Zhijie Nie
2025
A Text is Worth Several Tokens: Text Embedding from LLMs Secretly Aligns Well with The Key Tokens
Zhijie Nie
|
Richong Zhang
|
Zhanyu Wu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Text embeddings from large language models (LLMs) have achieved excellent results in tasks such as information retrieval, semantic textual similarity, etc. In this work, we show an interesting finding: when feeding a text into the LLM-based embedder, the obtained text embedding will be able to be aligned with the key tokens in the input text. We first fully analyze this phenomenon on eight LLM-based embedders and show that this phenomenon is universal and is not affected by model architecture, training strategy, and embedding method. With a deeper analysis, we find that the main change in embedding space between these embedders and their LLM backbones is in the first principal component. By adjusting the first principal component, we can align text embedding with the key tokens. Finally, we give several examples to demonstrate the vast application potential of this finding: (1) we propose a simple and practical sparse retrieval method based on the aligned tokens, which can achieve 80% of the dense retrieval effect of the same model while reducing the computation significantly; (2) we show that our findings provide a novel perspective to help understand novel technologies (e.g., instruction-following embedding) and fuzzy concepts (e.g., semantic relatedness vs. similarity) in this field.
Dynamic Task Vector Grouping for Efficient Multi-Task Prompt Tuning
Peiyi Zhang
|
Richong Zhang
|
Zhijie Nie
|
Ziqiao Wang
Findings of the Association for Computational Linguistics: ACL 2025
Multi-task prompt tuning utilizes multiple high-resource source tasks to improve performance on low-source target tasks. Existing approaches transfer the soft prompt trained by combining all source tasks or a single “high-similar” source task one-time-only. However, we find that the optimal transfer performance often comes from a combination of source tasks, which is neither one nor all. Further, we find that the similarity between source and target tasks also changes dynamically during fine-tuning after transfering, making similarity calculation in the initiation stage inadequate. To address these issues, we propose a method called Dynamic Task Vector Grouping (DTVG), whose core ideas contain (1) measuring the task similarity with task vectors instead of soft prompt, (2) grouping the optimal source task combination based on two metrics: target similarity and knowledge consistency; (3) dynamically updating the combination in each iteration step. Extensive experiments on the 26 NLP datasets under different settings demonstrate that DTVG effectively groups similar source tasks while reducing negative transfer, achieving the start-of-art performance.
2024
Towards Better Understanding of Contrastive Sentence Representation Learning: A Unified Paradigm for Gradient
Mingxin Li
|
Richong Zhang
|
Zhijie Nie
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Sentence Representation Learning (SRL) is a crucial task in Natural Language Processing (NLP), where contrastive Self-Supervised Learning (SSL) is currently a mainstream approach. However, the reasons behind its remarkable effectiveness remain unclear. Specifically, many studies have investigated the similarities between contrastive and non-contrastive SSL from a theoretical perspective. Such similarities can be verified in classification tasks, where the two approaches achieve comparable performance. But in ranking tasks (i.e., Semantic Textual Similarity (STS) in SRL), contrastive SSL significantly outperforms non-contrastive SSL. Therefore, two questions arise: First, *what commonalities enable various contrastive losses to achieve superior performance in STS?* Second, *how can we make non-contrastive SSL also effective in STS?* To address these questions, we start from the perspective of gradients and discover that four effective contrastive losses can be integrated into a unified paradigm, which depends on three components: the **Gradient Dissipation**, the **Weight**, and the **Ratio**. Then, we conduct an in-depth analysis of the roles these components play in optimization and experimentally demonstrate their significance for model performance. Finally, by adjusting these components, we enable non-contrastive SSL to achieve outstanding performance in STS.