Zhihao Wang

May refer to multiple people

Other people with similar names: Zhihao Wang


2024

pdf bib
DAGCN: Distance-based and Aspect-oriented Graph Convolutional Network for Aspect-based Sentiment Analysis
Zhihao Wang | Bo Zhang | Ru Yang | Chang Guo | Maozhen Li
Findings of the Association for Computational Linguistics: NAACL 2024

Aspect-based sentiment analysis (ABSA) is a task that aims to determine the sentiment polarity of aspects by identifying opinion words. Recent advancements have predominantly been rooted either in semantic or syntactic methods. However, both of them tend to interference from local factors such as irrelevant words and edges, hindering the precise identification of opinion words. In this paper, we present Distance-based and Aspect-oriented Graph Convolutional Network (DAGCN) to address the aforementioned issue. Firstly, we introduce the Distance-based Syntactic Weight (DSW). It focuses on the local scope of aspects in the pruned dependency trees, thereby reducing the candidate pool of opinion words. Additionally, we propose Aspect-Fusion Attention (AF) to further filter opinion words within the local context and consider cases where opinion words are distant from the aspect. With the combination of DSW and AF, we achieve precise identification of corresponding opinion words. Extensive experiments on three public datasets demonstrate that the proposed model outperforms state-of-the-art models and verify the effectiveness of the proposed architecture.

2022

pdf bib
Learning to Detect Noisy Labels Using Model-Based Features
Zhihao Wang | Zongyu Lin | Junjie Wen | Xianxin Chen | Peiqi Liu | Guidong Zheng | Yujun Chen | Zhilin Yang
Findings of the Association for Computational Linguistics: EMNLP 2022

Label noise is ubiquitous in various machine learning scenarios such as self-labeling with model predictions and erroneous data annotation. Many existing approaches are based on heuristics such as sample losses, which might not be flexible enough to achieve optimal solutions. Meta learning based methods address this issue by learning a data selection function, but can be hard to optimize. In light of these pros and cons, we propose SENT (Selection-Enhanced Noisy label Training) that does not rely on meta learning while having the flexibility of being data-driven. SENT transfers the noise distribution to a clean set and trains a model to distinguish noisy labels from clean ones using model-based features. Empirically, on a wide range of tasks including text classification and speech recognition, SENT improves performance over strong baselines under the settings of self-training and label corruption.