Zhiqian Chen
2025
Filter-And-Refine: A MLLM Based Cascade System for Industrial-Scale Video Content Moderation
Zixuan Wang
|
Jinghao Shi
|
Hanzhong Liang
|
Xiang Shen
|
Vera Wen
|
Zhiqian Chen
|
Yifan Wu
|
Zhixin Zhang
|
Hongyu Xiong
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)
Effective content moderation is essential for video platforms to safeguard user experience and uphold community standards. While traditional video classification models effectively handle well-defined moderation tasks, they struggle with complicated scenarios such as implicit harmful content and contextual ambiguity. Multimodal large language models (MLLMs) offer a promising solution to these limitations with their superior cross-modal reasoning and contextual understanding. However, two key challenges hinder their industrial adoption. First, the high computational cost of MLLMs makes full-scale deployment impractical. Second, adapting generative models for discriminative classification remains an open research problem. In this paper, we first introduce an efficient method to transform a generative MLLM into a multimodal classifier using minimal discriminative training data. To enable industry-scale deployment, we then propose a router-ranking cascade system that integrates MLLMs with a lightweight router model. Offline experiments demonstrate that our MLLM-based approach improves F1 score by 66.50% over traditional classifiers while requiring only 2% of the fine-tuning data. Online evaluations show that our system increases automatic content moderation volume by 41%, while the cascading deployment reduces computational cost to only 1.5% of direct full-scale deployment.
2020
Towards More Accurate Uncertainty Estimation In Text Classification
Jianfeng He
|
Xuchao Zhang
|
Shuo Lei
|
Zhiqian Chen
|
Fanglan Chen
|
Abdulaziz Alhamadani
|
Bei Xiao
|
ChangTien Lu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
The uncertainty measurement of classified results is especially important in areas requiring limited human resources for higher accuracy. For instance, data-driven algorithms diagnosing diseases need accurate uncertainty score to decide whether additional but limited quantity of experts are needed for rectification. However, few uncertainty models focus on improving the performance of text classification where human resources are involved. To achieve this, we aim at generating accurate uncertainty score by improving the confidence of winning scores. Thus, a model called MSD, which includes three independent components as “mix-up”, “self-ensembling”, “distinctiveness score”, is proposed to improve the accuracy of uncertainty score by reducing the effect of overconfidence of winning score and considering the impact of different categories of uncertainty simultaneously. MSD can be applied with different Deep Neural Networks. Extensive experiments with ablation setting are conducted on four real-world datasets, on which, competitive results are obtained.
Search
Fix author
Co-authors
- Abdulaziz Alhamadani 1
- Fanglan Chen 1
- Jianfeng He 1
- Shuo Lei 1
- Hanzhong Liang 1
- show all...