Zihao Xie
2025
Multi-Agent Collaboration via Cross-Team Orchestration
Zhuoyun Du
|
Chen Qian
|
Wei Liu
|
Zihao Xie
|
YiFei Wang
|
Rennai Qiu
|
Yufan Dang
|
Weize Chen
|
Cheng Yang
|
Ye Tian
|
Xuantang Xiong
|
Lei Han
Findings of the Association for Computational Linguistics: ACL 2025
Large Language Models (LLMs) have significantly impacted various domains, especially through organized LLM-driven autonomous agents. A representative scenario is in software development, where agents can collaborate in a team like humans, following predefined phases to complete sub-tasks sequentially. However, for an agent team, each phase yields only one possible outcome. This results in the completion of only one development chain, thereby losing the opportunity to explore multiple potential decision paths within the solution space. Consequently leading to suboptimal results or extensive trial and error. To address this, we introduce Cross-Team Orchestration (Croto), a scalable multi-team framework that enables orchestrated teams to jointly propose various task-oriented solutions and interact with their insights in a self-independence while cross-team collaboration environment for superior solutions generation. Experiments reveal a notable increase in software quality compared to state-of-the-art baselines. We further tested our framework on story generation tasks, which demonstrated a promising generalization ability of our framework in other domains. The code and data is available at https://github.com/OpenBMB/ChatDev/tree/macnet
2024
Experiential Co-Learning of Software-Developing Agents
Chen Qian
|
Yufan Dang
|
Jiahao Li
|
Wei Liu
|
Zihao Xie
|
YiFei Wang
|
Weize Chen
|
Cheng Yang
|
Xin Cong
|
Xiaoyin Che
|
Zhiyuan Liu
|
Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advancements in large language models (LLMs) have brought significant changes to various domains, especially through LLM-driven autonomous agents. A representative scenario is in software development, where LLM agents demonstrate efficient collaboration, task division, and assurance of software quality, markedly reducing the need for manual involvement. However, these agents frequently perform a variety of tasks independently, without benefiting from past experiences, which leads to repeated mistakes and inefficient attempts in multi-step task execution. To this end, we introduce Experiential Co-Learning, a novel LLM-agent learning framework in which instructor and assistant agents gather shortcut-oriented experiences from their historical trajectories and use these past experiences for future task execution. The extensive experiments demonstrate that the framework enables agents to tackle unseen software-developing tasks more effectively. We anticipate that our insights will guide LLM agents towards enhanced autonomy and contribute to their evolutionary growth in cooperative learning. The code and data are available at https://github.com/OpenBMB/ChatDev.