The paper focuses on the interpretability of Grammatical Error Correction (GEC) evaluation metrics, which received little attention in previous studies. To bridge the gap, we introduce **CLEME2.0**, a reference-based metric describing four fundamental aspects of GEC systems: hit-correction, wrong-correction, under-correction, and over-correction. They collectively contribute to exposing critical qualities and locating drawbacks of GEC systems. Evaluating systems by combining these aspects also leads to superior human consistency over other reference-based and reference-less metrics. Extensive experiments on two human judgment datasets and six reference datasets demonstrate the effectiveness and robustness of our method, achieving a new state-of-the-art result. Our codes are released at https://github.com/THUKElab/CLEME.
Large Language Models (LLMs) face computational inefficiencies and redundant processing when handling long context inputs, prompting a focus on compression techniques. While existing semantic vector-based compression methods achieve promising performance, these methods fail to account for the intrinsic information density variations between context chunks, instead allocating soft tokens uniformly across context chunks. This uniform distribution inevitably diminishes allocation to information-critical regions. To address this, we propose Dynamic Allocation of Soft Tokens (DAST), a simple yet effective method that leverages the LLM’s intrinsic understanding of contextual relevance to guide compression. DAST combines perplexity-based local information with attention-driven global information to dynamically allocate soft tokens to the informative-rich chunks, enabling effective, context-aware compression. Experimental results across multiple benchmarks demonstrate that DAST surpasses state-of-the-art methods.
Document assistant chatbots are empowered with extensive capabilities by Large Language Models (LLMs) and have exhibited significant advancements. However, these systems may suffer from hallucinations that are difficult to verify in the context of given documents.Moreover, despite the emergence of products for document assistants, they either heavily rely on commercial LLM APIs or lack transparency in their technical implementations, leading to expensive usage costs and data privacy concerns. In this work, we introduce a fully open-source document assistant chatbot with reliable attribution, named TruthReader, utilizing adapted conversational retriever and LLMs. Our system enables the LLMs to generate answers with detailed inline citations, which can be attributed to the original document paragraphs, facilitating the verification of the factual consistency of the generated text. To further adapt the generative model, we develop a comprehensive pipeline consisting of data construction and model optimization processes.This pipeline equips the LLMs with the necessary capabilities to generate accurate answers, produce reliable citations, and refuse unanswerable questions. Our codebase, data and models are released, and the video demonstration of our system is available at https://youtu.be/RYVt3itzUQM.
We propose a new formulation for multilingual entity linking, where language-specific mentions resolve to a language-agnostic Knowledge Base. We train a dual encoder in this new setting, building on prior work with improved feature representation, negative mining, and an auxiliary entity-pairing task, to obtain a single entity retrieval model that covers 100+ languages and 20 million entities. The model outperforms state-of-the-art results from a far more limited cross-lingual linking task. Rare entities and low-resource languages pose challenges at this large-scale, so we advocate for an increased focus on zero- and few-shot evaluation. To this end, we provide Mewsli-9, a large new multilingual dataset matched to our setting, and show how frequency-based analysis provided key insights for our model and training enhancements.