Zijian Li


2025

pdf bib
Graph Neural Network Enhanced Retrieval for Question Answering of Large Language Models
Zijian Li | Qingyan Guo | Jiawei Shao | Lei Song | Jiang Bian | Jun Zhang | Rui Wang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Retrieval augmented generation has revolutionized large language model (LLM) outputs by providing factual supports. Nevertheless, it struggles to capture all the necessary knowledge for complex reasoning questions. Existing retrieval methods typically divide reference documents into passages, treating them in isolation. These passages, however, are often interrelated, such as passages that are contiguous or share the same keywords. Therefore, it is crucial to recognize such relatedness for enhancing the retrieval process. In this paper, we propose a novel retrieval method, called GNN-Ret, which leverages graph neural networks (GNNs) to enhance retrieval by exploiting the relatedness between passages. Specifically, we first construct a graph of passages by connecting passages that are structure-related or keyword-related. A graph neural network (GNN) is then leveraged to exploit the relationships between passages and improve the retrieval of supporting passages. Furthermore, we extend our method to handle multi-hop reasoning questions using a recurrent graph neural network (RGNN), named RGNN-Ret. At each step, RGNN-Ret integrates the graphs of passages from previous steps, thereby enhancing the retrieval of supporting passages. Extensive experiments on benchmark datasets demonstrate that GNN-Ret achieves higher accuracy for question answering with a single query of LLMs than strong baselines that require multiple queries, and RGNN-Ret further improves accuracy and achieves state-of-the-art performance, with up to 10.4 accuracy improvement on the 2WikiMQA dataset.

2020

pdf bib
TAG : Type Auxiliary Guiding for Code Comment Generation
Ruichu Cai | Zhihao Liang | Boyan Xu | Zijian Li | Yuexing Hao | Yao Chen
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Existing leading code comment generation approaches with the structure-to-sequence framework ignores the type information of the interpretation of the code, e.g., operator, string, etc. However, introducing the type information into the existing framework is non-trivial due to the hierarchical dependence among the type information. In order to address the issues above, we propose a Type Auxiliary Guiding encoder-decoder framework for the code comment generation task which considers the source code as an N-ary tree with type information associated with each node. Specifically, our framework is featured with a Type-associated Encoder and a Type-restricted Decoder which enables adaptive summarization of the source code. We further propose a hierarchical reinforcement learning method to resolve the training difficulties of our proposed framework. Extensive evaluations demonstrate the state-of-the-art performance of our framework with both the auto-evaluated metrics and case studies.