Ziyang Liu


2025

pdf bib
TeRDy: Temporal Relation Dynamics through Frequency Decomposition for Temporal Knowledge Graph Completion
Ziyang Liu | Chaokun Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Temporal knowledge graph completion aims to predict missing facts in a knowledge graph by leveraging temporal information. Existing methods often struggle to capture both the long-term changes and short-term variability of relations, which are crucial for accurate prediction. In this paper, we propose a novel method called TeRDy for temporal knowledge graph completion. TeRDy captures temporal relational dynamics by utilizing time-invariant embeddings, along with long-term temporally dynamic embeddings (e.g., enduring political alliances) and short-term temporally dynamic embeddings (e.g., transient political events). These two types of embeddings are derived from low- and high-frequency components via frequency decomposition. Also, we design temporal smoothing and temporal gradient to seamlessly incorporate timestamp embeddings into relation embeddings. Extensive experiments on benchmark datasets demonstrate that TeRDy outperforms state-of-the-art temporal knowledge graph embedding methods.

2022

pdf bib
Knowledge Distillation based Contextual Relevance Matching for E-commerce Product Search
Ziyang Liu | Chaokun Wang | Hao Feng | Lingfei Wu | Liqun Yang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Online relevance matching is an essential task of e-commerce product search to boost the utility of search engines and ensure a smooth user experience. Previous work adopts either classical relevance matching models or Transformer-style models to address it. However, they ignore the inherent bipartite graph structures that are ubiquitous in e-commerce product search logs and are too inefficient to deploy online. In this paper, we design an efficient knowledge distillation framework for e-commerce relevance matching to integrate the respective advantages of Transformer-style models and classical relevance matching models. Especially for the core student model of the framework, we propose a novel method using k-order relevance modeling. The experimental results on large-scale real-world data (the size is 6 174 million) show that the proposed method significantly improves the prediction accuracy in terms of human relevance judgment. We deploy our method to JD.com online search platform. The A/B testing results show that our method significantly improves most business metrics under price sort mode and default sort mode.

2020

pdf bib
CORD-19: The COVID-19 Open Research Dataset
Lucy Lu Wang | Kyle Lo | Yoganand Chandrasekhar | Russell Reas | Jiangjiang Yang | Doug Burdick | Darrin Eide | Kathryn Funk | Yannis Katsis | Rodney Michael Kinney | Yunyao Li | Ziyang Liu | William Merrill | Paul Mooney | Dewey A. Murdick | Devvret Rishi | Jerry Sheehan | Zhihong Shen | Brandon Stilson | Alex D. Wade | Kuansan Wang | Nancy Xin Ru Wang | Christopher Wilhelm | Boya Xie | Douglas M. Raymond | Daniel S. Weld | Oren Etzioni | Sebastian Kohlmeier
Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020

The COVID-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on COVID-19 and related historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19 has been downloaded over 200K times and has served as the basis of many COVID-19 text mining and discovery systems. In this article, we describe the mechanics of dataset construction, highlighting challenges and key design decisions, provide an overview of how CORD-19 has been used, and describe several shared tasks built around the dataset. We hope this resource will continue to bring together the computing community, biomedical experts, and policy makers in the search for effective treatments and management policies for COVID-19.