2025
pdf
bib
abs
InstructMol: Multi-Modal Integration for Building a Versatile and Reliable Molecular Assistant in Drug Discovery
He Cao
|
Zijing Liu
|
Xingyu Lu
|
Yuan Yao
|
Yu Li
Proceedings of the 31st International Conference on Computational Linguistics
The rapid evolution of artificial intelligence in drug discovery encounters challenges with generalization and extensive training, yet Large Language Models (LLMs) offer promise in reshaping interactions with complex molecular data. Our novel contribution, InstructMol, a multi-modal LLM, effectively aligns molecular structures with natural language via an instruction-tuning approach, utilizing a two-stage training strategy that adeptly combines limited domain-specific data with molecular and textual information. InstructMol showcases substantial performance improvements in drug discovery-related molecular tasks, surpassing leading LLMs and significantly reducing the gap with specialists, thereby establishing a robust foundation for a versatile and dependable drug discovery assistant.
pdf
bib
abs
Dynamic Guided and Domain Applicable Safeguards for Enhanced Security in Large Language Models
Weidi Luo
|
He Cao
|
Zijing Liu
|
Yu Wang
|
Aidan Wong
|
Bin Feng
|
Yuan Yao
|
Yu Li
Findings of the Association for Computational Linguistics: NAACL 2025
With the extensive deployment of Large Language Models (LLMs), ensuring their safety has become increasingly critical. However, existing defense methods often struggle with two key issues: (i) inadequate defense capabilities, particularly in domain-specific scenarios like chemistry, where a lack of specialized knowledge can lead to the generation of harmful responses to malicious queries. (ii) over-defensiveness, which compromises the general utility and responsiveness of LLMs. To mitigate these issues, we introduce a multi-agents-based defense framework, Guide for Defense (G4D), which leverages accurate external information to provide an unbiased summary of user intentions and analytically grounded safety response guidance. Extensive experiments on popular jailbreak attacks and benign datasets show that our G4D can enhance LLM’s robustness against jailbreak attacks on general and domain-specific scenarios without compromising the model’s general functionality.
pdf
bib
abs
Parameter-Efficient Fine-Tuning via Circular Convolution
Aochuan Chen
|
Jiashun Cheng
|
Zijing Liu
|
Ziqi Gao
|
Fugee Tsung
|
Yu Li
|
Jia Li
Findings of the Association for Computational Linguistics: ACL 2025
Low-Rank Adaptation (LoRA) has gained popularity for fine-tuning large foundation models, leveraging low-rank matrices \mathbf A and \mathbf B to represent weight changes (i.e., 𝛥 \mathbf W = \mathbf B \mathbf A). This method reduces trainable parameters and mitigates heavy memory consumption associated with full delta matrices by sequentially multiplying \mathbf A and \mathbf B with the activation. Despite its success, the intrinsic low-rank characteristic may limit its performance. Although several variants have been proposed to address this issue, they often overlook the crucial computational and memory efficiency brought by LoRA. In this paper, we propose Circular Convolution Adaptation (C3A), which not only achieves high-rank adaptation with enhanced performance but also excels in both computational power and memory utilization. Extensive experiments demonstrate that C3A consistently outperforms LoRA and its variants across various fine-tuning tasks.
2024
pdf
bib
abs
MoleculeQA: A Dataset to Evaluate Factual Accuracy in Molecular Comprehension
Xingyu Lu
|
He Cao
|
Zijing Liu
|
Shengyuan Bai
|
Leqing Chen
|
Yuan Yao
|
Hai-Tao Zheng
|
Yu Li
Findings of the Association for Computational Linguistics: EMNLP 2024
Large language models are playing an increasingly significant role in molecular research, yet existing models often generate erroneous information. Traditional evaluations fail to assess a model’s factual correctness. To rectify this absence, we present MoleculeQA, a novel question answering (QA) dataset which possesses 62K QA pairs over 23K molecules. Each QA pair, composed of a manual question, a positive option and three negative options, has consistent semantics with a molecular description from authoritative corpus. MoleculeQA is not only the first benchmark to evaluate molecular factual correctness but also the largest molecular QA dataset. A comprehensive evaluation on MoleculeQA for existing molecular LLMs exposes their deficiencies in specific aspects and pinpoints crucial factors for molecular modeling. Furthermore, we employ MoleculeQA in reinforcement learning to mitigate model hallucinations, thereby enhancing the factual correctness of generated information.
pdf
bib
abs
PRESTO: Progressive Pretraining Enhances Synthetic Chemistry Outcomes
He Cao
|
Yanjun Shao
|
Zhiyuan Liu
|
Zijing Liu
|
Xiangru Tang
|
Yuan Yao
|
Yu Li
Findings of the Association for Computational Linguistics: EMNLP 2024
Multimodal Large Language Models (MLLMs) have seen growing adoption across various scientific disciplines. These advancements encourage the investigation of molecule-text modeling within synthetic chemistry, a field dedicated to designing and conducting chemical reactions to synthesize new compounds with desired properties and applications. Current approaches, however, often neglect the critical role of multi-molecule graph interaction in understanding chemical reactions, leading to suboptimal performance in synthetic chemistry tasks. This study introduces PRESTO (Progressive Pretraining Enhances Synthetic Chemistry Outcomes), a new framework that bridges the molecule-text modality gap by integrating a comprehensive benchmark of pretraining strategies and dataset configurations. It progressively improves multimodal LLMs through cross-modal alignment and multi-graph understanding. Our extensive experiments demonstrate that PRESTO offers competitive results in downstream synthetic chemistry tasks. The code can be found at https://github.com/IDEA-XL/PRESTO.