2025
pdf
bib
abs
Have We Designed Generalizable Structural Knowledge Promptings? Systematic Evaluation and Rethinking
Yichi Zhang
|
Zhuo Chen
|
Lingbing Guo
|
Yajing Xu
|
Shaokai Chen
|
Mengshu Sun
|
Binbin Hu
|
Zhiqiang Zhang
|
Lei Liang
|
Wen Zhang
|
Huajun Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have demonstrated exceptional performance in text generation within current NLP research. However, the lack of factual accuracy is still a dark cloud hanging over the LLM skyscraper. Structural knowledge prompting (SKP) is a prominent paradigm to integrate external knowledge into LLMs by incorporating structural representations, achieving state-of-the-art results in many knowledge-intensive tasks. However, existing methods often focus on specific problems, lacking a comprehensive exploration of the generalization and capability boundaries of SKP. This paper aims to evaluate and rethink the generalization capability of the SKP paradigm from four perspectives including Granularity, Transferability, Scalability, and Universality. To provide a thorough evaluation, we introduce a novel multi-granular, multi-level benchmark called SUBARU, consisting of 9 different tasks with varying levels of granularity and difficulty. Through extensive experiments, we draw key conclusions regarding the generalization of SKP, offering insights to guide the future development and extension of the SKP paradigm.
pdf
bib
abs
Advancing Zero-shot Text-to-Speech Intelligibility across Diverse Domains via Preference Alignment
Xueyao Zhang
|
Yuancheng Wang
|
Chaoren Wang
|
Ziniu Li
|
Zhuo Chen
|
Zhizheng Wu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Modern zero-shot text-to-speech (TTS) systems, despite using extensive pre-training, often struggle in challenging scenarios such as tongue twisters, repeated words, code-switching, and cross-lingual synthesis, leading to intelligibility issues. To address these limitations, this paper leverages preference alignment techniques, which enable targeted construction of out-of-pretraining-distribution data to enhance performance. We introduce a new dataset, named the Intelligibility Preference Speech Dataset (INTP), and extend the Direct Preference Optimization (DPO) framework to accommodate diverse TTS architectures. After INTP alignment, in addition to intelligibility, we observe overall improvements including naturalness, similarity, and audio quality for multiple TTS models across diverse domains. Based on that, we also verify the weak-to-strong generalization ability of INTP for more intelligible models such as CosyVoice 2 and Ints. Moreover, we showcase the potential for further improvements through iterative alignment based on Ints. Audio samples are available at https://intalign.github.io/.
pdf
bib
abs
Noise-powered Multi-modal Knowledge Graph Representation Framework
Zhuo Chen
|
Yin Fang
|
Yichi Zhang
|
Lingbing Guo
|
Jiaoyan Chen
|
Jeff Z. Pan
|
Huajun Chen
|
Wen Zhang
Proceedings of the 31st International Conference on Computational Linguistics
The rise of Multi-modal Pre-training highlights the necessity for a unified Multi-Modal Knowledge Graph (MMKG) representation learning framework. Such a framework is essential for embedding structured knowledge into multi-modal Large Language Models effectively, alleviating issues like knowledge misconceptions and multi-modal hallucinations. In this work, we explore the efficacy of models in accurately embedding entities within MMKGs through two pivotal tasks: Multi-modal Knowledge Graph Completion (MKGC) and Multi-modal Entity Alignment (MMEA). Building on this foundation, we propose a novel SNAG method that utilizes a Transformer-based architecture equipped with modality-level noise masking to robustly integrate multi-modal entity features in KGs. By incorporating specific training objectives for both MKGC and MMEA, our approach achieves SOTA performance across a total of ten datasets, demonstrating its versatility. Moreover, SNAG can not only function as a standalone model but also enhance other existing methods, providing stable performance improvements. Code and data are available at https://github.com/zjukg/SNAG.
pdf
bib
abs
Towards Reliable Large Audio Language Model
Ziyang Ma
|
Xiquan Li
|
Yakun Song
|
Wenxi Chen
|
Chenpeng Du
|
Jian Wu
|
Yuanzhe Chen
|
Zhuo Chen
|
Yuping Wang
|
Yuxuan Wang
|
Xie Chen
Findings of the Association for Computational Linguistics: ACL 2025
Recent advancements in large audio language models (LALMs) have demonstrated impressive results and promising prospects in universal understanding and reasoning across speech, music, and general sound. However, these models still lack the ability to recognize their knowledge boundaries and refuse to answer questions they don’t know proactively. While there have been successful attempts to enhance the reliability of LLMs, reliable LALMs remain largely unexplored. In this paper, we systematically investigate various approaches towards reliable LALMs, including training-free methods such as multi-modal chain-of-thought (MCoT), and training-based methods such as supervised fine-tuning (SFT). Besides, we identify the limitations of previous evaluation metrics and propose a new metric, the Reliability Gain Index (RGI), to assess the effectiveness of different reliable methods. Our findings suggest that both training-free and training-based methods enhance the reliability of LALMs to different extents. Moreover, we find that awareness of reliability is a “meta ability”, which can be transferred across different audio modalities, although significant structural and content differences exist among sound, music, and speech.
pdf
bib
abs
Graph-guided Cross-composition Feature Disentanglement for Compositional Zero-shot Learning
Yuxia Geng
|
Runkai Zhu
|
Jiaoyan Chen
|
Jintai Chen
|
Xiang Chen
|
Zhuo Chen
|
Shuofei Qiao
|
Yuxiang Wang
|
Xiaoliang Xu
|
Sheng-Jun Huang
Findings of the Association for Computational Linguistics: ACL 2025
Disentanglement of visual features of primitives (i.e., attributes and objects) has shown exceptional results in Compositional Zero-shot Learning (CZSL). However, due to the feature divergence of an attribute (resp. object) when combined with different objects (resp. attributes), it is challenging to learn disentangled primitive features that are general across different compositions. To this end, we propose the solution of cross-composition feature disentanglement, which takes multiple primitive-sharing compositions as inputs and constrains the disentangled primitive features to be general across these compositions. More specifically, we leverage a compositional graph to define the overall primitive-sharing relationships between compositions, and build a task-specific architecture upon the recently successful large pre-trained vision-language model (VLM) CLIP, with dual cross-composition disentangling adapters (called L-Adapter and V-Adapter) inserted into CLIP’s frozen text and image encoders, respectively. Evaluation on three popular CZSL benchmarks shows that our proposed solution significantly improves the performance of CZSL, and its components have been verified by solid ablation studies. Our code and data are available at: https://github.com/zhurunkai/DCDA.
2024
pdf
bib
abs
Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering
Yichi Zhang
|
Zhuo Chen
|
Yin Fang
|
Yanxi Lu
|
Li Fangming
|
Wen Zhang
|
Huajun Chen
Findings of the Association for Computational Linguistics: ACL 2024
Deploying large language models (LLMs) to real scenarios for domain-specific question answering (QA) is a key thrust for LLM applications, which poses numerous challenges, especially in ensuring that responses are both accommodating to user requirements and appropriately leveraging domain-specific knowledge bases. They are the two major difficulties for LLM application as vanilla fine-tuning falls short of addressing. Combining these requirements, we conceive of them as the requirement for the model’s preference to be harmoniously aligned with humans’. Thus, we introduce Knowledgeable Preference AlignmenT (KnowPAT), which constructs two kinds of preference sets to tackle the two issues. Besides, we design a new alignment objective to align the LLM preference with different human preferences uniformly, aiming to optimize LLM performance in real-world, domain-specific QA settings. Adequate experiments and comprehensive comparisons with 15 baseline methods illustrate that our KnowPAT is a superior pipeline for real-scenario domain-specific QA with LLMs.
pdf
bib
abs
Improving Retrieval Augmented Open-Domain Question-Answering with Vectorized Contexts
Zhuo Chen
|
Xinyu Wang
|
Yong Jiang
|
Pengjun Xie
|
Fei Huang
|
Kewei Tu
Findings of the Association for Computational Linguistics: ACL 2024
In the era of large language models, applying techniques such as Retrieval Augmented Generation can better address Open-Domain Question-Answering problems. Due to constraints including model sizes and computing resources, the length of context is often limited, and it becomes challenging to empower the model to cover overlong contexts while answering questions from open domains. This paper proposes a general and convenient method to cover longer contexts in Open-Domain Question-Answering tasks. %It leverages a small encoder language model that effectively encodes contexts, and the encoding applies cross-attention with origin inputs.It leverages a small encoder and cross-attention mechanism and effectively encodes contexts. With our method, the original language models can cover several times longer contexts while keeping the computing requirements close to the baseline. Our experiments demonstrate that after fine-tuning, there is improved performance across two held-in datasets, four held-out datasets, and also in two In Context Learning settings. Our code will be released at https://github.com/Alibaba-NLP/Vec-RA-ODQA.
pdf
bib
abs
DET: A Dual-Encoding Transformer for Relational Graph Embedding
Lingbing Guo
|
Zhuo Chen
|
Jiaoyan Chen
|
Qiang Zhang
|
Huajun Chen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Despite recent successes in natural language processing and computer vision, Transformer faces scalability issues when processing graphs, e.g., computing the full node-to-node attention on knowledge graphs (KGs) with million of entities is still infeasible. The existing methods mitigate this problem by considering only the local neighbors, sacrificing the Transformer’s ability to attend to elements at any distance. This paper proposes a new Transformer architecture called Dual-Encoding Transformer (DET). DET comprises a structural encoder to aggregate information from nearby neighbors, and a semantic encoder to seek for semantically relevant nodes. We adopt a semantic neighbor search approach inspired by multiple sequence alignment (MSA) algorithms used in biological sciences. By stacking the two encoders alternately, similar to the MSA Transformer for protein representation, our method achieves superior performance compared to state-of-the-art attention-based methods on complex relational graphs like KGs and citation networks. Additionally, DET remains competitive for smaller graphs such as molecules.
pdf
bib
abs
Self-Improvement Programming for Temporal Knowledge Graph Question Answering
Zhuo Chen
|
Zhao Zhang
|
Zixuan Li
|
Fei Wang
|
Yutao Zeng
|
Xiaolong Jin
|
Yongjun Xu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Temporal Knowledge Graph Question Answering (TKGQA) aims to answer questions with temporal intent over Temporal Knowledge Graphs (TKGs). The core challenge of this task lies in understanding the complex semantic information regarding multiple types of time constraints (e.g., before, first) in questions. Existing end-to-end methods implicitly model the time constraints by learning time-aware embeddings of questions and candidate answers, which is far from understanding the question comprehensively. Motivated by semantic-parsing-based approaches that explicitly model constraints in questions by generating logical forms with symbolic operators, we design fundamental temporal operators for time constraints and introduce a novel self-improvement Programming method for TKGQA (Prog-TQA). Specifically, Prog-TQA leverages the in-context learning ability of Large Language Models (LLMs) to understand the combinatory time constraints in the questions and generate corresponding program drafts with a few examples given. Then, it aligns these drafts to TKGs with the linking module and subsequently executes them to generate the answers. To enhance the ability to understand questions, Prog-TQA is further equipped with a self-improvement strategy to effectively bootstrap LLMs using high-quality self-generated drafts. Extensive experiments demonstrate the superiority of the proposed Prog-TQA on MultiTQ and CronQuestions datasets, especially in the Hits@1 metric.
pdf
bib
abs
Unleashing the Power of Imbalanced Modality Information for Multi-modal Knowledge Graph Completion
Yichi Zhang
|
Zhuo Chen
|
Lei Liang
|
Huajun Chen
|
Wen Zhang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Multi-modal knowledge graph completion (MMKGC) aims to predict the missing triples in the multi-modal knowledge graphs by incorporating structural, visual, and textual information of entities into the discriminant models. The information from different modalities will work together to measure the triple plausibility. Existing MMKGC methods overlook the imbalance problem of modality information among entities, resulting in inadequate modal fusion and inefficient utilization of the raw modality information. To address the mentioned problems, we propose Adaptive Multi-modal Fusion and Modality Adversarial Training (AdaMF-MAT) to unleash the power of imbalanced modality information for MMKGC. AdaMF-MAT achieves multi-modal fusion with adaptive modality weights and further generates adversarial samples by modality-adversarial training to enhance the imbalanced modality information. Our approach is a co-design of the MMKGC model and training strategy which can outperform 19 recent MMKGC methods and achieve new state-of-the-art results on three public MMKGC benchmarks. Our code and data have been released at https://github.com/zjukg/AdaMF-MAT.
2023
pdf
bib
abs
Using Interpretation Methods for Model Enhancement
Zhuo Chen
|
Chengyue Jiang
|
Kewei Tu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
In the age of neural natural language processing, there are plenty of works trying to derive interpretations of neural models. Intuitively, when gold rationales exist during training, one can additionally train the model to match its interpretation with the rationales. However, this intuitive idea has not been fully explored. In this paper, we propose a framework of utilizing interpretation methods and gold rationales to enhance models. Our framework is very general in the sense that it can incorporate various interpretation methods. Previously proposed gradient-based methods can be shown as an instance of our framework. We also propose two novel instances utilizing two other types of interpretation methods, erasure/replace-based and extractor-based methods, for model enhancement. We conduct comprehensive experiments on a variety of tasks. Experimental results show that our framework is effective especially in low-resource settings in enhancing models with various interpretation methods, and our two newly-proposed methods outperform gradient-based methods in most settings. Code is available at https://github.com/Chord-Chen-30/UIMER.