Zejian Yuan


2025

pdf bib
TableLoRA: Low-rank Adaptation on Table Structure Understanding for Large Language Models
Xinyi He | Yihao Liu | Mengyu Zhou | Yeye He | Haoyu Dong | Shi Han | Zejian Yuan | Dongmei Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Tabular data are crucial in many fields and their understanding by large language models (LLMs) under high parameter efficiency paradigm is important. However, directly applying parameter-efficient fine-tuning (PEFT) techniques to tabular tasks presents significant challenges, particularly in terms of better table serialization and the representation of two-dimensional structured information within a one-dimensional sequence. To address this, we propose TableLoRA, a module designed to improve LLMs’ understanding of table structure during PEFT. It incorporates special tokens for serializing tables with special token encoder and uses 2D LoRA to encode low-rank information on cell positions. Experiments on four tabular-related datasets demonstrate that TableLoRA consistently outperforms vanilla LoRA and surpasses various table encoding methods tested in control experiments. These findings reveal that TableLoRA, as a table-specific LoRA, enhances the ability of LLMs to process tabular data effectively, especially in low-parameter settings, demonstrating its potential as a robust solution for handling table-related tasks.

2024

pdf bib
CoCoST: Automatic Complex Code Generation with Online Searching and Correctness Testing
Xinyi He | Jiaru Zou | Yun Lin | Mengyu Zhou | Shi Han | Zejian Yuan | Dongmei Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models have revolutionized code generation ability by converting natural language descriptions into executable code. However, generating complex code within real-world scenarios remains challenging due to intricate structures, subtle bugs, understanding of advanced data types, and lack of supplementary contents. To address these challenges, we introduce the CoCoST framework, which enhances complex code generation by online searching for more information with planned queries and correctness testing for code refinement. Moreover, CoCoST serializes the complex inputs and outputs to improve comprehension and generates test cases to ensure the adaptability for real-world applications. CoCoST is validated through rigorous experiments on the DS-1000 and ClassEval datasets. Experimental results show that CoCoST substantially improves the quality of complex code generation, highlighting its potential to enhance the practicality of LLMs in generating complex code.

2023

pdf bib
AnaMeta: A Table Understanding Dataset of Field Metadata Knowledge Shared by Multi-dimensional Data Analysis Tasks
Xinyi He | Mengyu Zhou | Mingjie Zhou | Jialiang Xu | Xiao Lv | Tianle Li | Yijia Shao | Shi Han | Zejian Yuan | Dongmei Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Tabular data analysis is performed everyday across various domains. It requires an accurate understanding of field semantics to correctly operate on table fields and find common patterns in daily analysis. In this paper, we introduce the AnaMeta dataset, a collection of 467k tables with derived supervision labels for four types of commonly used field metadata: measure/dimension dichotomy, common field roles, semantic field type, and default aggregation function. We evaluate a wide range of models for inferring metadata as the benchmark. We also propose a multi-encoder framework, called KDF, which improves the metadata understanding capability of tabular models by incorporating distribution and knowledge information. Furthermore, we propose four interfaces for incorporating field metadata into downstream analysis tasks.