concept Map 3.0 suggests the use of CMs en-
riched by Web 3.0 technologies, using SW re-
sources, such as schema.org and Wikidata, and
following Web Data Principles to make them
machine-interpretable and semantic learning re-
sources (Jensen and Johnsen, 2016). Towards
this line, we contribute with our neuro-symbolic
pipeline for automatic CM extraction that utilizes
SW tools. Although this task can be broken down
into several components, evaluating these individ-
ual components is beyond the scope of this task
and of our work. We focus solely on complete
approaches for CM extraction from text.

Currently, the literature conventionally portrays
automatic CM extraction from text as a multistep
approach involving subtasks such as concept and
relation extraction and subgraph selection. Existing
works are twofold: those with a single document
as input, namely the CM - Document Summariza-
tion (CM-DS) task (Falke et al., 2017), and those
with multiple documents as input, namely the CM -
Multi Document Summarization (CM-MDS) task.

For CM-DS, Oliveira et al. (2001) laid the foun-
dation not only by extracting relations between con-
cepts from a text file, but also by extrapolating rules
about the knowledge at hand. Subsequent studies
such as Cañas and Novak (2006) employed unsu-
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Table 2: Comparison of existing pipeline methods for
CM-DS (S) and CM-MDS (M ) tasks from text data to
our pipeline. For the header: Lang.: Language, Meth.:
Methods, SE: Summary Extraction, IR: Importance
Ranking, EE: Entity Extraction, RE: Relation Extrac-
tion. For the Language: EN : English, DE: German,
KK: Kazakh, RU : Russian, CR: Croatian, PR: Por-
tuguese. For the method: linguistic tools (L), linguistic,
statistical tools (S), neural tools (N ). For Summary Ex-
traction (SE): pre: SE occurs before entity and relation
extraction, while post: SE occurs after.

Authors Task Lang. Meth.SE IR EE RE

Oliveira et al. (2001) S EN L ✓
Rajaraman and Tan (2002) M EN L ✓ ✓
Cañas and Novak (2006) S EN LS ✓
Kowata et al. (2010) S PR LS

Zouaq et al. (2011) M EN L ✓ ✓ ✓
Zubrinic et al. (2012) M CR LS post ✓ ✓
Qasim et al. (2013) M EN LS ✓ ✓
Žubrinić et al. (2015) M CR LS ✓ ✓

de Aguiar et al. (2016) S EN LS post ✓ ✓
Falke (2019) M EN,DE LS post ✓ ✓ ✓
Nugumanova et al. (2021) M EN,KK,RU L ✓ ✓
Bayrak and Dal (2024) M TR LS ✓ ✓ ✓

Our pipeline approach M,S EN LSN pre ✓ ✓ ✓

pervised methods with deep syntactic parsing for
concept selection. These methods primarily used
term frequencies to assign a document to the most
probable CM among a set of options, enhancing the
precision of concept selection. Kowata et al. (2010)
further focused on extracting CMs from Portuguese
news articles. This work pioneered the use of a
comprehensive pipeline approach that included text
segmentation, tokenization, part-of-speech tagging,
core element candidate recognition, dependency
interpretation, and CM construction. Subsequently,
de Aguiar et al. (2016) introduced a sophisticated
pipeline approach that integrated grammar rules,
co-reference resolution, and concept ranking based
on frequency of occurrence. Lastly, Bayrak and
Dal (2024) introduced a new heuristic approach to
extract CMs from Turkish texts.

For CM-MDS, Rajaraman and Tan (2002) pi-
oneered the field by using regular expressions
and term frequency-based grouping to build a
CM-based knowledge base from text documents.
They used named entity recognition, extracted
noun-verb-noun triples using a POS tagger and
handcrafted rules, disambiguated them with Word-
Net (Fellbaum, 2010), and clustered them. Their
approach was integrated into a system and validated
through experimental studies. Zouaq et al. (2011)

later defined specific patterns on dependency syn-
tax representations to enhance entity extraction.
Their work highlighted the usefulness of CM min-
ing in ontology learning. Žubrinić et al. (2015) ex-
tended the CM-MDS task by introducing a heuristic
approach to summarize CMs from legal documents
written in Croatian. This was a significant advance
that demonstrated the adaptability of CM-MDS
techniques to other languages and domain-specific
document types.

Lastly, Falke et al. (2019; 2017; 2017) made
significant contributions to the field. Their model
leverages predicate-argument structures and auto-
matic models for German and English, achieving
SOTA performance until now. Their pipeline in-
cludes five steps: (1) concept and relation extrac-
tion, from Open Information Extraction (Etzioni
et al., 2008); (2) concept mention grouping and la-
beling with greedy search optimization (3) relation
mention grouping, labeling, and selection using
lemmatization; (4) importance estimation with a
ranking support vector machine; (5) CM construc-
tion using integer linear programming (Gomory,
1958). Their English datasets, WIKI (Falke, 2019)
and EDUC (Falke and Gurevych, 2017), are the
two largest annotated corpora for CM-MDS and
serve as the main benchmark for this task. WIKI
was obtained through an automated corpus exten-
sion method with automatic pre-processing, crowd-
sourcing, and expert annotations. It contains 38
groups, each with several documents and focused
on a different topic. It is split 50/50 across the
training and the test set. Each cluster contains on
average 15 documents and comes with a CM ref-
erence. EDUC contains 30 document clusters on
educational content and was created through crowd-
sourcing; unlike WIKI, the authors had not released
this data set for use in this investigation.

Table 2 summarizes the existing methods for
CM-DS and CM-MDS. It showcases the evolu-
tion from basic term frequency methods to more
complex pipelines. Existing approaches rely on
symbolic or machine learning methods, lacking the
incorporation of advanced neural techniques that
can enhance relation extraction accuracy. We fine-
tuned the sequence-to-sequence models for the rela-
tion extraction part. Additionally, no previous stud-
ies have introduced the preliminary summarization
components that we use to reduce processing time
and optimize computational resources. Our LLM-
based methods and modularized pipeline achieve
competitive results when compared with the SOTA.
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Figure 2: Our pipeline method for automatic CM creation from a single document or a collection of documents.
The pipeline contains one mandatory part (in the dark, relation extraction); the other modules are optional.

3 Methods

3.1 Pipeline
We introduce a neuro-symbolic pipeline that is
modular and open-access, which consists of four
components: (1) the summarization, (2) the im-
portance ranking, (3) the entity extraction, and (4)
the relation extraction. The latter component (4) is
always required, while the other three can be deac-
tivated, as we show in Figure 2. We are the first to
propose (1) as a primary step to reduce processing
time and optimize computational resources.

Although we use several well-established com-
ponents in our pipeline that are not necessarily
SOTA in their tasks, our key contribution is the
innovative integration of these tools within a cohe-
sive framework for CM extraction. We also inves-
tigate whether adding preliminary summarization
steps can yield better results by reducing process-
ing time and optimizing computational resources.
The preliminary summarization step differs from
the SOTA method (Falke et al., 2017), which used
graph summarization as the last step.

Summary Extraction. We integrate methods for
extractive and abstractive summarization. Extrac-
tive summarization extracts key sentences from the
original text, while abstractive summarization gen-
erates a concise summary using new phrases and
sentences. For extractive summarization, we use
LexRank (Erkan and Radev, 2004)3. We chose this
method because it was previously used for concept-
based extractive summarization (Chitrakala et al.,
2018), and it leverages graph-based and ranking
methods that are particularly relevant to our task.
For abstractive summarization, we use gpt-3.5-
turbo-01254 through the OpenAI API. Our choice
was motivated by its advanced capabilities to gen-
erate human-like text, its strong contextual under-
standing, and its efficiency in producing coherent

3https://github.com/miso-belica/sumy
4https://platform.openai.com/docs/models/

gpt-3-5-turbo

and fluent summaries. Compared to earlier mod-
els, GPT-3.5 offers improved language generation
quality while being more cost-effective than GPT-4,
making it well-suited for scalable summarization
tasks. Furthermore, its ability to generalize across
diverse text domains ensures robustness when ap-
plied to complex summarization scenarios. Al-
though we currently use GPT for the three LLM-
based models, our approach is not limited to this
specific LLM. We also add a summary_percentage
parameter which specifies the desired reduction in
length. For example, a summary_percentage of
30 indicates that the summary will be 30% of the
original text size.

Importance Ranking. Importance ranking iden-
tifies the most salient sentences in a text. The first
technique is based on Word2Vec (Mikolov et al.,
2013)5. We used the standard measure of cosine
similarity to assess the relatedness between two
sentences. Sentences that are similar to many oth-
ers will be ranked the highest, as such sentences
are likely to convey the most important messages
in the text (Cheng and Lapata, 2016). The second
is PageRank (Page et al., 1999) which was selected
due to its establishment as a baseline in the prior
research in Falke et al. (2017), in line with the in-
tuition that a page’s rank should be high when the
cumulative ranks of the inbound edges pointing to
it are also high. The similarity matrix is a square
matrix of size (N × N), where N represents the to-
tal number of sentences in all summaries within a
folder. Each folder contains a concept map derived
from multiple documents on the same topic. We
also add as parameter a ranking_perc_threshold to
select the top sentences scored in the ranking phase.

Entity Extraction. Entity extraction is used to
extract relevant entities from text. We used DBpe-
dia Spotlight (Mendes et al., 2011) with a confi-

5https://radimrehurek.com/gensim/models/
word2vec.html
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Figure 3: Prompts used for the decomposed prompting approach.

dence score of 0.7, or noun chunks from spaCy6.

Relation Extraction. As in Huguet Cabot and
Navigli (2021), we refer to relation extraction as the
task of extracting triples (subject, predicate, object)
from text, with no given entity spans. For this sub-
component, we fine-tuned REBEL (Huguet Cabot
and Navigli, 2021), an open-source triple ex-
traction sequence-to-sequence model based on
BART (Lewis et al., 2019). The choice of REBEL
is based on its SOTA performance in multiple tasks
and a limited number of parameters compared to
other SOTA systems such as UniREl (Tang et al.,
2022) or DEEPSTRUCT (Wang et al., 2022). For a
comparison with a relation extraction system more
similar to the one used by the SOTA, we also in-
cluded CoreNLP7 as an alternative. Finally, we
post-processed the results by removing any triples
that overlapped by more than 60% with others, with
the aim of eliminating redundancy.

3.2 LLM-based Methods

We investigate the ability of one LLM, the gpt3.5-
turbo-0125 (Brown et al., 2020)8, to generate CMs
from text. The LLM tends to perform better when
tasks are decomposed into smaller fragments (Wei
et al., 2022). We compare three approaches with
increasing complexity: (I) “zero-shot”, (II) “one-
shot”, and (III) “decomposed prompt”. Each ap-
proach incrementally adds context and guidance to
enhance performance. For (I) “zero-shot” and (II)
“one-shot prompting”, we used similar prompts,
with the key difference being that the one-shot
prompting (II) includes an example CM from the
training corpus. The (III) “decomposed prompt-
ing” aims to divide a complex task into simpler
subtasks for more efficient prompting and outper-
forms standard prompting baselines in complex
tasks (Khot et al., 2023). Figure 3 illustrates the
additional subtasks incorporated into our decom-

6https://spacy.io/usage/linguistic-features
7https://github.com/stanfordnlp/CoreNLP
8All experiments were run in May 2024 using GPT-3.5,

which was one of the most advanced models available at the
time. Since then, newer models have been released. Instead
of re-running all experiments, we emphasize the value of our
methods rather than model improvements.

posed prompting approach. We focus solely on
“zero-shot” settings for each decomposed prompt.
Implementing n-shot for each component would
have required finer-grained ground truth, such as
text summaries or grouped entities, necessitating
manual annotation from our side.

We provide notebooks to experiment with the
LLM baselines9, as well as the exact prompt and
the code used for all baselines10 to ensure repro-
ducibility. The only prompt that is reused in our
pipeline is the one for summarization. An example
of a prompt for the “zero-shot” baseline is shown
in Figure 4.

Prompt Zero-Shot Baseline

Task Description: Concept Map Generation Your task
is to process a collection of texts and extract triples from
them. Subsequently, you’ll aggregate this information
to construct a unique and comprehensive Concept Map
representing the information in all the texts in the given
folder. The resulting Concept Map should adhere to the
following structure:

<Subject> - <Predicate> - <Object>,
<Subject> - <Predicate> - <Object>,
<Subject> - <Predicate> - <Object>,

The Concept Map should contain only the most impor-
tant triple that best summarizes the content of all texts
and avoid redundancy across triples. In your answer, you
must give the output in a .csv file with the columns “sub-
ject”, “predicate”, and “object”. The output is a single
.csv file.

Figure 4: The “zero-shot” prompt used for concept map
generation.

4 Experimental Setup

4.1 Dataset and Baselines

WIKI (Falke, 2019) and EDUC (Falke and
Gurevych, 2017) are the main benchmark datasets
in the CM-MDS task. We reached out to the au-
thors for these datasets, and they only provided
WIKI, which we use for our experiments on CM-
MDS. Expanding our evaluation to other datasets
would require access to EDUC or the creation of
new datasets, which is beyond the scope of this
work. On average for WIKI, the training set has 96

9https://github.com/SonyCSLParis/concept_map/
tree/main/notebooks

10https://github.com/SonyCSLParis/concept_map/
tree/main/src/baselines
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sentences per folder, while the test set has 121 sen-
tences. Although we do not own WIKI, it is easily
accessible. With the permission of the owner, we
have uploaded it to our GitHub page, ensuring the
reproducibility of our work.

We compare our model with supervised (Falke
et al., 2017; Falke, 2019) and unsupervised (Page
et al., 1999; Cañas and Novak, 2006; Žubrinić et al.,
2015) methods from the literature. These baselines
are, to the best of our knowledge, the only ones
that have reported results on the same corpus and
evaluation metrics. Lastly, we compare our model
to our three LLM approaches.

4.2 Fine-tuning REBEL

Falke et al. (2017) used the BIOLOGY (Olney
et al., 2011) dataset to evaluate their relation extrac-
tion approach, and the WIKI (Falke, 2019) dataset
to evaluate their pipeline end-to-end. BIOLOGY
contains manually constructed CMs developed in
the work of Olney et al. (2011) and aligned with
their original text corresponding to Falke et al.
(2017)11. Similarly to them, we fine-tune REBEL
using the relations from BIOLOGY. Focusing on
relations extracted from a single document simpli-
fies the mapping process, as it is easier to associate
one sentence to a relation within a single context
rather than across multiple documents; therefore,
we only considered BIOLOGY for fine-tuning.

We map each relation in a CM to the sentence
in the text containing that relation since relation
extraction operates at the individual sentence level.
We implemented a rule-based system that returns
a boolean value of whether the information in the
input triple is present in the input of the sentence.
This process was applied to the 183 BIOLOGY
documents, resulting in 220 mappings that we di-
vided into training, evaluation, and test sets for
fine-tuning. The split for train / evaluation / test
was 80/10/10. We used the following parame-
ters: learning_rate = 2.5 ∗ 10−5, epochs = 10,
batch_size = 4, seed = 1. We compare the base
REBEL to our fine-tuned REBEL.

4.3 Evaluation Metrics

For the evaluation of our results, we use the same
metrics as in previous work on this task (Falke,
2019): adapted versions of METEOR 1.5 (Baner-
jee and Lavie, 2005) and ROUGE 1.5.5 (Lin, 2004)

11BIOLOGY was accessed with permission from the au-
thors. Due to ownership constraints, the link to the dataset
cannot be provided

for automatic CM evaluation. The original metrics
are standardly used for machine translation evalua-
tion and automatic summarization and do not take
into consideration graph-related parameters. We
selected METEOR and ROUGE-2 over the exact
match of F1 because they better capture nuanced
overlaps between concepts and relations in CMs.
These metrics offer more flexibility, including par-
tial matches and paraphrasing.

For the METEOR-adapted metric, we compute
Precision and Recall as described in Falke et al.
(2017). Given two pair of propositions ps ∈ PS and
pr ∈ PR, where PR and PS are the set of triples
from the reference and from the system respec-
tively, we calculate the match score meteor(ps, pr)
∈ [0, 1]. The precision and recall are then com-
puted following Falke et al. (Falke et al., 2017) as:

Pr =
1

|PS |
∑

p∈PS

max{meteor(p, pr) | pr ∈ PR}

Re =
1

|PR|
∑

p∈PR

max{meteor(p, ps) | ps ∈ PS}

The ROUGE-2-based Precision and Recall were
computed as in Falke et al. (2017), by merging all
propositions within a map into two separate strings,
ss and sr. The F1 score represents the balanced
harmonic average of Precision and Recall. The
scores for each CM are macro averaged across all
topics.

4.4 Parameters

We ran our experiments for around 1 day on an
Ubuntu machine with 2 GPUs, 40 CPUs, and 348
GiB of memory. For the summarization part, we
focused solely on document-level summarization.
We used gpt3.5-turbo-0125 and set a temperature
of 0, to keep the summary as close to the original
text as possible. To avoid repeatedly calling the
OpenAI API, we precached the summaries to make
our method cost-efficient. For entity extraction, we
set up a local DBpedia Spotlight API12 and used
en_core_web_lg for the spaCy model. For relation
extraction, we used an openly available REBEL
tokenizer13.
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Table 3: Parameter values for each component. rebel_hf
and rebel_ft: base and fine-tuned REBEL model, ds:
DBpedia Spotlight, nps: noun chunks from spaCy.
Bolded values are used for the final results.

Component Parameter Values

Summary
method chat-gpt, lex-rank

percentage 15, 30

Ranking
method word2vec, page_rank

percentage 15, 30

Entity method ds, nps

Relation Extraction method rebel_hf, rebel_ft, corenlp

4.5 Hyperparameter tuning

We used WIKI TRAIN (Falke, 2019) to select the
best parameters for the pipeline, as shown in Ta-
ble 3. For summary and ranking, we investigated
the impact of method and percentage on the quality
of CMs. For entity extraction, the two methods
were DBpedia Spotlight (ds) or the spaCy noun
chunks (nps). For the relation part, we compared
the regular REBEL model (rebel_hf ) to its fine-
tuned version (rebel_ft) and corenlp. We make the
results available with our code14.

We analyze the correlation between entity and re-
lation extraction characteristics and the averaged F1
score (computed from METEOR and ROUGE F1).
The results show that DBpedia Spotlight (ds, en-
coded as 0) outperforms spaCy’s noun chunks (nps,
encoded as 1) for entity extraction, with a strong
negative correlation (r = −0.64, p < 0.05), indi-
cating that ds consistently leads to higher F1 scores.
For relation extraction, rebel_hf and rebel_ft out-
perform corenlp, with moderate positive correla-
tions (r ≈ 0.37, p < 0.05). However, the differ-
ence between rebel_hf and rebel_ft is negligible.
We selected ds for entity extraction and rebel_hf
for relation extraction.

We then looked at the best parameters for sum-
marization and importance ranking for each type
of system independently: (A ) Full pipeline (B)
A without ranking, (C ) A without summary. The
only correlation that is statistically significant is the
one comparing the summarization methods: chat-
gpt outperforms lex-rank. Since the other results
had weak or nonsignificant correlations, we chose
the parameters that got the highest averaged F1

12https://github.com/MartinoMensio/
spacy-dbpedia-spotlight

13https://huggingface.co/Babelscape/
rebel-large

14The CSV with the completed results can be found here.

scores on the WIKI train dataset. Table 4 shows
the final parameters retained.

Table 4: Final parameters retained for each system.

Parameter A B C

summary_method chat-gpt chat-gpt -
summary_percentage 15 15 -

ranking word2vec - page_rank
ranking_perc_threshold 15 - 15

Table 5 shows more detailed results on the cor-
relations between each feature in the three systems
and the average F1, Precision, and Recall scores.

Table 5: Correlation between features and F1 scores.
S: System. For the features (F): S: summary method,
SP: summary percentage, IR: importance ranking, IRP:
importance ranking percentage. Bolded correlations
are the ones that are statistically significant (pval <
0.05). ‘Value 1’ is encoded as 0 and ‘Value 2’ as 1. The
correlation of -0.92 in the first row indicates that avg_f1
tends to be lower when the summarisation method is 0
(chat-gpt) rather than 1 (lex-rank)..

S F Value 1 Value 2 Metric Correlation P-value

A

S chat-gpt lex-rank
avg_f1 -0.92 5.51e− 7
avg_pr -0.56 0.03
avg_re -0.63 8.98e− 3

SP 15 30
avg_f1 −0.05 0.85
avg_pr 0.21 0.44
avg_re 0.40 0.12

IR page_rank word2vec
avg_f1 −0.14 0.82
avg_pr −0.08 0.76
avg_re −0.15 0.57

IRP 15 30
avg_f1 −0.06 0.82
avg_pr 0.057 0.02
avg_re 0.45 0.079

B

S chat-gpt lex-rank
avg_f1 -0.96 0.037
avg_pr 0.55 0.45
avg_re −0.50 0.50

SP 15 30
avg_f1 −0.26 0.74
avg_pr 0.67 0.33
avg_re 0.71 0.29

C

IR page_rank word2vec
avg_f1 −0.89 0.11
avg_pr −0.36 0.64
avg_re −0.60 0.40

IRP 15 30
avg_f1 −0.37 0.63
avg_pr 0.93 0.069
avg_re 0.80 −0.37

5 Results

Table 6 shows the results for the training and test
sets of WIKI between the baselines of the literature
and our methods. We present the results of the
pipeline ( 5.1) and the LLM ( 5.2) results.
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Table 6: Results for all systems on WIKI TRAIN and WIKI TEST. We compare our model against supervised
and unsupervised methods from the literature. “-” indicates that we couldn’t access to the results. Bolded and
underlined metrics are the highest and the second-highest in the column, respectively. A : Full Pipeline ; B: A
without Ranking ; C : A without Summary. “Zero-shot”, “One-shot” and “Decomposed” are prompting techniques.

Approach WIKI TRAIN WIKI TEST

METEOR ROUGE-2 METEOR ROUGE-2
Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

Literature baselines

Page et al. (1999) - - - - - - 13.3 14.1 13.7 8.4 6.2 7.0
Cañas and Novak (2006) - - - - - - 13.4 13.8 13.6 8.6 7.2 7.6
Žubrinić et al. (2015) - - - - - - 14.7 14.9 14.7 10.5 7.9 8.9
Falke and Gurevych (2017) - - - - - - 14.3 23.1 17.5 6.8 23.2 10.2
Falke et al. (2017) - - - - - - 19.6 19.0 19.2 17.0 10.7 12.9

Pipeline Methods

A : Full 27.08 28.6 26.6 9.7 13.9 10.6 24.6 24.5 24.0 6.4 11.8 7.6

Ablation studies

B: No Rankings 34.6 23.0 26.9 3.2 23.7 5.4 35.9 20.6 25.6 2.2 22.9 3.84
C : No Summaries 35.3 20.4 25.3 2.0 23.7 3.8 36.4 16.8 22.2 1.3 24.3 2.5

LLM Methods

Zero-shot 25.0 20.2 21.4 7.7 16.0 9.1 25.2 19.1 21.2 6.3 15.9 8.2
One-shot 26.7 21.4 22.6 6.2 19.2 8.4 25.2 19.2 21.3 6.3 15.9 8.2
Decomposed 39.9 25.2 30.0 4.8 27.5 7.3 38.4 23.3 28.5 3.9 24.3 6.0

5.1 Pipeline

Quantitative Results

Figure 2 illustrates that, in addition to the essen-
tial relation extraction step for CM extraction, two
other optional core components are summarization
and importance ranking. We therefore compare the
full pipeline from Figure 2 to combinations remov-
ing one of these three components: the one with all
the components (A ), pipeline without ranking (B),
pipeline without summary (C ). A demonstrates
competitive performance across multiple evalua-
tion metrics on both the training and test sets. It
achieves an F1 score of 26.65 for METEOR in the
training set and 24.05 on the test set, outperforming
the previous SOTA (Falke, 2019). A achieves a
ROUGE-2 recall score (11.81) consistent with ex-
isting literature, but lower F1 scores for the training
(10.64) and test (7.61) sets.

Our pipeline produces comprehensive CMs that
capture a wide range of information (Lavie and
Denkowski, 2009), as the decent scores in ME-
TEOR suggest across the four pipelines. Com-
paring the METEOR metrics from B and C to
those of A reveals an improvement of approxi-
mately 10 points in precision, while the results for
recall and F1 are more mitigated. Excluding the
summary module in C showed a decrease in ME-
TEOR scores (F1 of 22.16 instead of 24.05 in A ).

B achieves the best F1 METEOR performance,
slightly higher than A where combining summa-
rization and ranking may become too reductive.

The lower ROUGE-2 scores suggest that the
pipeline’s generated CMs do not include the exact
words to match the bigrams of the gold standard,
leading to a loss in performance (ShafieiBavani
et al., 2017). Omitting the ranking module in B
resulted in a decrease in ROUGE-2 scores (F1 of
3.84 instead of 7.61 in A ). The full pipeline A
achieves the best F1 ROUGE-2 performance, show-
ing that the combination of ranking, summariza-
tion, and entity extraction is effective for capturing
a broader range of n-grams, aligning better with
the gold-standard references.

Across the three pipelines A , B, and C ,
ROUGE-2 scores consistently lag behind base-
lines in the existing literature, particularly in preci-
sion, highlighting potential limitations in capturing
all pertinent details despite effectively conveying
the main points, as indicated by higher METEOR
scores. This suggests opportunities to improve con-
tent coverage and lexical alignment. The higher
ROUGE-2 recall metrics observed in C , which ex-
clude summarization, may indicate that summariza-
tion processes introduced new information, such
as the generation of words not present in the orig-
inal text. This could include the use of synonyms
or reformulations, which ROUGE-2 does not ac-
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count for, as it relies on exact word matching rather
than capturing semantic similarities. These ob-
servations also raise concerns about the potential
loss of critical information during summarization,
which should be mitigated in future work.

Generally, our higher METEOR and ROUGE-
2 recall scores indicate improved summarization
quality by emphasizing semantic accuracy and
readability over exact word overlap, key factors
in our educational context. METEOR, in par-
ticular, captures these aspects more effectively
than ROUGE-2 (Lin et al., 2022; Schluter, 2017;
ShafieiBavani et al., 2018). The lower ROUGE-2
scores compared to Falke et al. may stem from irrel-
evant or misaligned triples, occasionally resulting
in 0.0 scores.

Moreover, our pipeline significantly enhances
efficiency with the summarization component, pro-
cessing each folder in an average of 13s (Wiki-
train) and 15s (Wiki-test), compared to 40s and
1 minute with the non-summarization pipeline, a
3-4x speedup, as it can be seen in the processing
times logs in the Github.

Qualitative Analysis

Figure 5 shows the gold standard CM from folder
320 of WIKI (Falke, 2019), and the output CM of
our full pipeline method. Green and orange colors
denote the matching nodes and edges. Green in-
dicates an exact match at the node or edge level,
while orange represents semantically similar nodes
or edges between the gold standard and our CM.
Blue highlights nodes in our CM that are par-
tially similar to the gold standard; for example, the
node “Edward VIII abdicated the British throne”
which is similar to “(edward viii, abdicted, british
monarch)”. The purple color groups nodes and
edges that are semantically similar in our CM.
When comparing the gold standard and our CM,
we do not find any associations with contradictory
meanings.

As shown in Figure 5, our pipeline is capable of
generating CMs that are semantically equivalent
to the gold standard. However, our performance
is affected by non-co-referential resolution. The
main concepts are the same or semantically sim-
ilar, and the only concept our pipeline missed is
the node “constitutional crisis”. Although “george”
and “british empire” are also not present in our ap-
proach, we argue that they refer to similar parts in
our CM, such as the nodes: “King George VI” and

“British”. Furthermore, we notice that our generated

emerged in

arose

constitutional
crisis

british empire

was not recognized by

wallis simpson

lived a peripatetic existence after

duke of windsor

abdication

announces

abdicated

edward viii

british monarch

triggering

was intent on marrying

george

became

george vi

presided over the dismantling of

church of england

(a) Gold-standard.

sibling

spouse
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(b) Pipeline generated.

Figure 5: Concepts based on the folder 320 of WIKI
TRAIN: gold-standard (left) and generated by A (right).

CM produces many semantically similar nodes,
such as: “King George VI” and “George VI”, and

“Walls”, “Wallis Warfield Simpson”, and “Walls
Simpson”. The pipeline’s performance could have
been enhanced with the capability for co-reference
resolution of the concepts.

The relations between nodes appear to be a more
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challenging task, with only a small number of cor-
responding edges. An explanation might be the
complex nature of multiple associations between
the main concepts in the documents, as the main
concepts often have multiple relations between
them. An example can be “a wife” and “a hus-
band” nodes that share multiple relations between
them, such as that they are married, and the multi-
ple common actions they take together.

5.2 LLM-based Methods

Table 6 presents the results of the LLM-based meth-
ods compared to the pipeline approaches and the
baseline approaches. We observe trends similar to
those observed with our pipeline approaches. ME-
TEOR scores are higher compared to the ROUGE-
2 ones, suggesting that the generated summaries
are evaluated more favorably based on linguistic
quality metrics rather than exact overlap. Lower
ROUGE-2 precision scores suggest that while the
generated CM captures crucial information, it faces
difficulty in precisely selecting and summarizing
essential details without including redundant or un-
necessary information.

In line with findings from the literature (Wei
et al., 2022), the decomposed prompt outperforms
the other two approaches in METEOR scores and
ROUGE-2 recall on both the training and the test
set. It achieves overall SOTA results on the WIKI
TEST dataset, outperforming both pipeline and
baseline approaches in METEOR Precision (38.4),
F1 score (28.5), and ROUGE-2 Recall (24.3).

6 Conclusion

We propose a neuro symbolic pipeline and a large
language model-based method for automated con-
cept map extraction from text evaluated over the
WIKI dataset. Our novelty lies in the architec-
ture that utilizes state-of-the-art tools into a neuro-
symbolic pipeline with modularized components
and its unique application to concept map extrac-
tion. Our architecture is the first one to combine
symbolic, statistical, and neural technique and to
have a summarization step at the beginning of
the pipeline. Key technical contributions are the
fine-tuned REBEL model and the summarization
component, which enhance the originality of the
pipeline. Moreover, we analyzed end-to-end LLM-
based approaches, which are the first LLM-based
end-to-end methods for automated CM extraction.
The decomposed prompting method had the best
METEOR F1 scores and ROUGE-2 recall, outper-

forming the current SOTA and effectively compet-
ing with supervised and unsupervised methods.

In future work, our aim is to investigate lexical
embeddings and semantic rules to increase the per-
formance and accuracy of CM extraction from text.
Furthermore, the current metrics used are suitable
for text summarization tasks but are not tailored to
the CMs generation, as they miss critical aspects
of CM creation, such as the graph structure and
semantically equivalent concepts, suggesting the
need for a new metric. We thus plan to explore eval-
uation metrics and semantically enhanced bench-
marks that are more adapted to this task. In particu-
lar, we could explore embedding similarity using a
pre-trained language model, or we could also adapt
taxonomy metrics such as RaTE and repurposed
datasets such as the SemEval 2016 Task 13 (Bordea
et al., 2016) to evaluate the quality of concept maps.
Moreover, the pipeline should be evaluated on a
broader range of texts, encompassing both general
and domain-specific content, to assess its robust-
ness across different contexts and to understand
how domain knowledge affects performance. This
will involve curating more diverse datasets that
enable a thorough evaluation and reveal opportuni-
ties for further improvement. Additionally, future
work should explore post-processing techniques to
ensure that key details are preserved in the sum-
marized text, supporting more accurate knowledge
representation. A comparative analysis of concept
maps generated from both summarized and full-
text versions should be done to examine potential
trade-offs and better understand the impact of sum-
marization on the overall quality of the concept
maps.

7 Limitations

Our methods demonstrate competitive performance
compared to baselines from the literature, but also
to future areas of improvement. First, the generated
CMs reach SOTA performance in the METEOR
metric, which demonstrates our pipeline’s capabil-
ities. However, the generated CMs might contain
lexical variations and paraphrasing, leading to great
differences in performance between the METEOR
and ROUGE-2 scores (Lavie and Denkowski, 2009;
ShafieiBavani et al., 2017). Moreover, reproducing
results with OpenAI models can be challenging
and inconsistent, even if we used the same sum-
maries from our experiments. To mitigate potential
issues such as hallucinations, we consistently set
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the temperature to 0 when using OpenAI models.
Lastly, evaluating beyond quantitative metrics is
challenging but crucial for a complete assessment,
which is why we conducted an initial qualitative
analysis.
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