Ziyang Huang


2025

pdf bib
Exploiting Contextual Knowledge in LLMs through 𝒱-usable Information based Layer Enhancement
Xiaowei Yuan | Zhao Yang | Ziyang Huang | Yequan Wang | Siqi Fan | Yiming Ju | Jun Zhao | Kang Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet they often struggle with context-faithfulness generations that properly reflect contextual knowledge. While existing approaches focus on enhancing the decoding strategies, they ignore the fundamental mechanism of how contextual information is processed within LLMs’ internal states. As a result, LLMs remain limited in their ability to fully leverage contextual knowledge. In this paper, we propose Context-aware Layer Enhancement (CaLE), a novel intervention method that enhances the utilization of contextual knowledge within LLMs’ internal representations. By employing 𝒱-usable information analysis, CaLE strategically amplifies the growth of contextual information at an optimal layer, thereby enriching representations in the final layer. Our experiments demonstrate that CaLE effectively improves context-faithful generation in Question-Answering tasks, particularly in scenarios involving unknown or conflicting contextual knowledge.

pdf bib
Towards Adaptive Mechanism Activation in Language Agent
Ziyang Huang | Jun Zhao | Kang Liu
Proceedings of the 31st International Conference on Computational Linguistics

Language Agent could be endowed with different mechanisms for autonomous task accomplishment. Current agents typically rely on a fixed mechanism or a set of mechanisms activated in a predefined order, limiting their adaptation to varied potential task solution structures. To this end, this paper proposes Adaptive Language Agent Mechanism Activation Learning with Self-Exploration (ALAMA), which focuses on optimizing mechanism activation adaptability without reliance on expert models. Initially, it builds a harmonized agent framework (UniAct) to Unify different mechanisms via Actions. Then it leverages a training-efficient optimization method based on self-exploration to enable the UniAct to adaptively activate the appropriate mechanisms according to the potential characteristics of the task. Experimental results demonstrate significant improvements in downstream agent tasks, affirming the effectiveness of our approach in facilitating more dynamic and context-sensitive mechanism activation.

pdf bib
Improve Rule Retrieval and Reasoning with Self-Induction and Relevance ReEstimate
Ziyang Huang | Wangtao Sun | Jun Zhao | Kang Liu
Findings of the Association for Computational Linguistics: ACL 2025

This paper systematically addresses the challenge of rule retrieval, a crucial yet underexplored area. Vanilla retrieval methods using sparse or dense retrievers to directly search for relevant rules to support downstream reasoning, often suffer from low accuracy. This is primarily due to a significant semantic gap between the instantiated facts in the queries and the abstract representations of the rules. Such misalignment results in suboptimal retrieval quality, which in turn negatively impacts reasoning performance. To overcome these challenges, we propose Self-Induction Augmented Retrieval (SIAR), a novel approach that utilizes Large Language Models (LLMs) to induce potential inferential rules that might offer benefits for reasoning by abstracting the underlying knowledge and logical structure in queries. These induced rules are then used for query augmentation to improve retrieval effectiveness. Additionally, we introduce Rule Relevance ReEstimate (R3), a method that re-estimates the relevance of retrieved rules by assessing whether the abstract knowledge they contain can be instantiated to align with the facts in the queries and the helpfulness for reasoning. Extensive experiments across various settings demonstrate the effectiveness and versatility of our proposed methods.

2023

pdf bib
DiffusionSL: Sequence Labeling via Tag Diffusion Process
Ziyang Huang | Pengfei Cao | Jun Zhao | Kang Liu
Findings of the Association for Computational Linguistics: EMNLP 2023

Sequence Labeling (SL) is long-standing in Natural Language Processing (NLP). Traditionally, discriminative models have been widely used to capture the conditional distribution of sequence tags, rather than generative models. In this paper, we present DiffusionSL, a framework that utilizes a conditional discrete diffusion model for generating discrete tag data, resulting in a Tag Diffusion Process. We treat the natural language sequence as the conditional signal and the sequence tags as the generation target, iteratively refining the noisy tags to obtain clean ones. To address the discreteness issue, we propose the Bit-Tag Converter (BTConverter) to model the target in continuous data space. Furthermore, we introduce the Bit Diffusion Transformer (BitDiT) to model the process of noise elimination. Leveraging the powerful iterative refinement capability of the diffusion model, DiffusionSL achieves superior performance against previous state-of-the-art (SOTA) baselines and outperforms gpt-3.5-turbo significantly across multiple benchmark datasets and various tasks.