Zichen Tang


2025

pdf bib
FinanceReasoning: Benchmarking Financial Numerical Reasoning More Credible, Comprehensive and Challenging
Zichen Tang | Haihong E | Ziyan Ma | Haoyang He | Jiacheng Liu | Zhongjun Yang | Zihua Rong | Rongjin Li | Kun Ji | Qing Huang | Xinyang Hu | Yang Liu | Qianhe Zheng
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce **FinanceReasoning**, a novel benchmark designed to evaluate the reasoning capabilities of large reasoning models (LRMs) in financial numerical reasoning problems. Compared to existing benchmarks, our work provides three key advancements. (1) **Credibility**: We update 15.6% of the questions from four public datasets, annotating 908 new questions with detailed Python solutions and rigorously refining evaluation standards. This enables an accurate assessment of the reasoning improvements of LRMs. (2) **Comprehensiveness**: FinanceReasoning covers 67.8% of financial concepts and formulas, significantly surpassing existing datasets. Additionally, we construct 3,133 Python-formatted functions, which enhances LRMs’ financial reasoning capabilities through refined knowledge (*e.g.*, 83.2% 91.6% for GPT-4o). (3) **Challenge**: Models are required to apply multiple financial formulas for precise numerical reasoning on 238 *Hard* problems. The best-performing model (*i.e.*, OpenAI o1 with PoT) achieves 89.1% accuracy, yet LRMs still face challenges in numerical precision. We demonstrate that combining Reasoner and Programmer models can effectively enhance LRMs’ performance (*e.g.*, 83.2% 87.8% for DeepSeek-R1). Our work paves the way for future research on evaluating and improving LRMs in domain-specific complex reasoning tasks.

2024

pdf bib
ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models
Haoran Luo | Haihong E | Zichen Tang | Shiyao Peng | Yikai Guo | Wentai Zhang | Chenghao Ma | Guanting Dong | Meina Song | Wei Lin | Yifan Zhu | Anh Tuan Luu
Findings of the Association for Computational Linguistics: ACL 2024

Knowledge Base Question Answering (KBQA) aims to answer natural language questions over large-scale knowledge bases (KBs), which can be summarized into two crucial steps: knowledge retrieval and semantic parsing. However, three core challenges remain: inefficient knowledge retrieval, mistakes of retrieval adversely impacting semantic parsing, and the complexity of previous KBQA methods. To tackle these challenges, we introduce ChatKBQA, a novel and simple generate-then-retrieve KBQA framework, which proposes first generating the logical form with fine-tuned LLMs, then retrieving and replacing entities and relations with an unsupervised retrieval method, to improve both generation and retrieval more directly. Experimental results show that ChatKBQA achieves new state-of-the-art performance on standard KBQA datasets, WebQSP, and CWQ. This work can also be regarded as a new paradigm for combining LLMs with knowledge graphs (KGs) for interpretable and knowledge-required question answering.

2023

pdf bib
HAHE: Hierarchical Attention for Hyper-Relational Knowledge Graphs in Global and Local Level
Haoran Luo | Haihong E | Yuhao Yang | Yikai Guo | Mingzhi Sun | Tianyu Yao | Zichen Tang | Kaiyang Wan | Meina Song | Wei Lin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Link Prediction on Hyper-relational Knowledge Graphs (HKG) is a worthwhile endeavor. HKG consists of hyper-relational facts (H-Facts), composed of a main triple and several auxiliary attribute-value qualifiers, which can effectively represent factually comprehensive information. The internal structure of HKG can be represented as a hypergraph-based representation globally and a semantic sequence-based representation locally. However, existing research seldom simultaneously models the graphical and sequential structure of HKGs, limiting HKGs’ representation. To overcome this limitation, we propose a novel Hierarchical Attention model for HKG Embedding (HAHE), including global-level and local-level attention. The global-level attention can model the graphical structure of HKG using hypergraph dual-attention layers, while the local-level attention can learn the sequential structure inside H-Facts via heterogeneous self-attention layers. Experiment results indicate that HAHE achieves state-of-the-art performance in link prediction tasks on HKG standard datasets. In addition, HAHE addresses the issue of HKG multi-position prediction for the first time, increasing the applicability of the HKG link prediction task. Our code is publicly available.