Zhiqiu Lin


2025

pdf bib
InstructPart: Task-Oriented Part Segmentation with Instruction Reasoning
Zifu Wan | Yaqi Xie | Ce Zhang | Zhiqiu Lin | Zihan Wang | Simon Stepputtis | Deva Ramanan | Katia P. Sycara
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large multimodal foundation models, particularly in the domains of language and vision, have significantly advanced various tasks, including robotics, autonomous driving, information retrieval, and grounding. However, many of these models perceive objects as indivisible, overlooking the components that constitute them. Understanding these components and their associated affordances provides valuable insights into an object’s functionality, which is fundamental for performing a wide range of tasks. In this work, we introduce a novel real-world benchmark, InstructPart, comprising hand-labeled part segmentation annotations and task-oriented instructions to evaluate the performance of current models in understanding and executing part-level tasks within everyday contexts. Through our experiments, we demonstrate that task-oriented part segmentation remains a challenging problem, even for state-of-the-art Vision-Language Models (VLMs). In addition to our benchmark, we introduce a simple baseline that achieves a twofold performance improvement through fine-tuning with our dataset. With our dataset and benchmark, we aim to facilitate research on task-oriented part segmentation and enhance the applicability of VLMs across various domains, including robotics, virtual reality, information retrieval, and other related fields. Project website: https://zifuwan.github.io/InstructPart/.

2023

pdf bib
Prompting Scientific Names for Zero-Shot Species Recognition
Shubham Parashar | Zhiqiu Lin | Yanan Li | Shu Kong
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Trained on web-scale image-text pairs, Vision-Language Models (VLMs) such as CLIP can recognize images of common objects in a zero-shot fashion. However, it is underexplored how to use CLIP for zero-shot recognition of highly specialized concepts, e.g., species of birds, plants, and animals, for which their scientific names are written in Latin or Greek. Indeed, CLIP performs poorly for zero-shot species recognition with prompts that use scientific names, e.g., “a photo of Lepus Timidus” (which is a scientific name in Latin). This is because these names are usually not included in CLIP’s training set. To improve performance, we explore using large-language models (LLMs) to generate descriptions (e.g., of species color and shape) and additionally use them in prompts. However, this method improves only marginally. Instead, we are motivated to translate scientific names (e.g., Lepus Timidus) to common English names (e.g., mountain hare) and use such in the prompts. We find that common names are more likely to be included in CLIP’s training set, and prompting them achieves 2~5 times higher accuracy on benchmarking datasets of fine-grained species recognition.