Zinong Yang


2025

pdf bib
ChainEdit: Propagating Ripple Effects in LLM Knowledge Editing through Logical Rule-Guided Chains
Zilu Dong | Xiangqing Shen | Zinong Yang | Rui Xia
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current knowledge editing methods for large language models (LLMs) struggle to maintain logical consistency when propagating ripple effects to associated facts. We propose ChainEdit, a framework that synergizes knowledge graph-derived logical rules with LLM logical reasoning capabilities to enable systematic chain updates. By automatically extracting logical patterns from structured knowledge bases and aligning them with LLMs’ internal logics, ChainEdit dynamically generates and edits logically connected knowledge clusters. Experiments demonstrate an improvement of more than 30% in logical generalization over baselines while preserving editing reliability and specificity. We further address evaluation biases in existing benchmarks through knowledge-aware protocols that disentangle external dependencies. This work establishes new state-of-the-art performance on ripple effect while ensuring internal logical consistency after knowledge editing.

2023

pdf bib
UniCOQE: Unified Comparative Opinion Quintuple Extraction As A Set
Zinong Yang | Feng Xu | Jianfei Yu | Rui Xia
Findings of the Association for Computational Linguistics: ACL 2023

Comparative Opinion Quintuple Extraction (COQE) aims to identify comparative opinion sentences in product reviews, extract comparative opinion elements in the sentences, and then incorporate them into quintuples. Existing methods decompose the COQE task into multiple primary subtasks and then solve them in a pipeline manner. However, these approaches ignore the intrinsic connection between subtasks and the error propagation among stages. This paper proposes a unified generative model, UniCOQE, to solve the COQE task in one shot. We design a generative template where all the comparative tuples are concatenated as the target output sequence. However, the multiple tuples are inherently not an ordered sequence but an unordered set. The pre-defined order will force the generative model to learn a false order bias and hinge the model’s training. To alleviate this bias, we introduce a new “predict-and-assign” training paradigm that models the golden tuples as a set. Specifically, we utilize a set-matching strategy to find the optimal order of tuples. The experimental results on multiple benchmarks show that our unified generative model significantly outperforms the SOTA method, and ablation experiments prove the effectiveness of the set-matching strategy.