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Preface by the Conference Organizers

We are excited to welcome you to *SEM 2023, the 12th Joint Conference on Lexical and Computational
Semantics! We are pleased to present this volume containing the accepted long and short papers. *SEM
2023 follows a hybrid format (remote and in-person) and will be held on July 13th-14th 2023, co-located
with ACL 2023 in Toronto, Ontario, Canada.

Since its first edition in 2012, *SEM has become a major venue to present recent advances in all areas
of lexical and computational semantics, including semantic representations, theoretical semantics, mul-
tilingual semantics, and others. *SEM is sponsored by SIGLEX, the ACL Special Interest Group on the
Lexicon.

*SEM 2023 accepted both papers submitted directly through the START system and those already re-
viewed through ARR (ACL Rolling Review). In total, we received 95 submissions in 9 areas:

* Commonsense reasoning and natural language understanding

* Discourse, dialogue, and generation

* Lexical semantics

* Multilinguality

* Psycholinguistics, cognitive linguistics, and semantic processing
* Resources and evaluation

* Semantic composition and sentence-level semantics

» Semantics in NLP applications

¢ Theoretical and formal semantics

We compiled an exciting and wide-ranging program, accepting a total of 45 papers — 29 long papers and
16 short papers. In addition, 8 papers accepted to ACL Findings will be presented as part of the *SEM
poster session.

The submitted papers were carefully evaluated by a program committee led by 13 area chairs, who coor-
dinated a panel of 140 reviewers. Because the number of submissions was almost double our expectation,
we recruited a number of late reviewers and emergency reviewers. The reviews were almost all of very
high quality, and for that we are extremely grateful! All but a handful of papers were reviewed by three
reviewers, who were encouraged to discuss any divergence in evaluations. Area chairs then added meta-
reviews to explain their accept/reject suggestions. The final selection was made by the program co-chairs
after a check of the reviews, meta-reviews, and discussions with the area chairs.

We are also very excited to have three excellent keynote speakers: Jessy Li (University of Texas at Au-
stin) presents recent work on how we might better model discourse in the age of large language models,
Hinrich Schiitze (University of Munich) talks about massively multilingual language models and issues
related to their semantic evaluation, and finally Danushka Bollegala (Amazon and University of Liver-
pool) discusses the topic of lexical semantics over time.

We are honored to serve as the organizing committee for *SEM 2023, and we absolutely could not ha-
ve made this happen without a huge amount of help. First, tremendous thanks to all area chairs and
reviewers for their invaluable help in selecting the program, for their engagement in thoughtful discus-
sions, and for providing valuable feedback to the authors. Second, thanks to our Publicity chair Malihe
Alikhani (University of Pittsburgh) who took care of website and social media updates. Next, thanks to
our Publication chair Luis Espinosa-Anke (Cardiff University and AMPLYFI) for being the mastermind
and driving force behind compilation of the proceedings, and finally the ACL 2023 workshop organizers
for help and support with all organizational aspects of the conference. Finally, thank you to the authors
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and presenters for making *SEM 2023 such an engaging and exciting event! We hope that you, dear
audience, will find the content of these proceedings as engaging as we do, and we hope to see you at
future iterations of *SEM!

Jose Camacho-Collados and Alexis Palmer, Program co-chairs

Mohammad Taher Pilehvar, General chair
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Including Facial Expressions in Contextual Embeddings for Sign Language
Generation

Carla Viegas'> and Mert Inan® and Lorna Quandt* and Malihe Alikhani *
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Abstract

State-of-the-art sign language generation
frameworks lack expressivity and naturalness
which is the result of only focusing on man-
ual signs, neglecting the affective, grammatical,
and semantic functions of facial expressions.
The purpose of this work is to augment se-
mantic representation of sign language through
grounding facial expressions. We study the
effect of modeling the relationship between
text, gloss, and facial expressions on the per-
formance of the sign generation systems. In
particular, we propose a Dual Encoder Trans-
former able to generate manual signs as well as
facial expressions by capturing the similarities
and differences found in the text and sign gloss
annotation. We take into consideration the role
of facial muscle activity to express intensities
of manual signs by being the first to employ
facial action units in sign language generation.
We perform a series of experiments showing
that our proposed model improves the quality
of automatically generated sign language.

1 Introduction

Communication between the Deaf and Hard of
Hearing (DHH) people and hearing non-signing
people may be facilitated by emerging language
technologies. DHH individuals are medically un-
derserved worldwide (McKee et al., 2020; Masuku
et al., 2021) due to the lack of doctors who can
understand and use sign language. Also, educa-
tional resources that are available in sign language
are limited especially in STEM fields (Boyce et al.,
2021; Lynn et al., 2020). Although the Americans
with Disabilities Act (United States Department of
Justice, 2010) requires government services, pub-
lic accommodations, and commercial facilities to
communicate effectively with DHH individuals,
the reality is far from ideal. Sign language inter-
preters are not always available, and communicat-
ing through text is not always feasible as written

1

languages are completely different from signed lan-
guages.

In contrast to Sign Language Recognition (SLR)
which has been studied for several decades (Rast-
goo et al., 2021) in the computer vision commu-
nity (Yin et al., 2021), Sign Language Generation
(SLG) is a more recent and less explored research
topic (Quandtetal., 2021; Cox et al., 2002; Glauert
et al., 2006).

Missing a rich, grounded semantic representa-
tion, the existing SLG frameworks are far from gen-
erating understandable and natural sign language.
Sign languages use spatiotemporal modalities and
encode semantic information in manual signs and
facial expressions. A major focus in SLG has been
put on manual signs, neglecting the affective, gram-
matical, and semantic roles of facial expressions.
In this work, we bring insights from computational
linguistics to study the role of and include facial
expressions in automated SLG. Apart from using
facial landmarks encoding the contours of the face,
eyes, nose, and mouth, we are the first to explore
using facial Action Units (AUs) to learn semantic
spaces or representations for sign language genera-
tion.

In addition, with insights from multimodal Trans-
former architecture design, we present a novel ap-
plication of the Dual Encoder Transformer model
for SLG, which takes as input spoken text and
glosses, computes the correlation between both
inputs and generates skeleton poses with facial
landmarks and facial AUs. Previous work used
either gloss or text to generate sign language or
used text-to-gloss (T2G) prediction as an interme-
diary step (Saunders et al., 2020). Our model ar-
chitecture, on the other hand, allows us to capture
information otherwise lost when using gloss only
and captures differences between text and gloss,
which is especially useful for highlighting adjec-
tives otherwise lost in gloss annotation. We per-
form several experiments using the PHOENIX14-T

Proceedings of the The 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023 ), pages 1-10
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(NORTH-EAST)

richtung nordosten gibt es mehr wolken hier und da etwas regen
(towards the northeast there are more clouds here and there some rain)
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im verlauf kommt im norden und nordwesten teilweise kraftiger regen auf einzelne gewitter sind dabei
(during the course of the day, heavy rain will fall in the north and northwest, with isolated thunderstorms)

Figure 1: Sign Language uses multiple modalities, such as hands, body, and facial expressions to convey semantic
information. Although gloss annotation is often used to transcribe sign language, the above examples show that
meaning encoded through facial expressions are not captured. In addition, the translation from text (blue) to gloss
(red) is lossy even though sign languages have the capability to express the complete meaning from text. The lower
example shows lowered brows and a wrinkled nose to add the meaning of kraftiger (heavy) (present in text) to

the RAIN sign.

weather forecast dataset and show that our model
performs better than baseline models using only
gloss or text.

In summary, our main contributions are the fol-
lowing:

* Novel Dual Encoder Transformer for SLG
captures information from text and gloss, as
well as their relationship to generate continu-
ous 3D sign pose sequences, facial landmarks,
and facial action units.

* Use of facial action units to ground semantic
representation in sign language.

2 Background and Related Work

More than 70 million Deaf and Hard of Hearing
worldwide use one of 300 existing sign languages
as their primary language (Kozik, 2020). In this
section, we explain the linguistic characteristics
of sign languages, the importance of facial expres-
sions to convey meaning, and elaborate on prior
work in SLG.

2.1 Sign Language Linguistics

Sign languages are spatiotemporal and are artic-
ulated using the hands, face, and other parts of
the body, which need to be visible. In contrast to
spoken languages, which are oral-aural, sign lan-
guages are articulated in front of the top half of the
body and around the head. No universal method,
such as the International Phonetic Alphabet (IPA),
exists to capture the complexity of signs. Gloss
annotation is often used to represent the meaning
of signs in written form. Glosses do not provide
any information about the execution of the sign,
only about its meaning. Even more, as glosses use
written language rather than sign language, they
are a mere approximation of the sign’s meaning,
representing only one possible transcription. For
that reason, glosses do not always represent the full
meaning of signs, as shown in Figure 1.

Every sign can be broken into four manual char-
acteristics: shape, location, movement, and orien-
tation. Non-manual components such as mouth
movements (mouthing), facial expressions, and
body movements are other aspects of sign lan-
guage phonology. In contrast to spoken languages,



NOUN VERB ADV ADJ
20927 6407 17718 648
25952 7638 24755 5628

gloss

TEXT

Table 1: Occurrence of different Part-of-Speech (POS)
in the sign gloss annotation and the German transcripts
computed with Spacy (Honnibal and Montani, 2017).
Although gloss annotations show fewer samples for all
POS, the difference in the occurrence of adjectives is
statistically significant with p < 0.05.

signing occurs simultaneously, while vowels and
consonants occur sequentially. Although the vo-
cabulary size of ASL in dictionaries is around
15,000 (Spread the Sign, 2017) compared to ap-
proximately 170,000 in spoken English, the simul-
taneity of phonological components allows for a
wide range of signs to describe slight differences
of the same gloss.

While in English various words describe large-
ness (big, large, huge, humongous, etc.), in ASL,
there is one main sign for “large”: BIG. How-
ever, through modifications of facial expressions,
mouthing, and the size of the sign, different lev-
els of largeness can be expressed just as in a
spoken language (Grushkin, 2017). To commu-
nicate spoken concepts without a corresponding
fingerspelling—a manual alphabet—is sometimes
used. (Baker et al., 2016)

2.2 Grammatical Facial Expressions

Facial expressions are grammatical components
of sign languages that encode semantic represen-
tations, which, when excluded leads to loss of
meaning. Facial expressions in particular have
an important role in distinguishing different types
of sentences such as WH-questions, Yes/No ques-
tions, doubt, negations, affirmatives, conditional
clauses, focus and relative clauses (da Silva et al.,
2020). The following example shows how the same
gloss order can present a question or an affirma-
tion (Baker et al., 2016):

Example 1

Indopakistani Sign Language
a) FATHER CAR EXIST.
“(My) father has a car.”

b) FATHER CAR EXIST?
“Does (your/his) father have a car.”

In this example, what makes sentence b) a ques-

tion are raised eyebrows and a forward and/or
downward movement of the head/chin in parallel
to the manual signs.

Lower Face Action Units
AU9 [ AUl0 [ AUl AUI2 [ AUI3 AU14
— - — — ] 1
- 3 — ‘ e r ‘ o )
. Upper Lip Nasolabial Lip Comner .
Nose Wrinkler Raiser D SR Puller Cheek Puffer Dimpler
AU1S AU16 AU17 AUI8 AU20 AU22
5 = | = [ B> ! s ) B
EFLh o cd = h2d
Lip Corner Lower Lip . . . A s
De i D .o Chin Raiser | Lip Puckerer | Lip Stretcher | Lip Funneler
AU23 AU24 *AU25 *AU26 *AU27 AU28

\ ?JL%ALEJLE‘A& =

Lip Tightener | Lip Pressor Lips Parts Jaw Drop | Mouth Stretch | Lip Suck

Figure 2: Examples from different facial Action Units
(AUs) (Friesen and Ekman, 1978) from the lower face
relevant to the generation of mouthings in sign lan-
guages. AUs can occur with different intensity values
between 0 and 5. AUs have been used in psychology
and in affective computing to understand emotions ex-
pressed through facial expressions. Image from (De la
Torre and Cohn, 2011).

In addition, facial expressions can differentiate
the meaning of a sign assuming the role of a de-
terminer. Figure 1 shows different signs for the
same gloss, REGEN (rain). We can observe from
the text transcript (in blue) that the news anchor
says “rain” in the upper example but “heavy rain”
in the lower. This example shows how gloss an-
notations are not perfect transcriptions of sign lan-
guages as they only convey the meaning of manual
aspect of the signs. Information conveyed through
facial expressions to show intensities are not rep-
resented in gloss annotation. To view the loss of
information that occurs in gloss annotation we used
Spacy (Honnibal and Montani, 2017) to compute
the Part-of-Speech (POS) annotation for text and
gloss. In Table 1 the occurrence of nouns, verbs,
adverbs, and adjectives are shown for text and gloss
over the entire dataset. We can see that although
gloss annotations have lower occurrence for all
POS, the difference is statistically significant for
adjectives with p < 0.05. To calculate this signifi-
cance, we performed hypothesis testing with two
proportions by computing the Z score. We used
t-tests to determine statistical significance of our
model’s performance.

2.3 Sign Language Generation

Several advances in generating sign poses from text
have been recently achieved in SLG, however there
is limited work that considers the loss of semantic
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Figure 3: Our proposed model architecture, the Dual Encoder Transformer for Sign Language Generation. Our
architecture is characterized by using two encoders, one for text and one for gloss annotation. The use of two
encoders allows to multiply the outputs of both emphasizing the differences and similarities. In addition we to using
skeleton poses and facial landmarks, we include facial action units (Friesen and Ekman, 1978).

information when using gloss to generate poses
and aligned facial expressions. Previous work has
generated poses by translating text-to-gloss (T2G)
and then gloss-to-pose (G2S) or by using either text
or gloss as input (Stoll et al., 2020; Saunders et al.,
2020). We propose a Dual Encoder Transformer
for SLG which trains individual encoders for text
and gloss, and combines the encoder’s output to
capture similarities and differences.

In addition, the majority of previous work on
SLG has focused mainly on manual signs (Stoll
et al., 2020; Saunders et al., 2020; Zelinka and Ka-
nis, 2020; Saunders et al., 2021b). (Saunders et al.,
2021a) are the first to generate facial expressions
and mouthing together with hand poses. The repre-
sentation used for the non-manual channels is the
same as for the hand gestures, namely coordinates
of facial landmarks. In this work we explore the
use of facial Action Units (AUs) (see Figure 2)
which represent intensities of facial muscle move-
ments (Friesen and Ekman, 1978). Although AUs
have been primarily used in tasks related to emotion
recognition (Viegas et al., 2018), recent works have
shown that AUs help detect WH-questions, Y/N
questions, and other types of sentences in Brazilian
Sign Language (da Silva et al., 2020).

3 Sign Language Dataset

In this work, we use the publicly available
PHOENIX14T dataset (Camgoz et al., 2018), fre-

quently used as a benchmark dataset for SLR and
SLG tasks. The dataset comprises a collection of
weather forecast videos in German Sign Language
(DGS), segmented into sentences and accompanied
by German transcripts from the news anchor and
sign-gloss annotations. PHOENIX14T contains
videos of 9 different signers with 1066 different
sign glosses and 2887 different German words. The
video resolution is 210 by 260 pixels per frame and
30 frames per second. The dataset is partitioned
into training, validation, and test sets with respec-
tively 7,096, 519, and 642 sentences.

4 Methods: Dual Encoder Transformer
for Sign Language Generation

In this section, we present our proposed model,
the Dual Encoder Transformer for Sign Language
Generation. Given the loss of information that
occurs when translating from text-to-gloss, our
novel architecture takes into account the informa-
tion from text and gloss as well as their similari-
ties and differences to generate sign language in
the form of skeleton poses and facial landmarks
shown in Figure 3. For that purpose, we learn the
conditional probability p = (Y|X, Z) of produc-
ing a sequence of signs Y = (y1,...,yr) with T
frames, given the text of a spoken language sen-
tence X7 = (x1,...,xxN) with N words and the
corresponding glosses Z = (z1,...,zy) with U
glosses.



Our work is inspired by the Progressive Trans-
former (Saunders et al., 2020), which allows trans-
lation from a symbolic representation (words or
glosses) to a continuous domain (joint and face
landmark coordinates) by employing positional en-
coding to permit the processing of inputs with var-
ied lengths. In contrast to the Progressive Trans-
former, which uses one encoder to use either text
or glosses to generate skeleton poses, we employ
two encoders, one for text and one for glosses, to
capture information from both sources and create a
combined representation from the encoder outputs
to represent correlations between text and glosses.
In the following, we will describe the different
components of the dual-encoder transformer.

4.1 Embeddings

As our input sources are words, we must convert
them into numerical representations. Similar to
transformers used for text-to-text translations, we
use word embeddings based on the vocabulary in
the training set. As we are using two encoders to
represent similarities and differences between text
and glosses, we use one word embedding based
on the vocabulary of the text and one using the
vocabulary of the glosses. We also experiment
by using text word embedding for both encoders.
Given that our target is a sequence of skeleton joint
coordinates, facial landmark coordinates, and con-
tinuous values of facial AUs with varying lengths
we use counter encoding (Saunders et al., 2020).
The counter ¢ varies between [0,1] with intervals
proportional to the sequence length. It allows the
generation of frames without an end token. The
target joints are then defined as:

my = [?/u Ct] with

Yt = [yhands+bodya Yfaces yfacialAUs]

The target joints m; are then passed to a contin-
uous embedding which is a linear layer.

4.2 Dual Encoders

We use two encoders, one for text and one for
gloss annotations. Both encoders have the same
architecture. They are composed of L layers, each
with one Multi-head Attention (MHA) and a feed-
forward layer. Residual connections (He et al.,
2016) around each of the two sublayers with subse-
quent layer normalization (Ba et al., 2016). MHA
uses multiple projections of scaled dot-products

which permits the model to associate each word of
the input with each other. The scaled dot-product
attention outputs a vector of values, V', which is
weighted by queries, ), keys, K, and dimensional-
ity, dg:

T

. QK
Attention(Q, K, V') = softmax( N
Different self-attention heads are used in MHA,

allowing parallel mappings of the (), V, and K
with different learned parameters.

The outputs of MHA are then fed into a non-
linear feed-forward projection. In our case, where
we employ two different encoders, their outputs
can be formulated as follows:

) M

Hn — Etezt (wny wl:N)

Hu = gloss(wuawle)

2)

with h,, being the contextual representation of the
source sequence, N being the number of words,
and U being the number of glosses in the source
sequence.

As we want to use not only the information en-
coded in text and gloss but also their relationship,
we combine the output of both encoders with a
Hadamard multiplication. As the N # U, we stack
hy, vertically for U times and stack h,, vertically
for N times to have two matrices with the same
dimensions. Then we multiply both matrices with
the Hadamard multiplication. Hadamard multipli-
cation is a concatenation of every element in two
matrices, where a; ; and b; ; are multiplied together
to get a; ;b; ;. This represents concatenating the
output vectors from the text encoder with the output
of the vectors from the gloss encoder.

HnO HuO

Hnl Hul
Htext,gloss = . O] . (3)

HnU HuN

4.3 Decoder

Our decoder is based on the progressive trans-
former decoder (DPT), an auto-regressive model
that produces continuous sequences of sign pose
and the previously described counter value (Saun-
ders et al., 2020). In addition to producing sign
poses and facial landmarks, our decoder also pro-
duces 17 facial AUs. The counter-concatenated
joint embeddings, which include manual and facial
features (facial landmarks and AUs), ﬁu , are used



to represent the sign pose of each frame. Firstly,
an initial MHA sub-layer is applied to the joint em-
beddings, similar to the encoder but with an extra
masking operation. The masking of future frames
is necessary to prevent the model from attending
to future time steps. A further MHA mechanism
is then used to map the symbolic representations
from the encoder to the continuous domain of the
decoder. A final feed-forward sub-layer follows,
with each sub-layer followed by a residual connec-
tion and layer normalization as in the encoder. The
output of the progressive decoder can be formu-
lated as:

(s u] = D(Jru—1, P1.1) 4)

where g,, corresponds to the 3D joint positions,
facial landmarks, and AUs, representing the pro-
duced sign pose of frame u, and ¢, is the respective
counter value. The decoder learns to generate one
frame at a time until the predicted counter value,
Cy, reaches 1. The model is trained using the mean
squared error (MSE) loss between the predicted
sequence, §1.v , and the ground truth, y7.;; :

1, ., R
Lyse = E(yw —iv)? 5)

5 Computational Experiments

5.1 Features

We extract three different types of features from the
PHOENIX14T dataset: skeleton joint coordinates,
facial landmark coordinates, and facial action unit
intensities. We use OpenPose (Cao et al., 2019) to
extract skeleton poses from each frame and use for
our experiments the coordinates of 50 joints which
represent the upper body, arms, and hands, which
we will start referring to as “manual features”. We
also use OpenFace (Baltrusaitis et al., 2018) to
extract 68 facial landmarks as well as 17 facial
action units (AUs) shown in Figure 2 to describe
“facial features”.

5.2 Baseline Models

We will compare the performance of our proposed
model (TG2S) with two Progressive Transform-
ers (Saunders et al., 2020), one using gloss only to
produce sign poses (G2S), and one that uses text
only (T2S). We train each model only with manual
features and also with the combination of manual
and facial features through concatenation.

5.3 Evaluation Methods

In order to automatically evaluate the performance
of our model and the baseline models, we use back
translation suggested by (Saunders et al., 2020).
For that purpose, we use the Sign Language Trans-
former (SLT) (Camgoz et al., 2020) which trans-
lates sign poses into text and computes BLEU and
ROUGE scores between the translated text and the
original text. As the original SLT was designed
to receive video frames as input, we modified the
architecture by removing the convolutional layers
that were used for image feature extraction, and
then we replaced skeletal pose and facial features
as input.

6 Results

6.1 Quantitative Results

Table 2 shows how well the SLT model performs
the translation from ground truth sign poses to text
when trained and evaluated with the PHOENIX 14T
dataset. The results show the highest BLEU scores
are achieved when training the SLT model only
with skeleton joints from the hands and upper body,
presenting a BLEU-4 score of 11.32 for the test
set. When facial AUs are added to the hands, body,
and face features, the difference from using manual
data only is slightly lower, being BLEU-4 of 10.61.

In Table 3, the results of using hands and body
joint skeleton as sole input to the baseline models
and our proposed model are shown. We can see
that our proposed model TG2S shows the highest
BLEU-4 scores of 8.19 in the test set, compared to
7.84 for G2S and 7.56 for T2S.

Table 4 presents the results of including facial
landmarks as well as facial AUs with body and
hands skeleton joints as input. Also, here we can
see that our proposed model outperforms the base-
line models showing a BLEU-4 score of 5.76 in the
test set. G2S obtained a BLUE-4 score of 6.37 and
T2S 5.53.

We see in Tables 3 and 4 that G2S obtained
higher scores than T2S. Given that gloss anno-
tations fail to encode the richness of meaning in
signs, it appears the smaller vocabulary helps the
model achieve higher scores by neglecting informa-
tion otherwise described in the text. Our proposed
model is able to obtain better results than G2S by
making a compromise of using information from
gloss, text, and their similarities and differences.
We also can see in both tables that the inclusion of
facial information reduces the overall scores. We



Components Dev Set Test Set
P Bleu; Bleuz Bleus Bleuy ROUGE | Bleu; Bleus Bleus Bleus ROUGE
Manual 30.15 20.58 1541 12.22 30.41 27776 18.86 14.11 1132 27.44
Manual and Facial | 2946 20.30 15.31 12.10 29.25 2675 17.88 13.29 10.61 26.54

Table 2: Translation results of the SLT model (Camgoz et al., 2020) used for backtranslation when trained and
evaluated with ground truth hand and body skeleton joints (manual) and facial landmarks and AUs (facial).

Model Dev Set Test Set
Bleu; Bleus Bleus Bleus ROUGE | Bleu; Bleus Bleus Bleuys ROUGE
G2S 24.51 15.71 11.19 8.70 24.84 23.26 1454 10.21 7.84 22.89
T2S 2290 1455 1042 8.14 23.42 22.14 13.88 9.85 7.56 22.50
TG2S (Ours) | 24.60 16.20 11.68 8.97 24.82 2297 1471 10.59 8.19 23.45

Table 3: Back translation results obtained from the generative models when using only manual features. Our
proposed model has the highest scores in almost all metrics compared to the models using only gloss or text.

Model Dev Set Test Set
Bleu; Bleus Bleus Bleus ROUGE | Bleu; Bleus Bleus Bleuys ROUGE
G2S 16.11 8.77 5.97 4.49 16.19 16.29 9.20 6.37 4.93 16.73
T2S 15.65 8.35 5.76 4.44 15.65 14.12 7.76 5.53 4.39 14.82
TG2S | 17.25 10.17 7.04 5.32 17.85 1718 10.39 7.39 5.76 17.64

Table 4: Back translation results obtained from the generative models when using manual features and facial
landmarks and AUs. Our proposed model has the highest scores in all metrics compared to the models using only

gloss or text.

believe that this might be the case due to the diverse
range of facial expressions possible. We cannot di-
rectly compare the results of Table 3, and 4 as two
SLT models pretrained on different domains were
used to compute the BLEU scores.

6.2 Qualitative Results

Figure 4 shows the visual quality of our model’s
prediction when using manual and facial informa-
tion. Both examples show that the predictions cap-
tured the hand shape, orientation, and movement
from the ground truth. In the bottom example for
RAIN, the predictions were even able to capture the
repetitive hand movement symbolizing falling rain.
What can also be noted is that the ground truth
is not perfect. In both examples unnatural finger
and head postures can be seen. In addition, ground
truth is not displaying movements of the eyebrows
and mouth in the expected intensities.

Figure 5 shows situations in which the predic-
tions failed to represent the correct phonology of
signs. In the first example, we see that hand shape,
orientation, and position are incorrect. The predic-
tions of our models also fail to capture pointing
hand shapes as shown in example 2.

7 Discussion and Conclusion

In this work, for the first time, we attempt to aug-
ment contextual embeddings for sign language by
learning a joint meaning representation that in-
cludes fine-grained facial expressions. Our results
show that the proposed semantic representation is
richer and linguistically grounded.

Although our proposed model helped bridge the
loss of information by taking into account text,
gloss, and their similarities and differences, there
are still several challenges to be tackled by a multi-
disciplinary scientific community.

Complex hand shapes with pointing fingers are
very challenging to generate. The first step to im-
proving the generation of the fingers is in improv-
ing methods to recognize finger movements more
accurately. Similarly, we need tools that are more
robust in detecting facial expressions even in situa-
tions of occlusion. We also realize that SLG models
are overfitting specific sign languages instead of
learning generalized representations of signs.

We chose to work with a German sign language
since that is the only dataset with gloss annota-
tion that could help us study our hypotheses. The
How2Sign dataset (Duarte et al., 2021) is a feasible
dataset for ASL, but it does not allow any model
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Figure 4: Comparison of the ground truth and the generated poses with our proposed dual encoder model for the
gloss annotations CLOUD and RAIN. The upper example shows that the predictions captured the correct hand shape,
orientation, and movement of the sign CLOUD. In the lower example, it is visible that the predictions captured the
repeating hand movement meaning RAIN. Although at first glance the hand orientation seems not correct, it is a

slight variation which still is correct.
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Figure 5: Examples in which our model failed to gener-
ate the correct phonology of signs. Example 1 depicts
inaccuracies in hand shape, orientation, and movement.
Example 2 shows the difficulty of the model to capture
pointing hand shapes.

to extract facial landmarks, facial action units, or
facial expressions from the original video frames
since the faces are blurred. In the future, we hope
to see new datasets with better and more diverse
annotations for different sign languages that would
allow the design of a natural and usable sign lan-
guage generation system.
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Abstract

Multimodal embeddings aim to enrich the se-
mantic information in neural representations of
language compared to text-only models. While
different embeddings exhibit different applica-
bility and performance on downstream tasks,
little is known about the systematic representa-
tion differences attributed to the visual modal-
ity. Our paper compares word embeddings
from three vision-and-language models (CLIP,
OpenCLIP and Multilingual CLIP, Radford
et al. 2021; Ilharco et al. 2021; Carlsson et al.
2022) and three text-only models, with static
(FastText, Bojanowski et al., 2017) as well as
contextual representations (multilingual BERT
Devlin et al. 2018; XLM-RoBERTa, Conneau
et al. 2019). This is the first large-scale study of
the effect of visual grounding on language rep-
resentations, including 46 semantic parameters.
We identify meaning properties and relations
that characterize words whose embeddings are
most affected by the inclusion of visual modal-
ity in the training data; that is, points where
visual grounding turns out most important. We
find that the effect of visual modality correlates
most with denotational semantic properties re-
lated to concreteness, but is also detected for
several specific semantic classes, as well as
for valence, a sentiment-related connotational
property of linguistic expressions.

1 Introduction

Linguistic representations developed by recent
large pre-trained language models (LMs) (Devlin
et al., 2018; Liu et al., 2019; Radford et al., 2019
a.0.) proved to be very useful across a variety of
practical applications. This success has given a
new life to the debate around extractability and
quality of semantic information in representations
trained solely on textual input. According to the

*Equal contribution.
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widely supported argument, unless the textual data
is grounded in a separate space (say, visual), the lin-
guistic representations are bound to be semantically
deficient (see Bender and Koller, 2020 a.o.).

We aim to shed new empirical light on the dis-
cussion of grounding in computational models by
comparing language-only text representations to
visually informed text representations. Recent
advances produced empirically successful large
models pre-trained on a combination of textual
and visual data (Li et al., 2019; Tan and Bansal,
2019, 2020; Radford et al., 2021). While these
multimodal systems have already given rise to a
plethora of applications for language-and-vision
(L&V) downstream tasks, there is still little work
that directly compares textual representations of
language-only models to those of multimodal ones
(however, see Davis et al., 2019; Liiddecke et al.,
2019; Pezzelle et al., 2021). In contrast to previous
related work that focuses on model evaluation with
respect to specific benchmarks, we look at the im-
pact of visual grounding from a somewhat different,
non-evaluation-based perspective. We do not aim
to measure the representation quality with respect
to some gold standard, but compare language-only
and L&V models to each other intrinsically. Our
goal is to identify the areas in which the contrasts
between the two kinds of models tend to lie, inde-
pendent of the models’ fitness for specific tasks.

To do so, we focus on a set of 13k word pairs and
compare cosine distances within these pairs in the
embedding spaces of language-only vs. L&V mod-
els. Fixing the word pairs and comparing the mod-
els allows us to measure how the change in model
modality stretches the embedding space, with the
word pairs as indirect reference points.

The pairs are characterized along 46 different
semantic parameters. This information makes it
possible to identify the meaning aspects for which
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the change in model modality matters the most.
Our contributions are:

1. a methodology for measuring the influence of
grounding on semantic representations;

a dataset characterizing a large number of
word pairs along various semantic parame-
ters and embedding distances in the models
that we study.

Our results are the following:

e The semantic parameter that makes the highest
contribution into explaining the impact of modal-
ity on word representation is concreteness. This
aligns with previous results that visual modality
improves representations of concrete nouns but not
abstract ones (Pezzelle et al., 2021).

e Representations of particular semantic groups of
nouns are affected the most.

e Semantic relations between nouns only have
small interaction with modality across the models
we tested, with variation from model to model.

e Connotational meanings from the VAD (valence,
arousal, dominance) repertoire (Mohammad, 2018)
— specifically, valence — play a role in representa-
tional shifts relating to modality. This is a some-
what surprising result since visual grounding is
expected to relate to the denotational aspects of rep-
resentations. This result is in line with recent dis-
cussion in semantics about the inter-relatedness of
denotational and connotational meanings (Ruyten-
beek et al., 2017; Terkourafi et al., 2020; Van Tiel
and Pankratz, 2021; Beltrama, 2021; Gotzner and
Mazzarella, 2021).

We now discuss our data, analysis and results.

2 Data'

The dataset consists of word pairs. To collect them,
we start with 1000 most frequent words in FastText
(Bojanowski et al., 2017). For each of them, we
take 100 closest words, by cosine distance over
FastText embeddings. This gives 1M pairs to work
with. We filter this list of pairs in several ways.
First, we only keep those pairs where both words
are nouns, according to both NLTK? and SpaCy?

'Our code and data are available on GitHub: https:
//github.com/altsoph/modality_shifts

https://github.com/nltk/nltk

‘https://github.com/explosion/
spacy-models
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POS labels. Second, we filter out pairs where one
of the words is a substring of the other or where
the two words have the same lemma. This helps
against some FastText artifacts.

One of the goals of our filtering strategy was
to balance representation quality of the words (the
frequency filter) and the chance for the pair to stand
in a WordNet relation (the similarity filter). This
gives us a set of pairs like the following:

( page, article )
( people, politicians )
( city, hometown )

Each of the resulting pairs was characterized
along a set of properties of interest, collected over
a variety of available sources of human-annotated
semantic information. The properties we look at
come in two big blocks: 1) the ones that charac-
terize individual words (assigned to each word in
the pair); 2) the ones that characterize a semantic
relation between the words in the pair.

Properties for individual words included:

e Concreteness, a continuous score on the
abstractness-concreteness scale, the Ghent con-
creteness norms (Brysbaert et al., 2014);

e 26 WordNet supersenses of nouns (ACT, AN-
IMAL, FEELING, FOOD etc.), implemented as
boolean labels (Miller, 1995);

e 3 NRC VAD continuous scores for valence,
arousal and dominance (Mohammad, 2018).

Relational semantic properties included:

o 6 WordNet semantic relations (Miller, 1995):
ANTONYMS, SYNONYMS, SAME_HYPONYMS,
SAME_HYPERNYMS, HYPONYMS, HYPERNYMS.

e 10 ConceptNet semantic relations (Speer et al.,
2017): ANTONYM, SYNONYM, ATLOCATION,
DERIVEDFROM, DISTINCTFROM, FORMOF, ISA,
PARTOF, RELATEDTO, SIMILARTO.

The relations were implemented as boolean labels.

This is the most comprehensive list of semantic
parameters for which human annotations exist on a
large scale. It covers both denotational and connota-
tional aspects of meaning of both individual words
and relation within pairs. Connotational meanings
are represented with three sentiment-related mean-
ing aspects only, as these are the only ones repre-
sented in a large human-annotated dataset (Moham-
mad, 2018).

Additionally, word count based on Wikipedia
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(accessed via Textacy) is included for each word
in all pairs as a non-semantic baseline parameter.

We leave only those word pairs for which all
the above mentioned parameters are defined. This
gives us 13k word pairs in total, each of the pairs
gets characterized along 30 individual semantic
parameters (*2, for the first and the second noun in
the pair) and 16 relational parameters; plus, word
count for each of the words in the pair.

We collect the distances between the words in
each pair for their embeddings from the models
of interest. As text-only models, we use fastText
(Bojanowski et al., 2017) and two contextualized
embedding models: multilingual BERT (mBERT,
Devlin et al., 2018) and XLM-RoBERTa (XLMR,
Conneau et al., 2019). For each contextualized
model, we extract three kinds of word type embed-
dings known to show systematic differences (Vuli¢
et al., 2020); average of all token embeddings, in-
cluding separator tokens, from the final encoding
layer of a word presented in isolation (iso); the av-
erage encoding over the bottom 6 layers across a
sample of 10 usage contexts (avg-bottom), amd the
average encoding from the final layer across a sam-
ple of 10 usage contexts (avg-last). As multimodal
models, we use CLIP, OpenCLIP and Multilingual
CLIP (Radford et al., 2021; Ilharco et al., 2021;
Carlsson et al., 2022). For each multimodal model,
we extract two different types of word type embed-
dings, one by encoding the word in isolation and
one by averaging over sentence embeddings of 10
usage examples.

The goal is to find a common ground of different
models depending on their modality. In this way
we hope to be able to distinguish between model-
specific idiosyncrasies and general properties of
text-based representations.

3 Analysis

We run a series of regression analyses with seman-
tic features and relations as predictors, along with
word frequency as baseline.

We analyze the shift in distances within word
pairs between two embedding models. To measure
it, we rank all word pairs in our dataset by the ratio
between the cosine distance values of the pair in
the two embedding models. Using ratios and ranks
rather than absolute differences serves as a nor-
malization strategy because the vector spaces have
significantly different structures (see Appendix A).
The resulting rank of the pair is then used as the
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dependent variable in a regression analysis.

The baseline regression model includes as pre-
dictors word frequencies in the Wikipedia corpus
and concreteness scores from the Ghent concrete-
ness norms dataset (Brysbaert et al., 2014). To
estimate the contribution of different groups of se-
mantic features, we add them to the regression as
additional predictors. This is done separately for

1. taxonomic features of the two words formal-
ized as their WordNet supersenses (Miller,
1995);

sentiment/connotation-related features of the
two words extracted from NRC VAD (Mo-
hammad, 2018);

. relation within the word pair according to
Princeton WordNet (Miller, 1995);

relation within the word pair according to Con-
ceptNet (Speer et al., 2017).

All numeric parameters (concreteness scores,
word frequencies, and VAD values) were normal-
ized by converting numeric values into ranks.

To calculate regression, we used a standard im-
plementation of ordinary least squares regression
from the statsmodels python package. We compute
adjusted R-squared values to avoid a bias from the
different numbers of parameters. Each fitted regres-
sion showed high significance (p < 0.0001).

4 Results

The results of regression analysis for several mod-
els are illustrated in Table 1. Our main observations
are:

e Baselines. Concreteness plays a major role in
explaining modality shifts, in line with results of
previous studies (Pezzelle et al., 2021).

e Combined WordNet supersenses. We find a
significant effect for many pairs of text vs. multi-
modal models, although different subsets of taxo-
nomic features prove significant in different pairs
of models.

e WordNet and ConceptNet relations tend to be
significant when aggregated, although no individ-
ual relation has a systematic effect across model
pairs.

e VAD features produce varied effects, with va-
lence showing the most consistent modality differ-
ence. VAD features explain only a small percentage
of variance in all models.



CLIP-iso vs. XLMR-iso mBERT-iso BERT-avg-last fastText
Baselines

concreteness 9.5 11.68 2.27 8.71
frequency 5.43 7.81 1.91 0.45
concreteness+frequency 16.73 17.16 3.65 9.54
+taxonomic 21 (+4.27)  20.35(4+3.19) 543 (+1.78) 19.50 (4+9.96)
+VAD 17.36 (+0.63) 17.49 (+0.33)  4.62 (+0.97) 10.78 (+1.24)
+WordNet relations 18.47 (+1.74)  17.36 (+0.2) 10.05 (+6.4) 10.34 (+0.8)
+ConceptNet relations 19.8 (+3.07) 17.47 (+0.31) 8.84 (+5.19) 10.26 (+0.72)

Table 1: Illustration of our method: Embedding space in CLIP-iso vs. four of the text-only models. Table reports
percentage of variance (adjusted R?) in cosine distance ratio explained by different groups of semantic factors. We
take the number in parentheses as an estimate of the effect of the factor (e.g. the effect of all taxonomic features
from WordNet combined) on the difference between two embedding spaces (e.g. fastText vs. CLIP).
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Figure 1: Comparing semantic features’ contributions to contrasts between text models vs. other text models, on the
one hand, and text models vs. L&V models, on the other hand. Explanatory contributions of concreteness, VAD
valence and Wordnet supersense ‘Is Possession’ are sensitive to model modality, unlike supersense ‘Is Attribute’.
(Here and in Appendix B, whiskers in the boxplots are set to 0.5 IQR.)

Figure 1 illustrates the effect of specific features:
concreteness, valence and possession WordNet su-
persense, vs. the attribute supersense that has no
consistent effect on modality shifts. For more plots,
see Appendix B.

5 Conclusion and discussion

The goal of our paper was to investigate what se-
mantic factors contribute to the difference in rep-
resentational spaces of language-only models vs.
multimodal models.

Our regression analysis confirmed previous find-
ings that concreteness plays a major role in this
difference (Pezzelle et al., 2021). This is natural
since imageability, the measurable manifestation of
concreteness, is directly related to whether useful
information about a concept can be inferred form
visual data.

However, other factors beyond abstractness con-
tribute to the modality-based space contrasts as
well. The most important factor here is taxonom-
ical, as measured by the effect of WordNet lexi-
cographer files. Wordnet supersenses consistently
affect semantic similarities in text-only models vs.
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L&V models: in particular, we found this for arti-
facts, quantities, possessions and communication
lexical classes.

Lastly, sentiment-related lexical properties, most
clearly valence, also affect the semantic similarity
in language-only vs. multimodal spaces. Recently,
several studies in semantics and pragmatics have
indicated interactions of connotational content with
denotational meanings (Ruytenbeek et al., 2017;
Terkourafi et al., 2020; Van Tiel and Pankratz, 2021;
Beltrama, 2021; Gotzner and Mazzarella, 2021).
Our results can be interpreted as pointing in that
direction too. Still, the effect of sentiment is overall
much smaller than the core denotational properties
of the words in the lexical pair, as illustrated by
the comparison of the combined VAD to combined
taxonomic features in Table 1.

We contribute to the understanding of different
embedding spaces by demonstrating systematic dif-
ferences between text-only vs. L&V models. Many
questions are however left for future research. For
example, do the distinct properties of multimodal
embeddings make them better suited for specific
tasks, as Pezzelle et al. (2021) argued for the relat-



edness judgments of concrete nouns?

In the light of Kruszewski’s finding (Kruszewski
and Baroni, 2015) that taxonomic information inter-
acts strongly with referential compatibility between
concepts, our findings on the role of taxonomic
status on vector space structure suggests that the
choice of multimodal vs. textual representations
can be crucial for inference, especially for the diffi-
cult case of the neutral vs. contradiction distinction.

Finally, we note that the semantic factors we con-
sidered only explain a small part of the discrepancy
between textual and L&V models. The rest must
be attributed to other factors, such as random dif-
ferences in the textual data used for model training
as well as semantic phenomena outside the scope
of our study.

We hope that our study inspires further explo-
ration of systematic differences between embed-
ding models, both for visual grounding and beyond.
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A Properties of embedding spaces
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Abstract

Negation scope resolution is the process of de-
tecting the negated part of a sentence. Un-
like the syntax-based approach employed in
previous researches, state-of-the-art methods
performed better without the explicit use of
syntactic structure. This work revisits the
syntax-based approach and re-evaluates the ef-
fectiveness of syntactic structure in negation
scope resolution. We replace the parser uti-
lized in the prior works with state-of-the-art
parsers and modify the syntax-based heuristic
rules. The experimental results demonstrate
that the simple modifications enhance the per-
formance of the prior syntax-based method to
the same level as state-of-the-art end-to-end
neural-based methods.

1 Introduction

Negation is a common linguistic phenomenon that
frequently appears in natural language. Conse-
quently, its detection is crucial for various NLP
applications, including sentiment analysis, relation
extraction and medical data mining. Typically, the
negation detection task is broken down into two
subtasks: (i) detecting negation cues (words, af-
fixes, or phrases that express negations) and (ii)
resolving their scopes (parts of a sentence affected
by the negation cue). In example (1) below, the
word “not” is the negation cue (marked in bold)
and word sequences “He did” and “go to school”
form the scope (underlined parts).

(1) He did not go to school and stayed home.

This work addresses the second subtask: nega-
tion scope resolution. Prior works used syntac-
tic features for resolving the scope of negations
(Read et al., 2012; Carrillo de Albornoz et al., 2012;
Abu-Jbara and Radev, 2012; White, 2012). Read
et al. (2012) tackled this issue with syntax-based
approach and obtained the best performance on
the token-level evaluation in *SEM2012 shared
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task (Morante and Blanco, 2012). Recently, many
studies treat this task as a sequence labeling prob-
lem and use deep-learning techniques (Fancellu
et al., 2016; Khandelwal and Sawant, 2020; Truong
et al., 2022). Without explicitly utilizing syntactic
structure, they argued that end-to-end neural ap-
proaches can outperform earlier syntax-based ones.
However, the prior works proposed in *SEM2012
shared task used the parser of that time'. The per-
formances of parsers have considerably improved
since. The effectiveness of the syntax-based ap-
proach will increase with the usage of accurate
parsers. Furthermore, syntax-based methods have
an advantage over deep-learning techniques: high
interpretability.

Motivated by the point mentioned above, this
work revisits the syntax-based approach for nega-
tion scope resolution. We use state-of-the-art
parsers to re-evaluate the earlier syntax-based ap-
proach. We also modify the syntactic-based heuris-
tic rules used in the prior syntax-based method.
Our experimental results demonstrate that the prior
method, based on heuristics for syntax structure,
can obtain the same level of performance as state-
of-the-art methods based on end-to-end neural net-
works.

2 Related Work

This section describes the syntax-based method
proposed by Read et al. (2012), based on which we
re-evaluate the usefulness of syntax for negation
scope resolution. Their approach assumes that the
scope of negation corresponds to a constituent. As
an example, let us consider the sentence (2).

(2) Tknow that he is not a student.

'The syntactic information provided by the parser is an-
notated on the datasets utilized in *SEM2012 shared task.
Participants in the shared task applied this syntactic informa-
tion.

Proceedings of the The 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023), pages 18-23
July 13-14, 2023 ©2023 Association for Computational Linguistics
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Figure 1: Constituent parse tree of sentence (2), high-
lighting candidate scope constituents.

Figure 1 shows the constituent parse tree of the
sentence. In this sentence, the scope of the negation
cue “not” corresponds to the constituent S whose
left end is “he” and whose right end is “student”.
This method resolves the scope of the negation cue
according to the following steps:

1. Parse the sentence and select the constituents
on the path from the cue to the root as candi-
dates (The candidates are marked in bold in
Figure 1).

2. Select one constituent corresponding to the
scope using heuristics or the Support Vector
Machine classifier.

3. Adjust the scope by removing certain ele-
ments from the constituent selected in the sec-
ond step.

In the first step, the sentence is parsed and all
the constituents that dominate the negation cue are
considered as scope candidates. For example, in
sentence (2), six constituents highlighted in Fig-
ure 1 are selected as candidates. In the second
step, one constituent is selected from the candi-
dates using heuristics or a classifier. We describe
the heuristic method, which we use in this work.
This method selects one constituent from the can-
didates using scope resolution heuristics shown in
Figure 2. The 14 rules that form the heuristics are
applied in order from top to bottom; the rules are
listed in a specific-to-general order. Each rule is
represented as a path pattern and some rules have
additional constraints (if part). For example, the
fifth rule “DT//SBAR if SBAR\WHADVP” will

RB//VP/SBAR if SBAR\WHx (#)
RB//VP/S

RB//S

DT/NP if NP/PP

DT//SBAR if SBAR\WHADVP
DT//S

JJ//ADJP/VP/S if S\VP\VBx
JJ/NP/NP if NP\PP

JJ/ /NP

UH

IN/PP

NN/NP//S/SBAR if SBAR\WHNP
NN/NP//S

CC/SINV

[Rlemma="be"]

Figure 2: Scope resolution heuristics. Each row dis-
plays one rule, which is presented in the order that they
should be applied. Each rule is represented as a path
pattern. A/B denotes that B is the parent of A, A//B im-
plies B is an ancestor of A, and A\B means B is a child
of A. (#) is the rule we modify in this work.

be activated and the constituent SBAR is selected
when the negation cue is a determiner (DT), pro-
vided that it has an ancestor SBAR if the SBAR has
a child WHADVP. If no rule is activated, it uses
a default scope, which expands the scope to the
left and the right of the negation cue until either a
sentence boundary or a punctuation is found.

The alignment of the constituent and the scope
is not always straightforward. Sentence (1) is one
of such illustration. In this sentence, the scope
of the negation cue “not” does not cross the coor-
dination boundary: the coordinating conjunction
“and”, its following conjunct “stayed home” and the
punctuation “.” are not included in the scope. To
deal with such a case, Read et al. (2012) adopted
some heuristics to remove certain elements from
the constituent in the following way:

* Remove the constituent-initial and -final punc-
tuations from the scope.

* Remove certain elements at the beginning or
the end of the constituent using slackening
rules, which consist of five heuristics.

* Apply two post-processing heuristics to han-
dle discontinuous scopes:

— Remove previous conjuncts from the
scope if the cue is in a conjoined phrase.

— Remove sentential adverbs from the
scope.

For sentence (1), the scope “He did, go to school”
is correctly resolved using the series of process.
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Figure 3: Constituent parse tree of sentence (1), enclos-
ing removed parts in boxes.

The constituent S is selected as the scope of the
cue according to the first and second steps. In
the third step, the coordinating conjunction “and”,
and its conjunct “stayed home” are removed by
the first heuristic rule for discontinuous scope, and
the punctuation “.” is removed by the above first
heuristic rule (removed parts are enclosed in Figure

3).

3 Revisiting the Syntax-Based Method

In this section, we revise the method described in
the previous section to re-evaluate the syntax-based
approach in negation scope resolution. Section 3.1
describes the parsers we use in this work. Sections
3.2 and 3.3 discuss the modifications we made for
the second and the third steps of Read et al. (2012)’s
method, respectively.

3.1 Replacement of the Parser

The dataset used in *SEM2012 shared task
(Morante and Daelemans, 2012), also known as
the Conan Doyle dataset, is one of the primary
datasets used for negation scope resolution. This
dataset also contains syntactic information, which
was assigned using the reranking parser of Char-
niak and Johnson (2005). As Read et al. (2012)
mentioned, syntactic information contains parse er-
rors. They suspected that parse errors cause scope
resolution errors in their method. To mitigate this
issue, we parse the sentences in the dataset using
state-of-the-art, high-accuracy parsers. We use two
parsers: Berkeley Neural Parser (Kitaev and Klein,
2018; Kitaev et al., 2019) with BERT (Devlin et al.,
2019), and Attach Juxtapose Parser (Yang and
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Parser F; score (%)
Reranking Parser (2005) 91.02
Berkeley Neural Parser (2018) 95.77
Attach Juxtapose Parser (2020) 96.34

Table 1: Performances of the parsers in Penn Treebank
Section 23.

Deng, 2020) with XLNET (Yang et al., 2019). Ta-
ble 1 shows the performances of the parsers on
Penn Treebank (Marcus et al., 1993).

3.2 Modification of Scope Resolution
Heuristics

Read et al. (2012) used scope resolution heuristics
shown in Figure 2 to detect the constituent corre-
sponding to the scope of the negation cue. The
first rule of Read et al. (2012) (denoted with (#) in
Figure 2) is considered to extract relative clauses,
but this rule does not work properly. In relative
clauses in Penn Treebank, SBAR directly domi-
nates not VP but S (and the S has a child VP). To
accurately capture this structure, we modify the
rule as follows:

(3) RB//VP/S/SBAR if SBAR\WHNP

This modification is based on the preliminary ex-
periment conducted on the training data.

3.3

As indicated in Section 2, Read et al. (2012)’s
method adjusts the constituent in the third step.
This work partially modifies slackening rules and
post-processing.

In the case of slackening rules, we present the
following additional rule to the original five rules:

Modification of Scope Adjustment

* Remove initial PP (prepositional phrase) if
delimited by a comma.

This modification was motivated by the annotation
guideline of the Conan Doyle dataset (Morante
etal., 2011). According to this guideline, discourse
markers are excluded from the scope. Comma-
delimited prepositional phrases often function as
discourse markers, such as “In my opinion” in ex-
ample (4). In this case, we should remove them
from the scope.

(4) In my opinion, he should not go.

For the post-processing, we modify the second
processing: removing sentential adverbs from the



Scope-level

Token-level

Parser
Pre. (%) Rec. (%) Fi (%) Pre.(%) Rec.(%) Fi (%)
Reranking Parser 97.21 69.88 81.31 86.87 93.07 89.86
(97.14) (68.27) (80.19) (85.48) (93.63) (89.37)
Berkeley Neural Parser 98.91 72.69 83.80 89.78 92.96 91.34
(98.88) (70.68) (82.43) (87.88) (93.57) (90.64)
Attach Juxtapose Parser 98.94 74.70 85.13 90.62 94.68 92.61
(98.90) (72.29) (83.53) (88.70) (95.24) (91.85)

Table 2: Scope resolution performances for gold cues using the three different parsers. The upper figure in each
row demonstrates the result with modified rules discussed in Sections 3.2 and 3.3; the lower figure shows the result
without modifications. Note that in the case of the rule to remove sentential adverbs from the scope in the third step,
we were not able to reproduce the Read et al. (2012)’s method because the sentential adverb list is not publicly
available. Thus, both the upper and the lower figures describe the results of our modified rule.

scope. Read et al. (2012) compiled a list of senten-
tial adverbs from the training data and used it for
this processing. Instead, in this work, we simply re-
move “comma-delimited ADVP (adverbial phrase)
or INTJ (interjection)” from the scope along with
the commas. This is a generalization of Read et al.
(2012)’s processing. As an example of a comma-
delimited ADVP that functions as a discourse-level
adverbial and should be excluded from the scope,
see sentence (5) below.

(5) There was no trace, however, of anything.

Again, this modification of scope adjustment rules
is based on the training data.

4 Experiment

To re-evaluate the syntax-based approach to nega-
tion scope resolution, we conducted an experi-
ment®. This section describes the detail of the
experiment. We explain the dataset, settings and
results in Sections 4.1, 4.2 and 4.3, respectively.

4.1 Dataset

To evaluate the performance of our work, we used
the Conan Doyle dataset, which was employed in
*SEM2012 shared task. The dataset is divided into
training data, development data and evaluation data.
The training data contains 848 sentences including
negation, the development data 144 and the evalu-
ation data 235. Note that there can be more than
one negation cue in a sentence. Each data contains
984, 173 and 264 negation cues, respectively.

2The code is available at https://github.com/
asahi-y/revisiting-nsr.

21

4.2 Experimental Settings

We conducted an experiment using the evaluation
data of Conan Doyle dataset. We created new con-
stituent parse trees for the sentences in the dataset
using Berkeley Neural Parser and Attach Juxta-
pose Parser. We did not perform cue detection,
that is, we report performance using gold cues.
Other experimental setups are similar to those of
*SEM2012 shared task, with the scope-level F;
score and the token-level F; score as the evalua-
tion metrics. Among the evaluation metrics, the
following points should be noted:

¢ Punctuation tokens are excluded from the eval-
uation.

If a sentence contains two or more negation
cues, scope predictions for each negation cue
are evaluated separately.

For the scope-level evaluation, a predicted
scope is counted as TP if all tokens cor-
responding to the scope of a negation cue
are predicted correctly. Partial matches are
counted as FN.

We used the official script distributed in the shared
task® for evaluation.

4.3 Experimental Results

Table 2 shows the experimental results with three
different parsers to provide the constituent parse
trees. The results demonstrate that the use of accu-
rate parsers leads to an increase in performance in
negation scope resolution for both scope-level and

*https://www.clips.ua.ac.be/
sem2012-st-neg/data.html
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Token-level F (%)

Method

Including punctuations  Excluding punctuations
This work 91.74 92.61
Fancellu et al. (2016) 88.72 -
Li and Lu (2018) - 89.4
Khandelwal and Sawant (2020) 92.36 -
Truong et al. (2022) 91.24 -

Table 3: Comparison to previous methods. The results of this work are the ones obtained by using syntactic
information generated by Attach Juxtapose Parser, and by applying modified rules. Note that the results are for

negation scope resolution using gold cues.

token-level metrics. We also verified that the rule
modifications introduced in this work contributed
to the performance improvement.

Several previous works, including state-of-the-
art methods, incorporate punctuation tokens for
evaluation, which were omitted in *SEM2012
shared task. To compare our results with these
methods, we also assessed F; score including punc-
tuation tokens. Table 3 shows the results. The
performance of the syntax-based method tested in
this work obtained 91.74% in F; score including
punctuations, which is only 0.62% behind values
reported by the state-of-the-art method (92.36%),
obtained by Khandelwal and Sawant (2020). This
result shows that the prior method based on heuris-
tics for syntax, with the use of a high-performance
parser, can obtain performance close to the re-
sults obtained by the best-performing deep learning
methods.

5 Conclusion

This work re-evaluated the syntax-based approach
in negation scope resolution. We replaced the
parser used in the prior works with the state-of-
the-art parsers. We also slightly modified the
syntax-based heuristic rules designed in the prior
work. The experimental results demonstrate that
the prior syntax-based approach can obtain high
performance comparable to those of state-of-the-
art methods. This work gives a strong baseline for
the negation scope resolution task and opens up the
possibility of accurate and interpretable negation
scope resolution.

In future work, we will introduce a tree-based
neural model into the constituent selection process
to enhance the performance of the scope prediction.
It would also be interesting to apply the syntax-
based approach to the scope resolution of other
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linguistic phenomena, for example, speculation or
quantifier.
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Abstract

In this paper, we focus on the ability of large
language models (LLMs) to accommodate dif-
ferent pragmatic sentence types, such as ques-
tions, commands, as well as sentence fragments
for natural language inference (NLI). On the
commonly used notion of logical inference,
nothing can be inferred from a question, a com-
mand, or an incomprehensible sentence frag-
ment. We find MNLI, arguably the most impor-
tant NLI dataset, and hence models fine-tuned
on this dataset, insensitive to this fact. Using
a symbolic semantic parser, we develop and
make publicly available, fine-tuning datasets
designed specifically to address this issue, with
promising results. We also make a first explo-
ration of ChatGPT’s concept of entailment.

1 Introduction: “I didn’t say that!’

Committing oneself to the truth of a certain claim
always implies or suggests one’s commitment to
the truth of a number of other claims, and it pre-
cludes one’s commitment to the truth of a second
set of claims. This is the essence of the logical no-
tion of entailment (here used synonymously with
inference) and contradiction. For instance, some-
body who claims “Loral did harm national security”
is also commiitted to the less specific claim “Some-
thing or somebody did harm national security”.

The concept of inference is itself quite complex.
As Gubelmann et al. (2022) detail, valid inferences
can be divided into deductively valid inferences,
where it is not logically (see Plantinga 1974) possi-
ble that the premise is true while the conclusion is
false, and inductively valid inferences (also called
abductions), where it is possible that the premise
is true while the conclusion is false, but where the
truth of the premise is in general a good reason for
the truth of the conclusion.

For two utterances to be able to (deductively or
inductively) entail or contradict each other, they
have to be of the correct pragmatic category. While
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assertions or claims are able to stand in these logi-
cal relationships, the same does not hold for other
pragmatic kinds of utterances, such as questions
or commands, as they do not involve making a
claim that could be true or false and hence commit
their author to the truth of certain claims that could
then entail or contradict other claims. For instance,
uttering (P) in example (1) does not commit the
speaker to Loral’s harming of national security —
she’s simply asking a question, not making a claim.
Hence if, after uttering (P) from (1), somebody
replies with “So you claim that somebody did harm
national security”, the appropriate response would
be “I didn’t say that!”.

Neither does she commit herself to everybody’s,
as a matter of fact, having a happy Hanukkah when
uttering (P) in (2), that is, wishing everyone a happy
Hanukkah: Rather, she is expressing the wish that
everyone is going to have a happy Hanukka. Com-
mitting oneself to some state of affairs, i.e., to ex-
press a claim that can be true or false, is not the
kind of thing one does when uttering a question or
a command (which is not to dispute that questions
and commands come with specific presuppositions,
including factual presuppositions, that need to be
fulfilled for the speech act in question to succeed).

(D) (P) Did Loral harm national security? (H)
National security was not in danger. (con-
tradiction)

2) (P) Happy Hanukkah, everybody! (H) Ev-

eryone, have a happy Hanukkah! (entail-
ment)

Properly distinguishing between pragmatic kinds
of utterances that can and cannot stand in logical re-
lations is important in several areas of application.
First, we can consider the legal context, where fact
and claim verification is of critical importance. In
the setting of the automatic extraction of claims
from testimonies, a system should be able to dis-
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tinguish between claims and statements with other
pragmatic functions such as questions, which do
not commit their speakers to the truth of any claims
(see, e.g., the overview in Ashley (2018)). Addi-
tionally, an essential application area is education:
Using large language models (LLMs) to give forma-
tive feedback on students’ arguments requires that
the LLMs be able to distinguish between claims
made in the text, which can be used to infer other
claims, and questions and commands, which cannot
(see Rapanta et al. (2013) for an illustration of the
importance for this logical concept of entailment
in education science).

Most recently, the introduction of general-
domain, openly-available conversational systems
such as ChatGPT (OpenAl) shows the need for
such a distinction even more clearly: a chatbot,
which collects its information from web resources
but does not perform any reasoning steps itself,
can falsely spread non-claims as claims if it cannot
differentiate between the two.

Current NLP research conceives natural lan-
guage inference (NLI) as a three-way classifi-
cation task between two sentences (or sentence-
fragments), called premise (P) and hypothesis (H).
LLMs are trained to predict contradiction (P and
H cannot both be correct), entailment (If P is cor-
rect, then H must be correct as well), or neutral
(neither of the two). While much of the very early
research focused on deductively valid inferences,
more recent research has also taken into account
inductive inference, which are called applied entail-
ments (Dagan et al., 2005) or informal reasoning
(MacCartney, 2009).

The Multi-Genre Natural Language Inference
Dataset (MNLI) Williams et al. (2018) has ar-
guably become the most widely used dataset for
fine-tuning LLMs for NLI. This means that many
(perhaps the majority of) LLMs that are fine-tuned
for the task of NLI are fine-tuned using MNLI
and thereby pick up MNLI’s concept of inference.
The instructions given to the crowdworkers who
worked to create the dataset as well as explicit com-
ments by the authors support the conclusion that
MNLI’s target notion of entailment dovetails with
the one detailed here, applicable to claims but not
to questions and commands.

However, MNLI contains prompts that are ques-
tions, such as in (1), or commands, such as in (2),
as well as fragments such as (3), which are en-
tirely incomprehensible if they are presented, as in
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MNLLI, without any context. In fact, all examples
are from MNLI’s training split with their respective
gold-labels in brackets. Hence, there seems to be
a conceptual gap between the notion of entailment
as explicitly embraced by the authors of MNLI and
the pragmatic kinds of some of the prompts used
to create the dataset.

3) (P) The kids. (H) The adults. (contradic-

tion)

In this paper, we study the extent of the phe-
nomenon, the consequences that this set-up of
MNLI has for LLLMs that are fine-tuned on MNLI,
and we explore ways to acquaint the LLMs with
these core pragmatic categories. Our paper makes
three contributions. First, after detailing the notion
of inference as well as the conceptual gap in MNLI
on a theoretical level (section 3), we empirically as-
sess the extent of the phenomenon of non-assertive
premises in MNLI (section 4). Second, relying
on the existing semantic parser GKR, we show a
promising path towards acquainting LLMs with
these pragmatic categories (section 5). Third, we
publish both an expert-curated gold-standard eval-
uation dataset as well as 7 different fine-tuning
datasets to further research in this field.! Addi-
tionally, we also take the very first steps toward
exploring ChatGPT’s concept of entailment.

2 Related Research

2.1 Inference in Logic and Semantics

Both deductive and inductive inferences require
claims with determinate truth-values for their func-
tioning. This means that it is necessary for any
relationship of inference to be possible that both
relata are constituted by a claim with determinate
truth conditions: it needs to be clear in which situa-
tions premise and hypothesis are true. Otherwise, it
would be impossible to assess whether the truth of
the premise guarantees/makes reasonable the truth
of the hypothesis, which is the essence of both de-
ductive and inductive inferences. We propose that
only sentences fulfilling the following conditions
C1 and C2 can express such determinate claims.

C1 Only sentences whose pragmatic force is as-
sertive can express determinate claims.

C2 Only assertions which are sensible (that is,
where it is clear what has to be the case for

'To access the datasets, please consult: https://github.
com/retoj/whentruthmatters.
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the claim to be true) can express determinate
claims.

C1 is violated by questions and commands, such
as the premises in examples (1) and (2). The ques-
tion “Did Loral harm national security?” lacks
determinate truth conditions because questions can-
not be true or false, but rather sensible or nonsen-
sical. Similarly, uttering a command like “Happy
Hanukkah!” does not aim to make a determinate
claim about the state of affairs but rather aims to
bring about a certain state of affairs.

We owe the insight that one can do different
things with different types of sentences (the theory
of so-called “speech acts") to Austin (1962, 1975)
and Searle (1969, 1985), continuing a basically
Wittgensteinian outlook Wittgenstein (2006/1953,
§43).2 For a more recent survey of this approach,
see Levinson (2017). Speech acts, like any actions,
can succeed or fail to reach the goal that the agent
intends with it. If some presuppositions for an act
are not met, then it cannot possibly succeed.

With regard to fulfilling C2, the bare minimum
needed for a sentence to express a claim with deter-
minate truth conditions is some entity that is iden-
tified with sufficient precision (call it “subject”)
as well as something, again sufficiently precise,
that is predicated of that entity (call it “predicate”).
This conception of a minimal claim as consisting of
some specific entity of which something is said is
a standard in logical textbooks, see, e.g., Smullyan
(1968, 43) or Garson (2006, 29), but also in every-
day human communications. For an overview, see
Shapiro and Kouri Kissel (2021, sec. 2.2). For an
influential contemporary statement of this minimal
notion of a determinate claim, see Burge (2010,
537-547). For example, C2 is clearly violated by
the premise of (3). Without any further context,
and MNLI does not provide any such context, it
is not clear whether the fragment “the kids” is in-
tended as subject or predicate, but it is clear that
one of the two is missing.

To see that nothing can be inferred from any-
thing that violates C1 and C2, it is crucial to be
aware of the distinction between inference and pre-
supposition. For instance, one might be tempted
to say that from the question (1), it can be inferred
that Loral potentially endangers national security,
which would contradict the hypothesis of this exam-

*Mastery of this multitude of language games in a flexible
and adaptive manner is a key challenge for Al systems to come
to really understand language, see Gubelmann (2023).
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ple. This, however, would be to confuse inference
with presupposition (the subtleties of the notion of
presupposition, going back to Russell 1905 are still
lively discussed in linguistics, see Dryer 1996 for a
more recent influential contribution).

To claim that national security was never in dan-
ger would not, as the gold label for example (1)
suggests, contradict the question: questions can
be answered, rejected, ridiculed, etc., but not con-
tradicted in the relevant logical sense. Rather, the
claim would (at least on some readings of the ques-
tion) show that the question fails to make proper
sense, as one of its presuppositions, that national
security was ever endangered, is not met.

A phenomenon similar to presuppositions has
been described by Grice (1975) as conventional
implicature.’> Roughly, conventional implicatures,
unlike presuppositions, do not affect the sensibility
of the utterance in question (this follows (Potts,
2015, 31), who argues that an implicature, unlike
a presupposition, is independent from the primary
content of the utterance.* Consider example (4).

) (a) Bern, the capital of Switzerland, is the
largest city of the country. (b) This is not

true.

On a first level, the claim expressed by sentence
(a) in example (4) is simply wrong: Zurich, not
Bern, is the largest city of Switzerland. On the
second level, however, it is also not the case that
Bern is the capital of Switzerland: The founders
of Switzerland deliberately avoided designating an
official capital city due to existing rivalries between
the candidates for such a role. This second level
is beyond the reach of the challenge (b), it only
reaches the actual claim being made about the rela-
tive population of Bern.

In fact, this availability for direct challenge
is what helps to clearly identify the determinate,
claimed content in an utterance — and it also helps
to establish whether there is any such claimed con-
tent in the first place. With commands such as the
one in example (2), you cannot respond with “This
is not true”, nor can you do so in response to a
question such as in (1), or in response to an incom-
prehensible fragment such as in (3). In contrast, to

3See Davis (2019) for an overview. For more recent dis-
cussions of the concept, see Potts (2004); Lepore and Stone
(2010). For an original perspective on the concept from formal
semantics, see Peters (1979).

#*Karttunen and Peters 1979, in contrast, use the two con-
cepts almost equivalently.



access and reject the presuppositions behind some
of these utterances, one has to do more linguistic
work. For instance, you could reject a possible
presupposition of the question in example (1) with:
“Your question is beside the point because Loral
has newer produced anything else than toilet pa-
per; therefore, the very idea that it could have been
even a potential danger for national security is mis-
guided.”

The second important distinction that we want
to point out is that between inference and meaning-
preserving paraphrase. The two relationships are
orthogonal: If one claim with determinate truth-
conditions is the meaning-preserving paraphrase
of another such claim, than they can be mutually
inferred from each other. If, in contrast, what is
being paraphrased is a question, a command, or an
incomprehensible fragment, then no relationship
of inference exists between the original and the
paraphrase — regardless of how synonymous they
are.

We would, finally, like to note that we rec-
ognize the usefulness of a broader, non-truth-
functional notion of entailment for uses beyond
NLI. For instance, Groenendijk and Stokhof (1984,
p.47f.,p481f.) define entailment between questions
by resorting to a very general, non-truth-functional
notion of entailment as a kind of semantic inclusion.
Such a notion is very useful for question-answering
or information retrieval tasks, but it is not how the
NLI task was originally defined Dagan et al. (2005);
MacCartney (2009), nor what the MNLI instruc-
tions to the crowdworkers specify, as we shall see.

2.2 Inference in NLP

LLMs based on the transformer architecture
(Vaswani et al., 2017) have become the de facto
standard in a variety of NLP tasks, including
NLI. Highly successful architectures, starting with
BERT (Devlin et al., 2019) and followed by oth-
ers such as RoBERTa (Liu et al., 2019), XLNet
(Yang et al., 2019), DeBERTa (He et al., 2020) as
well as smaller versions such as DistilBERT (Sanh
et al., 2019) and Albert (Lan et al., 2019), but also
sequence-to-sequence architectures, e.g., TS5 (Raf-
fel et al., 2019) and BART (Lewis et al., 2020),
have shown state-of-the-art performance on NLI.
Thanks to their sheer size, SNLI (Bowman et al.,
2015), 570k premise-hypothesis pairs from image
captions, and MNLI (Williams et al., 2018), 433k
premise-hypothesis-pairs from 10 genres, written
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and spoken, dominate the field, as their size is
suitable for fine-tuning large LLMs. There is a
number of studies that critically assess SNLI and
MNLI for their bias. Williams et al. (2018) them-
selves note that their dataset contains a negation
bias: if the hypothesis contains a negation, then
it is more likely to be part of a contradiction pair
(this bias is most likely due to the fact that sim-
ply negating the premise provides an efficient way
for crowdworkers to create contradiction pairs).
Poliak et al. (2018) systematically investigate the
prospects of hypothesis-only approaches (methods
that only consider the hypothesis for predicting the
label) to NLI in different datasets, finding better-
than-random performance at most of them, which
suggests the broad presence of statistical irregu-
larities. Gururangan et al. (2018) show that SNLI
and, to a lesser extent, MNLI, contain clues that
make hypothesis-only approaches quite successful.
Chien and Kalita (2020) focus on syntactic bias for
LLMs fine-tuned on SNLI and MNLI, also finding
that these bias are strong. Bernardy and Chatzikyri-
akidis (2019) argue that both SNLI and MNLI only
cover a part of the entire range of human reasoning.
In particular, they suggest that they do not cover
quantifiers, nor strict logical inference. Further-
more, Pavlick and Kwiatkowski (2019), Zhang and
de Marneffe (2021), and Jiang and de Marneffe
(2022) all address the topic of disagreement among
annotators. Jiang and de Marneffe (2022) focus on
MNLI and suggest using a fourth category, namely
“complicated”, along with the known ones of entail-
ment, contradiction, and neutral. Similarly, Kalouli
et al. (2019, 2023) discuss the annotation artifacts
and quality of such datasets, especially concerning
the distinction between neutral and contradiction
pairs, and propose a refinement of the task.

We contribute to this ongoing research by focus-
ing on the pragmatic categories of sentences (ques-
tions, commands, claims) which determine whether
they can stand in the logical relationships intro-
duced above (section 2.1). We use GKR (Kalouli
and Crouch, 2018; Kalouli, 2021) to automatically
categorize premises from MNLI that violate C1
or C2. GKR (Graphical Knowledge Representa-
tion) is the semantic representation generated by
the corresponding parser. In GKR the sentence in-
formation is split into six subgraphs: a) the depen-
dency graph holding the syntactic dependencies, b)
the lexical graph holding lexical information such
as synonyms and antonyms of the words of the



sentence, c¢) the properties graph holding morpho-
syntactic information such as the numerus of nouns
and quantifiers, d) the concept graph holding the
basic predicate-argument-structure of the sentence,
the “who-is-doing-what-to-whom" information, e)
the context graph making existential commitments
over the concepts of the concept graph, e.g., for
the sentence “the dog is not eating the bone" it
says not only that there is the concept of eating
involved in the sentence, but it also commits to
its non-existence, its non-instantiation (due to the
negation) and f) the coreference graphs capturing
coreference links between entities.

In addition to its performance, what makes this
parser particularly suitable for our goal is that it
also identifies the type of sentence that is being
parsed (assertion, question, or command). By de-
fault, the parser also categorizes subject-less sen-
tences as imperatives (which helps to identify in-
comprehensible sentence fragments).

3 Analyzing MNLI’s Concept of Inference

After describing how current research in linguis-
tics and logic conceives inference and separates it
from presupposition, implicature, and paraphrase,
and after situating MNLI in the current way how
NLP approaches the task of NLI, we now detail the
tension that we see in MNLI’s concept of inference.
Given how Williams et al. (2018, 1114) specify
the tasks for the crowdworkers creating MNLI, the
goal seems to be premise-hypothesis pairs that are
deductively valid. We give the part of the instruc-
tion that is relevant for entailment in bold (for the
full instructions, see the Appendix, section A):

[...] The line will describe a situation or
event. Using only this description and
what you know about the world: Write
one sentence that is definitely correct
about the situation or event in the line.

According to this passage, the hypothesis to be
written should be such that it is definitively cor-
rect about the situation or event described in the
premise. World knowledge is allowed to be used,
presumably to make room for implicit but uncontro-
versial premises. From a logical point of view, this
means that whenever the state of affairs described
in the premise obtains, the one described in the hy-
pothesis must obtain as well. Hence, MNLI seems
indeed to follow earlier NLI research and aim at in-
ference in the deductive or inductive sense detailed
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above (sections 1 and 2.1). This also agrees with
the stated goal of Williams et al. (2018), according
to which they are aiming at pairs where the hypoth-
esis is “necessarily true or appropriate whenever
the premise is true”.

However, a manual inspection of the collected
examples shows a different picture: the dataset
contains entailment and contradiction pairs with
premises that are non-assertive because they ex-
press commands or questions, or because they are
fragmentary beyond comprehension (see examples
above (1), (2), and (3)). Note that these examples
are not resulting from cherry-picking: The creators
of MNLI deliberately selected bits of text at ran-
dom from 10 different genres, emphasizing that
they only applied minimal pre-processing (e.g., re-
moving sentences with less than eight characters,
mathematical formulae, bibliographical references,
see (Williams et al., 2018, 114f.)). No grammati-
cality checks or parsing of sentence types are done.
Hence, including incomprehensible fragments as
well as questions and commands results from an
explicit design decision by the authors.

Unfortunately, this design decision seems to
be in tension with the instructions to the crowd-
workers as well as with the stated goal to find
premises that are true or appropriate whenever the
premise is true. The examples (1), (2), and (3) do
not contain premises that can be true or false, mak-
ing it exceedingly difficult for the crowdworkers
to follow the instructions and write a sentence that
is definitively correct about the situation or event
in the line: Commands and Questions do not aim
to describe situations, incomprehensible fragments
cannot describe such situations.

The crowdworkers did their best. Sometimes, as
in (1), they developed a hypothesis that contradicts
one of the presuppositions of a question (see, for
example, (1)), developed a largely synonymous
command for a premise containing a command
(see example (2)), or just wrote down a concept
that differs from the concept in the premise (see
(3)). None of this, of course, amounts to developing
entailment or contradiction pairs.

In our pre-study, we try to quantitatively assess
the extent of this problem and develop a solution
for it.



4 Pre-Study: Non-Assertive Premises in
MNLI

With this pre-study, we pursue two goals. First,
we would like to obtain a more reliable estimate
for the amount of non-assertive premises (that is,
premises that do not express a determinate claim be-
cause they violate C1 or C2 from section 2.1 above)
in MNLI. Second, our main experiment relies on
GKR correctly categorizing premises from MNLI
that violate C1 or C2 (for details, see section 2.1) or
that don’t violate them and thus represent assertive
sentences. Thus, before starting with the main ex-
periment, we conduct a pre-study to evaluate our
choice of using GKR.

We randomly select 1000 premise-hypothesis-
pairs from MNLI and submit the premises of each
of the samples to the parser. The output of GKR
(more specifically its context graph, where the type
of sentence is specified) is then compared to our
gold-standard annotations. The precision (P) and
recall (R) results of this pre-study are shown in
Table 1. The table also compares the results to a
simplistic baseline approach, where we only count
as non-assertive all premises that end with a ques-
tion mark (?) or an exclamation mark (!).

Assertive Non-Assertive Total
P R P R P R
GKR | 93.6 | 97.7 | 83.6 63.3 88.6 | 80.5
2,1 88.4 | 96.5 | 54.6 22.8 71.5 | 59,6

Table 1: The P(precision) and R(recall) results from the
evaluation of 1000 MNLI premises.

Table 1 shows that GKR’s precision is at 83.6%
and its recall at 63.3%, when it comes to identify-
ing non-assertive premises that cannot stand in a
logical relationship. Identifying assertive premises
is achieved with an even higher precision and re-
call (93.6% and 97.7%, respectively). These re-
sults heavily outperform the simplistic baseline ap-
proach, in which both the precision and the recall
for non-assertive premises do not overcome chance.
This is not surprising though. First, in MNLI, ques-
tions and commands are not always marked with
question and exclamation marks, respectively, so
this is no reliable method. Second, many questions
do have a question mark, but are direct speech em-
bedded in indirect speech, e.g., How much? asked
the northerner. In these cases, the premises are
indeed assertions (with an embedded non-assertive
content). Third, there are premises with exclama-
tion marks, which are no commands, e.g., You were
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Jjust wonderful!. Finally, this simplistic approach
cannot capture any cases of fragmentary premises.
These results confirm the quality of the GKR parser
and the need for such a tool.

With our pre-study we find that 153 of the 1000
samples are non-assertive (based on their gold la-
bel). This suggests that approximately 15% of all
pairs in MNLI are indeed not assertions, meaning
that they cannot entail or contradict any other as-
sertions®. This however also means that any of
these pairs having an entailment or a contradic-
tion label (assuming a balanced dataset, this would
mean around 10%) is indeed mislabeled as there
can only be the neutral relation for non-assertions.
Note that even if we do not consider the gold labels
but only the true positives of GKR (since GKR’s
output is what will be considered in the main exper-
iment), the percentage of non-assertions in MNLI
only drops to 10% (97 out of 1000 samples are
true positives). This would again mean that around
2/3 of these 10%, that is, some 6.6%, of MNLI is
incorrectly annotated.

S5 Main Experiment: Probing LLMs for
Pragmatic Understanding

For our main experiment, based on the tension
found in MNLI’s concept of inference (see above,
section 3), we hypothesize that models fine-tuned
on MNLI lack any sensitivity to the fact that non-
assertive premises cannot entail or be contradicted
by other premises (research hypothesis 1), and
that this deficit can be amended using properly
composed fine-tuning datasets (research hypoth-
esis 2). Finally, we hypothesize that this does
not significantly harm performance on the orig-
inal MNLI evaluation dataset (research hypothe-
sis 3). To empirically test these hypotheses, we
compile a number of fine-tuning datasets and eval-
uate LLMs fine-tuned on them both on a specific,
hand-corrected dataset that only contains neutral
premises as well as on the original MNLI-matched
evaluation dataset.

5.1 Models

We use three transformer-based models that are al-
ready fine-tuned on MNLI, delivering very good
performance on this dataset, and that differ substan-
tially in their architecture. We deliberately choose

3Since this was tested on a random sample, we can ex-
pect that this percentage will be similar for any other random
sample.



models based on different architectures, sizes and
fine-tuning methods.

The reason why we fine-tune models that are
already fine-tuned on MNLI is that we assume that
our non-assertive dataset is not large enough on its
own for learning inference. Thus, we use models
that are first fine-tuned on the large MNLI dataset
and have thereby acquired a basic understanding
of the task. Then, we fine-tune them further on
the smaller non-assertive dataset to sharpen their
conceptions of entailment and contradiction so that
they do not predict entailment or contradiction, but
rather neutral, when the premise is non-assertive.
To test our assumption, we also include a version
of RoBERTa-large that is not already fine-tuned
to MNLI in our fine-tuning experiments. If it per-
forms better than the others who are already fine-
tuned to MNLI, our assumption is falsified, other-
wise, it is verified.

The models are DeBERTa-base (He et al., 2020),
XLNET-base (Yang et al., 2019), both 110M param-
eters, and RoBERTa-large (Liu et al., 2019), 355M
parameters. Our DeBERTa-model is fine-tuned to
MNLI using the method proposed by Reimers and
Gurevych (2019), the XLNET-model by the ad-
versarial method proposed in Morris et al. (2020),
and for RoBERTa, we use the original fine-tuned
version by Liu et al. (2019). We obtain all of our
models from Huggingface (Wolf et al., 2019).

5.2 Datasets

We run GKR over randomly chosen premises of the
train split of MNLI. As compute time per sample
is rather high (about 30 sec per sample in our set-
ting), we stopped the process after receiving 1875
premises that GKR classified as either interrogative
or imperative (a label also given to sentence frag-
ments lacking a subject), and hence non-assertive.
The same run also yielded 8546 premises that GKR
classified as assertions. Based on this, we develop
a manually corrected evaluation dataset as well
as a number of systematically varied fine-tuning
datasets.

Evaluation-Datasets We use a subpart of the
1875 non-assertive premises, namely 636 premises,
to compile an evaluation dataset: We manually
verify that these premises are indeed not express-
ing a determinate claim (either because they are
questions, commands, or incomplete beyond under-
standing), resulting in 406 premises. We then se-
lect the three premise-hypothesis-pairs correspond-
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ing to each premise in the MNLI dataset (for each
premise there was an entailment, a contradiction
and a neutral pair created). This results in 1218
pairs whose correct relationship should be neutral
due to their premise, but which were written up
by crowdworkers to be evenly split among the la-
bels of entailment, contradiction, and neutral.® We
call this evaluation dataset “GKR-n" for “GKR-
neutral”. The second dataset that we use to evaluate
our fine-tuned models is MNLI-Matched (“MNLI-
M), the matched evaluation dataset provided by
Williams et al. (2018).

Fine-Tuning-Datasets We compile 8 different
fine-tuning datasets, each consisting of a train split
containing 6000 samples and a validation split con-
taining 600 samples, evenly distributed across the
three labels. In addition to a dataset that solely con-
sists of unfiltered MNLI-train samples (mnli_u) as
well as a dataset consisting solely of samples whose
premises GKR classified as assertive (GKR_a), we
compile six datasets combining these two sources
(see Table 2). These six datasets are combinations
from two different datasets for entailment and con-
tradiction labels (entailment-contradiction 1 & 2,
in short, ecl & ec2) with three different datasets
for neutral labels (neutral 1,2, 3: n1,n2,n3).

Name Ent. & Contr. Neutral

mnli_u (no filtering) (no filtering)
ecl_nl 1/3 GKR-ass. 1/3 GKR non-ass.
ecl_n2 1/3 GKR-ass. 2/3 GKR non-ass.
ecl_n3 1/3 GKR-ass. 3/3 GKR non-ass.
ec2_nl 2/3 GKR-ass. 1/3 GKR non-ass.
ec2_n2 2/3 GKR-ass. 2/3 GKR non-ass.
ec2_n3 2/3 GKR-ass. 3/3 GKR non-ass.
GKR_a  3/3 GKR-ass. 3/3 GKR-ass.

Table 2: Fine-tuning datasets used in the main exper-
iment. They result from combining unfiltered MNLI
samples with samples filtered by GKR; if nothing is
specified, the quantity in question is provided by unfil-
tered pairs from the MNLI training split. All datasets
contain 2.2k samples originally labeled entailment, 2.2k
contradiction, and 2.2k neutral. For example, in ecl_nl,
1/3 of its 4.4k entailment and contradiction samples
have been filtered by GKR to make sure their premises
are assertive (“1/3 GKR-ass.”), and 1/3 of its 2.2k neu-
tral samples have been filtered by GKR to have non-
assertive premises (“1/3 GKR non-ass”).

For example, the dataset ec2_n2 in Table 2 is
composed of 6600 samples in total, of which 2200
are entailment, 2200 contradiction, and 2200 neu-

®Note that some premises in MNLI are used in more than
three pairs, leading to minimal distortions in the scaling up.


https://huggingface.co

tral. Of the entailment and contradiction samples,
making up 4400 samples, 2/3 are such that GKR
has identified their premises as assertions (2nd col-
umn in T 2). Furthermore, 2/3 of the neutral sam-
ples are such that GKR has identified their premise
as non-assertive (3rd column in Table 2).

The basic idea behind fine-tuning on these 8
different datasets is to see what factors influence
performance on the evaluation dataset: ecl differs
from ec2 in containing only 1/3 as opposed to 2/3
of pairs whose premises have been confirmed by
GKR to be assertive. From nl over n2 to n3, the
portion of neutral pairs with non-assertive premises
increases from 1/3 over 2/3 to 3/3. Testing all
combinations of these datasets allows us to deter-
mine whether assertive premises in entailment and
contradictions samples are more important than
non-assertive premises in neutral samples when it
comes to performance on the evaluation dataset,
where all of the labels should be neutral due to the
non-assertive premises of all the samples used there.
Including the mnli_u dataset as fine-tuning dataset
allows us to test whether our fine-tuning method
leads to any distortions: unless our fine-tuning
method is flawed, models fine-tuned on mnli_u
should perform on MNLI-M approximately as they
did before fine-tuning. After all, here we just per-
form further fine-tuning with the same data that has
been used for the original fine-tuning run.’

5.3 Fine-Tuning Experiment

We fine-tune the four different transformer-based
LLMs on a single GPU of a DGX-2 cluster. We
fine-tune each model on each dataset for two
epochs, using the trainer API provided by Hug-
gingface. The results shown are the average over
three fine-tuning runs per model and dataset. We
use a batch size of 8 throughout, and we begin with
an initial learning rate of 2e-5.

5.4 Results & Discussion

The results of our experiment are shown in Figure
1. We give the individual models’ results on the
two evaluation datasets sorted by the fine-tuning
dataset that was used.

With regard to our decision to use models pre-
viously fine-tuned to MNLI (see above, 4.1), the

"Note that it would not be useful for our purposes to con-
vert non-assertive premises to assertions. We need to have
them marked as neutrals/non-assertive as systems need to be
able to differentiate between these pragmatic functions (see
discussion in section 1).
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results confirm our assumptions: roberta-large per-
forms overall 28% worse than the version of the
model that was previously fine-tuned to MNLI (ab-
breviated by roberta-Imnli in figure 1). As a conse-
quence, we do not consider it in our presentation
and discussion of results anymore.

Figure 1 shows that the most important factor for
performance on the GKR-n evaluation dataset is the
portion of neutral samples that are neutral because
their premise is non-assertive. The accuracy of all
models is 32% on average, and hence almost ex-
actly random, if no such samples have been specifi-
cally selected and added to the fine-tuning dataset
(as is the case in mnli_u as well as GKR_a, see
the first and the penultimate columns, respectively).
This accuracy increases steadily if the portion of
neutral samples of said kind is increased from nl,
n2, to n3, where it reaches 89% for roberta-large-
mnli. Performance on MNLI-matched decreases
from nl to n2 and n3, but in much smaller steps:
from 86% to 82% to 77%.

These results allow for three main insights. First,
without fine-tuning on our datasets, the LLMs do
indeed fail to show any sensitivity for the fact that
questions, orders, or incomprehensible fragments
cannot entail or contradict anything. This follows
from the random accuracy that the models reach af-
ter being fine-tuned on mnli_u, it confirms our first
hypothesis, and it lends further support to the ten-
sion found in MNLI’s concept of inference. Con-
sidering the fact that MNLI is the de facto standard
fine-tuning dataset, this means that the standard
method used currently to fine-tune LL.Ms to NLI
tasks very likely results in models that falsely clas-
sify pairs such as (1), (2), or (3) as contradicting or
entailing each other.

The second insight, confirming our second hy-
pothesis, is that our fine-tuning approach shows
much promise in getting the models to understand
that nothing follows logically from non-assertive
premises. In particular, this applies to the models
fine-tuned to ec1_n3, i.e., to a dataset that contains
1/3 of pairs with a premise that is assertive accord-
ing to GKR in entailment and contradiction and 3/3
of pairs with non-assertive premises in neutral.

The third insight is that acquiring this sensitiv-
ity does not take a heavy toll on the accuracy of
MNLI-matched, with an effective accuracy differ-
ence of 3.3%. While the performance difference
seems greater at first sight (10% from 87% to 77%),
it must be noted that 10% of the MNLI-premises



Accuracies by Model

Accuracy

NI

GKR-n MNLI-M GKR-n MNLI-M GKR-n MNLI-M GKR-n MNLI-M GKR-n MNLI-M GKR-n MNLI-M GKR-n MNLI-M GKR-n MNLI-M

mnli_u
33% 87%
33% 86%
32% 89%
33% 32%

ecl_nl
54% 85%
51% 84%
47% 88%
33% 66%

ecl_n2
74% 82%
76% 80%
76% 84%
0% 35%

ce-deberta-base
M ta-xInet-base-cased
M roberta-Imnli
Hroberta-large

ecl_|
86%
88%
89%
30%

n3
77%
73%
80%
43%

ec2_nl
52% 85%
55% 83%
46% 88%
17% 50%

ec2_n2
76% 82%
71% 81%
74% 84%
100% 32%

ec2_n3
86% 77%
87% 73%
84% 80%
93% 57%

GKR_a
32%  87%
32%  85%
31%  89%
67%  32%

Figure 1: Accuracy by model and fine-tuning dataset (each fine-tuning was run three times and the average of the
three runs is reported). For instance, the column on the very left gives the accuracies on our GKR-n evaluation
dataset after fine-tuning on mnli_u for each of the three models. Performance of roberta-large, which was not
already fine-tuned on MNLLI, is on average 28% lower than roberta-large-mnli.

are anyway non-assertive (see Section 4) and thus
those of them (approximately 2/3, 6.6%) that are
labeled as entailments or contradictions are misla-
beled, yielding an actual loss in accuracy of 3.3%.
We emphasize that performing well at GKR-n re-
quires that the LLMs predict neutral for any of the
pairs in that dataset (because their premises are all
non-assertive), while performing well at MNLI-M
of course requires to predict all of the three labels
with equal frequency. It is reassuring that the same
LLMs manage to perform well at both evaluation
datasets, confirming our research hypothesis 3.

6 Outlook: Exploration of ChatGPT

Following recent advances in the area we are cu-
rious to see whether ChatGPT, a general-purpose
chatbot trained by OpenAI® a) has a better notion
of entailment than other LLMs, and b) can cor-
rectly identify non-assertive statements and treat
them accordingly. To address these questions, we
manually explore ChatGPT: We manually prompt
the Chatbot with 96 premise-hypothesis-pairs with
non-assertive premises according to GKR that were
originally intended as entailment pairs by the cre-
ators of MNLI. We join premise and hypothesis to
obtain a question (see also Appendix C).

We find that, although ChatGPT gets the general
definition of logical entailment perfectly right (“en
tailment is a relationship between two propositions,
in which the truth of the premise guarantees the
truth of the conclusion", something that it tends to

8See this blogpost, last consulted on December 14, 2023.
All interaction occurred on December 14, 2022, via OpenAl’s
research interface: https://chat.openai.com/chat.
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assert quite often, see the Appendix, section B), it
often fails to apply it to the given examples: it states
that the hypothesis is logically implied (entailed)
by the non-assertive premise in 54% of the cases.
Interestingly, from the remaining 46% of the cases,
where ChatGPT indeed answers negatively, i.e.,
that there is no entailment, we observe that in 27%
of the samples the non-assertiveness of the premise
stems from its being too fragmentary to express a
specific proposition. This indicates that ChatGPT
is indeed able to tell when a premise is too incom-
plete to express a determinate claim. Hence, this
very small sample might suggest that ChatGPT has
a more accurate notion of entailment than the best
models tested in the main experiment, but this does
not fundamentally alter the scene: ChatGPT can
perform better with incomplete sentences, realizing
that nothing can be logically inferred from them,
but relatively poorly with questions or commands.

7 Conclusion

In sum, we take the results of our experiments to be
very encouraging. While LLMs that have been fine-
tuned only on MNLI show no sensibility for the fact
that nothing follows logically from questions, com-
mands, or incomprehensible fragments, fine-tuning
on our datasets can address this potentially con-
sequential shortcoming without losing too much
accuracy on MNLI-matched. In the future, we plan
to experiment with more sophisticated fine-tuning
methods and datasets to maximize performance on
non-assertive prompts. Furthermore, we hope to
probe ChatGPT using larger datasets, as the prelim-
inary results obtained here are very interesting.
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Limitations

We see two main limitations of this work. First, it
is clear that the quality of the proposed fine-tuning
method (with the non-assertive datasets) heavily
depends on the quality of the GKR parser, used for
the detection of non-assertive statements. Since the
parser has an F-score of 84.3%, as evaluated within
this work, it is to be expected that some of the exam-
ples used for fine-tuning will be faulty (mistakenly
classified as non-assertive and thus mistakenly clas-
sified as neutrals). This means that the models are
not given entirely clean input to learn from and
thus, their performance could further improve if
the quality of the GKR parser (or another similar
parser) could improve. Note however that this only
concerns the fine-tuning datasets and not the eval-
uation dataset, as this was manually checked for
correctness (and thus, there is no impact on the
results we report). The second limitation concerns
our experimentation with ChatGPT: we were only
able to experiment with a small amount of sam-
ples (due to the extremely expensive manual effort
required) and thus, our findings will need to be
reproduced through a larger-scale study. However,
our findings agree with Bang et al. (2023), who
find that ChatGPT performs reasonably well on
deductive and abductive inference tasks.

Ethics Statement

For fine-tuning our models, we have used parts
of the existing MNLI dataset. Thus, we see no
additional risk of adding personally protected in-
formation, offensive material, or biases that could
discriminate against marginalized groups.
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A Full Instructions Given to
Crowdworkers

Williams et al. (2018, 1114) specify the following
tasks for the crowdworkers:

“This task will involve reading a line from a
non-fiction article and writing three sentences that
relate to it. The line will describe a situation or
event. Using only this description and what you
know about the world:

* Write one sentence that is definitely correct
about the situation or event in the line.

* Write one sentence that might be correct about
the situation or event in the line.

* Write one sentence that is definitely incorrect
about the situation or event in the line. "

B ChatGPT on logical relationships
involving commands and hopelessly
incomplete premises

All interaction occurred on December 14, 2022,
via OpenAl’s research interface: https://chat.
openai.com/chat.

Human: Is there a relation of logical entailment
between "What is the capital of france?" and
"Paris"?

ChatGPT: Yes, there is a relation of logical en-
tailment between the question "what is the
capital of France?" and the answer "Paris".
In logic, entailment is a relationship between
two propositions (statements or sentences)
in which the truth of one proposition (the
premise) guarantees the truth of the other
proposition (the conclusion). In other words,
if the premise is true, then the conclusion must
also be true.

In the case of the question "what is the cap-
ital of France?" and the answer "Paris", the
premise is the information about the country
of France, and the conclusion is the name of
its capital city. Since we know that Paris is
the capital of France, the truth of the premise
(the information about France) logically en-
tails the truth of the conclusion (the name of
its capital city). In other words, if the premise
is true (i.e. if we are asking about the capital
of France), then the conclusion must also be
true (i.e. the answer is "Paris").
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Human: Is there a relation of logical entailment
between "the kids" and "the adults"?

ChatGPT: No, there is no relation of logical en-
tailment between the phrases "the kids" and
"the adults". In logic, entailment is a relation-
ship between two propositions (statements or
sentences) in which the truth of one proposi-
tion (the premise) guarantees the truth of the
other proposition (the conclusion). In other
words, if the premise is true, then the con-
clusion must also be true. In the case of the
phrases "the kids" and "the adults", there is no
logical connection or relationship between the
two. The phrases refer to two different groups
of people, and there is no inherent logic that
would guarantee that one group must be true
if the other is true. For example, if we know
that "the kids" are present, it does not neces-
sarily follow that "the adults" are also present.
Therefore, there is no relation of logical en-
tailment between these two phrases.

Human: Is there a relation of logical entailment
between "Close the door now!" and any other
sentence?

ChatGPT: Yes, there is a potential relation of log-
ical entailment between the order "Close the
door now!" and any other sentence that pro-
vides information about the intended action or
outcome of the order. In logic, entailment is a
relationship between two propositions (state-
ments or sentences) in which the truth of one
proposition (the premise) guarantees the truth
of the other proposition (the conclusion). In
other words, if the premise is true, then the
conclusion must also be true. In the case of the
order "Close the door now!", the premise is
the command to close the door, and the conclu-
sion is the intended action or outcome. There-
fore, any sentence that provides information
about the intended action or outcome of the
order can be considered the conclusion of the
entailment relationship. For example, if the
order "Close the door now!" is followed by the
sentence "The door is now closed", this sen-
tence can be considered the conclusion of the
entailment relationship, because the truth of
the premise (the command to close the door)
logically entails the truth of the conclusion
(the door is now closed).

36

In general, the relation of logical entailment
between "Close the door now!" and any other
sentence will depend on the specific informa-
tion provided by the other sentence. If the
sentence provides information that is logically
entailed by the premise of [here the response
from ChatGPT ended rather abruptly].

C Full Output from ChatGPT Prompting
with non-assertive premises

In tables 3, 4, and 5, we can see the predictions
of ChatGPT for a selection of 96 pairs with non-
assertive premises from the validation split of our
dataset. For each of the pairs, we prompted Chat-
GPT with the following template:

®)

ChatGPT always responded with a clear, albeit
sometimes somewhat verbose, yes (represented
with “1” in the tables) or no (represented with “0”
in the tables). The tables show that ChatGPT cor-
rectly predicts neutral (“0”) in 44 of 96 prompts.

For example, here is the full turn with ChatGPT’s
explanation of its response for one sample with an
incomplete sentence as premise.

Does "PREMISE" entail "HYPOTHESIS"?

(6) (P) : Heaven’s Highway (H) Paradise’s
Road.
Human: Does “: Heavaen’s Highway” entail

“Paradise’s Road?”

ChatGPT It is not clear whether the phrase ":
Heaven’s Highway" entails that "Paradise’s Road".
The phrase ": Heaven’s Highway" is not a complete
sentence and is difficult to interpret or understand.
It appears to describe a specific location or path
(Heaven’s Highway), but it is not clear what this
location or path entails or whether it relates to the
second phrase ("Paradise’s Road"). In order to de-
termine whether the first phrase entails the second
phrase, you would need to provide more informa-
tion about the context in which the phrase is used
and the intended meaning of the speaker.



ID Premise Hypothesis True Pred.
11906e  Would it not be a terrible shock to her? Would it shock her? 0 0
145506e  Why did our emperor get up so early,and The emperor has a crown on his head. 0 0
why is he sitting enthroned at the city’s main
gate,in state, wearing the crown?
8021e Inside both maps of the connections in the al-  The evaluations of Al Gore are part of the 0 0
leged right-wing conspiracy against Clinton,  psychological profiling of Clinton
profiles of Al Gore (steely-eyed in this time
of crisis), and still more pop-psychologizing
about Clinton’s personality.
116777e  dirt and noise mud and sounds 0 0
113150e  From the Place des Abbesses, take Rue Rav-  To get to 13 Place Emile-Goudeau from the 0 1
ignan to 13 Place Emile-Goudeau. Place des Abbesses, take Rue Ravignan.
124577e  Says who?’ Who said that? 0 0
95036e  that be all right between them and Would they both be ok with it? 0 0
144940e  Get out and explore the streets, the open  Go and see the streets, open markets, and 0 1
markets, the cafe. cafe.
61713e  Come on, Jeffrey. Jeffery should hurry up. 0 0
20169¢  Are they using financial statements? Are financial statements being used? 0 1
86509¢  You have raced him, senor ?"he asked Drew = Have you raced him, sir? he asked Drew. 0 0
with formal courtesy.
57980e  Closed Sabbath. It’s closed on the Sabbath. 0 1
21565¢  What day was it when you searched the pris-  You searched the prisoner’s room, right? On 0 0
oner’s room? what day?
17577¢  Prepared for Office of Air Quality Planning  The National Park Service is based in Den- 0 0
and Standards, US Environmental Protection  ver Colorado.
Agency, Research Triangle Park, NC and
Air Quality Management Division, National
Park Service, Denver, CO.
90510e  Then head back to Alicante, just 28 km (17  Go back to Alicante, which is only 28km 0 1
miles) away. away.
108189¢ Can’t keep even with ‘em. Can’t stay even. 0 0
79930e  What was happening to her? What happened to her? 0 0
37447¢  um something with the defense uh It’s related to protection 0 0
110960e  (Thank you.) Thanks was given. 0 0
52731e  Old values versus new, old virtues and new It was the old vs the new. 0 0
injustices.
145261e  Fuck the gravy To hell with the gravy. 0 0
27635¢  Use of Program Oversight Overseeing the program. 0 1
144659¢  a professional mother a person A professional mother and a person. 0 0
38885e  back grind tape on and off the wafers Take the tape on and off the wafers. 0 0
91077e  Randy’s Self-Reference Wrap-Up Randy’s Wrap-Up of Himself. 0 1
60546e  in cold frames or whatever the in cold frames. 0 0
16026e  But how come Kitchell could hide out in How was it the Kitchell was able to stay 0 0
Apache country? undetected in Apache lands?
86644e¢  sought and respected by the organizations’ sought and respected by the organizations’ 0 1
business managers. business managers.
797e Contact the Hong Kong Yacht Club at Tel. the contact number for the Hong Kong Yacht 0 1
2832 2817 for information. Club is 2832 2817
45789  And the second point? I asked. What is the second point? 0 0
65272¢  well really just commune with nature We commune with nature. 0 0
109942e  But does that mean that we face a repeat of  Does that mean we’re going to see some- 0 0
the dark years of soup kitchens and brown- thing similar to the bad times before the
shirts leading up to world war? world war?
123225¢  Summary of Major Sections Summary of important sections 0 1

Table 3: Full output from ChatGPT-Prompting 1/3.
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ID Premise Hypothesis True Pred.
31686e  Interest (unless classified elsewhere), divi- Mineral rights are excluded from rents on 0 1
dends, and rents (except for mineral rights)  government property.
on Government property.
88124e  ’Yes sir, Mr. Franklin?’ Can I help you Mr. Franklin? 0 0
19958e  Are they often used, may I ask?" Are the things utilized frequently? 0 0
137712e  Personal Communication with J. Urbas, Re- Direct communication with J. Urbas. 0 1
liant Energy, August 13, 2001.
34689¢ A sign of failure, of a feeble economy, per- Is that a sign of a bad economy? 0 0
haps?
126927e¢  Department of Labor, Division of Foreign =~ Department of Labor includes the Division 0 1
Labor Certifications, Revised June 1999  ofForeign Labor Certifications.
[hereinafter FY 1998 H-2A Report].
145094e  National Saving and Investment? Saving and Investment across the country. 0 0
110340e A Nation of Spendthrifts? It is a nation of spendthrifts. 0 0
48026e  Then climb (even higher! ) Then climb higher than you are. 0 0
106750e  You think he’d get after her? The person being spoke to think he’d go after 0 0
her.
134219¢ U.S. airports sufficient toprotect the safety  Is protecting passengers a task that US air- 0 0
of passengers and equipment? ports aren’t capable of handling?
96401e  The verdict? The decision? 0 1
2818e What was it? Do you know what it was? 0 0
56782¢  How did we lose our rich tradition of porcine ~ There are fewer pig references than there 0 0
references? were in the past.
104984e  What money? What money do you mean? 0 0
595e Does Hillary Clinton believe her husband’s ~ It’s not sure whether Clinton believes her 0 0
denials? husband or not.
123277e  For example, in lieu of hiring a large number  Instead of hiring a lot of seasonal 0 1
of seasonal
141791e  So why Clinton’s aggressive defense of = Why is Clinton so defensive of helms Burton 0 0
Helms-Burton?
125428¢ um-hum treatment before for dismissal type =~ Treatment before dismissal thing. 0 0
thing
71972e  Kaaterskill Falls ,by Allegra Goodman (Dial ~ Goodman wrote a book called Kaaterskill 0 1
Press). Falls.
29030 That’s th way you think it’s gonna be, Is that the way you think it will be, Croaker? 0 1
Croaker?
71243e  Which tradition does John belong to? John belongs to which institution? 0 0
40851e  Take the m??tro to Rambuteau and start at ~ Take the metro to Rambuteau and start at the 0 1
the corner of the Rue des Archives and Rue  corner of the Rue des Archives.
des Francs-Bourgeois, named after the poor
people who were al?lowed to live here tax-
free during the 14th century.
85667¢  : Heaven’s Highway Paradise’s Road. 0 0
110009e things that uh get you on the edge of your  She doesn’t like things that get you on the 0 0
seat a little too much for her edge of your seat.
40765¢  Many thanks to readers Bill Moran, Darren ~ There was reason to flag this. 0 1
Thorneycroft, and Nicholas Lemann* (au-
thor of The Big Test ) for flagging this one.
34376e  Understand what? Understand what? 0 1
133820e  Could they take the place of one of the 56  Could they replace one of the 56 movie chan- 0 1
channels of movies? nels?
102665e  Jingoistic Java Juggernaut The Java Juggernaut is Jingoistic 0 1
75235¢  So who does? Well, who is doing it? 0 1
93725¢ , annual mean PM concentration) as inputs ~ PM concentration is an input to the C-R func- 0 1
to the health and welfare C-R functions of  tions.
the benefits analysis.
124139¢e  (The difference between the rates divided by =~ The rates are divided by the number of 0 1
the number of grams in the weight interval).  grams.
82736e 10 See the appendix for a further explana- If you want a further explanation about GAO 0 0
tion about electronic signatures and GAO’s  see the appendix.
review of such applications.
4522¢ Rival explanations explanations that disagree. 0 1
38499¢  The Blue Room , by David Hare (Cort The- The Blue Room was written by David Hare. 0 1

atre, New York City).

Table 4: Full output from ChatGPT-Prompting 2/3.
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ID Premise Hypothesis True Pred.
73920e (1) How long are seasonal agricultural work- Do seasonal agricultural workers stay in the 0 1
ers typically in the United States? US for a while?
64748¢  If I don’t, how should I handle it, given that ~ We will end up seeing each other around. 0 1
we’ll see each other around?
33128¢  Kinda free with a gun, leastwise at showin’ They are showing that they are free witha 0 1
it. gun.
118355¢  Click on the British flag for an English ver-  There is an English version of the website. 0 1
sion of the site.
105826e  just to see the show just to see the show right ~ Only to watch the show, correct? 0 1
58056e  Participate in the graceful tea ceremony or  Join in the ceremony of tea or view the 0 1
watch the dazzling display of skill in kendo  kendo performance.
(stick fighting), with its impressively fierce
battle cries.
48341e  Disk compression and networking into Win-  Disk compression and networking is possi- 0 1
dows. ble in Windows.
36136e  Can you describe him at all?" Can you provide his characteristics? 0 1
50508¢  How could productivity indexes—which ba-  Productivity indexes measure the ability of 0 1
sically measure the ability of workers to  workers to make goods.
produce a given set of goods—properly take
account of such revolutionary innovations
as automobiles, antibiotics, air conditioning,
and long-playing records?
39272¢e  Our A Low-Wage Workforce Without the  Brown people make up the low-wage work- 0 0
Brown People. force.
52111e  Acute inflammation and respiratory cell — Respiratory cells can be damaged. 0 1
damage
116968e  for each household in the sample. Individual households are sampled. 0 1
122452¢ Evaluation Synthesis. Synthesis of the evaluation. 0 1
117542e  What would you really choose as a profes- What do you want to do for a living? 0 1
sion, if you could just consult your inclina-
tion?
83373e  from front-line employees and managers, One of the implementation hurdles that will 0 1
and a variety of implementation issues, such  be faced is workload demand.
as workload demands.
109228e Continue along this road to reach the pretty =~ Molyvos is a coastal town and a hot spot for 0 1
coastal town of Molyvos (also known by its  tourism.
ancient name, Mithymna), a popular spot for
tourists.
46914e  Section 610(e) of the Hearing Aid Compati- The Hearing Aid Compatibility Act was 0 1
bility Act of 1988, 47 U.S.C. passed in the late 1980’s.
69496e  Why are you coming at me with that pillow? ~ Why are you tossing the pillow at me? 0 0
115705¢ um oh i never heard of that I have never heard of that. 0 1
25776e  Who was this man who held in his finger =~ Who was this man who held these links of 0 1
these curiously variegated links of an un- chain?
known chain?
98779¢  Au revoir, my clever and charming young Tuppence swiftly left as the watcher whis- 0 0
lady. Tuppence sped lightly down the stairs.  pered goodbye.
109425e  Best Practices of Leading Commercial Com- The most dominant commercial companies’ 0 1
panies best practices
86775¢  Am I an idiot? Am I an idiot? 0 1
5396e Greetings, Dave Hanson. I greet you Dave Hanson. 0 1
105613e  Buchanan or Bush vs. the congressional There are Republicans in Congress. 0 1
Republicans.
132469¢  Far from perfect. It is not perfect. 0 1
112205¢ Look out for Robert le Lorrain’s fine Sculptures of horses can be seen in the sec- 0 1
sculpted horses of Apollo over the old sta- ond courtyard.
bles in the second courtyard.
93047  Who knows? Who knows? 0 1

Table 5: Full output from ChatGPT-Prompting 3/3.
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Abstract

Using Japanese honorifics is challenging be-
cause it requires not only knowledge of the
grammatical rules but also contextual informa-
tion, such as social relationships. It remains un-
clear whether pre-trained large language mod-
els (LLMs) can flexibly handle Japanese hon-
orifics like humans. To analyze this, we intro-
duce an honorific conversion task that considers
social relationships among people mentioned
in a conversation. We construct a Japanese
honorifics dataset from problem templates of
various sentence structures to investigate the
syntactic generalization capacity of GPT-3, one
of the leading LLMs, on this task under two
settings: fine-tuning and prompt learning. Our
results showed that the fine-tuned GPT-3 per-
formed better in a context-aware honorific con-
version task than the prompt-based one. The
fine-tuned model demonstrated overall syn-
tactic generalizability towards compound hon-
orific sentences, except when tested with the
data involving direct speech.

1 Introduction

The correct use of Japanese honorifics is difficult
because it requires both the knowledge of gram-
matical rules (i.e., verb conjugation) and contex-
tual information (i.e., social relationships among
the speaker, the hearer, and the people mentioned
in a conversation) (Harada, 1976). We expect
this syntactic and pragmatic ability for pre-trained
large language models (LLMs), as they have shown
high performance on natural language tasks (Brown
et al., 2020, Ouyang et al., 2022, inter alia). How-
ever, it remains unclear whether LLMs can handle
Japanese honorifics in a similar manner to humans,
based on sentence structures and social context.
Several studies proposed datasets of Japanese
honorifics for classification (Liu and Kobayashi,
2022; Someya and Oseki, 2022) and genera-
tion (Matsumoto et al., 2022). Liu and Kobayashi
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(2022) introduced a task in which a model takes an
honorific sentence as input and classifies its hon-
orific level or the types of honorifics used in the
sentence. Someya and Oseki (2022) provided a
Japanese acceptability classification dataset called
JCoLA. In JCoLA, subject honorifics are catego-
rized as sub-categories of subject-verb agreement
tasks. However, these datasets aim to evaluate the
syntactic performance of language models, and
they do not analyze their pragmatic ability to under-
stand honorifics by considering social relationships
behind sentences. Matsumoto et al. (2022) intro-
duced an evaluation dataset for an honorific con-
version task in which the input was a non-honorific
sentence, and the output was an honorific sentence.
Matsumoto et al. (2022) mentioned the necessity of
considering the information on social relationships
among people in honorific conversion but did not
clarify how such information should be processed
in the task. In summary, the existing benchmark
datasets of Japanese honorifics focus on either syn-
tactic or pragmatic knowledge required for hon-
orific understanding, not both (Appendix A). Ad-
ditionally, none of these existing studies discusses
the generalization capacity toward various syntac-
tic structures of honorific sentences.

In this research, we introduce a new honorific
conversion task that uses information on person’s
social relationships as additional input. In Mat-
sumoto et al. (2022)’s proposed honorific conver-
sion, the input was only a non-honorific sentence.
In our task, social relationships are expressed as a
sentence and concatenated into an input sentence
(Section 2). This enables us to analyze whether
LLMs could consider information on social rela-
tionships when executing honorific conversion. We
also construct a dataset to investigate the syntactic
generalizability of LLMs for this honorific task. We
create hand-crafted templates and generate prob-
lems for the task by filling in the placeholders (Sec-
tion 3). By focusing on the syntactic generalization
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Target of respect and deference ~ Example

Type

Subject honorifics (SH)  Agent Sensei-ga Hanako-o homete-irasshatta.
Teacher-NOM Hanako-ACC praised-SH
Object honorifics (OH)  Patient (Watashi-ga) sensei-no-tokoro-ni ukagau.

(I-NOM) teacher-POSS-place-LOC visit-OH

Table 1: Types of Japanese honorifics with conjugation rules. The underlined part is a person to whom the speaker
should show respect or deference. The bolded parts are conjugated verbs. A verb hometa (praised) conjugates to its
subject honorific form homete-irasshatta by attaching a suffix irasshatta and tazuneru (visit) conjugates to its object
honorific form ukagau.

Example 1
Speaker: A university student, Yamada: The speaker’s supervisor

Cu

tput
Yamada-sensei-ga takuhaibutsu-o o-uketori-ninaru ‘
Prof. Yamada-NOM delivery-ACC  receives-SH

Converted to Subject Honorifics

Context: The speaker uses honorifics to show
respect to Yamada.

Yamada-sensei-ga  takuhaibutsu-o uketoru
Prof. Yamada-NOM delivery-ACC  receives

Example 2
Speaker: A professor, Yamada: The speaker’s colleague

‘\;\/‘ <o
Speaker Yamada m

[ i

Not Converted

/

Context: The speaker do not use honorifics.

Yamada-sensei-ga

Output

takuhaibutsu-o uketoru

Yamada-sensei-ga

takuhaibutsu-o uketoru

Prof. Yamada-NOM delivery-ACC

receives

Prof. Yamada-NOM delivery-ACC

receives

Figure 1: Examples of an honorific conversion task that considers contextual information. The bolded verbs
conjugate to their honorific form if needed, considering the context.

Context: The speaker uses honorifics for Tanaka.
Tanaka-san-ga itta. — Tanaka-san-ga osshatta.

J generalize

Context: The speaker uses honorifics for Tanaka. The
speaker and Tanaka uses honorifics for Itoh.
Tanaka-san-ga [okyakusama-ga kita] to Itoh-san-ni
houkokushita. — ?7?

Figure 2: An example of the syntactic generalization of
honorifics. The lower problem is made of a more com-
plex sentence structure (center embedding and indirect
speech) than the upper problem.

capacity, we analyze how flexibly LLMs can ap-
ply the grammatical rules of honorifics. Using our
dataset, we then fine-tune and evaluate the perfor-
mance of GPT-3 on the task (Section 4). Addition-
ally, we evaluate the models using zero-shot learn-
ing to determine how well these models perform
for honorific conversion using the prompt-based
method. Our experiments indicate that the fine-
tuned GPT-3 successfully generalizes to sentences
with more complex structures, such as scrambling,
but not to those involving direct speech. We also
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show that the model with prompt learning demon-
strates much lower performance than that with fine-
tuning.

Our dataset will be publicly available at https:
//github.com/ynklab/japanese_honorifics.

2 Task Overview

Japanese Honorifics Japanese honorifics are
based on various linguistic phenomena (Council for
Cultural Affairs, 2007; Nihongo Kijutsu-bunpou
Kenkikai, 2009); some have grammatical rules of
conjugation. We target Subject Honorifics (SH)
and Object Honorifics (OH). As shown in Table 1,
these honorifics are applied depending on the gram-
matical position of sensei (a teacher) so that the
speaker can express respect or deference towards
the teacher. SH is applied to the predicate when
agent has a higher social status than the speaker,
and OH is applied when the patient has a higher
social status than the speaker.

Honorific Conversion The existing research pro-
posed honorific conversion (Matsumoto et al.,


https://github.com/ynklab/japanese_honorifics
https://github.com/ynklab/japanese_honorifics

Context Sentence(s)

‘ Relationship Template

speaker=target<actor

‘ Assign Vocabulary ‘

You use honorifics to Yamada. You and Yamada
use honorifics to Tanaka-san.

speaker = you
target = Yamada
actor = Tanaka-san
v = meet

Incorrect/Non-honerific Sentence
& Correct Sentence

Tanaka-HON-NOM  Yamada-DAT met

‘ Sentence Template ‘
actor-ga target-niv

Tanaka-san-ga Yamada-ni o-ai-ninatta

Tanaka-san-ga Yamada-ni atta
Tanaka-HON-NOM Yamada-DAT met-SH

Figure 3: Overview of the process of dataset construction. The bolded sentences are used in the task. The verb met
has to conjugate to its subject honorific form met-SH (0-ai-ni-natta) since the speaker is supposed to use honorifics

for Tanaka-san.

2022). We extend this task to include sentences ex-
plaining social relationships as input. In the upper
example of Figure 1, the speaker is talking about
supervisor Yamada’s actions, so the verb uketoru
(receive) should be converted into the subject hon-
orific form. In the lower example, the speaker and
Yamada are in a casual relationship because they
are colleagues; therefore, the model should output
the same sentence as the input without honorific
conjugation.

Syntactic Generalization We focus on the mod-
els’ syntactic generalization ability to capture
whether models can flexibly use honorific rules.
In this paper, syntactic generalization refers to a
model’s ability to use honorific rules for not only
simple syntactic structures but also complex syn-
tactic structures (see Figure 2).

3 Dataset Construction

We construct a Japanese honorific dataset by man-
ually creating problem templates and filling their
placeholders with vocabulary using dictionaries
to evaluate LLMs’ performance on the honorific
task. Our dataset construction method is shown in
Figure 3. We take this approach instead of automat-
ically collecting data from corpora for two reasons.
First, it is difficult to create sentence data with com-
plex structures, such as scrambling, from corpora in
a controlled manner. This possibly makes it easier
for a model to do honorific conversion than when
the information is implicit. Second, we need to
prepare controlled settings for social relationship
information to evaluate whether LLMs utilize it in
honorific conversion; however, such information
does not appear explicitly in the corpora.

The second problem is related to the fact that
words in argument positions are often dropped in
Japanese, especially in dialogue sentences. (1) and
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(2) display a conversation between a junior worker
and their boss.

(1) A boss asks a question to a junior

Okashi-tte mada nokotteru ?
snack-TOP, still remain ?

‘Are there any snacks left?’

(@)

The junior answers

¢; nokori  wa itadakimashita;
¢ remained TOP had-OH

‘I/We had them all.’

In this conversation, two ambiguous points must
be clarified to determine the honorific relationship
behind the conversation. The first point is that
the junior answers with object honorifics to show
deference in (2), but the target of deference is am-
biguous without additional context. If snacks are
something the boss originally brought to their of-
fice, the boss is the target of the junior’s deference.
However, if the snacks are prepared by some third
person with a higher rank of job position than the
junior, the deference must be towards them instead
of the boss. The second point is that the subject
is dropped in (2) (pro-drop), but we cannot deter-
mine whether ¢ refers to the junior or to a group
of workers containing the junior. Considering such
language-specific phenomena, we take a template-
based approach instead of a corpus-based approach
for dataset construction.

3.1 Templates

We create 39 problem templates based on the liter-
ature on Japanese linguistics (Council for Cultural
Affairs, 2007; Nihongo Kijutsu-bunpou Kenkiikai,
2009). A graduate student with a linguistic back-
ground created the templates by consulting a lin-
guistics researcher. Each problem template has
three elements for generating input and output data
for honorific conversion: the relationship template,
sentence template, and honorific type.



Relationship Templates Relationship templates
represent social relationships among a speaker, a
person who makes an action (agent), and one who
is the target of the action (patient) in an equation-
like format. For example, speaker=actor<target
means that the speaker and actor do not use hon-
orifics for each other and should use honorifics for
the target.

Sentence Templates Sentence templates have
placeholders for person’s names and verbs. Based
on their structural complexities, we prepare two
types of sentence templates: SIMPLE and COM-
PLEX. SIMPLE is a template that has one clause
and S(O)V structure, and COMPLEX is a template
that has more complex syntactic structures: scram-
bling (SC), center embedding (CE), direct speech
(DS), and indirect speech (IS). The first two struc-
tures change the argument positions within a sen-
tence, potentially posing challenges for the model
in capturing subject-verb agreement. The last two
are related to honorific application, depending on
whether the sentence has quotation marks (brack-
ets) or not (see Appendix B). A COMPLEX template
may contain multiple structures (e.g., IS & CE).
See Appendix B for further details.

3.2 Problem Generation

We create problem data for training and evaluating
models by filling in placeholders of the templates
for verbs and person’s names. From the relation-
ship template, context sentences are generated that
explain the social relationships between the speaker
and the people mentioned in the input sentence. In
addition, from the sentence template, we create an
incorrect or non-honorific sentence and a correct
honorific sentence. The verb conjugates according
to the honorific type given when its placeholder is
being filled. We used 23 verbs and 19 names in this
experiment. We chose the verbs which are com-
monly used in daily conversation. We also avoid
verbs such as nusumu(steal) because honorifics can-
not usually be applied to disrespectful actions. Re-
garding the names of people, we used the 19 most
common family names in Japan in 2022'. Finally,
a set of the following data is generated from each
problem template: context sentences, an incorrect
or non-honorific sentence, and a correct sentence.

lhttps://myoji—yurai.net/prefectureRanking.
htm
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4 Experiments

4.1 Experimental Setup

We evaluate GPT-3 models on the proposed hon-
orific conversion task under two different exper-
imental settings: fine-tuning and prompt learn-
ing. Despite the general expectation of the su-
perior performance of fine-tuning compared to
zero-shot prompt learning, no prior research has
aimed to evaluate the performance of LLM on
honorific conversion in a prompt-based method.
Thus, we compare the scores of these two meth-
ods to validate whether the same goes true for
honorific conversion. For the two settings accord-
ingly, we use davinci (Brown et al., 2020) and
text-davinci-003 (Ouyang et al., 2022), which
are available in the OpenAl API (see Appendix C
for details including hyperparameter settings).

Fine-tuning We fine-tune two models that differ
in the training dataset’s size to measure how much
data are needed to generalize the problems. SIM-
PLE_TRAIN is used for training and SIMPLE_TEST
and COMPLEX_TEST for evaluation. 3_times is a
model trained with 117 problems we prepare by
generating three data from each problem template,
and in the same way, 7_times is trained with 273
problems. Although our dataset has relatively little
data, we consider it enough for the experiments
because the minimum dataset size for fine-tuning
GPT-3 is “a few hundred.”> As shown in Figure 1,
the input is a concatenation of condition sentences
and an incorrect sentence, and the output is a proper
honorific sentence.

Prompt Learning GPT-3 is known for zero-shot
learning, solving some tasks given only a natural
language description as a prompt. In addition to the
input text used for fine-tuning, we include a task
description in the input prompt (see Appendix E).

Evaluation We manually calculate the percent-
age of correct sentences generated by a model. In
this experiment, we regard the output as correct
if the verb conjugates to one of the possible hon-
orific forms. We also ignore mistakes unrelated to
verb conjugation (e.g., adding a comma in a natural
position). We create test datasets using the same
problem templates and vocabulary as the training
datasets. SIMPLE_TEST contains 108 examples,
and COMPLEX_TEST has 408 examples (see Ap-
pendix D).

2https://platform.openai.com/docs/guides/
fine-tuning/preparing-your-dataset
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Context: The speaker uses honorifics for Kimura. The speaker and Kimura use honorifics for Takahashi-san.

— Speaker<Kimura<Takahashi

Takahashi-san ga “Kimura ga okaerininaru (=go-home-SH)” to ossharu.

Translation Takahashi says “Kimura is going home.”
Source
Target Takahashi-san ga “Kimura ga kaeru (=go-home)” to ossharu.

Model’s Prediction

Takahashi-san ga “Kimura ga okaerininaru (=go-home-SH)” to ossharu. (Not converted)

Table 2: An example of the errors regarding direct speech. The speech within brackets is made by Takahashi. The
verb kaeru should not be in a subject honorific form okaerininaru because Takahashi does not use honorifics for

Kimura, given their relationships.

Setting Simple Complex
CE SC IS DS
FT 3_times .889 230 297 .081 .368
7_times 990 326 452 231 293
PL  zero-shot 212 A15 174 168 .100

Table 3: Evaluation results of the models on our test
dataset through honorific conversion. FT refers to fine-
tuning, and PL to prompt learning.

4.2 Results

Table 3 shows the scores under all settings of our ex-
periments on the honorific conversion task. Overall,
the fine-tuning scores surpass those of the prompt-
based method.

4.2.1 Fine-tuning

The scores plummeted when the models were
tested with COMPLEX_TEST compared to SIM-
PLE_TEST. When we increased the data size, the
scores increased in most cases, except when tested
for problems with direct speech sentences. In Ta-
ble 2, the model failed to convert a direct speech
sentence (Takahashi-san ga “Kimura ga okaerin-
inaru” to ossharu). The verb kaeru should not
be in a subject honorific form (okaerininaru) be-
cause Takahashi does not use honorifics for Kimura,
given their relationships. However, if the brackets
(quotation marks in Japanese, see Appendix B) are
removed, the sentence (Takahashi-san ga Kimura
ga okaerininaru to ossharu) becomes an indirect
speech sentence and thus becomes proper hon-
orifics. Based on this characteristic, we suppose
that the model applied the same honorific knowl-
edge as indirect speech to direct speech, ignoring
the role of brackets.

4.2.2 Prompt Learning

The scores were relatively higher when tested with
SIMPLE_TEST than with COMPLEX_TEST, but the
scores under all of our settings were lower than
25%. We found that the models transferred non-
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honorific sentences to polite forms in almost all
cases by simply changing the last letters of the
verbs that end -suru into -shimasu instead of apply-
ing SH or OH. This conversion is possibly caused
by our prompt instructing the models to “convert to
the proper honorific sentence,” which may include
polite forms too. To validate whether the models
use contextual information, we need to construct a
prompt that can differentiate SH and OH from po-
lite speech because polite forms are less restricted
to social relationships.

5 Conclusions and Future Work

In this paper, we introduced an honorific conversion
task that requires not only syntactic knowledge but
also pragmatic knowledge, such as social relation-
ships among people. We constructed a Japanese
honorific dataset using problem templates created
manually and evaluated the syntactic generaliza-
tion capacity of GPT-3 models on the task using
our dataset. The experiments showed that the fine-
tuned models could solve problems with simple
structures but failed to generalize to problems with
more complex structures, particularly with direct
speech. Regardless of the sentence structure, the
prompt-based models did not successfully solve
the problems with our current prompt setting.

In future work, we plan to expand our dataset
to include more diverse Japanese honorific expres-
sions, such as predicates other than verbs or hon-
orific prefixes attached to nouns. For the prompt-
based experiments, we evaluated the models using
zero-shot learning. It would be valuable to test
them using few-shot learning by including simple
examples in the prompts.

We conducted experiments by explicitly provid-
ing information about social relationships. We will
also continue to seek data construction methods to
extract such information from the corpora, although
we did not apply these corpora-based methods in
this paper.



Limitations

We discuss two limitations of this research in this
section. First, this research focuses on Japanese
honorifics with grammatical rules of verb conju-
gation, which we can judge whether the honorific
conversion is correct based on social relationships
and sentence structures created in a controlled man-
ner. Japanese honorifics have more expressions
based on linguistic phenomena that we did not in-
clude in our templates, such as noun honorifics
(e.g., ofutagata, a polite and formal way of say-
ing “the two people”). Creating templates for noun
honorifics requires more detailed settings because
they are based on information on context other than
social relationships. Second, GPT-3 is the only lan-
guage model evaluated on our honorific conversion
task. This research aims to analyze how capable
the well-known, high-performing GPT-3 is of gen-
eralizing Japanese honorific sentences and not to
explore which existing LLM can achieve the best
performance in honorific conversion.
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A Existing Datasets

Table 4 shows examples of existing Japanese hon-
orifics datasets.

B Templates

Table 5 shows examples of templates we created.
Table 6 shows examples of indirect and direct
speech in Japanese.
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davinci is the largest model among the ones pro-
vided for fine-tuning, and text-davinci-003 is
trained by reinforcement learning on human feed-
back and aimed at being used with prompt learning.

Hyperparameters For fine-tuning GPT-3,
n_epochs is set to 2. For text generation, we set
max_tokens to 50 and temperature to 0.
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Table 4: Examples from the existing honorific datasets.

Original

Converted

Label

BZIEAE N —AMINZ =L RY
IA M EHC B> TERNE LT

(I had toast for breakfast with a

thin layer of butter and Vegemite.)

B ZIEAE N —=A MIARZ =2 RY
VA FEHS DO TWEEEEL
(I had_OH toast for breakfast with a
thin layer of butter and Vegemite.)

ZE R

(Converted: OH)

Z L TI0ME< S0z, BEETL —
Yy Ta /e NIZEVWE L,
(Then, at around 10:00, I met Rachel,
Jonathan, and Belle at a coffee shop.)

Z L TI0HE W0z, BERETL —
Yy Tva sy re)uIeni L,
(Then, at around 10:00, I met Rachel,
Jonathan, and Belle at a coffee shop.)

2

(Not converted)

(Matsumoto et al., 2022)

. Honorific Respectful Humble Polite .
Sentences from KeiCO corpus level e g T Field
AHIE, PRTEVMHEKL NI DY,
2 EUE U7, (Ihave come here today to 1 0 ! 0 FHER
discuss something that [ have been wanting to consult
discuss for some time.)
SHIE, T A->TIMHELZWZ EDH - A%
TR > 72D TF A, (I came here today because 2 0 1 0 con:ul ¢
I wanted to ask you about something.)
SHIFMHELU 2N Do 2720, KEL e
7z. (I came here today because I had something 3 0 0 1 con: It
I wanted to discuss.) v
SHIET o LHHHE LN eid o TR, Wik
(I came here today to consult with you about 4 0 0 0 con:i;lt
something.)
(Liu and Kobayashi, 2022)
Pre-training Data of GPT-3 GPT-3 can input
and output Japanese texts because some of its
pre-training datasets (Common Crawl, WebText)
contain Japanese texts, although the proportion of -~ ~

Japanese texts is not clarified.

D Test Dataset

Within the COMPLEX_TEST dataset, 156 data have
center embedding, 252 for scrambling, 160 for indi-
rect speech, and 160 for direct speech. Scrambling
and center embedding can not appear in one prob-
lem data; the same goes for indirect and direct
speech.

E Prompt Example

Figure 4 shows an example of our prompt used for
prompt learning.

UTOXIEHBRE-OREETYT, AWEDOHED
FMEBEZAT MEIMTTONENSEBRST
FEoTVWEIHBERELWHEBICEBRLTCES
LY, (The following sentence is your speech. Given
the condition of usage of honorifics between people,
convert the sentence to the proper honorific one if it
contains wrong or insufficient honorifics.)

WEED KM FHPITHREZ N E T,
(Condition: You use honorifics for Tanaka.)
FH A %332 17 HY % (Tanaka receives) ->
\_ J
Correct output: FHHIA3B 5 17 EXL D (272 5 (Tanaka
receives-SH)

Figure 4: An example of the prompt used for zero-shot
learning. The bold text is a task description.



Sentence template

and an example of created correct sentence Structure type

Relationship template Honorific type

actor_1 ga target_1 ni v_ni_1,
actor_1 NOM target_1 DAT v_ni_1,
Sasaki ga Saito ni au,

(Sasaki meets Saito.)

speaker=actor_l=target_1 v_ni_1 — NA SIMPLE

actor_1 ga target_1 ni v_ni_l,

actor_1 NOM target_1 DAT v_ni_l,
Takahashi-kyoju ga Kimura ni o-ai-ninaru,
(Prof. Takahashi meets Kimura.)

speaker=target_l<actor_1 v_ni_1 — SH SIMPLE

actor_1 ga target_1 o v_o_1,

actor_1 NOM target_1 ACC v_o_1L,
Kimura-hakase ga Yamada o shokai-nasaru,
(Dr. Kimura introduces Yamada.)

speaker=target_l<actor_1 v_o_1 — SH SIMPLE

target_1 ni actor_1 ga v_ni_1,
target_1 DAT actor_1 NOM v_ni_1,
Kimura ni Yamamoto ga kanshasuru,
(Yamamoto thanks Kimura.)

speaker=actor_l=target_1 v_ni_1 — NA COMPLEX (SC)

actor_1 ga “actor_2 ga v_single_2”

to v_to_1,
v_to_1 —NA actor_1 NOM “actor_2 NOM v_single_2"
speaker=actor_l=actor_2 v_single_2 — NA CITEV_to_1, COMPLEX (DS, CE)

Itoh ga “Matsumoto ga iku” to iu,
(Itoh says “Matsumoto goes.” )

“actor_2 ga v_single_2” to

actor_1 ga v_to_1,

“actor_2 NOM v_single_2” CITE
v_to_1 — SH actor_1 NOM v_to_1,
v_single_2 — NA “Kimura-sensei ga uketoru” to

Kato-hakase ga o-kangae-ninaru,

(Dr. Kato considers,

“Kimura-sensei will receive it.” )

speaker<actor_2<actor_1 COMPLEX (DS, SC)

actor_2 ga v_single_2 to
actor_1 ga v_to_1,
actor_2 NOM v_single_2 CITE
v_to_1 — SH actor_1 NOM v_to_1,
v_single_2 — SH Kimura-sensei ga o-uketori-ninaru to
Kato-hakase ga o-kangae-ninaru,
(Dr. Kato considers that
Kimura-sensei will receive it.)

speaker<actor_2<actor_1 COMPLEX (IS, SC)

Table 5: Examples of problem templates. NA in the honorific type section means no honorific needs to be applied to
a verb. SC=scrambling, CE=center embedding, DS=direct speech, IS=indirect speech

Social relationships: Speaker<Taro=Hanako

Taro-san-ga irasshatta to Hanako-san-ga itta.

Indirect speech .
P Taro-HON-NOM came-SH CITE Hanako-HON-NOM said.

[Taro-ga kita] to Hanako-san-ga itta.

Direct speech .
P Taro-NOM came CITE Hanako-HON-NOM said.

Table 6: Examples of indirect speech and direct speech in Japanese. Indirect speech is the citation of someone’s
speech without quotation marks (brackets), and direct speech is the one with them. In the example of indirect speech,
subject honorifics are applied to Taro’s name (-san) and his action (irasshatta) to express the speaker’s respect for
him. In contrast, the sentence within brackets is written without any honorifics in direct speech. Hanako does not
use honorifics for Taro’s actions according to their social relationships, so the quoted sentence is what Hanako said,
and no honorifics from the speaker’s view of the entire sentence are reflected.
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Abstract

Geocoding is the task of converting location
mentions in text into structured data that en-
codes the geospatial semantics. We propose
a new architecture for geocoding, GeoNorm.
GeoNorm first uses information retrieval tech-
niques to generate a list of candidate entries
from the geospatial ontology. Then it reranks
the candidate entries using a transformer-based
neural network that incorporates information
from the ontology such as the entry’s popula-
tion. This generate-and-rerank process is ap-
plied twice: first to resolve the less ambigu-
ous countries, states, and counties, and sec-
ond to resolve the remaining location men-
tions, using the identified countries, states, and
counties as context. Our proposed toponym
resolution framework achieves state-of-the-art
performance on multiple datasets. Code and
models are available at https://github.
com/clulab/geonorm.

1 Introduction

Geospatial information extraction is a type of se-
mantic extraction that plays a critical role in tasks
such as geographical document classification and
retrieval (Bhargava et al., 2017), historical event
analysis based on location data (Tateosian et al.,
2017), tracking the evolution and emergence of
infectious diseases (Hay et al., 2013), and disas-
ter response mechanisms (Ashktorab et al., 2014;
de Bruijn et al., 2018). Such information extraction
can be challenging because different geographical
locations can be referred to by the same place name
(e.g., San Jose in Costa Rica vs. San Jose in Cali-
fornia, USA), and different place names can refer
to the same geographical location (e.g., Leeuwar-
den and Ljouwert are two names for the same city
in the Netherlands). It is thus critical to resolve
these place names by linking them with their cor-
responding coordinates from a geospatial ontology
or knowledge base.
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Geocoding, also called toponym resolution or
toponym disambiguation, is the subtask of geop-
arsing that disambiguates place names (known as
toponyms) in text. Given a textual mention of a
location, a geocoder chooses the corresponding
geospatial coordinates, geospatial polygon, or en-
try in a geospatial database. Approaches to geocod-
ing include generate-and-rank systems that first
use information retrieval systems to generate can-
didate entries and then rerank them with hand-
engineered heuristics and/or supervised classifiers
(e.g., Grover et al., 2010; Speriosu and Baldridge,
2013; Wang et al., 2019), vector-space systems that
use deep neural networks to encode place names
and database entries as vectors and measure their
similarity (e.g., Hosseini et al., 2020; Ardanuy
et al., 2020), and tile-classification systems that use
deep neural networks to directly predict small tiles
of the map rather than ontology entries (e.g., Gritta
et al., 2018a; Cardoso et al., 2019; Kulkarni et al.,
2021). The deep neural network tile-classification
approaches have been the most successful, but they
do not naturally produce an ontology entry, which
contains semantic metadata needed by users.

We propose a new architecture, GeoNorm,
shown in Figure 1, which builds on all of these
lines of research: it uses pre-trained deep neural
networks for the improved robustness in matching
place names, while leveraging a generate-then-rank
architecture to produce ontology entries as output.
It couples this generate-and-rank process with a
two-stage approach that first resolves the less am-
biguous countries, states, and counties, and then
resolves the remaining location mentions, using the
identified countries, states, and counties as context.

Our work makes the following contributions:

* Our proposed architecture for geocoding
achieves new state-of-the-art performance,
outperforming prior work by large margins on
toponym resolution corpora: 19.6% improve-
ment on Local Global Lexicon (LGL), 9.0%
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Figure 1: The architecture of our model, GeoNorm, applied to a sample text. The location mentions to be resolved

are in bold.

on GeoWebNews, and 16.8% on TR-News.
Our candidate generator alone, based on sim-
ple information retrieval techniques, outper-
forms more complex neural models, demon-
strating the importance of establishing strong
baselines for evaluation.

Our reranker is the first application of pre-
trained transformers for encoding location
mentions and context for toponym resolution.
Our two-stage resolution provides a simple
and effective new approach to incorporating
document-level context for geocoding.

2 Related Work

The current work focuses on mention-level geocod-
ing. Related tasks include document-level geocod-
ing and geotagging. Document-level geocoding
takes as input an entire text and produces as output
a location from a geospatial ontology, as in ge-
olocating Twitter users or microblog posts (Roller
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et al., 2012; Rahimi et al., 2015; Lee et al., 2015;
Rahimi et al., 2017; Hoang and Mothe, 2018; Ku-
mar and Singh, 2019; Luo et al., 2020) and geo-
graphic document retrieval and classification (Gey
et al., 2005; Adams and McKenzie, 2018). Geo-
tagging takes as input an entire text and produces
as output a list of location phrases (Gritta et al.,
2018b). Mention-level geocoding, the focus of the
current article, takes as input location phrases from
a text and produces as output their corresponding
locations in a geospatial ontology. This is related
to the task of linking phrases to Wikipedia, though
geospatial ontologies do not have full text articles
for each of their concepts, which are required for
training many recent Wikipedia linking approaches
(e.g., Yamada et al., 2022; Ayoola et al., 2022b).
Early systems for mention-level geocoding used
hand-crafted rules and heuristics to predict geospa-
tial labels for place names: Edinburgh geoparser
(Grover et al., 2010), Tobin et al. (2010), Lieber-



man et al. (2010), Lieberman and Samet (2011),
CLAVIN (Berico Technologies, 2012), GeoTxt
(Karimzadeh et al., 2013), and Laparra and Bethard
(2020). The most common features and heuristics
were based on string matching, population count,
and type of place (city, country, etc.).

Later geocoding systems used heuristics of
rule-based systems as features in supervised ma-
chine learning models, including logistic regression
(WISTR, Speriosu and Baldridge, 2013), support
vector machines (Martins et al., 2010; Zhang and
Gelernter, 2014), random forests (MG, Freire et al.,
2011; Lieberman and Samet, 2012), stacked Light-
GBMs (DM_NLP, Wang et al., 2019) and other
statistical learning methods (Topocluster, DeLozier
et al., 2015; CBH, SHS, Kamalloo and Rafiei,
2018). These systems typically applied a generate-
then-rerank framework: the mention text is used to
query an information retrieval index of the geospa-
tial ontology and produce candidate ontology en-
tries, then a supervised machine-learning model
reranks the candidates using additional features.

Some deep learning models approach geocoding
as a vector-space problem. Both the mention text
and ontology entries are converted into vectors, and
vector similarity is used to select the most appro-
priate ontology entry for each mention (Hosseini
etal., 2020; Ardanuy et al., 2020). Such approaches
should allow more flexible matching of mentions
to concepts, but we find that simple information
retrieval techniques outperform these models.

Other deep learning models approach geocoding
as a classification problem by dividing the Earth’s
surface into an /N x N grid of tiles. Place names and
their features are mapped to one of these tiles us-
ing convolutional (CamCoder, Gritta et al., 2018a;
MLG, Kulkarni et al., 2021) or recurrent neural net-
works (Cardoso et al., 2019). Such approaches can
flexibly match mentions to concepts and can also
incorporate textual context, but do not naturally
produce ontology entries, which contain semantic
metadata needed by users.

Our proposed approach combines the tight ontol-
ogy integration of the generate-and-rerank systems
with the robust text and context encoding of the
deep neural network classifiers.

3 Proposed Methods

We define the task of toponym resolution as fol-
lows. We are given an ontology or knowledge
base with a set of entries £ = {e1, e2,...,eg|}-
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Each input is a text made up of sentences 7' =
{t1,t2,...,tj7} and a list of location mentions
M = {mi,ma,...,m |y} in the text. The goal is
to find a mapping function f(m;) = e; that maps
each location mention in the text to its correspond-
ing entry in the ontology.

We approach toponym resolution using a can-
didate generator followed by a candidate reranker.
The candidate generator, G(m, E) — E,,, takes
a mention m and ontology FE as input, and gener-
ates a list of candidate entries F,,,, where F,,, C F
and |E,,| < |E|. As the candidate generator must
search a large ontology and produce only a short
list of candidates, the goal for G will be high re-
call and high runtime efficiency. The candidate
reranker, R(m, E,,) — E,,, takes a mention m
and the list of candidate ontology entries F,,, and
sorts them by their relevance or importance to pro-
duce a new list, E,,,. As the candidate ranker needs
to work only with a short list of candidates, the
goal for R will be high precision, especially at rank
1, with less of a focus on runtime efficiency.

3.1 Candidate Generator

Our candidate generator is inspired by prior work
on geocoding in using information retrieval tech-
niques to search for candidates in the ontology
(Grover et al., 2010; Berico Technologies, 2012).
Accurate candidate generation is essential, since
the generator’s recall is the ceiling performance
for the reranker. As we will see in section 5, our
proposed candidate generator alone is competitive
with complex end-to-end systems from prior work.

Our sieve-based approach, detailed in alg. 1,
tries searches ordered from least precise to most
precise until we find ontology entries that match
the location mention. Intuitively, our goal is for
mentions like Austria to match the entry AUSTRIA
[2782113] in GeoNames before it matches AUS-
TRALIA [2077456], but still allow a typo like Aus-
trala to match AUSTRALIA [2077456].

We create one document in the index for each
name 1. of an entry e in the GeoNames ontology.
A location mention m is matched to a name n,
by attempting a search with each of the following
matching strategies, in order:

EXACT m exactly matches (ignoring whitespace)
the string ne

FUzzY m is within a 2 character Levenshtein edit
distance (ignoring whitespace) of n.



Algorithm 1: Candidate generator.

Input: a location mention, m
a maximum number of candidates, k
the GeoNames ontology, I/

Output: a list of candidate entries F,,
// Index ontology
I+90
fore € E do

name < CANONICALNAME(E, e)

synonyms < SYNONYMS(E, e)

for n € {name} U synonyms do

| I < IU{CREATEDOCUMENT(n,e)}

// Search for candidates
7 E"L <~ @
8 for ¢t € { EXACT, FuzzY, CHARACTERNGRAM,

TOKEN, ABBREVIATION, COUNTRYCODE } do
9 E,, < SEARCH(I,m,t)
if £, # () then
1 | break
// Select top entries by population
E,, + SORT(E,,, KEY =€ — POPULATION(E, ¢))
return top k elements of F,,

A UM B W N =

12
13

CHARACTERNGRAM m has at least one charac-
ter 3-gram overlap with n,

TOKEN m has at least one token (according to the
Lucene StandardAnalyzer) overlap with n.

ABBREVIATION m exactly matches the capital
letters of n,

COUNTRYCODE e is a country and m exactly
matches a e’s country code

Once one of the searches has retrieved a list of
matching names, we recover the ontology entry
for each name, sort those ontology entries by their
population in the GeoNames ontology, and return
the k£ most populous ontology entries. This list,
E,, is then the input to the candidate reranker.

3.2 Candidate Reranker

Our candidate reranker is inspired by work on med-
ical concept normalization (Xu et al., 2020; Ji et al.,
2020). The reranker takes a mention, m, and the
list of candidate entities from the candidate gen-
erator, I,,, encodes them with a transformer net-
work, and uses these encoded representations to
perform classification over the list to select the
most probable entry. Formally, the model predic-
tion, GEONORM(m, E,,,) = €, is calculated as:

s = TOINPUT(m, E!)

A’ = TRANSFORMER (")

b’ = A} @ log(PoP(E, E.))) @ TYPE(E, E.,)
d = Wl W

y

softmax(c® @ ... @ c¥)
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where:

E! is the i'" candidate entry for mention m
TOINPUT(m, ) produces a string of the form
[cts] m [sep] C(FE,e) (sep] S(E,e);
[SEP] (ser] S(E,e)s(Ee) [SEPT,
where C'(E, e) is the canonical name of e in
the ontology, and S(E, e) is the list of alter-
nate names of e in the ontology.
TRANSFORMER (s) tokenizes the string s into
word-pieces and produces contextualized em-
beddings for each of the word-pieces.

A} is the contexualized representation for the
[cLs] token of candidate entry ¢’s input string
PoP(E, e) is the population of concept e in
the ontology F/

TYPE(E, e) is a one-hot vector identifying
which of the T types in the ontology E the
concept represents!

@ denotes vector concatenation

Wy € R150><(H+1+T) and W, € R1><150 are
learned weight matrices, where H is the trans-
former’s hidden dimension

y is a probability distribution over the k en-
tries proposed by the candidate generator

We represent the mention text + candidate entity
synonyms with the contextualized representation
of the [cLs] token, similar to applications of trans-
formers to text classification. We include the pop-
ulation feature to allow the model to learn that
locations in text are more likely to refer to high
population than low population places (e.g., Paris,
France vs. Paris, Texas, USA), and we take the log-
arithm of the population under the assumption that
it is more important to capture the order of magni-
tude (e.g., thousands vs. millions) than the exact
number. We include the type feature to allow the
model to learn that locations in text are more likely
to refer to some types of geographical features than
others (e.g., San José, the capital of Costa Rica, vs.
San José, the province).

The candidate reranker is trained with a standard
classification loss:

Lr =y log(y)

where y € RIml is a one-hot vector representing
the correct candidate entry.

'GeoNames has T = 681 types. For example, PPLC
means capital of a political entity. Definitions for all types
(“feature codes”) are at http://download.geonames.
org/export/dump/featureCodes_en.txt
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3.3 Context Incorporation

The text around a mention may provide clues (e.g.,
the context Minnesota State Patrol urges motorists
to drive with caution. . . in Becker, Clay, and Dou-
glas suggests that Clay refers to Clay County, Min-
nesota, even though Clay County, Missouri is more
populous). Thus, we consider two approaches to
incorporating context.

context=csent A simple approach is to take the
c-sentence window surrounding the mention m and
encode it with the the same transformer as was used
to encode m + e. The contextualized representa-
tion of the c-sentence window’s [CLs] token can
then be concatenated into b alongside the other fea-
tures. The 512 word-piece limit on the size of the
transformer input means that this approach cannot
incorporate the entire document.

context=2stage To include the full document
context, we take advantage of the fact (demon-
strated in appendix A.1) that toponyms at the top
of the hierarchy, like countries and states, can often
be resolved precisely without context as they are
less ambiguous. We thus propose Algorithm 2, a
two-stage approach to geocoding. Lines 3-7 are the
context-free stage, where GeoNorm is first applied
to all location mentions. If the feature type of a
predicted entry, TYPE(e), is an administrative dis-
trict 1-3 (i.e., the top of the geographic hierarchy:
countries, states, or counties), then the prediction
is accepted. Such predictions are converted to their
administrative codes (e.g., United States — US)
and added to the context. Lines 8-11 are the second
stage, where the geocoding system is applied to all
remaining location mentions but this time incorpo-
rating the collected context. The context is formed
by concatenating together the collected toponym
codes, where for example, if Canada (CA) and Al-
berta (01) were found in the document as in fig. 1,
the context string would look like “CA 11 017.

4 Experiments

4.1 Datasets

We conduct experiments on three toponym resolu-
tion datasets. Local Global Lexicon (LGL; Lieber-
man et al., 2010) was constructed from 588 news
articles from local and small U.S. news sources.
GeoWebNews (Gritta et al., 2019) was constructed
from 200 articles from 200 globally distributed
news sites. TR-News (Kamalloo and Rafiei, 2018)
was constructed from 118 articles from various
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Algorithm 2: Two-stage toponym resolu-
tion using document-level context.

Input: location mentions, M
GeoNames ontology, E/
1 R« {}
C+0
// Resolve toponyms without context
for m € M do
é <+ GEONORM(m, E)
if TYPE(é) € {adml, adm2, adm3} then
Rim) « é
C + CU{coDE(é)}
// Resolve toponyms with context

~

I Y N

8 c+ "||".join(C)

9 form € M do

10 if m ¢ R then

1 ‘ R[m] - GEONORM(m + ¢, E)

12 return R

Dataset Train Dev. Test

Topo. Art. Topo. Art. Topo. Art.

LGL 3112 411 419 58 931 119
GeoWebNews 1641 140 281 20 477 40
TR-News 925 82 68 11 282 25

Table 1: Numbers of articles (Art.) and manually anno-
tated toponyms (Topo.) in the train, development, and
test splits of the toponym resolution corpora.

global and local news sources. As there are no
standard publicly available splits for these datasets,
we split each dataset into a train, development, and
test set according to a 70%, 10% , and 20% ratio.
To enable replicability, we will release these splits
upon publication. The statistics of all datasets are
shown in table 1.

4.2 Database

Our datasets use GeoNames~, a crowdsourced
database of geospatial locations, with almost 7 mil-
lion entries and a variety of information such as
geographic coordinates (latitude and longitude), al-
ternative names, feature type (country, city, river,
mountain, etc.), population, elevation, and posi-
tions within a political geographic hierarchy. An
example entry from GeoNames is shown in fig. 2.

2

4.3 Evaluation Metrics

There is not yet agreement in the field of toponym
resolution on a single evaluation metric. Therefore,
we gather metrics from prior work and use all of
them for evaluation.

https://www.geonames.org/
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Figure 2: An entry for Tucson in GeoNames

Accuracy is the number of location mentions
where the system predicted the correct database en-
try ID, divided by the number of location mentions.
Higher is better, and a perfect model would have
accuracy of 1.0.

Accuracy@161km measures the fraction of
system-predicted (latitude, longitude) points that
were less than 161 km (100 miles) away from
the human-annotated (latitude, longitude) points.
Higher is better, and a perfect model would have
Accuracy@161km of 1.0.

Mean error distance calculates the mean over
all predictions of the distance between each system-
predicted and human-annotated (latitude, longi-
tude) point. Lower is better, and a perfect model
would have a mean error distance of 0.0.

Area Under the Curve calculates the area under
the curve of the distribution of geocoding error
distances. Lower is better, and a perfect model
would have an area under the curve of 0.0.

4.4 Implementation details

We implement the candidate reranker with Lucene?

v8.4.1 under Java 1.8. When indexing Geo-
Names, we also index countries under their ad-
jectival forms in Wikipedia*. We implement
the candidate reranker with the PyTorch’ v1.7.0
APIs in Huggingface Transformers v2.11.0 (Wolf
et al., 2020), using either bert-base-uncased Or
bert-multilingual-uncased. We train with the
Adam optimizer, a learning rate of le-5, a maxi-
mum sequence length of 128 tokens, and a num-
ber of epochs of 30. We explored a small num-
ber of learning rates (le-5, le-6, 5Se-6) and epoch

Shttps://lucene.apache.org/

“https://en.wikipedia.org/wiki/List_
of_adjectival_and_demonymic_forms_for_
countries_and_nations

‘https://pytorch.org/
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numbers (10, 20, 30, 40) on the development data.
When training without context, we use one Tesla
V100 GPU with 32GB memory and a batch size of
8. When training with context, we use four Tesla
V100 GPU with 32GB memory and a batch size of
32. The total number of parameters in our model is
168M and the training time is about 3 hours.

4.5 Systems

We compare to a variety of geocoding systems:

Edinburgh Grover et al. (2010) introduced a
rule-based extraction and disambiguation system
that uses heuristics such as population count, spa-
tial minimization, type, country, and some contex-
tual information (containment, proximity, locality,
clustering) to score, rank, and choose a candidate.

Mordecai Halterman (2017) introduced a
generate-and-rank approach that uses Elasticsearch
to generate candidates and neural networks based
on word2vec (Mikolov et al., 2013) to rerank them.
Its models are trained on proprietary data.

CamCoder Gritta et al. (2018a) introduced a tile-
classification approach that combines a convolu-
tional network over the target mention and 400
tokens of context with a population vector derived
from location mentions in the context and popula-
tions from GeoNames. CamCoder predicts one of
7823 tiles of the earth’s surface. See appendix A.2
for further CamCoder details.

DeezyMatch Hosseini et al. (2020) introduced
a vector-space approach that first pre-trains an
LSTM-based classifier on GeoNames taking string
pairs as input, and then fine-tunes the pair classi-
fier on the target dataset. The trained DeezyMatch
model compares mentions to database entries by
generating vector representations for both and mea-
suring their L2-norm distance or cosine similarity.

SAPBERT Liu et al. (2021) introduced a vector-
space approach that pretrains a transformer network
on the database using a self-alignment metric learn-
ing objective and online hard pairs mining to cluster
synonyms of the same concept together and move
different concepts further away. The pre-trained
SAPBERT is then fine-tuned on the target dataset.
SAPBERT was trained for the biomedical domain,
but is easily retrained for other domains. We pre-
train SAPBERT on GeoNames and finetune it on
the toponym resolution datasets.


https://lucene.apache.org/
https://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_forms_for_countries_and_nations
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https://pytorch.org/

Model LGL (test) GeoWebNews (test) TR-News (test)
R@1 R@20 R@l1 R@20 R@1 R@20
DeezyMatch (Hosseini et al., 2020)  .172 538 262 671 206 702
SAPBERT (Liu et al., 2021) 245 742 428 746 355 780
GeoNorm (+gen, -rank) .606 962 .694 .866 716 965

Table 2: Performance of candidate generators on the t

est sets. R@1 is useful for measuring the accuracy of the

candidate generator when used directly as a geocoder. R@20 is useful for estimating the ceiling performance of a

top-20 reranker based on that candidate generator.

LGL (test) GeoWebNews (test) TR-News (test)

Model Acc A161 Err AUC Acc A161 Err AUC Acc A161 Err AUC
Edinburgh (Grover et al., 2010) .611 - - - 738 - - - 750 - - -
CamCoder (Gritta et al., 2018a) 580 .651 82 .288 .572 .665 155 .290 .660 .778 89 .196
Mordecai (Halterman, 2017) 322 375926 .594 291 333 1072 .633 472 .553 6558 .427
DeezyMatch (Hosseini et al., 2020) 172 182 654 704 262 323 537 .601 .206 .220 741 .705
SAPBERT (Liu et al., 2021) 245 260 566 .630 428 .499 357 .446 355 .362 595 .568
ReFinED (Ayoola et al., 2022a) .576 - - - .658 - - -.720 - - -
ReFinED (fine-tuned) 786 - - - 782 - - - .858 - - -
GeoNorm (+gen -rank) .606 .685 119 .263 .694 774 92 .194 716 .812 95 .169
GeoNorm (+gen +rank, -context) 761 785 59 .167 .788 .834 61 .131 .798 .816 89 .154
GeoNorm (+gen +rank, +context=2stage) 807 .824 46 .135 .828 .862 55 .114 918 .933 34 .057
GeoNorm (+gen +rank, +context=2stage, +alldata) .799 .828 52 .136 .832 .876 54 .104 .897 911 36 .073

Table 3: Performance on the test sets. Higher is better for accuracy (Acc) and accuracy@ 161km (A161). Lower is
better for mean error (Err) and area under the error distances curve (AUC). We do not report distance-based metrics
for Edinburgh or ReFinED as these extraction+disambiguation systems do not make predictions for all mentions.
The best performance on each dataset+metric is in bold (excluding the final model that was trained on more data).

ReFinED Ayoola et al. (2022a) introduced a
vector-space approach for joint extraction and dis-
ambiguation of Wikipedia entities. One trans-
former network generates contextualized embed-
dings for tokens in the text, another generates em-
beddings for entries in the ontology, and tokens are
matched to entries by comparing dot products over
embeddings. ReFinED was trained on Wikipedia,
and Wikipedia entries for place names have Geo-
Names IDs, so ReFinED can be used as a geocoder.

ReFinED (fine-tuned) ReFinED can also be fine-
tuned, so we take the released version of ReFinED
and fine-tune it for geocoding on each of the to-
ponym datasets.

5 Results

We first evaluate our context-free candidate genera-
tor, comparing it to recent context-free candidate
generators. Table 2 shows that our approach out-
performs approaches from prior work by large mar-
gins, both in accuracy of the top entry (R@1) and
whether the correct entry is in the top 20 (R@20).

We next evaluate our complete generate-and-
rank system against other geocoders. We first per-

form model selection on the development set as
described in appendix A.3 to select four models to
run on the test set: the candidate generator alone,
the best generate-and-rank system with no context,
and the best generate-and-rank system with con-
text. Table 3 shows that our proposed GeoNorm
model outperforms all prior work across all to-
ponym resolution test sets on all metrics. Even
without incorporating context, our generate-and-
rank framework meets or exceeds the performance
of almost all models from prior work. The excep-
tion is ReFinED, where our context-free model
outperforms ReFinED out-of-the-box, but slightly
underperforms our finetuned version of ReFinED.
However, adding the novel two-stage document-
level context yields large gains over the context
free version of our model, and outperforms even
the finetuned ReFinED. The final row the table
shows the peformance of a model trained on the
combined training data from all datasets, which we
release for English geocoding under the Apache
License v2.0, for off-the-shelf use at https://
github.com/clulab/geonorm.
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Example Candidate Rank
Name Pop. Type  State RF G GR GRC3 GRCD
1 The educational philosophy at the Washing- Alexandria 159467 PPLA2 1
ton Latin School in Alexandria is somewhat City of Alexandria 139966 ADM2 1
similar to Ahlstrom’s previous endeavors.
2 Los Angeles County 9818605 ADM?2 1 2
It was Los Angeles police officers she at- Los Angeles 3971883 PPLA2 2 1
tempted to blow up. Los Angeles 125430 PPLA2 33
Los Angeles 4217 PPL 4 4
3 the Minnesota State Patrol urges motorists to Clay County 221939 Missouri 1 4
drive with caution as flooding continues to Clay County 190865 Florida 2 3
affect area highways. Water over the road- Clay County 58999 Minnesota 3 1
way is currently affecting the following areas Clay County 26890 Indiana 4 2
in Becker, Clay, and Douglas
4 New London County 274055 ADM2 1 3 4
he writes, as do my efforts to insure New London 27179 PPL 2 1 1
New London is a safe community. New London 7172 PPL 3 2 3
New London 1882 PPL 4 4 2

Table 4: Examples of predictions from ReFinED (RF), our candidate generator alone (G), our generate-and-rerank
system without context (GR), our system with sentence context (GRC3), and our system with 2-stage document
context (GRCD). Target location mentions are underlined. Human annotated ontology entries are in bold.

6 Qualitative Analysis

Table 4 shows some qualitative analysis of errors
that ReFinED and different variants of GeoNorm
made. Row 1 shows an example where ReFinED
fails but GeoNorm succeeds, by more effectively
using geospatial metadata such as population and
feature type. Row 2 shows an example where
GeoNorm fails with a candidate generator alone
but succeeds with a context-free reranker, by not
relying on population alone and instead jointly con-
sidering the name, population, and feature type
information (ADM2 represents a county, PPLA2
represents a city). Row 3 shows an example where
GeoNorm fails without context but succeeds with
context, by taking advantage of the Minnesota in
the context to select the Clay County that would
otherwise seem implausible due to its lower pop-
ulation. Finally, row 4 shows an example where
our best GeoNorm model still fails. The candidate
generator includes the correct ontology entry in its
top-k list, but neither the name, population, fea-
ture code, nor nearby context suggest the correct
candidate. The global context includes toponyms
from the same state, allowing the model with docu-
ment context to move the correct answer up from
rank 4 to rank 2. But fully addressing this issue
would likely require predicting countries and states
of toponyms in the text before resolving them.
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7 Limitations

GeoNorm’s candidate generator is based on infor-
mation retrieval. This is efficient but not very flexi-
ble in string matching, and when the candidate gen-
erator fails to produce the correct candidate entry,
the candidate reranker also necessarily fails. For
example, as table 2 shows, GeoNorm’s reranker
achieves only .866 recall@20 on the GeoWebNews
dataset, meaning that 13.4% of the time, the correct
candidate is not in the top 20 results returned by
the candidate generator. One solution might be to
replace the information retrieval based candidate
generator with a neural network to provide more
robust string matching, though the neural network
candidate generators from prior work in table 2
actually perform worse than GeoNorm’s candidate
generator. Another solution may be to find smarter
ways to filter the generated candidates, perhaps by
building on the two-stage resolution approach to
use document-level context to filter the candidates
to those in appropriate countries and states.

GeoNorm is also limited by its training and eval-
uation data, which covers only thousands of En-
glish toponyms from news articles, while there are
many millions of toponyms in many different lan-
guages across the world. It is likely that there are
regional differences in GeoNorm’s accuracy that
will need to be addressed by future research.



8 Conclusion

We propose a new toponym resolution architecture,
GeoNorm, that combines the tight ontology integra-
tion of generate-and-rerank systems with the robust
text encoding of deep neural networks. GeoNorm
consists of an information retrieval-based candi-
date generator, a BERT-based reranker that incor-
porates features important to toponym resolution
such as population and type of location, and a
novel two-stage resolution strategy that incorpo-
rates document-level context. We evaluate our
proposed architecture against prior state-of-the-
art, using multiple evaluation metrics and multiple
datasets. GeoNorm achieves new state-of-the-art
performance on all datasets.
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A Appendix
A.1 Performance by toponym type

Table A1 shows that without context, GeoNorm is
most precise at resolving toponyms at the top of
the hierarchy, like countries and states.

A.2 CamCoder details

The original CamCoder code, when querying Geo-
Names to construct its input population vector from
location mentions in the context, assumes it has
been given canonical names for those locations.
Since canonical names are not known before loca-
tions have been resolved to entries in the ontology,
we have CamCoder use mention strings instead of
canonical names for querying GeoNames.

A.3 Model selection

We performed model selection on the development
sets as shown in table A2. All GeoNorm mod-
els that included a reranker (R) outperformed the
candidate generator (G) alone. We explored the
population (P) and type (T) features in models with-
out context, and found that they helped slightly on
LGL and GeoWebNews but hurt slightly on TR-
News. For models with context, rerankers fine-
tuned from bert-multilingual-uncased (hd)
slightly outperformed models fined-tuned from
bert-base-uncased. Adding sentence level con-
text (C1/C3/C5) to the rerankers helped on TR-
News, but did not help on LGL or GeoWebNews.
Applying the two-stage algorithm for document-
level context led to large gains on LGL and TR-
News, but did not help on GeoWebNews.

We thus selected the following models for
evaluation: GeoNorm G, GeoNorm GRPT, and
GeoNorm GRPTMCD.

A.4 Artifact intended use and coverage

The intended use of bert-base-uncased and
bert-multilingual-uncased is to be “fine-tuned
on tasks that use the whole sentence”®. We have
used them for that purpose when encoding the con-
text, but also for the related task of encoding place
names, which are usually short phrases. These ar-
tifacts are trained on English books and English
Wikipedia and released under an Apache 2.0 li-
cense which is compatible with our use.

The intended use of our geocoding model is
matching English place names in text to the Geo-

®https://huggingface.co/
bert-base-uncased

59

Names ontology. Though GeoNames covers mil-
lions of place names, our evaluation corpora cover
only English news articles, and thus the perfor-
mance we report is only predictive of performance
in that domain.


https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased

Dataset Precision Recall

Country State County Other Country State County Other
LGL 0.968 0.806  0.829 0.745 0.893 0915 0.739 0.763
GWN 1.000 0.765  0.778 0.752 0.966 0.591 1.000 0.810
TR-News 1.000 1.000  0.000 0.830 1.000 1.000  0.000 0.830

Table Al: Precision and recall of GeoNorm (without context) on three geocoding development sets.

LGL (dev) GeoWebNews (dev) TR-News (dev)

Model Acc Al61 Emr AUC Acc Al6l Err AUC Acc Al6l Err AUC
GeoNorm G .594 671 201 289  .644 .858 73 165 .677 735 187 242
GeoNorm GR .802 .819 64 141 .865 925 395 072 .897 912 64.0 .081
GeoNorm GRP 792 .819 68 .141 .861 918 347 .072 .868 882 657 .100
GeoNorm GRT .807 .828 61 134 .865 915 31.9 .073 .897 912 427 074
GeoNorm GRPT 197 821 57 .140 .886 940 298 .060 .882 897  63.5 .090
GeoNorm GRPTM 814 .828 60 132 .879 922 432 072 .882 897  65.0 .092
GeoNorm GRPTCl1 .807 .823 55 132 .865 915 393 .075 .882 882 110  .109
GeoNorm GRPTC3 .807 816 65 142  .868 918 403 073 .882 897 649 .092
GeoNorm GRPTC5 .802 814 68  .145 865 911 428 .078 .897 912 640 .081
GeoNorm GRPTMC1  .816 .831 62 133 872 940 235 057 .882 897 64.6 .090
GeoNorm GRPTMC3  .809 .833 59 129 875 922 354 073 912 927 406 .063
GeoNorm GRPTMC5  .807 .823 61 137 872 940 294  .060 .868 882 72,6  .103
GeoNorm GRPTMCD  .885 897 29 079 .879 925 310 .065 971 985 6.8 .010
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Table A2: Performance on the development sets. Higher is better for accuracy (Acc) and accuracy@161km
(A161). Lower is better for mean error (Err) and area under the error distances curve (AUC). The top score in each
group is in bold, the second best score is underlined. Model features are indicated by the string of characters: G
means the candidate generator was applied, R means a reranker was applied, P means the reranker included the
population feature, T means the reranker included the type feature, M means the reranker was fine-tuned from
bert-multilingual-uncased instead of bert-base-uncased, C1/C3/C5 means the reranker included 1/3/5
sentences of context, and CD means the reranker included the two-stage document-level context algorithm.
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Abstract

Automatic image comprehension is an impor-
tant yet challenging task that includes identi-
fying actions in an image and corresponding
action participants. Most current approaches
to this task, now termed Grounded Situation
Recognition (GSR), start by predicting a verb
that describes the action and then predict the
nouns that can participate in the action as argu-
ments to the verb. This problem formulation
limits each image to a single action even though
several actions could be depicted. In contrast,
text-based Semantic Role Labeling (SRL) aims
to label all actions in a sentence, typically re-
sulting in at least two or three predicate argu-
ment structures per sentence. We hypothesize
that expanding GSR to follow the more liberal
SRL text-based approach to action and partici-
pant identification could improve image com-
prehension results. To test this hypothesis and
to preserve generalization capabilities, we use
general-purpose vision and language compo-
nents as a front-end. This paper presents our
results, a substantial 28.6 point jump in per-
formance on the SWiG dataset, which confirm
our hypothesis. We also discuss the benefits of
loosely coupled broad-coverage off-the-shelf
components which generalized well to out of
domain images, and can decrease the need for
manual image semantic role annotation.

1 Introduction

Automatic image comprehension can positively
contribute to many modern applications, such as
description generation, cross-modal retrieval, and
human-robot interaction. To comprehend an image
it is important to identify the action(s) and partic-
ipants in the action such asan agent (who is per-
forming the action), a patient (who is being affected
by the action), and an instrument. To address this
problem (Yatskar et al., 2016b; Pratt et al., 2020)
proposed the task of grounded situation recognition
(GSR). Many approaches (Pratt et al., 2020; Cooray
et al., 2020; Cho et al., 2021) have been proposed
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c. drinking
Figure 1: a. depicts a GT example from SWiG where

the man is the agent of drinking. b., c., and d. show
frames extracted by our method. Bounding boxes depict
grounding and role annotation for each frame.

d. wearing

to perform the task of GSR. Most of these frame-
works have two steps: in the first step verbs are
predicted, and in the second step nouns and roles
are predicted in an auto-regressive manner. Some
other methods deployed include another layer to
refine the quality of detection (Cho et al., 2021;
Wei et al., 2021; Cheng et al., 2022).

One fundamental limitation of these models de-
rives from the problem formulation. In the cur-
rent formulation, verb frames would compete for
an image, limiting the expressiveness of the im-
age’s semantic representation. In reality, various
actions can co-exist in an image, even sharing par-
ticipants. This limitation of one frame per image
is imposed by the predominant dataset of GSR: the
SWiG dataset (Pratt et al., 2020). For example, Fig-
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ure la depicts a ground-truth (GT) annotation of
an image from SWiG and has a GT annotation only
with respect to a drinking frame. In fact, there are
other frames, such as holding, wearing.

Semantic role labeling (SRL) of natural text, on
the other hand, is a well researched problem in
the domain of computational linguistics. Semantic
role annotation, based on paradigms such as Prop-
Bank or Framenet (Palmer et al., 2005; Fillmore
et al., 2003), is used to train semantic parsers that
then convey knowledge about who is doing what to
whom, when as predicate-argument structure label-
ing. In other words, given an action in a sentence, it
identifies who is performing the action (the agent),
who is affected by the action (the patient), what
instrument is being used, etc. to comprehend the
meaning of the sentence. Semantic roles of a sen-
tence have the capability representing more than
one predicate-argument structure for that sentence.
Current text-based SRL systems have gained re-
markable accuracy. However, SRL of images has
yet to enjoy similar success.

We hypothesize that expanding GSR to follow
the more liberal text-based SRL approach to action,
participant identification could improve image com-
prehension results. Here, we propose a framework
(CRAPES) with cross-modal annotation projec-
tion (AP) for visual semantic role labeling. AP is
a well-known paradigm in text-based cross-lingual
semantic role labeling (Kozhevnikov and Titov,
2013; Pad6 and Lapata, 2009; Akbik et al., 2015;
Jindal et al., 2022) that has not been previously
extended to cross-modal applications. Moreover,
to preserve generalization capabilities, we focus on
reusing general-purpose vision and language (V+L)
components and text-based SRL components. This
framework offers the following advantages over
traditional GSR approaches:

* With our updated formulation of GSR, this
framework can be trained to accommodate co-
existing verb frames in an image. It can also be
specialised to one verb frame per image.

* Additionally, image representations can be

learned separately from the SRL task; in do-

ing so, CRAPES can leverage advantages of
large-scale multi-modal image representations.

Success of text-based SRL systems trained on

large, broad-coverage corpora of frames and

roles, is helpful in widening its ability for de-
tecting out-of-domain frames.

* Moreover the two modules can be trained sepa-
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rately, thereby decreasing the need for manual
image semantic role annotation.

* Asimage representation and SRL are not tightly
coupled, CRAPES can be extended to alterna-
tive semantic role labeling paradigms, such as
FrameNet or PropBank.

2 Related Work

(Yatskar et al., 2016b) proposed the task of situa-
tion recognition (SR) together with an image situa-
tion recognition dataset (imSitu). Based on the ar-
chitecture, methods for SR can be stratified into the
following categories: 1) Conditional random field
(CRF) (Yatskar et al., 2016b), 2) CRF-based model
with data augmentation (CRF+dataAug) (Yatskar
et al., 2016a), 3) RNN model with a VGG back-
bone for vision features (VGG+RNN) (Mallya and
Lazebnik, 2017), 4) graph based models (Li et al.,
2017; Suhail and Sigal, 2019), and 5) query based
models such as CAQ (Cooray et al., 2020).

The idea of grounding nouns in the image was
coined by (Pratt et al., 2020), thereby proposing
the task of GSR and the SWiG dataset. A recurrent
framework with ResNet-50 embedding was used to
detect the verb and then the noun for each role. A
RetinaNet backbone was used for object grounding.
(Cooray et al., 2020; Cho et al., 2021) model visual
SRL as query based vision reasoning. (Cooray
et al., 2020) adopt a top-down attention model (An-
derson et al., 2018) and deploy inter-dependent
queries to model relations among semantic roles.
(Cho et al., 2021) use a transformer encoder to
classify verbs and to create image representations.
Then the image representation was queried with the
concatenation of roles and verbs. However, most
of these aforementioned approaches use two-stage
frameworks where in the first step the verb is pre-
dicted independently and then nouns and roles are
predicted in an autoregressive manner depending
on the verb. However, subsequent work (Cho et al.,
2022; Wei et al., 2021) identified that this emphasis
on the detection of the verb may confuse the pre-
diction. Furthermore, verb miss-classification may
result in miss-recognition of semantic roles.

Therefore, they adopted a three-stage framework.
In the first two stages candidate verbs and nouns
were detected. The third stage mostly refined the
prediction. During the detection of the candidate,
information flows either from verb to noun (Wei
etal., 2021) or from noun to verb (Cho et al., 2022).
This ignores the semantic dependency in the other



verb: giving

% lagent: man
v
recipient: people
item: rice

Figure 2: An example of GSR from the SWiG dataset.

direction. Moreover, this refinement can be done in
only one iteration. (Cheng et al., 2022) solved these
issues by designing an iterative method through
message passing between verb and noun prediction
modules. Recently, (Li et al., 2022) addressed the
task of GSR, even though their main goal was to
propose a pre-training schema using event based
cross-modal alignment. All of these methods are
limited to predicting one verb per image. None of
these models acknowledge the existence of multi-
ple actions and therefore multiple verb frames.

3 Approach

To detect semantic roles in images we adopted the
idea of AP, as discussed above, from cross-lingual
semantic role labeling in the text domain. In AP,
auto-predicted semantic roles from source language
is transferred to a target language using soft word
alignments. Alignment is learned using large-scale
parallel corpus. In the case of GSR we consider the
image as our target domain.

3.1 Problem Formulation

Given an image Z the task of GSR is to detect
structured verb frame(s) G {v, Ry} where
v € V is the action (verb) in the image. R, =
{(ry,n",b0)|ry € By,n” € N, b, € R*} where
Ry = {rl,..,r™} set of semantic role types as-
sociated with the verb v. Therefore, each role is
a triplet of a role type r,, a noun label n" and a
bounding box (bbox), b; that is grounded with re-
spect to the v and the role of the noun n” . For
example in Figure 2 the given image is annotated
with the verb “giving”. The verb has role types
agent, recipient and item. The nouns for these roles
are man, people and rice, respectively.

Issues with current approaches. As discussed
above in section 2, current methods (Pratt et al.,
2020; Cho et al., 2021; Li et al., 2017) modeled
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this problem as:

POIT) = PEITP(R0.T). (1)
There are two complications with this kind of for-
mulation: first, action prediction without knowl-
edge of participants results in inaccurate verb pre-
diction. Second, errors in verb prediction can ad-
versely affect accuracy of noun and role prediction.
To address this issue, recent methods (Wei et al.,
2021; Cho et al., 2021) adopt a three stage frame-
work. (Wei et al., 2021) formulated the problem
as given in Equation 2:

P(G|T) = P(V|Z)P(Ry.|Ve, I)

2
P(UaRv|VC7RVCI)' ( )

In this formulation candidate verbs are detected
first, then candidate nouns. In the final stage these
candidates are used to refine the final result. (Cho
et al., 2021) on the other hand, used candidate
nouns to detect the verb and ultimately refined the
frame predictions (Equation 3):

P(GIT) =
P(NVC’I),P(,U’NVC7 I)P(U, Ry ’NVca I)
(3)

Both the approaches used nouns to determine the
verb at some point, ignoring the restrictions applied
in the other direction. Moreover, even with these re-
vised formulations, verbs compete with each other
for a given image. On contrast, in a scene image
more than one verb can coexist.

3.2 Methodology

To overcome the limitation imposed by the tradi-
tional formulation, we propose an alternative for-
mulation given as:

PGIT) = > PG1)

=P(T|T) ;P(QM', 7)

V+L

SRL

To capture the complete essence of the intertwined
relations of a verb and its roles, we use a V+L
model which creates a text-based holistic represen-
tation 7 using self-attention. Text-based SRL then
extracts all possible predicate-argument structures.
The soft alignments from the V+L model is used to
project the SRL back to the image (Figure 3). To
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Figure 3: Our overall framework. 1. The V+L model
projects the image into the text domain. The SRL anno-
tator detects the semantic roles and the action. Attention
from the V+L model is used to align semantic roles

preserve generalization capabilities, we used off-
the-shelf general-purpose V+L components and a
text based SRL system. Being trained on data out-
side the SWiG dataset, this framework has more
potential to detect out-of-domain frames.

3.3 Pipeline

Our framework has two modules: 1) V+L model,
and 2) text-based SRL system. (refer to Figure 3)

V+L. We chose Oscar (Li et al., 2020; Zhang
et al., 2021) to this end. Oscar is a transformer
based architecture that learns generic image-text
representations for V+L understanding and genera-
tion tasks. Typically Oscar model would take three
inputs- word tokens, object labels and object fea-
tures. One of the novelties of Oscar lies in the no-
tion of the ‘view’ of the data during pre-training. In
a dictionary view elements from similar semantic
spaces are considered together (words and object
labels). On the other hand, in the modality view
elements from the same modality are considered
together. We trained Oscar with image region fea-
tures T = {(s;,li)|s; € R¥1; € ¥ d = 2056}.
We used (Zhang et al., 2021) to extract 2048 di-
mensional image region features and then con-
catenated with 6 positional features for the region
(normalised coordinates of bounding boxes, height,
width). 3 denotes the vocabulary for the language
model. For the purpose of CRAPES, two separate
models of Oscar are trained on the Flickr30k and
the SWiG datasets, see Table 1. During inference
the captions generated by Oscar are passed to the
SRL module.

SRL. We experimented with two text based
FrameNet SRL systems. For a given sentence T’
consisting of tokens < t1, %9, .., tx > atypical SRL
system produces collections of verbs and their roles.
Briefly Tyy = {(v,RL)} where R is set of se-
mantic roles given the verb v. It is a collection of
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tuples of the form {(r¢, (s¢,e!))} where r! € %,

is the semantic role and (sv, ¢! ) marks the start and
end indices of the phrase spanned by the role. For
our experimentation we used an off the shelf anno-
tator span-finder (Xia et al., 2021) for FrameNet
annotation. We trained a second SRL consisting
of BERT-base model with CRF at the top layer, on

SWiG frames (see Table 1).

Cross-modal Annotation Projection. Our SRL
system detects the semantic roles and the nouns
from the text given by the V+L model. For ground-
ing the roles to image bboxes we used attention
weights from the V+L model. For each role span,
corresponding cross-modal attention is retrieved
from the V+L model. Attention is aggregated over
all the tokens in the span:

role(bbox;) = r,, where

E alh Z)Sv)ey

where [ and h are spans over number of attention
layers and head accordingly.

j = argmax(«;) and o; =

4 Experiments

4.1 Experimental Set up

Data Preparation. We experimented with
SWiG (Pratt et al, 2020). SwiG provides
FrameNet semantic role labeling of images. The
SwiG dataset provides grounding for all visible
semantic roles in terms of image bboxes. SWiG
contains 126102 images with 504 verbs and 190
semantic role types, and each verb is accompanied
by 1 to 6 semantic roles. The official splits are
75K /25K /25K images for training, dev, and test
set, respectively. Unlike Flickr30k, this dataset
does not have any textual image descriptions.

Data augmentation. Figure 4 presents an
overview of data flow during training. To train
CRAPES with SWiG, we created templates for
each verb frame using roles. For each image,
the corresponding verb frame and template are re-
trieved. Roles in the template were replaced with
the corresponding noun values from the annotation
of the image to generate the sentence. This sen-
tence along with the image is used to train the V+L
model, and the sentence with the roles is used to
train the BERT+CRF SRL model.

Evaluation Metric.
ric (Pratt et al., 2020) to report our results.

We used the following met-

1)



sente_’{nce man is skiing at skii-slope ’—’m

SRL-tag

[man]_agent is skiing at [skii-

slope]_place

|,/ BERT+CRF based
SRL training

"verb": skiing

agent: man

4% "template": "[agent] is skiing [at place]"

\ Place: skii-slope \

Figure 4: Training pipeline of CRAPES for the SWiG dataset. SWiG images are not accompanied by sentences.
Using the ground truth (GT) frames, template sentences are created. The image and sentence pair is used to train the
V+L model. Sentence and frames are used to train the BERT+CRF srl model

Model | Description | Annotation
CRAPES; Oscar with flickr, LOME | EN
framenet
CRAPES: Oscar with SWiG, BERT+CRF | FN
on SWiG

Table 1: Different versions of CRAPES based on train-
ing data of V+L and different SRL models. In last
column FN stands for Framenet.

verb: the accuracy of verb prediction; 2) value:
accuracy of noun prediction for individual roles; 3)
value-all: accuracy of the prediction of nouns for
the whole role set; 4) grounded-value (grnd):
accuracy of noun prediction with correct ground-
ing (bboxes) for individual semantic roles; 5)
grounded-value-all (grnd-all): accuracy of
noun prediction with correct grounding (bboxes)
for the whole role set.

Implementation Details. We used the pre-
trained Oscar base model (H = 768) fine-tuned
for caption generation. This model was trained on
the MSCOCO dataset (Lin et al., 2014). We trained
two separate versions of Oscar with the Flickr30k
train (Young et al., 2014) and SWiG dev datasets
with an AdamW Optimizer (Loshchilov and Hutter,
2019) for 20 epochs with learning rate 3 x 1075,
We trained the text-based BERT+CRF SRL system
on the template generated sentences of the train
split of the SWiG dataset.

4.2 Quantitative Results

A quantitative comparison with recent approaches
on the SWiG benchmark based on both SR and
GSR is presented in Table 2, using the catego-
rization from section 2. We report our results on
SWiG with the top-1 set up. CRAPES leads in
the value, value-all, and grnd metrics.
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CRAPES has a dramatic absolute gain of 28.6
points and relative gain of 76% in value with re-
spect to GSRFormer, the previous SOTA. Simi-
larly, in val-all and grnd it has a relative gain
of 31% and 15% accordingly. Oscar pretraining
tasks (Li et al., 2020) have a major role in these im-
provements. As discussed in subsection 3.3 Oscar
pretraining tasks were designed around two major
views on how to use object labels. The first view
considered object labels as members of text modal-
ity where as the second one considered them as
part of the image modality. This form of training
enables OSCAR to include object labels in the gen-
erated description. These object-labels contribute
toward the noun prediction task in GSR. Moreover,
OSCAR fine-tuned with template generated sen-
tences is able to replicate similar structures during
inference. Similarly, our BERT+CRF based SRL
parser, trained on a similar domain of sentences, is
able to annotate them with semantic roles. So Ta-
ble 2 firmly supports our hypotheses about the ben-
efits of reusing general-purpose V+L components.
However, there are still certain image-verb frame
combinations that confuse our system. We discuss
this in our qualitative analysis.

4.3 Discussion

Table 1 lists different versions of CRAPES. Table 3
presents performance of CRAPES on FrameNet
annotation. From Table 3 apparently the perfor-
mance of CRAPES; is poor. However, this ver-
sion of CRAPES actually gave atomic frames and
parallel frames for a given image. Because of Os-
car being trained on human generated sentences
and the LOME parser being trained on text cor-
pora for FrameNet, CRAPES; is able to predict
out-of-domain verbs and frames. The current met-
rics can not reflect this capability adequately. Fig-



CRAPES1
1

Ground Truth CRAPES2

whisking whisking wearing cause_to_amalgamate (mixing)
agent: boy :egg agent: boy : batter wearer: boy 1greenshirt  agent: boy place: bowl
container: bowl place: home container: bowl place: kitchen

A o
wearing

standing
agent: woman  place: mountain agent: woman  place: mountain agent: woman  place: mountain wearer: woman : blue jacket

“hiking

Figure 5: Examples of predictions made by CRAPES. The first column lists the GT image and frame from the
SWiG test set. The second column lists the prediction from CRAPES; (V+L and SRL parser trained on SWiG).
Last two columns depicts parallel frames detected by CRAPES; (V+L trained on Flickr30k and LOME parser)

Model | value val-all verb grnd grnd-all
situation recognition

CREF (Yatskar et al., 2016b) 24.6 14.2 32.3 — —

CRF+dataAug (Yatskar et al., 2016a) 26.45 15.51  34.12 — —

VGG+RNN (Mallya and Lazebnik, 2017) | 27.45  16.36  35.90 — —

FC-Graph (Li et al., 2017) 2752  19.25 36.72 - -

CAQ (Cooray et al., 2020) 30.23 18.47 38.19 - —

Kernel-Graph (Suhail and Sigal, 2019) 35.41 19.38  43.27 - -

grounded situation recognition

ISL (Pratt et al., 2020) 30.09 18.62 39.36 22.73 7.72
JSL (Pratt et al., 2020) 3144  18.87 39.94 24.86 9.66
GSRTR (Cho et al., 2021) 32.52 19.63 41.06 26.04 10.44
SituFormer (Wei et al., 2021) 35.24 21.86 44.20 29.22 13.41
CoFormer (Cho et al., 2022) 35.98 22.22  44.66  29.05 12.21
CLIP Event (Li et al., 2022) 33.1 20.1 45.6 26.1 10.6
GSRFormer (Cheng et al., 2022) 37.48 23.32  46.53 31.53 14.23
CRAPES: \ 66.08 30.64 41.86 36.73 6.47

Table 2: Performance (%) of state-of-the-art GSR methods on the SWiG dataset test set based on top-1 verb.

Model \ value val-all verb grnd  grnd-all
CRAPES, 18.12 0.357 5.72 14.33 0.63
CRAPES; 65.98 30.53 41.86 35.13 5.78
+union of BBoxes 65.98 30.53 41.86 35.13 6.1

attention from lower4 layer | 66.08 30.64 41.86 36.31 6.47

Table 3: Performance (%) of SWiG test set with different combinations of V+L and Framenet parsers

Model | grnd  grnd-all ure 5 demonstrates examples of the frames pre-
attention from top 3 layer | 35.13 5.78 dicted by CRAPES. Frames like wearing and
+ include union of boxes | 35.87 6.10 cause-to-amalgamate (first row of Figure 5), will
attention from 5 — 8 layer | 36.31 6.26 . . . .

attention from all layer 36.35 6.31 be C(‘)n51df':red as misclassifications by the current
attention from layer 1 — 4 | 36.73 6.47 metrics with respect to GT.

However, CRAPES lags in terms of grounded-
Table 4: Affect of attention layers on bbox grounding  value-all. Note that this metric required that all
reported on SWiG test set bboxes be annotated correctly with nouns from
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GT Competing verbs in CRAPES»

verb

retraining | arresting, detaining, subduing, handcuffing

hunting | pouncing, shooting, chasing, attacking

teaching | lecturing, educating, helping, preaching

cooking | frying, baking, chopping, stirring, scooping

filming videotaping, photographing, recording, car-
rying

raking hoeing, shoveling, clearing, sweeping

tying lacing, stitching, adjusting, stapling

watering | sprinkling, moistening, gardening, spray-
ing, wetting

(a) Examples of verb confusions by CRAPES>

GT Co-existing verbs in CRAPES;

verb

cooking | wearing, cause-to-amalgamate, cutting,
standing

baking wearing, cause-to-amalgamate, cutting,
measure_volume

teaching | wearing, standing, sitting, reading, writing,
speaking

lecturing | wearing, standing, sitting, reading, talking

arresting | walking, arresting, striking,
law_enforcement_agency, hos-
tile_encounter

detaining | walking, arresting, striking,
law_enforcement_agency, attacking

(b) Examples of verb co-existence detection by CRAPES;

Table 5: Comparison between frame competitions and frame co-existance

the GT annotation. Therefore missing one bbox
annotation can affect the metric for an image sig-
nificantly. One possible reason for the poor perfor-
mance could be the distribution shift between the
V + L model and the SRL model. Another source
of error is a limitation of the interpretability of the
attention weights. To align bounding boxes with
SRL we used attention between bboxes and words
from Oscar attention layers. In our experiment we
noticed that the 5th head from layers 5 and 6 mostly
attended to bboxes. However, to our surprise, it did
not provide much improvement. Attention from
the lower 4 layers gave us the best result, meriting
further investigation. Table 4 shows experimental
results of using alignment from different attention
layers.

4.4 Qualitative Results

One of the main advantages of CRAPES is that
it can predict out-of-domain frames that are oth-
erwise not present in the SWiG dataset. Figure 1
depicts one such example from SWiG where the GT
annotation contains only the frame for ‘drinking’.
CRAPES; detects the action ‘drinking’ along
with two other frames ‘holding’ and ‘wearing’.
These frames are not only missing in the GT image,
they were not listed in the vocabulary of the SWiG
dataset. The LOME FrameNet parser, trained on
the FrameNet v1.7 corpus, a huge text base corpus
for SRL, enables CRAPES; to detect those frames.
Moreover, CRAPES can accommodate coexisting
verb frames. This is because Oscar, being trained
on Flickr30k sentences, learned to create holistic
representations of the image. Similar examples can
be found in the last two columns of Figure 5 where
CRAPES; provides parallel frames, not present
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in the GT annotation. This shows the efficacy of
our reformulation of the GSR and the advantage of
reusing general-purpose SRL systems.

For the sake of bench-marking we trained
CRAPES;, with template generated sentences from
the SWiG dataset. Predictions made by CRAPES,
contained one frame per image as desired by the
SWiG dataset. This demonstrates the flexibility
of the overall framework. The second column
of Figure 5 depicts some example predictions by
CRAPES;.

CRAPES does commit mistakes which can be
categorized mainly into three types: 1) the pre-
dicted verb is different than GT. Figures6a,b de-
pict two examples from the SWiG dataset where
CRAPES detected a different frame. These are
indeed very plausible mistakes. Table 5a shows
examples of some GT verbs along with a list
of verbs that CRAPES, confused with the GT
verb. This fact is supported by CRAPES; as
well. Table 5b lists examples of parallel verb
frames detected by CRAPES; for GT images
with a given verb. For example cooking is of-
ten confused with baking(Table 5a). From Ta-
ble 5b it can be observed that both of these
verbs have similar co-existing frames like cutting,
cause-to-amalgamate. Similar phenomena can
be noticed for arresting and detaining; 2) predicted
noun for a role is different than GT. In the first im-
age of column CRAPES, from Figure 5,the noun
for role item is predicted as batter. 3) grounded
bbox for a noun is different than GT. In Figure 6¢
the action jogging is attributed to a different bbox
in the image. Mistakes made by CRAPES are
reasonable, relevant and plausible. For these exam-
ples, predictions are different than the GT but still



ground truth CRAPES

working watering
agent: man - sculpture agent: man : wood agent: sprinkler igrass  agent: sprinkler : grass
place: workshop place: workshop place:yard tool: deflector place: yard liquid: water
a
b

restraining handcuffing

jogging jogging ]
agent: man place: sidewalk agent: man place: sidewalk agent: policeman agent: policeman
‘man place: outdoors :man place: outdoors

(o
d
Figure 6: Reasonable mistakes made by CRAPES. For each image left column shows GT annotations and right
column depicts mistakes made by CRAPES,. For a, b, c prediction of CRAPES, can not be classified as wrong.
For d CRAPES; struggled to detect correct bbox.

* Flickr30k does not provide semantic roles for
images. Therefore, we need to follow a simi-
lar approach to (Bhattacharyya et al., 2022) in
creating silver standard data.

* The silver standard data will have multiple
frames for an image. Current metrics of GSR

- i Qo

wearing . riding
Arg0: man : white helmet  Arg0: man : bike ArgM-DIR: .
down a rocky path presuppose one GT frame per image.

* Flickr30k images are general scene images with
many agents,objects and actions, whereas im-
ages in SWiG focus mostly on one salient action
and a small number of participants.

Figure 7: Parallel frames detected by CRAPES in
Flickr30k images using PropBank style role labeling.

relevant to the given image. However, sometimes * As pointed out by (Bhattacharyya et al., 2022),
CRAPES struggles to ground the roles (Figure 6d). PropBank annotation of Flickr30k has abstract

conceptual roles such as temporal, direction,
5 Future work manner, purpose, etc. denoted with ArgM-. It is

hard to learn concrete representations for these

Current GSR models cannot go beyond the SWiG roles, let alone ground them in an image.

dataset. Moreover predicted semantic roles are re-

stricted to follow a particular paradigm of SRL.  Our formulation of CRAPES can accommodate
On the contrary, having independent V+L enables =~ PropBank SRL experiments on Flickr30k. How-
CRAPES to work on other image datasets. In addi-  ever, a more rigorous study with human evaluation
tion, having a separate SRL module enables exten-  is required to correctly measure the potential of
sion to other SRL paradigms. We performed pre- CRAPES. Therefore, this a critical future direction
liminary experiments on the Flickr30k dataset with ~ for us. It requires a new dataset with images an-
PropBank (Palmer et al., 2005) annotation. Fig-  notated with more than one frame. One choice is
ure 7 depicts one such example. We would like to  to extend the SWiG dataset to accommodate more
extend our experiments to the version of Flickr30k  than one frame per image. Another choice is to
used in (Bhattacharyya et al., 2022). However, our  enhance the current Flickr30k annotation. Ideally
preliminary experiments suggest that experiments ~ we would do both. However, the current proposed
with Flickr30k are more challenging for several  evaluation metrics for GSR are incompatible wih a
reasons. multi-frame scenario. More robust and appropriate
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evaluation metrics also need to be developed.

6 Conclusion

In this paper we identified a fundamental issue in
the problem formulation of the GSR task. The cur-
rent formulation limits an image to a single verb
frame. We propose an alternate formulation allow-
ing for multiple actions as implemented in Cross-
modal Annotation Projection for Visual Semantic
Role Labeling (CRAPES). A V+L model trained
on image-text parallel corpora and an SRL mod-
ule trained independently on text corpora allow
the model to integrate domain-specific knowledge
with out-of-domain knowledge, which dramatically
improves over the SOTA by 28.6 points. In addi-
tion, CRAPES can accommodate co-existing verb
frames for an image (CRAPES;) yet can also be
trained to select only one verb frame for a given
image (CRAPES>). Moreover, inter module inde-
pendence allows CRAPES to extend its labeling to
alternative paradigms of SRL (such as FrameNet
or PropBank). However one major area for im-
provement is grnd-all, that requires better se-
mantic comprehension and guidance of attention
weights produced by the V+L module. Therefore,
improving on grnd-all along with Flickr30k and
PropBank will be our next endeavour. We will
also explore extending datasets to have multiple
ground truth frames per image and more appropri-
ate evaluation metrics for reporting results on those
datasets.
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Abstract

Counterhate arguments can effectively fight
and limit the spread of hate speech. However,
they can also exacerbate the hate, as some peo-
ple may respond with aggression if they feel
threatened or targeted by the counterhate. In
this paper, we investigate replies to counterhate
arguments beyond whether the reply agrees or
disagrees with the counterhate argument. We
present a corpus with 2,621 replies to counter-
hate arguments countering hateful tweets, and
annotate them with fine-grained characteristics.
‘We show that (a) half of the replies (51%) to the
counterhate arguments disagree with the argu-
ment, and (b) this kind of reply often supports
the hateful tweet (40%). We also analyze the
language of counterhate arguments that elicit
certain types of replies. Experimental results
show that it is feasible to anticipate the kind of
replies a counterhate argument will elicit.

1 Introduction

Hate messages and offensive language are com-
monplace in social media platforms. Twitter re-
ported that more than 1.1 million accounts spread
hateful content in the second half of 2020, a 77%
increase with respect to the first half of the same
year.! In a recent survey of 10,093 adults in the
U.S., 41% of participants reported online harass-
ment on a personal level, and almost two-thirds of
adults under the age of 30 reported experiencing
internet harassment (Vogels, 2021). These figures,
alongside other surveys,2> demonstrate the preva-
lence of hate speech on the internet. To address
this problem, the European Commission partnered
with popular social media platforms to announce a
"Code of conduct on countering illegal hate speech
online" (European Commission, 2019), which con-
tains several commitments to prevent the spread of
online hate speech across Europe.

"https://time.com/6080324/twitter-hate-speech-penalties/
Zhttps://legalresearch.elsa.org/library/ohs/
3https://rm.coe.int/1680700016

s-ahmed_hassan@zewailcity.edu.eg
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The enormous amount of daily data makes these
platforms rely on users who manually flag hate-
ful content (Crawford and Gillespie, 2016). This
approach requires spending millions of dollars
yearly on manual hate speech verification and mod-
eration (Seetharaman, 2018). An alternative is
to automatically fight hate speech by using hate
speech classifiers (Section 2). However, removing
users’ content—as effective as it may be—restricts
free speech. According to the Pew Research Cen-
ter (Duggan, 2017), “Despite this broad concern
over online harassment, 45% of Americans say it
is more important to let people speak their minds
freely online, and 53% feel that it is more important
for people to feel welcome and safe online.”

A complementary strategy to address hateful
content that does not interfere with free speech is
to counter the hate with counterhate arguments in
order to divert the discourse away from hate. Coun-
terhate arguments can effectively fight and limit the
spread of hate speech without removing or block-
ing any content (Gagliardone et al., 2015; Schieb
and Preuss, 2016). Counterhate arguments usu-
ally are positive arguments that oppose hate speech
with logic and facts. However well-intentioned,
counterhate arguments may worsen the situation,
as some people may respond with aggression if
they feel threatened or targeted by the argument
(Rains, 2013; Clayton et al., 2019).

Upon these motivations, we study the kind of
replies counterhate arguments elicit. Specifically,
we investigate replies to counterhate arguments be-
yond whether the reply agrees or disagrees with
the counterhate argument. We consider Twitter
threads consisting of (a) a hateful tweet, (b) a coun-
terhate tweet countering (a), and (c) all replies to
the counterhate tweet. We define a hateful tweet as
any tweet that contains abusive language directed
to individuals or groups of people. On the other
hand, a counterhate tweet is a response tweet that
explicitly or implicitly disagrees with the hateful
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Warning.... This man is as evil as it gets

I~ [Counterhate tweet 1]

Absolutely false. He's a good guy who's done good
things for the people of his city and state and he'll
continue to.

It's so easy to throw out statements like this with
absolutely nothing to back it up.

Lazy.

L [Reply to Counterhate tweet 1]

Why are people spreading lies about him!? jealous
people always attack successful people. He's done a
great job and we love him!

— [Counterhate tweet 2]

Keep your racist thoughts to yourself! Block!

[Reply to Counterhate tweet 2]

And you agree with letting convicted criminals run free,
those are his actual words and actions.

Figure 1: Twitter thread originating with a hateful tweet.
This paper investigates the replies to counterhate tweets.
In the first example, the reply not only agrees with the
counterhate tweet, but also adds additional counterhate.
On the other hand, the second reply not only disagrees
with the counterhate tweet, but also shows support for
the hateful tweet.

tweet. A reply is any response to the counterhate
tweet. Consider the example in Figure 1. The hate-
ful tweet contains hateful content towards a man
(shown in a picture in the original tweet). The reply
to the first counterhate tweet not only agrees with
the counterhate tweet, but also includes additional
counterhate arguments (e.g., he’s done a great job).
Conversely, the reply to the second counterhate
tweet not only disagrees with the counterhate tweet,
but also includes an opinion supporting the hateful
tweet (i.e., And you agree with letting convicted
criminals run free). While the author of the sec-
ond counterhate tweet may have had good inten-
tions, the tweet elicited more hate and made the
discourse undesirable. This paper presents a fine-
grained characterization of replies to counterhate
tweets and opens the door to forecasting which
counterhate tweets may elicit more hate instead of
alleviating the spread of hate.

In summary, the main contributions of this paper
are:* (a) a corpus with 2,621 (hateful tweet, coun-

“https://github.com/albanyan/counterhate_reply
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terhate tweet, reply) triples annotated with fine-
grained characteristics (whether the reply agrees
with the counterhate tweet, supports the hateful
tweet, attacks the author of the counterhate tweet,
or adds additional counterhate); (b) linguistic analy-
sis of the counterhate tweets depending on our fine-
grained characterization of the replies they elicit;
(c) experimental results showing it is feasible to
anticipate the kind of replies a counterhate tweet
will elicit, and modest improvements using data
augmentation and blending related datasets; and
(d) qualitative analysis revealing when it is harder
to perform any of the four classification tasks.

2 Previous Work

Recently, considerable literature has grown around
identifying hateful content in user-generated con-
tent (Fortuna and Nunes, 2018). Existing re-
search has created a variety of datasets to detect
hate speech from several sources, including Twit-
ter (Waseem and Hovy, 2016; Davidson et al.,
2017), Reddit (Qian et al., 2019), Fox News (Gao
and Huang, 2017), Yahoo! (Nobata et al., 2016;
Dijuric et al., 2015), and Gab (Mathew et al., 2021).
Other studies have worked on identifying the tar-
get of hate, including whether the hateful content
was directed toward a group, a person, or an ob-
ject (Basile et al., 2019; Zampieri et al., 2019a;
Ousidhoum et al., 2019). Another area of research
aims to explore the role of context in hate and coun-
terhate speech detection (Yu et al., 2022).

Previous efforts also detect and generate coun-
terhate content. For counterhate detection, Gar-
land et al. (2020) work with hateful and counter-
hate German tweets from two well-known groups.
Mathew et al. (2020) collect and analyze pairs of
hateful tweets and replies using the hate speech
template / hate <group>, and detect whether a re-
ply to a hateful tweet is a counterhate reply or not.
In addition to analyzing or detecting counterhate
replies, Albanyan and Blanco (2022) identify four
fine-grained aspects of the relationship between a
hateful tweet and a reply (e.g., whether the reply
counters the hateful tweet with a justification). For
counterhate generation, some studies have worked
on collecting datasets with the help of crowd work-
ers (Qian et al., 2019) or trained operators (Fanton
et al., 2021; Chung et al., 2019).

There are several attempts to predict whether
content will lead to additional hateful content.
Zhang et al. (2018) identify whether a reply will



result in a personal attack. Liu et al. (2018) pre-
dict the number of hateful comments that an in-
stgram post would receive. On the other hand,
there are few efforts on investigating the impact
of counterhate content, as stated in a recent survey
by Alsagheer et al. (2022). Mathew et al. (2019)
analyze YouTube comments and found that coun-
terhate comments received more likes and inter-
actions than non-counterhate comments. Other
studies found that there is a positive association be-
tween counterhate efficiency and both its author’s
ethnicity (Munger, 2017) and how immediate the
response to the hateful content is posted (Schieb
and Preuss, 2018). Finally, Garland et al. (2022)
analyze hateful and counterhate German tweets and
find that organized counterhate tweets elicit more
counterhate replies and decrease the severity of the
hate speech. Unlike these previous studies, we con-
sider Twitter threads consisting of hateful tweets, a
counterhate argument, and all replies to the coun-
terhate argument. To our knowledge, we are the
first to analyze the replies with fine-grained charac-
teristics and tackle the problem of forecasting what
kind of replies a counterhate arguments will elicit.

3 Dataset Collection and Annotation

We start our study by collecting triples consisting
of hateful tweets, counterhate tweets, and replies to
counterhate tweets. Then, we annotate the triples
with our fine-grained characterization of the replies
to the counterhate tweets. Unlike previous works
(Section 2), our corpus enables us to (a) investi-
gate whether counterhate tweets are successful at
stopping the hate (Section 4), (b) analyze the lan-
guage people use in counterhate tweets depending
on the replies they elicit (Section 4), and (c) predict
the kind of replies a counterhate tweet will elicit
(Section 5).

Collecting Hateful Tweets, Counterhate Tweets,
and Replies We use three strategies to collect
a sufficient number of hateful tweets, counterhate
tweets, and replies. The first strategy is to start
with corpora consisting of (hateful tweet, coun-
terhate tweet) pairs that include the tweet identi-
fiers (Mathew et al., 2020; Albanyan and Blanco,
2022). Then, we use the Twitter API to collect all
replies to the counterhate tweets. This strategy re-
sulted in only 260 triples because some tweets are
no longer available and not all counterhate tweets
have replies. Note that other corpora not including
identifiers cannot be used.
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In the second strategy, we start collecting hate-
ful tweets from corpora that only provide hateful
tweets (Mathew et al., 2021; Chandra et al., 2021;
He et al., 2021; Vidgen et al., 2020) including tweet
identifiers. Then, we follow these steps:

1. Collect the replies to the hateful tweets. Let us
consider them candidate counterhate tweets.
Select actual counterhate tweets from the can-
didates using an existing counterhate classi-
fier (Albanyan and Blanco, 2022).

. Collect the replies to the counterhate tweets to
construct (hateful tweets, counterhate tweet,
reply) triples.

This strategy resulted in 230 triples. Since the total

number of triples is relatively low (490 triples), we

designed a third strategy.

The third strategy is the same than the second
but with an alternative approach to collect the hate-
ful tweets. Instead of using existing corpora, we
use (a) the hate pattern I <hateful_verb> <tar-
get_group> defined by Silva et al. (2021) to select
candidate hate tweets and (b) HateXPlain (Mathew
et al., 2021) to select actual hate tweets. These
strategy resulted in 3,820 triples.

The total number of triples after combining the
three strategies is 4,310. We finalized the col-
lection process by validating the triples. The fi-
nal size of our corpus after the validation pro-
cess is 2,621 (hateful tweet, counterhate tweet, re-
ply) triples. The total number of hateful tweets
is 1,147, while the number of counterhate tweets
is 1,685. The number of counterhate tweets per
hateful tweet ranges between 1 and 20, while the
number of replies per counterhate tweet ranges be-
tween 1 and 88.

2.

Annotation Guidelines Along with determin-
ing whether a reply agrees with the counterhate
tweet, we identify finer-grained characteristics of
the replies. Accordingly, we define three steps to
answer four questions in the annotation process.

The first step is determining whether the reply
agrees with the counterhate tweet. We consider
that a reply agrees if it does not oppose the coun-
terhate tweet either explicitly or implicitly. On
the other hand, we consider that a reply disagrees
if it opposes the counterhate tweet, including sar-
casm (e.g., you are missing something!) or casting
doubt (e.g., are you kidding?).

The second step provides fine-grained character-
istics when the reply disagrees with the counterhate
tweet. First, we ask whether the reply supports



Hateful Tweet I: 1 f**king hate <ethnicity>
people. [...] T hope you all f**king die.

Counterhate Tweet: not all <ethnicity> part
take in this. cant discriminate a whole race bc
some f**k up; do sick things. White’s abuse
animals too

Reply: but down in <country> they are horri-
ble f**king people

Agree? No
Attacks Author? No

Support? Yes
Addtl. Counterhate? n/a

Hateful Tweet 2: 1 admit it, I don’t like white
people

Counterhate Twveet: Appreciate the honesty.
You do realize that makes you racist, right?

Reply: thats not wt racism means. f**k off w
that bullshit.

Agree? No
Attacks Author? Yes

Support? No
Addtl. Counterhate? n/a

Hateful Tiveet 3: If <country> had only shown
the true numbers and severity of this virus
then maybe some countries would have taken
it more seriously much earlier.

Counterhate Tweet: <country> has shown you
that 10 of 1000s people infected for about two
months. Few of countries take serious action.

Reply: <country> is doing a good jobl...] truth-
ful Govt. that cares about citizens. A shining
beacon on a hill for the world to emulate.

Agree? Yes
Attacks Author? n/a

Support? n/a
Addtl. Counterhate? Yes

Table 1: Three annotation examples of hateful tweets,
counterhate tweets, and replies from our corpus. An-
notations include four binary questions: whether the
reply (a) Agrees with the counterhate tweet, (b) Sup-
ports the hate when it disagrees with the counterhate
tweet, (¢) Attacks the Author of the counterhate tweet
when it disagrees with the counterhate tweet, and (d)
adds Additional Counterhate when it agrees with the
counterhate tweet.

the hateful tweet. We consider the reply to support
the hateful tweet if it includes a justification for the
hateful content (e.g., the news says the opposite!)
or introduces additional hateful content (e.g., first
example in Table 1). Second, we identify whether
the reply attacks the author of the counterhate
tweet. We include in the definition of attack any
mockery or insults towards the author of the coun-
terhate tweet (e.g., stupid never understand!).
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Observed (%) Cohen’s k
Agree? 91.1 0.82
Support? 89.1 0.77
Attacks Author? 92.3 0.79
Addtl. Counterhate? 91.7 0.81

Table 2: Inter-annotator agreements in our corpus. We
provide the observed agreements (percentage of times
annotators agreed) and Cohen’s k.  coefficients be-
tween 0.6 and 0.8 are considered substantial agreement,
and above 0.8 (nearly) perfect (Artstein and Poesio,
2008).

The third step provides fine-grained characteris-
tics when the reply agrees with the counterhate
tweet. Finally, when the reply agrees with the
counterhate tweet, we distinguish whether the re-
ply includes additional counterhate. Namely, we
identify whether the reply contains additional coun-
terhate by providing a new opinion or factual argu-
ment to support the counterhate tweet (e.g., he is
also known for his charitable work and donations).
Only agreeing with the counterhate tweet (e.g., you
are correct!) does not contain additional arguments.

Examples Table 1 shows examples from our cor-
pus. In the first example, the reply not only dis-
agrees with the counterhate tweet but also supports
the hateful tweet with new hate content against the
mentioned people. Note that replies can also show
disagreement without including any support for the
hateful tweet (e.g., do you have any evidence?!!).

In the second example, the reply attacks the au-
thor of the counterhate tweet without including
any justification or support for the hateful tweet.
This also indicates that the reply disagrees with the
counterhate tweet. Note that replies can disagree
with the counterhate tweet without attacking the
author (e.g., don’t be their lawyer).

Finally, the reply in the third example not only
agrees with the counterhate tweet, but also includes
additional counterhate (honest vs. successful gov-
ernment). Note that replies can agree with the coun-
terhate tweet without adding additional counterhate
(e.g., convincing response!).

Annotation Process and Inter-Annotator Agree-
ments We used the Label Studio annotation tool
The tool showed the hateful tweet, counterhate
tweet, and reply. It displayed the screenshots of the
tweets taken from the Twitter website to prevent

Shttps://github.com/heartexlabs/label-studio



%Yes %No
Agree? 49 51
Support? 40 60
Attacks Author? 24 76
Addtl. Counterhate? 35 65

Table 3: Percentages for Yes and No labels per question.

readability issues when displaying the tweets (e.g.,
special characters). Additionally, annotators are
provided with instructions for each question (i.e.,
definitions and examples).

The 2,621 (hateful tweet, counterhate tweet, re-
ply) triples were independently annotated by two
graduate students active on social media platforms.
We are interested in how regular social media users
interpret hateful tweets, counterhate tweets, and
replies. Table 2 presents the inter-annotator agree-
ments. For all questions, the observed agreements
are almost 90%. Cohen’s k coefficients indicate
(a) substantial agreement in two questions: whether
the reply supports the hateful tweet and attacks the
author of the counterhate tweets, and (b) nearly per-
fect agreements in two questions: whether the reply
agrees with the counterhate tweet and includes ad-
ditional counterhate. k coefficients between 0.60
and 0.80 are considered substantial agreement, and
above 0.80 are considered nearly perfect (Artstein
and Poesio, 2008). We note that it is easier to deter-
mine whether a reply agrees and adds additional
counterhate tasks than supports and attacks the au-
thor tasks. This is due to the use of sarcasm and
nuanced language when the reply supports the hate-
ful tweet or attacks the author of the counterhate
tweet. After the two annotators finished all the an-
notations independently, they debated the points of
disagreement and decided on the final label.

4 Corpus Analysis

Label Distribution Table 3 presents the percent-
ages of yes and no labels per question. Around half
of the replies to the counterhate tweets do not agree
with the counterhate tweet (51%), and it is common
for them to support the hateful tweet when they do
not agree (40%). In addition, it is somewhat rare
for these replies to attack the author of the coun-
terhate tweet when they disagree (24%). On the
other hand, it is less likely for the replies to include
additional counterhate arguments when they agree
(35%). This shows that most replies that agree with
the counterhate tweet do not include any additional
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arguments to support the counterhate tweet (e.g.,
you are correct).

Linguistic Insights We analyze the language
people use in the counterhate tweets that lead
to certain types of replies. We count the num-
ber of tokens, pronouns, and proper nouns using
spaCy (Neumann et al., 2019). We use the lexi-
cons of offensive words® and lexicons by Moham-
mad and Turney (2013) to count offensive, posi-
tive, negative, and sadness words. Finally, we use
Profanity-check’ to calculate the profanity score
and TextBlob® to calculate the subjectivity score.
All correlations between linguistic features are be-
low 0.30, except for a few that involve the number
of tokens (Appendix A, Figures 2-5). We check
the predictive power of the selected features using
t-test. We also report if a test passes the Bonferroni
correction (Table 4). The p-values reveal several
interesting insights:

* Counterhate tweets with more tokens or pro-
nouns elicit replies that do not attack the au-
thor of the counterhate tweet or include addi-
tional counterhate if they agree.

Counterhate tweets with more question marks
lead to replies that (a) agree with the counter-
hate tweets and do not add additional counter-
hate, or (b) support the hateful tweet and do
not attack the author.

We find that (a) positive words elicit replies
that do not attack the author or add additional
counterhate, (b) negative words elicit replies
that do not add additional counterhate, and (c)
offensive words elicit replies that agree with
the counterhate, or attack the author.
Profanity in counterhate tweets elicits replies
that agree with the counterhate tweet or do
not support the hateful tweet.

Comparing hateful tweets and counterhate
tweets reveals that counterhate tweets with
(a) less offensive content lead to replies that
agree with the counterhate tweet or do not sup-
port the hateful tweet, (b) less sadness words
elicit replies that agree with the counterhate
or do not attack the author of the counterhate
tweet, and (c) less subjectivity lead to replies
that attack the author of the counterhate or do
not add additional counterhate.

®https://github.com/zacanger/profane-words
"https://github.com/vzhou842/profanity-check
8https://github.com/sloria/TextBlob



Agree? Support? Attacks Author? Addtl. Counterhate?
p-value Bonf. p-value Bonf. p-value Bonf. p-value Bonf.
Number of ...
tokens W v ™M v
pronouns W v 1 v
proper nouns T X { X
question marks T X ™M v L v T X
positive words W v ™M v
negative words + X 3 v
offensive words T X 1 X
Profanity score T X 1 X
With respect to the hateful tweet
offensive words ™M v WX
sadness words M X 1 X
subjectivity ™ X 1 X

Table 4: Linguistic analysis of the counterhate tweets depending on our fine-grained characterization of the replies
they elicit. Number of arrows indicate the p-value (t-test; one: p < 0.05, two: p < 0.01, and three: p < 0.001). Arrow
direction indicates whether higher values correlate with yes (up) or no (down). We use a check mark to indicate
tests that pass the Bonferroni correction. Counterhate tweets without offensive words tend to elicit replies that agree
with the counterhate tweet and do not support the hate when they disagree.

5 Experiments and Results

We create a binary classifier for each task, namely,
whether the reply: (a) agrees with the counterhate
tweet, (b) supports the hateful tweet, (c) attacks
the author of the counterhate tweet, or (d) includes
additional counterhate arguments. We split the
dataset into 70:10:20 ratios for training, validation,
and testing. Each instance consists of a hateful
tweet, a counterhate tweet, and a reply.

Baselines The baseline models we use in our ex-
periments are the majority and random models. In
the majority model, the majority label is predicted
(no label for all tasks, Table 3). In the random
model, a random label of no or yes is predicted.

Neural Network Architecture and Training In
all experiments, we used the transformer-based
BERTweet model (Nguyen et al., 2020). BERTweet
is a BERT-based (Devlin et al., 2019) model but
was pre-trained using the ROBERTa training strat-
egy (Liu et al., 2019) on 850M English tweets. The
neural architecture consists of the base architecture
of BERTweet followed by a linear layer with 128
neurons and ReLLU activation. Then, we added a
final linear layer with 2 neurons and a Softmax
activation to do the binary classification between
labels yes and no. We perform the experiments
using different textual inputs:
1. the hateful tweet alone,
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2. the counterhate tweet alone,
3. the reply alone, and
4. combinations of (1-3) above.

We use the *</s>’ special token to concatenate the
inputs. Then, we apply three strategies to enhance
the performance of neural models:

Data Augmentation We adapt Easy Data Augmen-
tation Marivate and Sefara (2020) called. Specif-
ically, we use Synonym Replacement (randomly
replacing a word), Random Insertion (inserting a
synonym of a random word), and Random Swap
(randomly swapping the positions of two words).

Concatenating Language Features Language fea-
tures have been shown to improve pre-trained mod-
els’ performance in text classification tasks (Lim
and Tayyar Madabushi, 2020). To this end, we
experiment with complementing embeddings with
manually defined language features. Inspired by
the analyses in Section 4, we calculate count-based
language features for the replies, such as the num-
ber of tokens, pronouns, nouns, verbs, negative and
positive words (using the lexicons by Mohammad
and Turney (2013)), question marks, proper nouns,
and first-person pronouns. Examples are shown in
Appendix C (Table 7). We then use the significance
test (t-test) to keep the significant features (p< 0.05).
The common significant features between the tasks
are the number of tokens, bad words, nouns and
verbs, and positive words. We concatenate these



Agree? Support? Attacks Author? Addtl.
Counterhate?
No Yes Avg. No Yes Avg. No Yes Avg. No Yes Avg.
Baselines
Majority 0.67 0.00 034 0.75 0.00 045 0.87 0.00 0.66 0.79 0.00 0.51
Random 0.52 048 0.50 0.51 044 048 0.58 030 0.51 054 039 049
BERTweet trained with ...
reply 0.71 0.70 0.70 0.82 0.64 0.75 0.89 0.62 0.83 0.89 0.78 0.85
counterhate tweet 0.64 060 0.62 0.70 038 0.57 0.86 0.13 0.69 0.73 0.51 0.66
hateful tweet 0.61 059 0.60 0.72 030 0.55 0.86 0.00 0.66 0.76 0.42 0.64
reply + counterhate tweet 0.72 0.75 0.73 0.80 0.69 0.76 0.89 0.64 0.83 0.89 0.79 0.85
reply + hateful tweet 0.67 0.75 0.71 0.82 0.73 0.78 0.88 0.59 0.81 0.87 0.76 0.83
best pair + the other tweet  0.74 0.71 0.73 0.80 0.68 0.75 0.88 0.56 0.81 0.88 0.76 0.83
best input + EDA 0.75 0.74 0.75 0.84 0.74 0.80 0.89 0.64 0.83 0.89 0.77 0.85
best input + LF 0.74 0.74 0.74 0.84 0.67 0.78 090 0.64 0.84 0.88 0.77 0.84
best input + Blending 0.76 0.74 0.75 0.84 0.79 0.82 090 0.66 0.84 0.88 0.80 0.85

Table 5: Results obtained with several systems (F1-scores; Avg. refers to the weighted average). Best pair: the
pair input that leads to the best pair result (reply+counterhate tweet or reply+hateful tweet). The other tweet:
either the counterhate tweet or hateful tweet. Best input: the textual input or combinations of inputs of (reply,
counterhate tweet, and hateful tweet) that leads to the best performance (underlined). EDA: easy data augmentation.
LF: language features. Tables 8—11 in Appendix D provide detailed results per label and subtask.

features with each other and with the input embed-
dings using the *</s>’ special token.

Blending Complementary Corpora We finally
investigate pretraining with complementary tasks.
We adopt the method by Shnarch et al. (2018),
which integrates labeled data from related tasks
with various ratios in each training epoch. This is
done by blending the related task instances with our
dataset for training, and decrease the ratio in each
epoch to reach zero in the last one. The corpora
we blend with are: (a) a stance dataset (Moham-
mad et al., 2016) consisting of 4,163 tweets about
abortion, atheism, climate change, feminism, and
Hillary Clinton annotated with in favor, against,
or none; (b) an offensive dataset (Zampieri et al.,
2019b) containing over 14K tweets annotated with
offensive or not offensive, and (c) a hateful tweet-
reply dataset (Albanyan and Blanco, 2022), anno-
tated with whether the reply counters the hateful
tweet (5,652 pairs), counters the hate with justifica-
tion (1,145), attacks the author of the hateful tweet
(1,145), and includes additional hate (4,507).

5.1 Quantitative Results

Table 5 shows the results using the F1-score for
no and yes labels, and the weighted average. Ap-
pendix D (Tables 8—11) contains detailed results
showing the precision, recall, and F1-score. The
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F1-scores for the majority baseline are 0.34, 0.45,
0.66, and 0.51.

The results using the neural models with differ-
ent inputs (the hateful tweet, the counterhate tweet,
the reply, or a combination of different tweets) re-
veal several insights:

* Using only the hateful tweet or counterhate

tweet as an input outperforms the baselines,
showing that certain hateful tweets or counter-
hate tweets elicit particular kinds of replies.
Feeding to the network only the reply yields
the best results out of all single-tweet inputs.
Combining the reply with the hateful tweet
outperforms the models in support the hateful
tweet task since, in this task, the reply is re-
lated to the hateful tweet. On the other hand,
including the counterhate tweets improves the
results in the other three tasks. We note that it
barely affects the attacks the author task. We
hypothesize this is because the attack can be
detected from the reply alone.
Including a third input (either the counterhate
tweet or hateful tweet) to the best pairs (re-
ply+counterhate tweet or reply+hateful tweet)
worsens the results (0.73, 0.78, 0.83, and 0.85
vs. 0.73, 0.75, 0.81, and 0.83).

Additionally, the results show modest improve-
ments when applying the three strategies we work



Agree? Support? Attacks Author? Additl. Counterhate?

Intricate text

Sarcasm and implicit meaning 18
Mentions many named entities 6
All 24
General knowledge 16
Short text, less than 5 tokens 20
Misspellings and abbreviations 11
Rhetorical question 8

20 15 18
5 7 6
25 22 24
19 17 12
12 21 14
9 11 12
14 9 9

Table 6: Error types made by the best performing model in each task (best input + blending, as shown in Table 5).

All the numbers are percentages.

with (Data Augmentation, Language Features, and
Blending Complementary Corpora). We find that:

» Data augmentation benefits the neural network
trained with the best input combination in two
tasks: agree with the counterhate tweet and
support the hateful tweet.

» Language features are barely beneficial.

* Blending complementary corpora always
yields higher results. More details about the
related datasets that lead to the best results in
all tasks can be found in Appendix D.

We also tried combining the strategies and found

out that doing so does not improve results.

When do the best models make errors? While
our best models in each task produce strong results
(best input + blending, Table 5), we manually ana-
lyzed the wrong predictions made by each model.
Table 6 shows the error types we found. We started
the analysis by randomly selecting 100 samples
from the model produced in the agree task. We
considered all the wrong predictions for the other
three tasks since they were less than 100 samples.
They were 59 samples in the support task, 46 in the
attacks the author task, and 43 in the additional
counterhate task. The error types are:

e Intricate text (24%, 25%, 22%, and 24%),
which involves using sarcasm and implicit
meaning, or mentioning many individuals or
entities (e.g., Reply: don’t block me I need
you so bad. Agree? Gold: No, Predicted: Yes).
General knowledge (16%, 19%, 17%, and
12%), which requires world knowledge and
commonsense to understand the meaning of
the tweet (e.g., Reply: it’s on sky news mate!.
Supports? Gold: Yes, Predicted: No).

Short text (20%, 12%, 21%, and 14%), tweets
with less than 5 tokens (e.g., Reply: chill out.
Attack the Author? Gold: No, Predicted: Yes).
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* Misspellings and abbreviations (11%, 9%,
11%, and 12%), (e.g., Reply: @auscoups Why
r they trending these things. Addit. counter-
hate? Gold: Yes, Predicted: No).

* Rhetorical question (8%, 14%, 9%, and 9%),
where a question in a tweet is asked to deliver
a point (e.g., Reply: you think this is funny?.
Agree? Gold: Yes, Predicted: No).

6 Conclusions

Countering hateful content is an effective way to
fight hate speech (Gagliardone et al., 2015). Addi-
tionally, countering hate speech—unlike blocking—
does not interfere with free speech. However well-
intentioned, however, counterhate arguments may
worsen the situation by eliciting additional hate.

In this work, we analyze the discourse follow-
ing a counterhate tweet. Specifically, we analyze
all replies to counterhate tweets and reveal fine-
grained characteristics beyond whether the reply
agrees with the counterhate argument. Namely, we
determine whether the reply (a) not only disagrees
with the counterhate tweet but also supports the
hateful tweet or attacks the author of the counter-
hate arguments, or (b) not only agrees with the
counterhate tweet but also adds additional counter-
hate arguments. To our knowledge, this work is the
first to analyze the language of counterhate tweets
based on the replies they elicit.

The work presented here is empirical and ex-
plores genuine counterhate arguments and the
replies they elicit. We believe that it is critical
to analyze genuine social media discourse and how
hate spreads (and does not spread). We avoid mak-
ing any causal claims; instead, we draw insights
from genuine social media discourse around hate-
ful content. Our future work includes generating
counterhate arguments (a) customized to specific



hateful content and (b) following the characteristics
we found to be more effective at stopping hatred.
We hypothesize that doing so will be more effective
than generic or even expert-driven counterhate.

Limitations

In the data collection process (Section 3), we col-
lect (hateful tweet, counterhate tweet, and reply)
triples from existing hateful tweet-reply and hate-
ful tweet corpora (the first and second strategies).
However, this ends with fewer triples since some
tweets are no longer available and not all coun-
terhate tweets have replies. In addition, we use
hate speech and counterhate classifiers to discard
non-hateful and non-counterhate tweets. This step
might (a) discard actual hateful or counterhate
tweets that are detected wrongly and (b) keep hate-
ful or counterhate tweets that should be discarded.
Another limitation is that we only consider the
tweet text. However, some tweets contain text ac-
companied by images or sometimes images only.
Including the tweets’ images in the analysis may
add more insights.
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A Inter-Feature Correlations

Figures 2-5 show the inter-feature correlations for
the the linguistic features used in the linguistic anal-
ysis (Section 4, Table 4). Most correlation coeffi-
cients are less than 0.30 in all four tasks (whether
the reply agrees with the counterhate tweet, sup-
ports the hateful tweet, attacks the author of the
counterhate tweet, or includes additional counter-
hate). This shows that our analysis captures various
kinds of counterhate tweets.

B Implementation Details

We used the transformer-based BERTweet model.
The neural architecture consists of the base archi-
tecture of BERTweet followed by a linear layer
with 128 neurons and a ReLLU activation. Then,
we added a final linear layer with 2 neurons and
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Figure 2: Correlation coefficients between features used in the linguistic analysis. The left and right heatmaps
show the correlations with counterhate tweet for the replies that agree and do not agree with the counterhate tweet
respectively.
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Figure 3: Correlation coefficients between features used in the linguistic analysis. The left and right heatmaps show
the correlations with counterhate tweet for the replies that support and do not support the hateful tweet respectively.
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Figure 4: Correlation coefficients between features used in the linguistic analysis. The left and right heatmaps show
the correlations with counterhate tweet for the replies that attack and do not attack the author of the counterhate

tweet respectively.
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