Zafarullah Mahmood


2025

pdf bib
A Fully Generative Motivational Interviewing Counsellor Chatbot for Moving Smokers Towards the Decision to Quit
Zafarullah Mahmood | Soliman Ali | Jiading Zhu | Mohamed Abdelwahab | Michelle Yu Collins | Sihan Chen | Yi Cheng Zhao | Jodi Wolff | Osnat C. Melamed | Nadia Minian | Marta Maslej | Carolynne Cooper | Matt Ratto | Peter Selby | Jonathan Rose
Findings of the Association for Computational Linguistics: ACL 2025

The conversational capabilities of Large Language Models (LLMs) suggest that they may be able to perform as automated talk therapists. It is crucial to know if these systems would be effective and adhere to known standards. We present a counsellor chatbot that focuses on motivating tobacco smokers to quit smoking. It uses a state-of-the-art LLM and a widely applied therapeutic approach called Motivational Interviewing (MI), and was evolved in collaboration with clinician-scientists with expertise in MI. We also describe and validate an automated assessment of both the chatbot’s adherence to MI and client responses. The chatbot was tested on 106 participants, and their confidence that they could succeed in quitting smoking was measured before the conversation and one week later. Participants’ confidence increased by an average of 1.7 on a 0-10 scale. The automated assessment of the chatbot showed adherence to MI standards in 98% of utterances, higher than human counsellors. The chatbot scored well on a participant-reported metric of perceived empathy but lower than typical human counsellors. Furthermore, participants’ language indicated a good level of motivation to change, a key goal in MI. These results suggest that the automation of talk therapy with a modern LLM has promise.

2021

pdf bib
Avengers, Ensemble! Benefits of ensembling in grapheme-to-phoneme prediction
Vagrant Gautam | Wang Yau Li | Zafarullah Mahmood | Fred Mailhot | Shreekantha Nadig | Riqiang Wang | Nathan Zhang
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

We describe three baseline beating systems for the high-resource English-only sub-task of the SIGMORPHON 2021 Shared Task 1: a small ensemble that Dialpad’s speech recognition team uses internally, a well-known off-the-shelf model, and a larger ensemble model comprising these and others. We additionally discuss the challenges related to the provided data, along with the processing steps we took.